AD-A214 013

NPS-61-89-014

NAVAL POSTGRADUATE SCHOOL

Monterey, California

]

L HOVO

e

11989 3

i

At o
S
%5
e

i

CHARGING CHARACTERISTICS OF DYNAMICS EXPLORER 4
RETARDING ION MASS SPECTROMETER
AND
THE CONSEQUENCE FOR CORE PLASMA MEASUREMENTS

R. C. OLSEN

SEPTEMBER 1989

Technical Report

approved tor public release; distribution unlimited.

Prepzred for:
Naval Postgraduate School, Monterey, CA 93943-5000 and
NASA Marshall Space Flight Center, Huntsville, AL 35812

P I T N
BN . . . .

pp!
v

N




Naval Postgraduate School
Monterey, California

Rear Admiral R. W. West, Jr.
Superintendent

H. Shull
Provost

he work reported herein was supported in part by the Naval Postgraduate School
and the NASA Marshall Space Flight Center.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Reviewed by:

Y

),

RCCHRISTOPHE ;
Associate Professor of Physics

Released by:

o -
~ X
t-- el o rtrA 4L

EHLER
Chairman. Department of Physics

/]
KARLHEINZ E.

GORDON E. SCHACHER
Dean of Science and Engineering




UNCLASSIFIED
SECURITY CLASSIFICAT ON OF 7= S FAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFiCATION 1o RESTRICTIVE MARKINGS
unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release; distribution
2b. DECLASSIFICATION ' DOWNGRADING SCHEDULE - unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

NPS-61-89-014

63 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL [ 7a NAME OF MONITORING ORGANIZATION
‘ Naval Postgraduate School ("’ngame’
6¢. ADDRESS (City, State, and Z/P Code) 7b. ADDRESS (City, State, and ZIP Code)

Naval Postgraduate School
Physics Department (Code 61)
Monterey, CA 93943-5000

8a. NAME OF FUNDING . SPONSORIN i
I R S e T
NASA Marshall Space Flight Ctr. 0&MN, Direct Funding
8c. ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
Huntsville, AL PROGRAM PROJECT TASK WORK UNIT
Naval Postgraduate School (Code 61) ELEMENT NO. NO. NO ACCESSION NO.

Monterey, CA 93943-5000

11 TITLE (include Security Classification)
Charging Characteristics of Dynamics Explorer I Retarding Mass Spectrometer and the

Consequence for Core Plasma Measurements
12 PERSONAL AUTHOR(S)

R. C. Olsen

13a TYPE OF REPOR™ '35 T'ME COVEFED 14. DA REPORT (Year, Month, Day) |15 PAGE COUNT
Technical crory Sep 89 ;o Sep 89 ég(%lf Y 51
16 SUPPLENINTAR< NOTA™ D,

<7 COS4T COD:¢ 18 SUB (T TERMS (Continue on reverse if neiessary and identify by block number)

FEon GPGUF | S_B.GRO.P s Spacecraft charging; thermal plasmas; mas$ spectrometry,
’ U “ -
RARP I

19 ABSTRACT (Continue on reverse 1f necessary and identify by block numberi)
¢ ¥/The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer I (DE I) satellite has
provided a new range of data, and challenges for studies of the core plasma of the
magnetosphere. Analysis of the RIMS data provides a measure of the satellite potential in
the inner magnetosphere. As the satellite leaves the inneg plasmasphere, it begins to
charge positively, crossing the 0 V mark at about 1000 ¢m—J. The potential rises slowly
initially, reaching about I V near the plasmapause, at the 100 cm-J point. At lower |
densities, the potential rises relatively rapidly, reaching +5 V or greater at the 10 ¢m=3
Yoint. For satellite potentials of +1 to +5 V, portions of the ion distribution function arg
ost to measurement because the ions are repelled by the satellite. In particular, in a
multi-temperature plasma, the cold component is easily lost in this potential (density)
regime. t is in this regime where aperture bias teczniques have been successfully used,
particularly in measurements of field-aligned ion flows such as the polar wind, which have
sufficient kinetic energy t% overcome electrostatic barriers in front of the aperture plane.
At lower densities (€10 tm~3), the satellite potential can exceed +5 V. At such potenti=als

* the core Ylasma is lost to the RIMS,and even the aperture bias techniques are no longer
successful. = .
i 20 DSTRR_TON AL 4P T TioamiTIalT 2% ABSTRACT SECURTY (LASS £ CATION
3B oncess=eo oo iz [Osarvs es se [ o7iC USERS unclassified
22a NANT OF RESPOASBLE IND VDAL 22b TELEPHONE (Include Area Code) [ c2¢ OFFICE SYMBOL
Professor R. C. Olsen 646-2019 610s
...... Ry A ‘s An
DD FORM 1473, 22 ¢ 73 A3P ec t 0~ may be used until exhaustec SECUR:TY CLASSIFICATION OF “w:S PAGE

A ~crmer e0itinns ate Obsolete

w uf Govcm?u\( Printing Off.ce 1986—606.24.
unc le

assi




CHARGING CHARACTERISTICS OF DYNAMICS EXPLORER 1
RETARDING ION MASS SPECTROMETER
AND
THE CONSEQUENCE FOR CORE PLASMA MEASUREMENTS

R. C. Olsen

Physics Department

Naval Postgraduate School

Accession For |
NTIS GRAZI T
1 August 1989 DTIC TAB

Unanneunced O
Justification

By_
_Qistribution/

Availerility Codes




SUMMARY

The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer 1 (DE 1)
satellite has provided a new range of data, and challenges for studies of the core plasma of
the magnetosphere. Analysis of the RIMS data provides a measure of the satellite
potential in the inner magnetosphere. As the satellite leaves the inner plasmasphere, it
begins to charge positively, crossing the 0 V mark at about 1000 cm 3. The potential rises

3

slowly initially, reaching about 1 V near the plasmapause, at the 100 cm ° point. At lower

densities, the potential rises relatively rapidly, reaching +5 V or greater at the 10 em™3
point. For satellite potentials of +1 to +5 V., portions of the ion distribution function are
lost to measurement because the ions are repelled by the satellite. In particular, in a
multi—temperature plasma. the cold component is easily lost in this potential (density)
regime. It is in this regime where aperture bias techniques have been successfully used.
particularly in measurements of field—aligned ion flows such as the polar wind. which have
sufficient kinetic energv to overcome electrostatic barriers in front of the aperture plane.
At lower densities (<10 cm—?’)\ the satellite potential can exceed +5 \. At such
potentials. the core plasma is lost to the RIMS. and even the aperture bias techniques are

no longer successful.




I. INTRODUCTION

The thermal plasma measurements on Dynamics Explorer 1 (DE 1), using the
Retarding Ion Mass Spectrometer (RIMS) have provided a new look at the satellite
density—potential relationships for the inner magnetosphere. Previous publications on the
effect of satellite charging on the RIMS measurements (Olsen et al., 1985b, 1986) have
considered the effect of illumination on measurements near local midnight, in equatorial
regions, and the effectiveness of aperture plane bias experiments. Other reports have
considered the effect of satellite potential on the inference of basic plasma parameters in
the plasmasphere (Comfort et al., 1985), and the consequences of various instrument
anomalies on the core plasma measurements (Olsen et al., 1985a).

In this presentation, the plasmasphere data will be summarized in terms of the
density—potential relationship. illustrating the regime where RIMS accurately measures the
core plasma. This relationship is then compared to a similar relation established for
GEOS. at lower densities (higher potentials). The base of plasmasphere measurements will

=3 < n<100 cm_3)

then be extended into the plasmapause region (10 cm . at low and high
latitudes. This region will be considered from a viewpoint of varving illumination (i.e.
eclipse). and aperture plane potential control, and a combination of the two. for a few
unique examples. Finally. the regions outside the plasmasphere are considered. where there
are apparently times when RIMS is prevented from observing the core plasma by satellite
potential greater than the thermal or flow energy of the ambient plasma. It is our purpose
to use the DE 1 experience tv give an indication of what spacecraft charging effects can be
anticipated in other spacecraft whose purpose is to measure magnetospheric plasma

properties.




I1. PLASMASPHERE DENSITY-POTENTIAL RELATION

A fundamental element in understanding and analyzing charged particle data is the
satellite potential—density relation. If known, such a relationship can be used to aid in
analysis, and can be used to predict instrument response. The substantial data set
obtained in the analysis of the RIMS plasmasphere data (Comfort et al., 1985) enable us to
begin the determination of the relationship hetween the ambient plasma density and
detector potential, as illustrated by Figure 1. This figure was obtained by a
straightforward sort of all available plasmasphere passes for the fall 1981 RIMS data (data
processed as of mid—1986). The data were split into dayside (800 LT) and nightside (1800
LT) segments, initially for convenience, and then as it became clear that there were
significant differences in the results for the two local time sets, as discussed below. The
axes for Figure 1 are chosen to match a similar figure constructed for GEOS, as presented
below. The physical relationship between plasma density and detector potential we expect
to find suggests such a choice. In particular, the emitted photocurrent, one of the major
terms in the satellite current balance, will vary as exp—(e¢/kT), for positive satellite
potentials. At the same time. the attracted ambient electron current will vary in a
primarily linear way with ambient electron density. The relative importance of these two
effects is illustrated by the data points above the ¢ > 0 mark. in Figure 1. In this region
there is a nearly linear relationship between the log of the density and the detector
potential. For high densities (negative potentials), the relationship changes. The balance
is then between the ambient electron current, and the ambient ion current (enhanced by
ram. or satellite velocity effects). There is a hysteresis in the curve between —0.5 and 0.0 \’
satellite potential. which has been attributed to satellite velocity effects.

These data can be compared to the density potential relation obtained on GEOS. On
GEOS 1 and 2. the satellite potential. as inferred from the electric field experiment. was

compared to the total electron density. as measured by the plasma wave experiments. The




electric field experiment obtains a measure of the satellite potential by operating the
spherical probes as Langmuir probes. The probes are biased to close to the plasma
potential by forcing a negative current into the spheres. Figure 2 presents the results
published by Knott et al., (1983) and Schmidt and Pederson, (1987) with the DE1/RIMS
results overlaid. The RIMS data points are plotted as dots, for densities over 100 cm'?’.
The last six data points, extending to lower density, are connected with solid lines to insure

their visibility. The stars and dots below 100 cm ™

are the GEOS data points.

The lines in the lower sections are from fits to the data (solid line, long dashed line).
while the short dashed line is from a model which incorporated ambient electrons.
photoelectrons, and a spherical satellite model. Ambient electron temperatures of 0.5, 1.5
and 4.0 eV were used by Knott et al., (1983), but only the 0.5 eV curve is shown in this
figure. Fits to the data using an expected functional relationship between log (density) and
potential give:
log (density) = 3.555 — 1.318 ¢042

or, invertiug

o= 14.1-9.26 [lo,g(n)]o'46

with potential {¢) in volts. and density (n) in em ™S,

Note that Knott's model approaches the best fit quite closely when this data set is
used. Agreement is better than that initially obtained by Knott et al., (1983), with a more
limited data set. (Note, the labels in Figure 2 duplicate those in the original figure.
including an apparent error in the Knott et al. reference.)

This densitv—potential relation can be used to aid in the analysis of RIMS data.
particularly data taken after the failure of the radial RPA. This has been done. with
results under preparation in a variety of efforts (R. H. Comfort. private communication.

1959 Also we can consider the implications of these results for RIMS measurements at




densities below 1000 cm_3 for model environments. First, let us consider measurements of
the low temperature, isotropic, core plasma. The analysis makes use of a mode! developed
for RIMS processing by Comfort et al. [1985]. The thin sheath (TSHEATH) algorithm for
a limited aperture RPA was applied by manually incorporating the density—potential
relationship illustrated in Figure 2. This algorithm makes it possible to simulate the
detector response. Addressing isotropic plasmas first, an ensemble of curves is found as
shown in Figures 3a and 3b. It was assumed that the satellite was moving at 3 km/s with
respect to the plasma, and that the hydrogen ions had a characteristic temperature of 1.0
eV. For the end head (Z), it was assumed that the flow was perpendigzular to the aperture
plane normal. For the radial detector (R), simulated spin curves were created, assuming
0 V settings for the RPA. Simulations of the end head (Z) RPA response (Figure 3a) show
that the core plasma is visible at densities down to 10 cm—3(¢s/c = 5V) at which point the
count rate drops below 1 count/accumulation. (The flux drops with temperature; the end
head response is less than 1 count/accumulation at 25 em™ for 0.5 eV, or 70 em™ for 0.1
eV'). In principle. it is possible to sum over long time periods. thus resolving any
sensitivity problems. This has been done for some RIMS data, particularly over the polar
cap (Nagai et al.. 1984). Often. however. there is a warm (T > 5 e\") plasma which will
produce a 1-10 count/accumulation background, obscuring the core plasma. (For example.

at 1 cm_3

. 10 eV, RIMS will show a count rate of 10 counts/accumulation).

Simulations of the radial detector spin response to the same plasma/spacecraft
potential combinations are shown in Figure 3b, where a 3 km/s satellite velocity is assumed
(near apogee). Spin curve analvsis can again broduce useful results at densities down to 10
cm—3. This result is affected by the satellite velocity and plasma temperature. Fos
example. a warm plasma (T = 1 e\’) is easier to measure than a cool plasma (T = 0.5 e\').
at a given velocity.

The radial detector response as a function of plasma density and temperarar i

summarized for three representative satellite velocities (altitudes) in Figures 4abe. 11 we
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again take the criteria that the plasma is "measurable" at the 1 count level, these curves
then provide the cutoff density which can be measured as a function of temperature.
Characteristic temperatures for 0.1, 0.33, 0.5, and 1.0 eV were chosen. These are
characteristic of the ionosphere, inner plasmasphere, outer plasmasphere/plasmapause, and
outside the plasmasphere, respectively. Not all of the combinations are physically
meaningful, of course. It is unlikely that an 'ionospheric' plasma of 500 cm™3 density and
0.1 eV temperature will occur at apogee. These parameters help to indicate the general
trend, however. As the temperature increases, the necessary plasma density decreases.
The results of the apogee model are supported by the work of Olsen et. al. [1985. b]. and

are further illustrated later in this report.
III. POLAR WIND SIMULATION

One of the major concerns of the RIMS scientists has been the abilitv of RIMS to
adequately measure the polar wind. This was done. as reported by Sojka et al.. (1983} and
Nagai et al.. (1984). and illustrated later in this document. At this point. we consider the
implications of the densitv—potential relation developed in the previous section for polar
wind measurements. The term polar wind, is used here to mean conld plasma moving
upward due to ambipolar diffusion (Banks & Holzer, 1968). Typical initial velocities are a
few km/s. Such upward flows interact wit> the local fields. and can gain energv. This
energization process makes it difficult to predict the velocity. so a full range of
density—velocity parameters must be considered. Fortunately. flux conservation makes it
possible to restrict the combinations of density and velocity. The polar wind simulation
was done assuming the escape flux is constant at 2 x 105 ions/cnf2 s, the classical low
altitude value. It was assumed that the polar wind was escaping into a vacuum (i.e. no
backeround plasma). and expanding in area as 1/B (i.e. flux a ]/Rg). The collapse of the

solid angle filled by the distribution was ignored. The unknown flow velocity then depends




inversely on denéity. The result for the plasma parameters previously chosen (n = 7 to 700
cm—3) at low altitudes was that at all but the highest density, the flow velocity was so
high (greater than 20 km/s) that: a) the thin sheath algorithm failed because of the high
Mach number; and b) it became clear that with the high flow energy (e.g. 4 eV for 28
km/s) there was no way the polar wind would remain "hidden" for the lower densities (see
Table 1). These results are not really surprising. Analysis of the low altitude data (below
3000 km), has been proceeding, and typical values of 2—20 km/s are being found (M. O.

Chandler, private communication, 1987).

Table 1 Polar Wind Flow Energy - 2 x 108 ions/Cm2 s
n flow velocity flow energv
700(cn™3) 2.86 kn/s 0.04 eV
70 28.6  km/s 4.3 eV
25 80 km/s 33. eV
15 133 km/s 91. eV
9 222 km/s 257. eVl
T 286 km/s 425. eV

Extending the model upward shows that as long as satellite velocity effects are included.
the plasma remains measurable up to about 1 RE altitude, so long as the temperature is
allowed to increase slightly. Above this altitude, the polar wind begins to fade from view.
Figure 5 shows the count rate expected for RIMS, as a function of density (velocity) and

8 2 s (e.g. winter) is assumed

temperature. at 4 altitudes. An escape flux of 2 x 10" jons/cm
a 100 km. The count rate i~ then considered at distances of 1, 2, 3. and 4 RE a'ong the
magnetic field line. roughly corresponding to satellite altitudes of similar magnitude. The
L = 6.6 field line was used. and the 4 RE panel corresponds to satellite apoger. The firs
set of values. at 1 RE. show that the polar wind may be missed il it does not 'warm up' to
0.2 e\ A 2 RE altitude. the flux has dropped by a factor of 30 relative to the 100 ki

value. Ag a result. a substantial range of likely polar wind values are unmeasurable. The




polar wind would be measurable only if it remained subsonic, or became highly supersonic.
At higher altitudes, the polar wind flux would only be measurable if the flow velocity
dropped to a few hundred meters per second, e.g. the flow largely ceased. The ions would
then effectively form a stationary plasmasphere population from the RIMS perspective.

One caveat here is the pitch angle distribution. Ignoring the effect of electric fields.
etc.. there would be a pitch angle folding which would restrict the angular distribution,
giving for example, at 3 RE an upper limit of about 20 degrees to the pitch angle
distribution. The focusing of particles into a narrow angular cone would give the ion
distribution function a unique signature which would allow 'polar wind' to be scparated
from the isotropic plasmasphere.

Variations iu the ionosphere escape flux from the canonical value by a factor of 2 l2ad
to relatively small changes in the results illustrated by Figure 5. The effect of varving the
tlux around the expected (winter) values are shown in the top two panels of Figure 6. For
example. at 3 LE. an increase in flux of a factor of 2 brings the highlyv supersonic solutions
(1 cm -3, 60 km/s) into view at all temperatures. but results in no other major changes.
Reducing the flux by a factor of 2 has little effect on the subsonic solutions, and causes the
I an =3 measurements to drop out. The benavior at high density/low velocity is a resuls
of the dominance of satellite velocity. Polar wind fluxes an order of magnitude lower (e.g.
sunumer. 1-2 x 10 ions/ch s). will remain observable at high density/low flow velocity.
following the paitern seen in the lower right hand panel of Figure 6. Supersonic polar wind
would not be observable. (The 1 cm —3, 25 km/s solutions also give less than 1 count.)

The addition of a bati.zround plasma to the model allows for reduced potentials.
This is illustrated iu the lower left panel of Figure 6. At 3 RE. a 70 cm -3 background
holds the potential to +2 \ or less. and the polar wind becomes visible if its temperature is
above 0.2 e\, This is consistent with the results of Nagai et al. (1984). It was found thar
the polar wind we visibleo without aperture bias techniques. at a level of 20-27

connts/accunmlation. These obgervations were made at a time when the background wa-
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between 50 and 100 cm—3 (Gallagher et al., 1986). This latter condition was apparently
unusual in the DE~1 data set, and was the result of a major magnetic storm. Further
searches of the DE 1/RIMS data set for high altitude (> 1 RE) polar wind observations
have largely proven unsuccessful, even using aperture bias techniques, which can balance
out some of the satellite charging effects. It now appears that the uniqueness of the
observations reported by Nagai et al., lie in the nature of the background plasma on that
day, and not the nature of the polar wind.

The energized, heated, and scattered beams which form at low densities have been
reported at geosynchronous orbit by Olsen (1982) and for ISEE—1 out to L=11 by Nagai et
al. (1983). Some aspects of the above modeling presumably break down at this point.
Still. it appears that we can conclude that there is an intermediate region spatially, and
energetically. where the field aligned ions of the polar wind are not observed. The ions can

be observed at the beginning of their upward trajectory, and at the end, but the

intermediate region remains obscured.
I\, ECLIPSE DATA

One of the most useful clues in ferreting out charging effects on core plasma data is
provided by satellite passages through eclipse. By cutting off the large photocurrent
normally caused by sunlight, the satellite is allowed to reach a less positive potential. In
the inner plasmasphere. the effect is small, perhaps a tenth of a volt shift. In the outer
plasmasphere, however. significant shifts are possible, up to several volts, resulting in
potentials near zero volts.  Analysis of the Spring. 1982 eclipse data available in 1983 and
1984 resulted in one publication on this topic (Olsen et al., 1985a). Further analysis of the
data. as they arrived. supported the original conclusions. These are: that the isotropic H+
i> successfully measured by RIMS in sunlight and shadow. so long as the density is greate:

than 30 em™3. At some point below this. the cold component is lost. not entirely hecause
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of sensitivity problems, but because the tail of the core distribution is covered by the
increasingly important supra—thermal population. The He+ component of the core plasma
is lost at the same time, primarily for reasons of sensitivity. When O+ is present, it is
relatively easy to measure, because the satellite ram velocity focuses the ion flux into a
relatively small solid angle, and the O+ has nearly an eV of kinetic energy for typical
satellite velocities.

Two examples are given of the behavior of isotropic core plasma measurements at the
eclipse transition. Figure 7 is from day 47 of 1982. The instrument is in mass scan mode,
so only spin curves are available. Hydrogen and He+ are sampled along with N++/0++,
and molecular ions. Only the two light ions are observed at this time. The satellite enters
eclipse while in the plasmasphere, L = 3.55, —4° magnetic latitude, n = 450 cm_3 (PWI).
The core plasma is clearly visible in both sunlight and eclipse at eclipse entry. At eclipse
exit (2325 UT, L = 4.9, 20° magnetic latitude, n = 75 em ™S (PWI)) a different behavior is
found — the plasma disappears.

Figure 8 shows data from day 65 of 1982. The radial detector low mass channel (H+)
spin curves are not available. due to channeltron degradation, but end head RPA data are
available. The core plasma is visible in sunlight and eclipse at eclipse entry (0754 UT. L =

3.3, —3° magnetic latitude. n = 376 em

). At eclipse exit, however, the plasma
disappears from view in sunlight (0911 UT, L = 5.1, 21° magnetic latitude, n = 70 cm_3).
The previous examples illustrated the behavior of isotropic plasma at eclipse
transitions. Extensive processing of the eclipse "exit" data will generally show the
isotropic flux at a low count level. but these figures illustrate the basic point — the plasma
fades from view. Anisotropic plasma. primarily field—aligned in the present context.
tollows the above patterns. The field—aligned distributions may persist past the eclipse
exit. or may disappear as the satellite potential increases. Figure 9 illustrates the former

case. Data from Dayv 46 of 1952 show H+ data from the —Z detector. for RPA analvsis,

and the radial detector. for pitch angle distribution. The warm. mainly isotropic
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background fades at eclipse exit (1957 UT), but the field—aligned distribution persists.

(Density is 5—10 cm_3).

This is one of two such (clear) cases found in Spring 1982. By
contrast, 4 cases were found where the field—aligned ions disappear at eclipse exit, as
iliustrated in Olsen et al., (1985b), plate 3. The major significance of these data are (a)
they demonstrate the existence of "hidden" plasmas, and (b) they show the importance of

taking data in eclipse.
V. APERTURE PLANE POTENTIAL CONTROL

Previous publications concerning the effectiveness of aperture plane potential control
for RIMS (Chappell. et al.. 1982, Olsen et al., 1986, Nagai et al., 1984; Sojka et al., 1983)
have focused on relatively narrow regions. particularly the polar cap/polar wind region. In
this section, a synoptic view is given of the effect of the aperture plane (day 287). and then
for a number of days in the following vears.

The orbit of the satellite for day 287 of 1981 is shown in Figure 10. Figure 11 shows
spin—time spectrograms for H+ for aperture plane settings of a) 0V, b) -2 V, ¢) —4 V.
and d) =8 V. Figure 12 illustrates the spin—time spectrograms for He+ at the 4 bias
settings. and Figure 13 the corresponding H+ RPA—time spectrograms for the radial
detector. Beginning on the left hand side of these latter 3 figures, (hour 20-21 UT). the
satellite is in the night side polar cap. The "classical" polar wind is visible here, as the
field aligned flux is visible at all bias settings. At —8 V bias, an otherwise invisible
isotropic component appears. This plasma, cémbined with an oxygen component inferred
from measurements by the High Altitude Plasma Instrument (HAPI). comprise an
unusually high plasma density for the polar cap, and has been the topic of articles by
Gallagher et al., (1986), and Menietti et al., (1985). The satellite then enters the

plasmasphere. where the detector saturates at non—zero aperture plane settings. When the




satellite leaves the plasmasphere, thermal plasma is again visible at all bias settings. At —4
V and -8 V, an additional feature appears that is not apparent at 0 V and -2 V. Thisis a
field—aligned ion flux that is otherwise repelled by the satellite potential. This plasma was
extensively analyzed by Sojka et al., (1983), and Olsen et al., (1986).

These data were the impetus for continued, and frequent operations of the RIMS with
the aperture plane cycling (0/—8; or 0/—2/0/—4/0/—8) or set at —8 V. Unfortunately, it
took many more months before these later data became available. Analysis of these data
showed that the aperture plane technique had several undesirable features, when used
regularly. The primary problem was the frequent, and long—term saturation of the
channeltrons, which caused extensive detector degradation. The useful lifetime of the
detector was substantially shortened, and much of the 1982 data set was rendered useless
by these operational choices. Part of the problem was the independent failure of the radial
detector RPA, which meant an associated loss of energy analysis of the plasma, all arriving
with relatively high kinetic energy.

The loss of data. particularly plasmasphere data, might have been considered a
worthwhile trade—off, if otherwise unmeasured features of the inner magnetosphere could
then be observed. Unfortunately. a survey of all 1982 orbits with 0/—8 V cycling (for
which data is available) (13 orbits) resulted in no observations which indicated such
success. Consideration of whole orbits of full cycle data (0/-2/0/—4/0/—8 V) showed a
similar result. Whole orbits at —8 V bias were effectively useless.

The basic problem is that the barrier effect (discussed by Olsen et al., 1986) becomes
operative very quickly as the satellite potential exceeds a few volts. Briefly, the barrier
effect is as follows. For a positive spacecraft. and small negative surface elements.
Laplare's equation requires that the local minimum in the potential distribution in onc
direction (say the azimuthal direction) must be balanced by a local maximum in other
directions (sav the radial direction). Figure 14 illustrates this point. The local minimum

in the horizontal direction (in the plane of the object). is balanced by a local maximun in

13




the vertical direction. For the core plasma, this means that the satellite potential, or
barrier height, exceeds the thermal energy of the plasma.

The operational pattern for the aperture plane was revised when the latter 1982 data
arrived.  Eventually, in late 1983, the channeltrons recovered in sensitivity, and the
satellite orbit entered a phase where useful data could be obtained from the aperture plane
experiments. This is the regime where satellite potential is a few volts, e.g. densities from

10-100 cm®

. Operation of the aperture plane at 0/—8 V in the outer plasmasphere, at low
altitudes, allowed observations of the isotropic background (particularly He+) which would
not otherwise have been possible. An illustration of this is shown in Figure 15, which
shows data from 23 October 1983 (day 296). The satellite is near local dusk (20 LT).
within 30—35 degrees of the magnetic equator, where heated plasma is often found (Olsen
et al.. 1987). The addition of —8 V bias allows the cold background plasma to be observed.
The local minimum in total electron density at the equator (n ~ 25 cm“3 becomes clearly
visible in the He+ data. as the He+ flux drops to near zero. (Away from the equator n ~

40 cm_3.)

V1. CHANNELTRON SATURATION

The channeltron degradation effect is well illustrated by data taken several vears
after launcli. The aperture bias was still being utilized in the 0/—2/0/—4/0/—8 \" mode.
Initial modes (e.g. 1982—1983) utilized 1 minute command intervals. The operations staff
found this level of effort difficuit to maintain. and the sequence intervals were increased to
128 seconds. This allowed short—term degradation and recovery effects to be observed.

Figure 16 shows H+ data from that radial detector during one such sequence in 1986.
The satellite is at low latitudes (—5° to —15°), moving from 3.2 to 3.6 RE, near local dawn.
The plasma environment {as seen) is largelv isotropic. The absolute density is nominally

in the 101007 range. the potential a few volts positive. Data here have been averaged
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over 6—8 second intervals, and are essentially spin averaged. At —8 V bias, the detector
saturates, resulting in near zero counts, as seen at 0909 UT. The detector recovers when
the bias reverts to 0 V, with a time constant of about one minute, as seen at 0900, and
0912. The —4 V setting results in less serious degradation, but the count rate drops by at
least one order of magnitude as seen at 0905. The —2 V setting does not saturate the
detector (0901, 0914), so there is no decay, or associated recovery at the subsequent 0 V
setting. The helium data behave in a similar way, but are better illustrated by a separate
series of observations.

Figure 17 shows the He+ data taken from the low and high mass channels, for day
105 of 1986. The satellite moves from L=4 to L=5 during this early morning (0900 LT)
pass. The H+ data are similar to those shown before, but muddled by variations in the
pitch angle variation during the period of interest. The He+ remains largely isotropic.
RIMS operates in modes which allow toggling between H+/He+ and He+/O+
measurements on an 8—s cvcle. The high mass channel is largely unperturbed by the
aperture bias. vis—a—vis degradation. Hence, it represents a control for the low mass
channel ("+" signs). The low mass hvdrogen flux presumably causes saturation at —4 and
—8 \" bias. which persists through the next 8—second toggle to the alternate mass settings.
Hence, the low mass channel He+ decays over the 128—s period. Recovery at 0V is not
apparent due to the exclusion of thermal He+ from the positive detector.

These illustrations indicate substantial short—term decay/recovery processes occur
within RIMS which differ from those traditionally associated with channeltrons. It is not

clear what the physical mechiaiiisms are.

VII. NEGATIVE CHARGING

A major concern from previous satellite missions was the occurrence of large negative

charging in the plasma sheet. or auroral regions. Such potentials have been observed in
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daylight, at geosynchronous orbit, on ATS—5 (to —300V) and ATS—6 (to —1500V) (Olsen,
1987). At high latitudes, there are reports of momentary (1-100 seconds) negative
charging from the DMSP satellites, in shadow, to the level of a few hundred volts
(Gussenhoven et al., 1985). At geosynchronous orbit (L = 6.6), negative potentials of 1—20
kV are routinely found in eclipse (Olsen and Purvis, 1983; Olsen, 1987). Our present
understanding of satellite charging suggests that for DE—1, the satellite should charge
negatively if:

a) In eclipse, the satellite is in the plasma sheet, with Te > 6 KeV, and the Alfven

boundary has E > 15 KeV. These criteria will rarely be met, since the latter is appropriate
to L 7 6.6, while the satellite is in eclipse at L = 2 to 5.

b) In sunlight, major portions of the satellite are shadowed for tens of seconds, in the
plasma sheet. For the DE-1 attitude and orbit, these conditions will only be met when the
satellite is at local dawn or dusk. Only the former is a region (typically) of hot plasma.
and DE—-1 does not normally reach high latitude, low altitude, at this local time.

¢) Intense auroral electron beams are encountered, at high latitudes. Observations
during the HAPI lifetime occasionally suggested there might be negative charging under
this last condition. lon distributions were observed which could be interpreted as the
result of negative charging. or simply field—aligned beams. The latter interpretation was
adopted. and the matter dropped.

RIMS observations in eclipse have not shown evidence of negative charging (=1 to

—50V). Potentials of greater magnitude would not produce a characteristic response.

Summary

The results of this survey of DE/RIMS charging behavior can be summarized by
referring to Figure 18, The noon—midnight meridian plane is illustrated in Figure 1s. with

a modified dipole field shown. A standard set of dipole field lines (L = 2 to 6) were
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compressed on the dayside (80%), and stretched on the night side (130%). The regions
indicated in the figure are the ionosphere, inner and outer plasmaspheres, plasmapause
region, and plasma sheet. Boundaries at L = 3, 4, and 5 are typical. Two types of
field—aligned flows are indicated on the figure. The subauroral, refilling fiows (Decreau et
al., 1986) are distinguished here from 'polar wind', which is taken to be a flow onto largely
empty field lines at higher latitudes. The higher energy flows on auroral field lines are
omitted from consideration.

Beginning with the ionosphere, typical satellite potentials are low (less than 1 V),
and the bulk of the cold, isotropic "core" plasma is visible. Moving outward at low

latitudes, the inner plasmasphere, with densities greater than 700 cm ™3

, provides an
environment which allows satellite potentials from 0 to +1 V. Again, the core plasma is
easily observable. Outside this region, in the outer plasmasphere, plasma densities from
70—-700 cm_3 are typically found, and satellite potentials from +1 to +2 V. The plasma
distribution remains measurable throughout this region, but elements of the distribution
function can be lost. This is not generally a problem in this region though distortions in
particle trajectories may distort subtle vector and tensor properties (flow, heat flux).

In the plasmapause region. densities from 7 to 70 cm—3 are typically found. and
satellite potentials from 2 to 5 V are the norm. It is in this region that the isotropic, core
plasma becomes hidden. This is due to both detector sensitivity questions, and the
development of higher temperature plasma components which obscure the cold plasma.
The core plasma is observed at local midnight during satellite eclipse passages.
Field—aligned flows (refilling) are generally observed in this region. By definition. the

observed flows are energetic enough to overcome satellite potential effects — e.g. flow

velocities are tens of kilometers per second. Lower energy flows are of course possible. and




indeed likely. The limited eclipse data set is not conclusive on this point, but it appears
that lower energy H+ flows are being missed in the outer plasmapause region (densities
from 1 to 10 cm-3).

No major distinctions are made here between dayside and nightside. It appears,
however, that the densities in the plasmapause region are slightly higher on the dayside,
which will bias statistical studies of morphology. The plasma "trough" between the
dayside plasmapause and magnetosheath is a poorly sampled region from the RIMS
perspective, but it should be similar in behavior to the outer plasmapause region.

Further out along the (nightside; equator, in the plasma sheet proper, the observed
portion of the core plasma is typically warm (temperatures of tens of electron volts or
higher). and well measured. Such measurements are often (but not always) in reasonable
agreement with densities inferred from plasma wave data. Given the experience in the
plasmapause region, it would be wise to refrain from assuming that cold plasma does not
exist in the plasma sheet, siraply because it has not been observed.

At higher latitudes, above the ionosphere, densities are typically quite low. The
field—aligned flows of the polar wind are observable up to a few thousand kilometers
altitude. and then fade from view. At higher altitudes. these flows reappear. reported from
ISEE-1 at geocentric distances up to 23 RE (Sharp et al., 1981). It is apparent that there
is an acceleration region which is largely being missed, both spatially and energetically.

This corresponds to the open regions of the detector simulations in figures 5 and 6.

Conclusion

Core plasma measurements outside the plasmasphere proper are obscured by satellite
charging effects. The measured plasma is distorted by charging effects, so that aspects of
the plasma distribution (e.g. heat flux) may be incorrectly calculated. At altitudes greates

than 25.000 km. the core plasma is often hidden due to charging effects. The polar wind
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fades from view above 5,000 km, for many of the possible density/flow parameters. Proper
interpretation of such measurements greatly depends on effective means of obtaining either
density or potential independently, though the model described in this document can be
used to reduce the uncertainty in density calculations from ion data. Complete
measurement of the ambient plasma distribution will require effective means of satellite

potential control.




APPENDIX

Table 2 gives the times for the Spring, 1982 eclipses. Aperture bias settings and

modes are noted, along with the plasma characteristics at eclipse entry and exit. If there is

a reasonably sharp plasmapause during the eclipse, that is noted. If there are equatorially

trapped ions during the eclipse, that is also noted. Density profiles for most of these time

periods have been obtained from the plasma wave instrument, and have been noted.

Glossary
EN:
EX:
PP:
EQ:

Psheet:

Psphere:

Ppause:

Eclipse entry

Eclipse exit

Plasmapause

Encountered equatorially trapped plasma

Plasma sheet — defined as observations of little or no isotropic plasma.
with field—aligned (or no) plasma. Typically. field—aligned ions are
bidirectional.

Plasmasphere — defined as low temperature, isotropic plasma. rammed.
Plasmapause (region) at eclipse entry or exit, defined as mixed.
anisotropic plasma. During this period, mixtures of field—aligned and

isotropic plasma. often with equatoriallv—trapped plasma mixed in.




PWID:
M2834:

8V:

SS04P:

0/8

0/2/4/%

Plasma wave instrument density profile done.

Mass scan data during this season were taken in a mode which toggled
between H+/He+ and the molecular mass range (masses 28—34 in the
high mass channel). These data result in useful spin curves for
H+ /He+, but of course no RPA curves.

During about 50% of the passes, the aperture plane was fixed at 8 V
bias. This is so noted as "8V".

A particularly unfortunate version of the 8 V bias this mode, which
only provided RPA analysis up to 8 V, with only H+/He+. The result
is that most of these times show saturated spin curves, and no RPA
analysis.

There are 6 passes where the detector is cvcling betweeu 0 and —8 V'
aperture bias once every minute.

There are 2 passes where the detector is cyvcling according to the

pattern 0/—2/0/—4/0/-8/0 V' bias, once per minute.
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DYNAMICS EXPLORER 1
Spring 1982 Eclipses

DATE DAY  TIMES COMMENTS
13-Feb 44 1236-1249 No data
No data
14-Feb 45 02110237 No data
0900-0930 No data
1549-1623 No data
2238-2321 0/2/4/8 EN:PP; Psheet, EQ; EX:Psheet
15-Feb 46 0528-0613 0/8 Psheet
1218-1305 EN: PP; EQ; EX: Psheet
1908-1957 EN: PP; EQ (also parallel); EX: Psheet
16-Feb 47 01570249 EN: Psphere; PP: 0225; EX: Psheet
08470941 8V; EN: Psphere; EX: Psheet
1537-1633 8V: EN: Psphere; EQ: 1600; EX: Psheet: PWID
2228-2325 M2834; EN: Psphere; EX: Psphere: PWID
05180616 0/8: EN:Psphere; EX: Psheet
17-Feb 48 1207-1308 EN:Psphere; EQ: 1216; EX: Psheet, PWID
1858-2000 8V; EN:Psheet; EX:Psheet
18-Feb 49 0148-0251 EN:PP/EQ; EX:Psheet, PWID
0838-0943 8V; Psheet
1527-1634 8V: EN:PP. EQ: 1555; EX:Psheet: PWID
2218-2326 EN:Psphere; EQ/PP:2230; EX:Psheet: PWID
19-Feb 50 05090617 Psheet: EQ:0450-0510; PWID
1159-1309 8V; Psheet
1849-2000 Psheet; EQ:1915-1925; PWI off
20-Feb 51 0140-0252 M2834 - but off? — no data
08300943 EN:Psphere; PP:0847; EX:Psheet; no MSFC fiche
1520-1634 8V: EN:Psphere: EQ/PP: 1555. EX:Psheet
2211-2325 EN:Psphere; EQ:2220; off 2222-2300: E:Psheet
21-Fel, 52 04590612 EN:Psphere; EX:Psheet; PWID - in Hidden ion
paper
1149-1303 0V data till 1154 UT. EN:Psphere. no MSFC
fiche
1200 on 8\ saturated till PP:1210; EX:Psheet, PWID
1842-1959 EN:Psphere: EQ: 1918: EX: Psphere: PWID. in

equator paper




22-Feb 53 0133-0250 M2834; EN:Psphere; PP:0156-0200; EX:Psheet
08210937 off
1513-1633 8V, EN:Psheet; EQ:1535:1540; EX:Psheet
2205-2324 8V - no data yet in house
23-Feb 54 04520610 off
1145-1306  0/8; EN:Psphere; EQ:1155-1225: PP:1200;
EX:Psheet
1835-1957 8V; no data yet
24-Feb 55 01240243 oft
0817-0939 EN:PP/EQ; EX:Psheet
1508-1630 8V; EN:Psheet; EQ:1530-1600
2157-2321 8V; EN:Psphere (ram 0+); EQ:2220
(dens minimum); PP:2237 (trapped 0+7?)
EX: Psheet; PWID
25-Feb 56 04500611 off
1140-1302 0/8 data??, not in house
18301953 8V; EN:PP; EQ:1905-1910; EX:Psheet
26-Feb 57 01210243 EN:Psphere; PP:0157; EX:Psheet
08120935 EN:PP/EQ: EX:Psheet; PWID
1502-1625 8V: EN:Psphere; PP:1535; EX:Psheet
9153-2316  EN:Psphere; PP:2200; EQ:2210-2230; E\:
Psheet, PWID
27-Febh 5% 04440607 off
1134-1259 8\V'-SS04P: EN:Saturated: EX:Psheet
1825-1948 8V, EN:Psphere; EQ:1900-1925; PP:1937:
EX Psheet: PWID
2x-Feb 59 01160239 off
0806-0930 EN:Psphere(PP); EX:Psheet(PP); PWID
in Hidden ion article, EQ 0810
1457-1620 8V-SS04P - no data
2148-2311 M2834: EN:Psphere; PP:2240; EX:Psheet
1-Mar 60 0439-0602 off
1128-1254 M2834; EN:Psphere; PP:1224; EX:Psheet: PWID
1820-1943 M2834: EN:Psheet; EX:Psheet
2-Mar 6] 0111-0234 EN:Psheet/EQ: Data end @ 0137
0502-0924 off
1453-1615 8\": EN:Psheet: EQ:15407
2142-2307 8\': Psheet
3-Mar 62 0434-0556 EN:Psphere/EQ(415445): PP:0437: EX:Psheet
1125-1246 off

1815193~

M2834: Unclear — Psphere?: EQ:1905




4-Mar 63 0107-0227 no data?
0757-0919  EN:Psphere (N=100); EQ:0803; PP:0830
EX:Psheet; PWID
1448-1610  8V; EN:Psphere gram 0+); EQ:1525-1600: EX:PP
2139-2300 8V; EN:Psphere (ram 0+); PP:2255; EX:PP
5Mar 64 04300549 M2834 - data???
1121-1240 EN:Psphere; EQ:1155; PP:1230; EX:Psheet
1812-1930 8V-SS04P Saturated
6-Mar 65 0103-0221 8V; EN:Psphere (ram 0+); PP:0203; EX:Psheet
good case for disappearance of parallel B
ions at eclipse exit
0754-0911 EN:Psphere (0+); EX:Psphere
1445-1602 8V- SS04P - Saturated
2136-2251 EN:Psphere(N=400); EX:Psphere(N=100)
T-Mar 66 04270543 M2834; EN:Psphere; PP:0515; EX:Psheet
1117-1233 EN:Psphere(n=400); EQ:1152; EX:Psphere (n=70)
PWID - in hidden ion article
1809-1922 8V-SS04P - Saturated
8-Mar 67 01000212 8V; no MSFC fiche, He+ sat. in GSFC fiche
0750-0903 EN: Psphere(n=400); EX:Psphere(n=70), PWID
1442-1552 8V-5S04P — Saturated
2133-2243 EN:Psphere; EQ/PP:2200; EX:Psheet, no MSFC
fiche
9-NMar 63 0424-0534 EN:Psphere; PP:0450; EX:Psheet, no MSFC fiche
1115-1224 8V. mostly saturated
EN:Psphere (ram 0+): EX:Psphere
1805-1914 EN:Psphere (n=100); EX:? funny day: PWID
10-Mar 69 00570204 EN:Psphere; PP:0110; EX:Psheet
07480854 M2834 — no data??
1439-1540 EN:Psphere (n=400); EX:Psphere. PWID
2131-2234 8\; EN:Psphere: EQ:2155; EX:Psphere
11-Mar 70 0422-0523 M2834; EN:Psphere
1113-1213 EN:Psphere(n=500); EX:Psphere(n=100)
1804-1902 EN:Psphere (some 0+); EQ:1845-1900; EX:Psphere
12-Mar 71 00560153 8V; EN:Psphere (ram 0+); EQ:0100~0120:
EX:Psphere; PP:0157
07470842 EN:Psphere: PP:0815: EX:PP; PWID
Good case for disappearing parallel B ions -
PW?
1438-1532 EN:Psphere (n=70); EX:PP(n=40)/EQ: PWID
2130-2222 EN:Psphere (n=400); PP:2200-2205; EX:Pshee!




13-Mar 72 0421-0510 EN:Psphere; PP:0445 (Parallel B 0+ appears!)
EX:Psheet; PWID
1113-1201 0</8; EN:Psphere; EX:Psheet
18051850 8V; EN:Psphere; EQ:1845; EX:Psphere; PWID
14-Mar 73 0056-0139 EN:Psphere; EX:Psphere(?); PWID
0747-0828 0/8; EN:Psphere; EX:Psphere, PWID
14401517 0/2/4/8; EN:Psphere; EQ:1525;PWID
2131-2206 EN:Psphere; EQ:2145-2155; EX:PP; PWID
15-Mar 74 0423-0455 0/2/4/8; EN:Psphere; EX:Psphere
1117-1143 8V; Psphere, mostly saturated
1810-1831 8V; EN:Psphere; PP:1820; EX:PP
16-Mar 75 0104-0118 Psphere

o
fuid ]
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FIGURES

Figure 1. DE-1 RIMS density potential relationship. Density is the H+ density obtained
from the thin—sheath analysis algorithm developed by Comfort. The satellite potential is a
by—product of that analysis, and is obtained self—consistently. The H+ density will
ordinarily be about 80% of the total density in this region. AM data are plotted with dots.
PM data with plus (+) signs.

Figure 2. GEOS density potential relationship, with RIMS data superimposed. The
reference to Knott et al., 1984 is taken from the Schmidt and Pedersen (1987) figure. The

reference should apparently be to Knott et al., 1983.

Figure 3. Simulated RIMS response to core plasma (isotropic H+ Maxwellians) for various
densities. Satellite potential is obtained from Figure 2. Temperature is 1.0 eV. (a) end
head (z) RPA response (b) radial detector spin curves.

Figure 4. Radial detector flux (count rate) as a function oswdensity. with parameter
temperature varyving from 0.1 to 1.0 eV. (a) Apogee, Satellite Velocity 2.5 km/s, (b) 2.7

RE Geocentric. 5 km/s (c) 1.5 RE Geocentric., 7.5 km/s.

Figure 5. DE/RIMS polar wind response, as a function of altitude. Ionosphere flux = 2 x

10% jons/em?s. (a) 1 RE along B (b) 2 RE along B (c) 3 RE along B (d) apogee.

Figure 6. DE/RIMS polar wind response. Distance along B is 3 RE for a. b. c.
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Figure 7. Spin—time spectrograms for an eclipse passage, day 47 of 1982. H+ and He+ are
plotted. Eclipse entry is at 2225 UT, exit at 2327 UT. Flux (count rate) is plotted with a

line shading technique — higher density of lines corresponds to higher flux.

Figure 8. Spin time (He+) and RPA time (H+ & He+) spectrograms for an eclipse
passage, day 65 of 1982. The first 4 minutes of the RPA data are not useful, due to the
absence of a "memory load." It is during this time segment that the satellite enters

eclipse, at 0752. Eclipse exit is at 0910 UT.

Figure 9. Spin time and RPA time spectrograms for H+ on day 46 of 1982. Eclipse entrv
is at 1907 UT. The equator crossing at 1928 UT reveals equatorially trapped plasma
(enhanced fluxes at 90° pitch angle, higher flux, or at least up to higher RPA voltages in
the end head). The warm background fades at eclipse exit, 1952 UT.

Figure 10. Orbit plot for day 287 of 1981.

Figure 11. Spin time spectrograms — day 287, 1981, H+. a) OV bias, b) =2 V bias, ¢) -4 V'

bias, d) =8 V' bias. RPA settings from zero to one volt are included.

Figure 12. Asin figure 11, but for He+.

Figure 13. RPA time spectrograms for H+, as in Figure 11. All spin phases are included

(averaged).
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Figure 14. Barrier effect. The top segment illustrates how potential varies in height above
a biased set of conductors. The bottom segment shows the variation in potential along the

plane of the conductors.

Figure 15. Spectrograms for 23 Oct 1983 (day 296) at OV bias and —8V bias. H+ and He+
data are shown. Spin time spectrograms are for (effectively) zero vote RPA. The +Z RPA
time plots average over all spin phase angles. The count rate scale for plot (f), the H+ spin
time plot, utilizes the flux scale in the lower right hand corner. The remaining plots are

with the upper flux (count rate) scale.

Figure 16. H+ count rate during aperture bias cycling, shows channeltron degradation

effect. Bias sequence is 0/—2/0/—4/0/—8. Data are from the radial detector.

Figure 17. He+ counts. as in Figure 16.

Figure 18. Summary diagram of DE/RIMS charging studies.
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DE-1 RIMS POLAR WIND RESPONSE
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DE-1 RIMS POLAR WIND RESPONSE
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Figure 6
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Dynamics Explorer 1
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Dynamics Explorer 1
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14-15 October 198l
Radial Detector-H+
All Spin Phase

IWEé
: -
3 ov
BIAS a
1 =
| _I
0 _ov | COUNTS
BIAS | .| n
| >
I I < e ;
3 T T o®
i (u » x
) gy il
BIAS 3 i lWh ” i f ”' ﬂ ’“ f
i u. R -

2 aasad

.....
.....
.....

)

L
2000 2100 2200 2300 2400 0100 0200

Day 287 Day 288

Figure 13

44




!
w

Potential (V)
1)

Barrier Effect

Barrier ————P»

Potential (V)

[ +5volts [ -3 volts |  +5volts

Figure 14




+
+Z2:He : -8V

+=0V

R:He :0V +Z2:He

-8V

+Z:H

Dynamics Explorer 1
Retarding Ion Mass Spectrometer
23 October 1983

L —— ,1'””’,”
Mh ,

1 lulllm b l!!l i o i

e {unmmwmwl:::"::n:::

46

RPA (V) RPA (V) SPIN PHASE RPA (V) RPA (V)

SPIN PHASE

COUNTS

1000

COUNTS

::::::
xxxxxx

44444




Counts / Accumulation
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