
-I __ _ i5

it w- is e
ITEI'FN I)NCL I- N' N.

C) Bonnic Ber~cr
John Ronl"PeI

S
-117

..-- -:_w;

ELECTF

v -X -mt-~ -t- i

fw

... A .. Uf *t

; rON

MIT/LCS/TR-435

SIMULATING (logcn)-wise
INDEPENDENCE IN NC

Bonnie Berger
John Rompel

May 1989

OTIC

Ap~Wav~d far pab~l ftia=cm 89 10 31 '213

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified_________________________

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
___________________________________ Approved for public release; distribution

2b. DECLASSIFICATION /DOWNGRADING S(A-E OUtE is unlimited.

4. PERFORMING ORGANIZATION REPORT .UMBER 5) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

IT/LCS/TR-4 ;5 NI)OO14-80-C-0622

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Comput,2r (if applicable) Office of Naval Research/Department of Navyl

Science

6c. ADDRESS (ity, State, and ZIP Code) 7b. ADDRESS (Cit, State, and ZIP Code)
* 545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

a a. NAME OF FUNDING /SPONSORING 18b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

ArDARPA! DOD I_ _ _ _ _ _ _ __ _

-i A!X'RESS City'.t ' ar d"CX~ 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Boulevard PROGRAM 0 PROJECT ITASK WORK UNIT
Arlington, VA 22217 ELEMENT NO NO. NO jACCESSION NO.

11. TITLE (include Security Classificaton)

Sim~atn~(c~~n)'WiE/Indopendence in NC-

12. PERSONAL AUTHOR(S)
Berger, B. and Rompel, J.

13a- TYPE OF REPORT 113b TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 1is. PAGE COUJNT
Technical IFROM TO May 1989 15

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identifyv by block number)
FIELD GROUP SUB-GROU0 Parallel. algorithms, NC, randomness, discrepancy, edge

coloring, hypergraph coloring

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
IWe develop a general framework for removing randomness from randomized NC algorithms

whose analysis uses only polylogarithmic independence. Previously no techniques were

known to determinize those RNC algorithms depending on more than constant independence.
One applictat ion of our teclln ques is, qn NC algorithm for the set discrepancy problem, which

can be ised to obtain many other NC algorithms, including a hetter NC edge coloring algo-
rithml. As another application of our techniques, we provide an NC algorithm for the hyper-

graph coloring problem.

20 DISTRIPUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E]UNCLASSIFIED/UNLIMITED 03 SAME AS RPT 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL -cu TELEP!!ONE (include Area Code) 22c. OFFICE SYMBOL
Judv Little ~.ctAzC,u;:inator (617) 253-58941

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

4.L 0nvwt ftk#** Offm: 1119-1110W4

Unclassified

Simulhtin, (loge n)-wise Independence in NC

Bonnie Berger*
John Rompelt

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

We develop a general framework for removing randomness from randomized NC
algorithms whose analysis uses only polylogarithmic independence. Previously no tech-
niques were known to determinize those RNC algorithms depending on more than con-
stant independence. One application of our techniques is an NC algorithm for the set
dist repancy problem, which can be used to obtain many other NC algorithms, includ-
ing a better NC edge coloring algorithm. As another application of our techiques, we
pro, ide an NC algorithm lor the hypergraph coloring problem.

Keywords: Parallel algrithms, NC, randomness, discrepancy, edge coloring, hyper-
graph coloring

"supported in part by Air Force Grant AFOSR-86-0078
t supported by a National Science Foundation Graduate Fellowship, DARPA contract N00014-80-C-0622, and Air

Force AFSOR-R6-0078

1 Introduction

A fundamental issue of theoretical computer science is the degree to which randomness helps in
computation. In many cases, the most natural algorithm to solve a problem involves randomness.
Often, however, it is possible to convert a randomized algorithm into a deterministic one.

For many applications [K\W,LI,ABI], the problem of removing randomness from an algorithm
Can be solved 1) finding an X =< X 1 ,....XN > such that F(X) E[F(X)], for some function
F and sone sample space S over which the expectation is to be computed. The problem is then
how best to find a good sample point (e.g., an X such that F(X) > E[F(X)) in S. If the space
of sample points is small (e.g.. polynomial), then this can be accomplished by brute force: namely,
we could try all points until we get a good one, for one must exist. However, typical sample spaces
are larger than polynoinial, and brute force is too expensive. In such situations, the only general
method available is due to Raghavan and Spencer [Rag.S]. Their method works by setting the Xi's
one by one in such a way as to not decrease the conditional expectation (e.g., setting Xj+j so
that FF(x) I X, X+Il >_ E[F(X) IN 1 Xj]). The main difficulty with this approach is
computing the conditional expectations - the ability to do so determines when the method can
and cannot be used.

Unfortunately. the Spencer/Raghavan method is inherently sequential. Moreover, the running
time is at least a. Since the best time one could hope for is logarithmic in the size of the sample
space. for large probability spaces this is probably as good as one can get; yet, for smaller spaces,
n is far from optimal. The only improvement to this approach was by Luby [L2] who showed
how to search in time logarithmic in the size of the sample space for the special case of pairwise
independence, thaeby improving the processor efficiency of several NC algorithms (A + 1 vertex
coloring, MIS, and maximal matching) from n2 (n + m) to n + m.

In this paper, we show how to search in time logarithmic in the size of the sample space for a wide
range of functions F and arbitrarily large sample spaces. As a result, we can prove substantially
stronger results than is possible with the Luby method. In particular, we are able to derive NC
algorithms for several problems that were not, previously known to be in NC, and we can search
(log" it)-wise independent n" '1 g-size sample spaces iin NC.

In Section 2, we demonstrate how our techniques apply to the problem of set discrepancy. In
this problem, we are given a set of n points and n subsets of at most A of these points, and we want
to color the points 0 and I so that the discrepancy, or maximum difference between the number of
O's and the number of l's in any subset, is small. The best known randomized (parallel) algorithm
achieves a discrepancy of V'ATog; Raghavan and Spencer applied their technique to this algorithm
to obtain a. deterministic sequential algorithm with the same bound. We show that the randomized
algorithm requires "g'-independence to give a discrepancy bound of Al/ 2+(v/I-n for any fixed
o > 0; then we apply our techniques to convert this to an NC algorithm which attains the same
bound (using 7/, processors). This algorithm has many applications. As an example, we give
a deterministic version of the Karloff-Shmoys parallel edge coloring algorithm [KS], obtaining the
same A + A 1/ 2 1" bound on the number of colors used -n their randomized algorithm and beating
the known deterministic bound of 2A - 1 [L2].

In Section 3. we show how to apply our techniques to a large class of problems which depend on
(log n)-wise inde,,endonce. In particular, we d,,scribe an NC algorithm for obtaining the expected 0
va.llie of any fln't io wliich i, t;w smin of a polynoniial nuinber of terms, each depending on 0(log n)
binary randorn -riablos: e.g., a fniction of the form

I"(X) f,(.i, Xi,bhg). i I A l; lltiIty CcdmIs

Avoil eand/or
Dist Special

Alternatively, we can allow tlie terms to be sim pe functions of logc n random variables; e.g.,
characteristic functions of affine subspaces, which by a reduction can be used to build any function

which is non-zero for only a polynomial number of points.
Finally, in Section 4, we give several methods for extending our technique to multi-valued

random variables. As an illustration, we consider the hypergraph coloring problem: given a d-
uniform hypergraph (17, E), color the vertices with d colors so that at leait. d!lJI/dd edges have one
vertex of each color. If d is a constant, this problem can be solved by trying all sample points in a
d-wise independent distribution [ABI]. Using our techniques for handling (log n)-wise independent
multi-valued random variables, we give a deterministic NC algorithm which solves this problem for
all d. The particular technique used to handle the multi-valued random variables in this problem
involves generating and solving a series of problems with binary random variables, highlighting the
importance of being able to solve a large class of these.

Our generalization of Lubv's work to remove randomness from (log ,)-wise independent
discrepancy-based problems ,wch as edge coloring was worked out in November, 1988, and first
appears in [B]. Our general framework for removing randomness from (logc n)-wise independent NC
calculations was worked out and written up by mid-December, 1988. In January, 1989. Motwani,
Naor. and Naor [MN N] obtained our results for discrepancy-based problems such as edge coloring.

2 An Example of the Method Set Discrepancy

2.1 Definition of Problem

Spencer [S, p. 30] defines the set discrepancy problem as follows. Let A C 2r
, JAI = U = n, be a

family of finite sets. Let X : {-1, +1} be a 2-coloring of the underlying points. Define

X(Al) = 1:X('W
iEA

disc(V) = max 1x(A)I.AEA

,VWe want to find a \ such that disr() is small.
How small can we make disc(Xk)? Spencer [S, p. 73-77] shows that there exists a \ with

disc(y) = O(v'/). lie also shows that this is the best possible; i.e., that there exists an A such
that all X have dise(X) =

It is interesting to bound discrepancy in terms of maximum degree A = maXAEA JAI. Spencer's
lower bound can be easily modified to give, for any A, an A with cardinality n and maximum
degree A such that all X have disc(y) = Q(v'-A). It is easily shown in Section 2.2 that if we pick
X at random, with high probability disc(,y) will I)e at most 2\/A1 . This immediately gives an
RNC algorithm achieving that bound. Raghavan and Spencer [Rag,S] show how to convert this
into a deterministic poly-time algorithm. In the sections to follow, we develop an NC algorithm
which outputs a k with disc(!) <A1/2+\/g,.

An interesting special case of the set discrepancy problem is the graph discrepancy problem.
Given a graph G = (V, El, we want to find a 2-coloring of the vertices X :V - {-1, +l} such that
max,,Cv I -,E (,)x (a)l is small. We cart roduco this problem to st dis- repancy by letting F = V
and A { N(vI r C '. lugging in our Nf' algoritlhm for di, crepa.lcv, we will get a N with
maxvrgv I ,evE(,) \00I < A /'+' ogn, ,viere A is the maximuni degree of 6.

2

2.2 An RNC Algorithm

Consider the following algorithm for set discrepancy: randomly pick X until disc(x) :_ 2vAInn.
One iteration of this is clearly in RN C. We will show that the expected number of iterations is less
than two. The following lemmas will prove useful.

Lemma 2.1 (S, p. 29) Let X 1,...,XA be independent and identically distributed with Pr[Xi =
+11 = Pr[Xi =-11 = 1/2. LetS= F Xi. Then Pr[S > A] < e- 2 /2 .

Lemma 2.2 Pr Idisc(v) > 2v'-&-W] < 2/n.

Proof Straightforward application of Lemma 2.1. C3

Thus, the expected number of iterations is at most 1/ (1 - 2) < 2. So the above is clearly an

RNC algorithm. Also, one can easily show using Lemma 2.2 that E[disc(x)] = 2v n.

2.3 The Overall Approach

Lemma 2.2 shows that the probability of disc(X) being larger than 2vATIn is small. This implies
that there exists a X with disc(x) _ 2v/In n. We wish to find such a X deterministically. Unfor-
tunately, the random construction of Section 2.2 assumed a fully independent distribution, which
must have 2n sample points. Clearly, we cannot search this sample space exhaustively. However,
Raghavan and Spencer [R,S] developed a method to perform a binary search on the sample space.
While they achieve a polynomial time algorithm, it requires n decisions to be made. Since each
decision depends on previous ones, it seems very unlikely that these decisions could be made in
parallel. To get an efficient parallel algorithm, we must work with a smaller distribution space. A
natural choice is a k-wise independent distribution, where k is small.

Definition 2.3 X 1,... Xn are k-wise independent if for any k-subset of X 1 , .-. ,Xn and for any
rl, .. ., rk,

Pr[Xii - rl A Xi 2 = r2 A ... A Xik = rk]

= Pr[Xi,=rj]Pr[Xi2=r2] ... Pr[Xi =rk].

Ideally our goal is to find a X with small discrepancy by finding a X for which disc(X) <
E[disc(X)], where the expectation is taken over a k-wise independent distribution for some small
k. The choice of k is influenced by two factors:

1. if k is too small, then E[disc(X)] might be too large and

2. if k is too large, then finding a X which achieves the expectation takes too long.

As a compromise, we will eventually choose k = I , E > 0.
There are other problems with this approach, however. Most important, to find a good X, we

will need to compute expectations of disc(X) conditioned on some knowledge of the distribution in
NC. This is hopelessly complicated by the max and absolute value in disc(x). To get around these
problems, we will use higher moments, and use ZAEA Ix(A)k as an upper bound on disck(y). For
even k, this gets rid of both the max and the absolute value. In other words, we will

1. show that E [EAEA Ix(A)k] is small for suitable k where the expectation is taken over a
k-wise independent distribution, and then

3

2. find a X such that EAA Jx(.4)Ik < E [ZAEA ,x(A)Ij.

As a consequence, we will have found a \(for which disck(x) is small, and thus for which disc(X)
is small. By choosing k n - we will produce a X for which disc(X) < A 1/2+c Ogn. This is

not quite the v'z ogn bound we got with the RNC algorithm, but it is close.

2.4 Bounding the Independence Needed

Our first task is to bound E [,4EA x,(A)]. This is accomplished in the following lemmas.

Lemma 2.4 .Any function which is the sum of functions depending on at most k random variables

each has the same expected value taken over any distribution with k or greater independence.

Proof Follows directly from the definition of k-wise independence and linearity of expected value.
0

Lemma 2.5 For any even k-wise independent distribution and for all A E A,

E[xk(A)] < O((kA/e)k/ 2).

Proof E,,k(A)] = 21- 1 i Pr[x(A) = i]. Break up the sum into blocks of / For i E

... /] is bounded above by (\A) k; for i E [v/'+ 1,...,2v , ik is bounded above

by 2 , and so on. Then.

2ZikPr[X(A) = i] _ 2-'(rvA)kPr[(r - 1)viA < x(A) _ r/A]
i=l 1

<2 (rv/'A)ke-(r1)
2 /2

r=1

(where the last inequality is from Lemma 2.1). The terms of the sum geometrically increase to a

point, and then at some large r, they begin geometrically decreasing. Use the ratio test to get a
sense of this: (r + 1)st term _ (I +) k

rth term e(2-l)/2

So for small r the terms are growing at least geometrically, and ior large r they decrease at least
geometrically. The maximum term is about vhere ek/r - O(k/r 2) - , +1/2 -. 1 = e°, whiclh occurs at
r = VT + 0(1). The constant will go away in the) notation, so we will ignore it. We could show
that this ratio will be bigger than e or less than l/e more than one or two terms away from r = VT.

Hence,

The above calculations assume a fully independent (or at least A-wise independent) distribution.

However,
Xk (A) = (1x(I))k = Z Z y (i,)...X(ik).

iEA ijEAi 2 EA IkEA

So Lemma 2.4 applies to show that any k-wise independent distribution gives the same expected
value. 0

4

Corollary 2.6 For any even k-wise independent distribution,

E[Z E k(A)] nO((kA/e)k/ 2).
AEA

We can now give a lower bound on the value for k. We want I£-AEA xk(A)]1 /k < A1/ 2 +WIogn;

this is roughly captured by having nl/k < A'. This implies we need k 2 1-9-1 If k is thus,

and we are able to find a V such that ZAEA Xk(A) is at most its expectation, this implies that

disc k(,k) < Z: v'(A) E[E Xk(A)] < O(n(kA/e) k/ 2)
AEA AEA

So,

disc(y') O(nil/k VkAe)

< Al/2+fV/ ogn.

Remark 2.7 For any n and A, we can construct a (2logn) -wise independent distribution and a

set system A with maximum degree A such that E[disc(x)] = Q(A). Therefore, to get disc(,y)

,A / 2+ , , any method based on independence alone will require 2) se independence.

The next three sections will be devoted to finding a X such that ZEAcA Xk(A) is at most its

expectation. If we let /X(i) r (-1)x-, finding a X is identical to finding an X which satisfies this
relation. From this point on, we will let

F(x) = - -: ... IXi "+X
AEA AEAi1EA ikEA

So henceforth we want an X such that F(X) >_ E[F(X)].

2.5 Generating k-Wise Independent Variables

It still remains to demonstrate a k-wise independent distribution on which we can perform a binary
search efficiently in parallel.

Luby [L2] gave the following such probability space for the case k = 2. Let 1 [=log nl + 1 and
be picked uniformly from Z1. For each point i, let <i1 ,. .. ,ij-> be the binary expansion of i.

Define random variables X,..., X, so that

Xi .= 1(ijwj)+ W1 mod 2.

Observe that Luby's distribution is not 4-wise independent since, in particular, X 4 , X 5 , X 6 , and

X7 are dependent.
We extend Luby's distribution to be k-wise independent for all k as follows. We will assign

a label ai E Z2 to each point i, where 1 is bounded by some polylogarithmic function of n. Pick
E Z2 uniformly at random, and let

Xi = ai -L.

Note that we can express Luby's distribution in this framework by leting ai =< il,. .. ,i- 1 , 1>.
The main benefit of our distribution is that we can now give a necessary and sufficient condition

for the Xi's to be independent and unbiased. The following result is similar to others in the literature

[MS,ABI] and can probably be considered to be well-known.

5

Theorem 2.8 X 1,..., Xi, are independent and unbiased if and only if ai ,...., aj, are linearly

independent as vectors over Z 2 .

Proof Utilizes elementary linear algebra. 01

To get X 1 ,..., X, which are (logn)-wise independent, we need a set of labels a,...,an such

that every logn of them are linearly independent. (By Theorem 2.8, this gives us logn-wise

independence of the Xi's.) In fact, it suffices to get an n x r matrix over GF(2') with the property

that any logn rows are linearly independent. Letting ai be the ith row with each element o0 +

crIx + -+ Xs1 E GF(2-) expanded out to < on,.. .,a 8 _> gives length I= rs labels such

that any log n are linearly independent over Z 2 . Several well-known ways of getting such matrices,

for I O(log2 n), are described in [ABI. Rab]. Even randomly chosen labels of this length will

work.

Theorem 2.9 For a random set of labls {aj...a} C Z X 1 ,...,X are (logn)-wise
independent with high probability.

Proof Omitted. C1

Since aly probability space with n k-wise independent random variables must contain Q((n/k)[k/2J)
sample points [ABI,CGHFRS], the labels a,. . .,a, must be £Q(log 2 i) bits long.

One final thing to note is that we can easily extend the above to give (log' n)-wise independence
for any c by using the same techniques to obtain labels with I = O(logc+i n), also matching the
lower bound.

2.6 Zeroing in on a Good Sample Point

Now that we have a k-wise independent distribution, we will explain how to do a binary search on

it efficiently in parallel. We will use the strategy introduced by Luby in [L21 for zeroing in on a
"good" sample point; i.e., an w such that F(X) > E[i (X)].

To zero in on a good w, one bit of w is determined at a time, thereby performing a binary

search on the w's. This is done as follows. At the beginning of iteration t, assume we have

set w, = s5,...,wt-I = st-1. Then we compute E[F(X) I wi = Sl,...,wt- = st-l,,Wt = 0] and

E[F(X) i= s .. ,wt = stm,wt = 1]. We then set wt to the st E {0, 1} which maximizes
E[F(X) W = 31,.. .,wt-= st- 1 ,Wt = st]. We will show how to compute these conditional

expectations in Section 2.7.

Lemma 2.10 After step t of the above procedure, E[F(X) I wi = s,..., Wt = St] > E[F(X).

Proof (by induction on Isl)
The case Isj = 0 is clearly true. Assume this lemma is true for t - 1; i.e., we have
E[F(X) I wi -si,...,t_j = 1] E[F(X)]. Then

E[F(X) I ,i,,wt=st]

= max(E[F(X)I W1 =s,...,wt-1 =st-,wt=0], E[F(X) I wi=si,...,wt- =st-j,wt=l])
> (E[F(X) I i i,...w. 1 E[F(X)lwn , ... 5a., 1])/2
= E[(~w=s,,...,,.,_ tm

> E[F(X)] (by inductive hypothesis). 0

Corollary 2.11 The output of the abov procedure, is at) X such 'hat I (X) > E[F(X)".

6

2.7 Comiputing Conditional Expectations

lIn gem. rat. coinlpii tinL condi(tittonal expect ationis is hard to do anrd separates when one can and
cannot ii so e giaai e e-Ik lvclniquos to zero ini onl a a good sampl1)e point, Fort unat ely.
ill tie(cas-e ()*f (i 'croepa n cv we, have dlevisedI a Siniplo~t and efficient approach for compu111t ing cofldi-
tionl ?11rttn; ecl if to Solve discrepaliic * . we fneed to conipute conditional expectations

Ni I V\ X)hr /. is (if the Speci at forml

1 in! hIe~r Vl~ oe caw~'\tli.V(li Ir(iak this lip into components

Z~~ t betelstcnan

where 6 = Ek .0 . e*Lit r bti(latposition vhich cotisa I in a. If I < r, then ai is
iinbiased arid thterefore h . (s 0. Ot herwise, a -w is the samie for all ; which extend . andl
hen'Ice'/, = 1/-.r - :\-] ssunming we have precomiputed a and] r, we can compute hitik-s) in
crnst ant line, by extending a partial sum Y__= a, ., at each iteration and outputting h,, *.ik(' 0

if t <Kr and h~..(s) (~iZ~i if t > r.

To coinpute P.J F(N) :t =.St], we need one, processor for each possible <
4. it . ?k >.ta is. at lmoSt IlAk tot al. Therefore, k itust be 0(.Lttn b h

minimumi possible, 2[T . imiplies that n'+'/' processors is sufficient.
Then we can compute all hi-,(sq) termis in parallel in constant time and sum them to get

E[F(XA) I =-5.. st in 0(log n) time. Thus we spend 0(1 logan) time in the I iterations
of our procedure. fIn addition,. we can perform the precompuitation re'quired above in 0(1 log i?)

lttme as, Well. Since I = 0oga 2 T), this visanl 0(log3 n) algorithm for discrepancy.

2.8 Application to Edge Coloring

An redqr coloc-inq of a graphi G = (V, E) is anl assignment of colors to all edges of the graph, so that
any t wo edlges that share a (oninion vertex are assigned different colors. Let A b)e the maximum
degree in GJ. Obse-rve, that any coloring requires at least A colors. fIn fact, Vizing [VI implicitly gives
a pol ,ynomnial timeo algori tfrri to A + I color any, graph. Karloff and] Shmoys fKS] provide a parallel
impleme(ntation of this al1gorithmn to get a A + 1 coloring of any graph in time 0(A0 1 1 logoti) ni)
uising a polynomnial nninbor of processors. Also of interest, there exist NC algorithms for optimally
coloring bipartite graphs with -A colors [GK.LP~V,C'II,A1S]. Yurthertnore, there is a trivia] NC
atgorithnm to 2., - I color any * graph by A + I vertex coloring [1,2] t he li ne graph. B~erger and Shor
[1151, IKa roff [KI, andl Naor N[found NC algorit bins to A + A/ logo(') n color any graph.

Of particular inrterest he(re,, there is an H N(atgorithrin in [KS) which A + A 1 /2+, colors any
graph. We wilt remove tie(randoness from this algorithm by using the techniques discussed
a bove. The H N(algorithtm . A lqoridhyn A, is as follows:

1. if A K (log it /, then use the [KS] A + I deterni iniistic algori tin.

7

2. Run an RNC algorithm for graph discrepancy, randomly picking X until disc(X) < Al/ 2 + .

Let A = {v I X(' = +1} and B = {v I(v) = -1}. This partition gives us two graphs, both

with vertex set 1. bipartite graph G 1 , which has all the edges of G between A and B; graph

G2 which has all the otber edges of G.

3. Color G, using the A coloring algorithm for bipartite graphs.

4. Recurse on G,,, using a new set of colors.

This algorithm works because the above partition implies that both G1 and G 2 have maximum

degree at most A/2 + AI/ 2+e.
To make Algorithm A deterministic, we need only demonstrate a deterministic method for graph

discrepancy, which we said in Section 2.1 was a special case of the set discrepancy problem. Plugging

in the set discrepancy results with c' = /2, we get a X such that disc(x) KS Al/2+"v/-1 . Note

that A > (log n)l/, since we handled the other case in Step I of Algorithm A. Thus, Vlon < A 2.

So we have disc(\) S A'/ 2 + , which implies X(N()) :_ Al/ 2 + c for all v E V.

3 Setting up a General Framework

For discrepancy-based problems, we considered a very specific class of functions, namely those of

the form Z 1 (-1)k=' ", and showed how to achieve the expected value for these. What can
we do in general? In particular, for which functions can we compute conditional expectations (the

method of Section 2.6 will then apply to achieve the expected value)? In order to give ourselves a
fighting chance, we will restrict our attention to functions of the form

m

F(X) = Z fi(Xi 1 , Xi,2 , •.., Xi,k).

These are exactly the functions tor which we can apply Lemma 2.4 to show that k-wise independence
gives the same expected value as full independence. Since we will require at least one processor for

each f, term, we will require m to be polynomial in n. In Section 3.1, we will show how to compute
conditional expectations for arbitrary1 fi when k = O(logn). In Section 3.2, we will describe the

f,'s for which we can handle the case k = O(log' n).

3.1 Logarithmic Number of 0/1 Variables

In this section, we will present two different methods for computing conditional expectations for
functions of the form

F(X) = fi(Xi,l,, Xi,blogn).

i=1

We present both methods because, depending on what problem we wish to solve, either of the two

methods may be more efficient.
The first method is to rewrite F to be of the form solved in Section 2.7. Let g : 2{k}

be such that

g(A) = f(X, 1 ,Xi,k) such that Xij = 0 ifjOA

(i.e., g of a set is fi applied to its characteristic vector). The following lemma follows from the
the,,ry of harmoic analysis on the cube.

'In fact, we will require a uniformity condition, but will ignore this issue for now.

• I II I

Lemma 3.1 (KKL) g(A) = Zsc{1....k} as(-1)ISnAl, whereas = 2-k ZBCfi.k} g(B)(-l)Is n lBI.

Thus,

... ,Xik)= g({jX ,- 1})

Eas(-l)I{J]X',=I}I (by Lemma 3.1)
s

Since wz have now writ v F s zo,= ' 1 (-1) X , we can apply ihe technique of Section 2.7 to
comput, conditional exectat ons. This gives us the following theorem:

Theorem 3.2 There is an NC algorithm which given any F : Z. -* R of the form

no

F(X) = fX(Xi, ., Xi,bIogn),
i=1

outputs an X with F(X) > E[F(X)].

An alternative method for computing conditional expectations for F is as follows. First note
that, by linearity of expectation, it suffices to compute the conditional expectations of the individual
fA and sum. Assume we wish to compute E[f,(Xj,,,. . .,Xj,biog,)I W =si,.. .,WtSt]. Let x be
the vector <Xil. Xi,blogn>, and let A be the matrix whose rows are the corresponding labels
a, 1 ,...., a,blogn. Then x = Aw. So

E[fi(X ,. .. ,Xi,blogn) I 8--- .W . ,Wt=] = fi(x)Pr[AW = x I w1 =si,...,wt-st].

If we let w' =<w ... wt>, w" =<t+,..,w 1 >, A' and A" be the first t and last 1- t columns
of A respectively, and s =<sl,. .. ,st>, then

E(fi(x) I w, =sj,...,wt =st] = _fi(x)Pr[AV + A"o" = x IW' = s
=

=Zf,(x)Pr[A"w" = x - A's.

For each x, we can test if the linear system A"w" = x-A's is solvable; if it is Pr[A"w" = i-A's] =

2r a n k (A ")+ t - 1, otherwise Pr[A"w" = x - A's] = 0. Since we can compute the contribution of each
of the x's in parallel, we can con,,pute the desired conditional expectation in NC, thus giving an
alternate proof for Theorem 3.2.

3.2 Polylogarithmic Number of 0/1 Variables

Now we will consider the case of functions depending on a polylogarithmic number of variables. A
simple counting argument shows that in NC we cannot compute all functions of log' n variables,
when c > 1, let alone compute conditional expectations of them. In fact, both techniques of
Section 3.1 require evaluating fi at every point; if fi depends on more than a logarithmic number
of variables, there will be a superpolynomial number of points to evaluate. However, there are some
special cases for which we can compute conditional expectations.

9

The first special case we can handle is

f,(X, ,. i.)=(-1)

This function can be evaluated using the techniques of Section 2.7, even if k = logcn. In Section 3.1,

we .howed how to transform any function into a linear combination of these; if this transformation

is -Iready known and provides only a polynomial number of non-zero o's, we can use this technique.

The next special case will be based on the second technique of Section 3.1. Recall, we had

E[fi(-V,1, ',k) I wi =si,. . =] = Zfi(x)l'r[A"w" = x - A's].

We can restrict our attention to those x for which f,(x) $ 0. If there are a polynomial number

of these, we can compute conditional expectations of fi for k = log' n. Some examples of this are

logical AND and NOR of a polylogarithmic number of variables (each has one non-zero point).

A variant of the above is the case of monomials, fi(X, 1 ,. . .,kX) = Xi,Xi,2 .. Xk. This

is equivalent to logical AND described above. Note that handlig 'nonomials is strictly weaker

since, for example, it is impossible to write a poly-log variable NOR as a linear combination of a

polynomial number of monomials.

Finally, we give a type of fi which can simulate all the above and more. Consider functions of

the form

th(f r 1 ifx= y+ Tz for some z E Zfi~x)= 0 otherwise

for some y E Zk, T E Z k --I (which may be different for different f).
These are the characteristic functions of affine subspaces. Included are characteristic functions

of all single points; we can write any function with a polynomial number of non-zero points as

a linear combination of these. Functions (-1)- X . can also be put in this form. To compute
conditional expectations, we use a variant of our linear algebra method:

E[fi(x) Iw,=s . .wt=s] = Z_ f,(x)Pr[AW=y+TzIw'=s]

= .f,(x)Pr[A"wo" + Tz = y - A's]

which can be computed by performing Gaussian Elimination to determine how many bits of Lo" are

free to vary. This gives us the following theorem:

Theorem 3.3 There is an NC algorithm which given any F : Zr- R of the form

na

1'(X) = fi(Xi,,.. ,Xiblng),J,

whrr(- earh f, is I&h rharartcerislir funrlion of some affinrc subspacc of ZIg n, outputs an X with

F(X) _ EfF(X)].

4 Handling Multivalues - the Hypergraph Coloring Problem

In the previous sections, we were only concerned with the case where the random variables took

on values 0 and I each with probability 1/2. Yet, for many problems, this model is too restrictive.

10

| || | | I II I I M

In this section, we expitnd o ir framework to ,onsid,,r random variables drawn fl'om a uniform
distribui ion over a larg(cr set o' values. This can 1 hen be used to simulate non-uniform distributions.
We will demonstrate our te niques for handlinig multivalued random variables on the following
prowuef,:

A hypergraph"H = (V, C) is a ,,ystem C of subsets of V called edges. 'H is d-uniform if every edge has
d elements. Kleitman and Alon, Babai, and Itai [KI, ABI] define the large d-partite subhypergraph
problem as follows. Given a d-uniform hypergraph 7= (V, E), find a d-coloring of V such that the

number of edges in S having precisely one vertex of each color is at least flFId!/ddj. [ABI] showed
this problem is in NC for constant d. We will show in this section that this problem is in NC for
all d. Since the case of d > In 1,6 + £2(lglg [gl) is trivially satisfied by any coloring that colors one
hyperedge correctly, we will henceforth restrict our attention to the case d < In [gl + O(lglg Cl).

4.1 Randoniized Algorithm

In this section, we give a randomized parallel algorithm and prove that the expected number of
properly colored edges is as desired. The randomized algorithm is as follows. Randomly assign to
each verex an I = 3log [El bi- label. l)esignatc these as random variables Y = 1i,. .. , IvM. Let

p = [21/,Ij. A vertex is nappel to color i if its la')el is in Ci = {(i- 1)p,..., ip- 1}. Note that every

color has p values associated with it. Vertices with values in the range dp to 21 - 1 are uncolored.
Note that fewer than d of the 21 possible values yield an uncolored node.

Now for the analysis,. We define a benefit function, G(Y), which will be the sum of terms ge(Y),
one for each e E E. Each g,(Y) will be 1 if the vertices of edge e are assigned d different colors,
and 0 otherwise. In calculating the expected value of ge(Y), we get

E[ge(Y)]

> Pr[ge(Y) = 1 I no vertex on edge e gets non-color] - Pr[some vertex on edge e gets non-color]
d! d2

d d 2
d! d2

- d 2 (since l = 3logClg).

Then,

E[G(Y)j = -E[g(Y)] _ ICIdd > I -jj -1.

eEdd
Fl [

In fact, since G(Y) is integral, we know that G(Y) E[G(Y)] implies that G(Y) > [ljlJ , which
is exactly what is desired.

4.2 The Basic Approach

In this section, we discuss various approaches for determinizing algorithms which use multivalued
random variables. These approaches have different advantages and disadvantages and may all prove
useful in applications.

Thp easiest approach to handling functions of multivalued random variables is to represent
each variable by a collection of boolean random variables. In particular, for the large d-partite
subhypergraph problem, if d is a power of 2, d = O(logIgl/loglogIFI), we can represent the
color of each vertex by lgd boolean random variables. Then each g, would become a function of

11

dlgd = O(logCl£) boolean variables, allowing us to apply the general framework of Section 3 to

find a good coloring.
A second approach we might consider would be to replace Z 2 in our distrubution with some

other finite field GF(q). For the large d-partite subhypergraph problem, if d is any prime power,
d = O(log 91/ loglog 1), we can replace Z 2 with GF(d). Theorem 2.8 will still hold and all of the
approaches to get labels can be easily modified to work, giving us a distribution with (logn)-wise
independent random variables uniformily distributed over GF(d). Since d is small (we only require
polynomial in n), we can try each possible value for the next element of w in parallel and pick the
one with the best conditional expected benefit G. To evaluate the conditional expectations, we can
still use the linear algebra method of Section 3.1 to find the probability a collection of d random
variables take on some particular value. And we can do this for each possible value, since dd is
polynomial in n. Thus we can still efficiently zero in on a good sample point.

To find a good coloring for any d up to log 11, we must use a more complicated approach, one
which is similar to the one used by Luby for A + I vertex coloring [L2]. In essense, we repeatedly
use the 0/1 problem as a subroutine to set one bit of the random variables at a time. We have
multivalued random variables Y = Y 1 , ... ,Yvl where Yj = Yi1Yi2 ... Ya. We will compute the Y's
bit by bit. At step t, we will compute Xt) such that

E[G(Y)Yt, = XP) for 1<j<_t] _ E[G(Y)lYij = XP') for l<j<_t -1].

If we let

F()(X()) = E[G(Y)IY, j = XP) for 1 <j t],

then the above is equivalent to finding an X(t) with F(it)(X(O) > E[F()(X(t))]. Letting
f()x(')) = Ey
fe(x)= E[ge(Y)jYj = XW for 1<j!t]

allows us to write Ft)(X(t)) as a sum of JCl functions, each depending on at most d < lg ClE random

variables X't). Assuming that, given X(M),..., X(t-1), we can construct functions f(t) (we will show
how to do this in the next section) we can find a good XMt) using the general framework of Section
3.1.

A simple inductive argument shows that for all t,

E[G(Y)IYi j = X!) for 1 <j< t] >_ E[G(Y)].

It follows that letting Y be such that Kj =V j) for all i and j implies that G(Y) > E[G(Y).

4.3 The Deterministic Algorithm

To apply the last multivalued approach described in the previous section, we must show how to
construct, for any t and for any settings of the first t - 1 bits XM) X (, - 1), functions

fO("0)= Igm(Y 11"i = X4 ') for I<i<tJ.

To do this, we will show h. A to compute

E[g,(Y) Yi = VP' for I <j:t];

it then suffices to plug in the given XO1 , -) and every possible setting of the variables

{X(t)ji E c) to construct .

12

Given edge e and the first t bits 'f each label, f(t) will be the probability that the edge is
properly colored. To calculate f(t), we sort the vertices of edge e into groups having the same t-bit
prefix. For each t bit string a, we let S,, be the set of vertices which have prefix a and let Ic be the
set of 21- ' values which have prefix a. We let To be {1 + F< -S ,.. .,- , IS,3}. Observe that
edge e will be properly colored if and only if for each a the vertices in So are assigned the colors
in T,.

Now we can calculate f.(t) as follows:

f(t)((t)) = 1 Pr[vertices in Sc. are assigned colors in T,]

- H 1Scj! H Prjvertex in S, gets color i]
10,1=j+l ,ET,

S 11 IS-.!]- f Ic. l
10l=j+1 iETO

Theorem 4.1 The large d-partite subhypergraph problem, finding a coloring of V which properly
colors at least [ICId!/dd] edges, is in NC. In fact, a more careful analysis shows that finding a
coloring of V which properly colors at least ICjd!/dd edges is possible in NC.

5 Remarks

There are many other problems for which discrepancy can be used to obtain a solution. It is
interesting to observe that, although high independence is required for discrepancy (Remark 2.7), for
other problems (e.g. set cover type problems) where it might appear one needs it [MNN2], pairwise
independence suffices [BRS]. This makes a real difference, because with lower independence, it is
possible to use far fewer processors, and even approach an optimal processor-time product.

As a final note, the discrepancy algorithm of Section 2 can be improved to yield a 2/
bound in the special case A = log' n. The improved algorithm, besides achieving a better discrep-
ancy bound, is a nice example of how to apply the techniques of this paper. The basic approach
is as follows. For each A E A, we let gA(X) be 0 if Ix(A)l _ 2VfAogn, and 1 otherwise. Let
G(X) = EAA gA(X), i.e. G(X) is the number of unbalanced edges. We want to find an X such
that G(X) K E[G(X)] < 1. To do this we first partition F into a poly-log number of subsets
F 1,. .. , F, such that the intersection of any Fj with any A E A is O(loglog n) (this can be done
using O(loglog n)-wise independence combined with some techniques from [BRS]). Then for each
j in sequence, we can construct a function F(J)(x(J)), where X() are the random variables corre-
sponding to Fj, which is the expected value of G(X) conditioned upon the values of X),..., XU -1)
set already and the given X(). Each F() will be a sum of functions depending on O(loglogn)
variables each, so we can apply our general framework to find a good X(). A simple inductive
argument shows that when we are done, we have a good X. The number of processors required for
this algorithm is n log o (') n.

6 Acknowledgements

We thank Tom Leighton and David Shmoys for helpful discussions. We also thank l)avid Shnioys
for suggesting the parallel edge coloring problem, and Joel Spencer for suggesting the parallel set
discrepancy problem.

13

References

[ABI] Alon, N., L. Babai, A. Itai, "A Fast and Simple Randomized Parallel Algorithm for the Maximal

Independent Set Problem", Journal of Algorithms, 7, pp. 567-583, 1986.

[AIS] Awerbuch, B., A. Israeli, and Y. Shiloach, Finding Euler Circuits in Logarithmic Parallel Time,
Proc. 16th Ann. ACM Symp. on Theory of Computing, 1984, pp. 249-257.

[B] Berger, B., "Data Structures for Removins Randomness", MIT Lab. for Computer Science
Technical Report, MIT/LCS/TR-436, Dec. 13, 1988.

[BRS] Berger, B., J. Rompel, P. Shor, "Efficient NC Algorithms for Set Cover with Applications to
Learning and Geometry", submitted to FOCS 1989.

[BS] Berger, B., P. Shor, personal communication.

[CGIIFRS] Chor, B., 0. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolenski, The Bit Extraction
Problem or i-Resilient Functions, Proc. 26th IEEE Symposium on Foundations of Computer
Science, 1985, pp. 396-407.

[CH] Cole, R., J. Hopcroft, "On Edge Coloring Bipartite Graphs", SIAM J. Comput., vol. 11, 1982,
pp. 540-546.

[GKI Gabow, H.N., 0. Kariv, "Algorithms for Edge Coloring Bipartite Graphs and Multigraphs",
SIAM J. Comput., vol. 11, 1982, pp. 117-129.

[KKL] Kahn, J., G. Kalai, N. Linial, The Influence of Variables on Boolean Functions, Proc. 29th
IEEE Symposium on Foundations of Computer Science, 1988, pp. 68-80.

[K] Karloff, H., personal communication.

[KS] Karloff, H.J., D.B. Shmoys, "Efficient Parallel Algorithms for Edge Coloring Problems", Journal
of Algorithms, 8, pp. 39-52, 1987.

[KW] Karp, R.M., A. Wigderson, "A Fast Parallel Algorithm for the Maximal Independent Set Prob-
lem", JACM, vol. 32, no. 4, October 1985, pp. 762-773.

[KI] Kleitman, D., personal communication.

[LPV] Lev, G.F., N. Pippenger, and L.G. Valiant, "A Fast Parallel Algorithm for Routing in Permu-
tation Networks", IEEE Trans. Comput., vol. 30, 1981, pp. 93-100.

[LI] Luby, M., "A Simple Parallel Algorithm for the Maximal Independent Set Problem", SIAM J.
Comput., vol. 15, no. 4, November 1986, pp. 1036-1053.

[L2] Luby, M., Removing Randomness in Parallel Computation Without a Processor Penalty, Proc.
29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 162-173.

[MS] MacWilliams, F.J., Sloane, N.J.A., The Theory of Error Correcting Codes, North-Holland,
Amsterdam, 1977.

[MNN] Motwani, R., J. Naor, M. Naor, "A Generalized Technique for Derandomizing Parallel Algo-
rithms ", draft, Jan. 17, 1989.

[MNN2] Motwani, R., J. Naor, M. Naor, personal communication.

[N] Naor, J., personal communication.

[Rab] Rabin, M.O., "Efficient Dispersal of Information for Security Load Balancing and Fault Toler-
ance", JACM, to appear.

14

[Rag] Raghavan, P., "Prababilistic Constructian of Deterministic Algorithms: Approximating Pack-

ing Integer Programis", JCSS, vol. 37, n). 4, Oo:tober 1988, pp. 130-143.

[S] Spencer, J., Ten Lcures on the Probabilistic Method, SIAM, Philadelphia, 1987.

[VI Vizing, V.G., "On an Estimate of the Chromatic Class of a P-graph", (in Russian), Diskret.
Anal., vol. 3, 1964, pp. 25-30.

15

OFFICIAL DISTRIBUTION LIST

Director 2 copies

Information Processing Techniques Office
Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research 2 copies

800 North Quincy Street
Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station

Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities

1800 G. Street, N.W.
Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

