s el S e s TRy e A e gen -

TSN [- e ey oty v e o

R e v g r——. 11

am s ey A
e

- . . —~ ~v
K oY 0Ty
- L 12

LAGORATORY FOR
COMPUTER SCIENGE |

f ey

7 ' NI LC RS
SIMULATING (og S 1-wise
INDEPENDENCE IN NC

y—

Bonnie Berger
John Rompel

e e P —————

May 1989

R LE,
»
s

v

—

Opprovad fo pubile iacum;
Bivribusign Unitivdted

e e
R

q Btk S r O
ERATYATEARLYY T

MIT/LCS/TR-435

SIMULATING (log® n)-wise
INDEPENDENCE IN NC

Bonnie Rerger
John Rompel

May 1989

- DTIC

% ELECTE py
Q) V0vV031989 8

% B

iﬁzzggzij 89 10 31 2183

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

b RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release; distribution

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

is unlimited.

4. PERFORMING ORGATMIZATION REPORT MUMBER'S)
MIT/LCS/TR-4 15

S MONITORING ORGANIZATION REPORT NUMBER(S)
NU0014-80-C-0622

6a. NAME OF PERFORMING ORGANIZATION
MIT Laboratory for Comput:r
Science

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION
Office of Naval Research/Department of Navy

6¢. ADDRESS (City, State, and ZiP Code)
545 Technology Square

Cambridge, MA 02139

7b. ADDRESS (City, State, and ZIP Code)
Information Systems Program

Arlington, VA 22217

8b OFFICE SYMBOL
(If applicable)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

DARPA/DOD

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Re ADDRESS (City, Staic, ari 2!P Coce)
1400 Wilson Boulevard
Arlington, VA 22217

10. SOURCE OF FUNDING NUMBERS

WORK UNIT
ACCESSION NO.

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO

11. TITLE (include Security Classification)
simulating (lcz'n)-wise Independence in NC

12. PERSONAL AUTHOR(S)
Berger, B. and Rompel, J.

13a. TYPE OF REPORT 13b. TIME COVERED
Technical FROM TO

14. DATE Of REPORT (Year, Month, Day)

1S. PAGE COUNT
May 1989 15

16. SUPPLEMENTARY NOTATION

17. COSAT! CODES

FIELD GROUP SUB-GROU®

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Parallel algorithms, NC, randomness, discrepancy, edge
coloring, hypergraph coloring

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
We develop a general framework for removing randomness from randomized NC algorithms

whose analysis uses only polylogarithmic independence.

Previously no techniques were

known to determinize those RNC algorithms depending on more than constant independence.
One application of our techriques is an NC algorithm for the set discrepancy problem, which
can be used to obtain many other NC algorithms, including a better NC edge coloring algo-

rithm.
graph coloring problem.

As another application of our techniques, we provide an NC algoritbm for the hyper-

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT

& uncLassiiep/uNuMITED [SAME AS RPT] bTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDWIDUAL
Judy Little <Tullicoticuc Couriinator

<cu TELEPUONE (include Area Code) [22¢. OFFICE SYMBOL
(617) 253-5894

DD FORM 1473, 8a maRr

83 APR edition may be used until exhausted
All ather editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

#U.S. Governmant Printing Office: 1908-807047
Unclassified

_

Simulating (log® n)-wise Independence in NC

Bonnie Berger®
John Rompel!

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

We develop a general framework for removing randomness {rom randomized NC
algorithms whose analysis uses only polylogarithmic independence. Previously no tech-
niques were known to determinize those RNC algorithms depending on more than con-
stant independence. One application of our techniques is an NC algorithm for the set
dis« repancy problem, which can be used to obtain many other NC algorithms, includ-
ing a better NC edge coloring algorithm. As another application of our techniques, we
provide an NC algorithm for the hypergraph coloring problem.

Kevwords: Paraliel algorithms, NC, randomness, discrepancy, edge coloring, hyper-
graph coloring

*supported in part by Air Force Grant AFOSR-86-0078
Ysupported by a National Science Foundation Graduate Fellowship, DARPA contract N00014-80-C-0622, and Air
Force AFSOR-R6-0078

1 Introduction

A fundamental issue of theoretical computer science is the degree to which randomness helps in
computation. In many cases, the most natural algorithm to solve a problem involves randomness.
Often, however, it is possible to convert a randomized algorithm into a deterministic one.

For many applications [KW,L1,ABI], the problem of removing randomness from an algorithm
can be solved by finding an X' =< Xy,.... X, > such that F(X) > E[F(X)], for some function
F and some sample space § over which the expectation is to be computed. The problem is then
how best to find a good sample point (e.g., an X such that F(X) > E[F(X)]) in S. If the space
of sample points is small (e.g.. polynomial). then this can be accomplished by brute force: namely,
we could try all points until we get a good one. for one must exist. However, typical sample spaces
are larger than polvnomial, and brute force is too expensive. In such situations, the only general
method available is due to Raghavan and Spencer [Rag,S]. Their method works by setting the X,'s
one by one in such a way as to not decrease the conditional expectation (e.g., setting X,41 so
that FIF(X)] Xy .. Xl 2 E[F(X)] Xi.....X;]). The main difficulty with this approach is
computing the conditional expectations -— the ability to do so determines when the method can
and cannot be used.

Unfortunately. the Spencer/Raghavan method is inherently sequential. Moreover, the running
time is at least n. Since the best timme one could hope for is logarithmic in the size of the sample
space, for large probability spaces this is probably as geod as one can get; yet, for smaller spaces,
n is far from optimal. The only improvement to this approach was by Luby [L2] who showed
how to search in time logarithmic in the size of the sample space for the special case of pairwise
independence, theieby improving the processor efficiency of several NC algorithms (A + 1 vertex
coloring, MIS, and maximal matching) from n?(n + m) to n + m.

In this paper, we show how to search in time logarithmic in the size of the sample space for a wide
range of functions F and arbitrarily large sample spaces. As a result, we can prove substantially
stronger results than is possible with the Luby method. In particular, we are able to derive NC
algorithms for several problems that were not previously known to be in NC, and we can search
(log® n)-wise independent n!& ".size sample spaces in NC.

In Section 2, we demonstrate how our techniques apply to the problem of set discrepancy. In
this problem, we are given a set of n points and n subsets of at most A of these points, and we want
to color the points 0 and 1 so that the discrepancy, or maximum difference between the number of
0’s and the number of 1’s in any subset, is small. The best known randomized (parallel) algorithm
achieves a discrepancy of /A Togn; Raghavan and Spencer applied their technique to this algorithm
to obtain a deterministic sequential algorithm with the same bound. We show that the randomized
algorithm requires E'—fﬁ%—%—independence to give a discrepancy bound of A/2+¢\/Togn for any fixed
¢ > 0; then we apply our techniques to convert this to an NC algorithm which attains the same

. / Ny e
bound (using n'/* processors). This algorithm has many applications. As an example, we give

a determiuistic version of the Karloff-Shmoys parallel edge coloring algorithm [KS], obtaining the _

same A + A'/2** bound on the number of colors used as their randomized algorithm and beating
the known deterministic bound of 24 — 1 [1.2].

In Section 3. we show how {0 apply our techniques to a large class of problems which depend on 0
(log” n)-wise independence. In particular, we describe an NC algorithm for obtaining the expected O
valire of any function which is the sum of a polynomial number of terms, each depending on O(logn)
binary random variables; e.g., a function of the form T

‘ n? Eaestoouaaony]
Fexy = Zf'(-\i-‘~ -y Xiplogn - i Avallability Codas
=1 ¢ 7 Javatl and/or

;o

1 (

©d

Dist Speclal

Alternatively, we can allow the terms to be simple functions of log‘ n random variables; e.g.,
characteristic functions of affine subspaces, which by a reduction can be used to build any function
which is non-zero for only a polynomial number of points.

Finally, in Section 4, we give several methods for extending our technique to multi-valued
random variables. As an illustration, we consider the hypergraph coloring problem: given a d-
uniform hypergraph (V, £). color the vertices with d colors so that at leasi d!|£|/d® edges have one
vertex of each color. If d is a constant, this problem can be solved by trying all sample points in a
d-wise independent distribution [ABI]. Using our techniques for handling (log n)-wise independent
multi-valued random variables, we give a deterministic NC algorithm which solves this problem for
all d. The particular technique used to handle the multi-valued random variables in this problem
involves generating and solving a series of problems with binary random variables, highlighting the
importance of being able to solve a large class of these.

Our generalization of Luby's work to remove randomness from (log»)-wise independent
discrepancy-based problems «nech as edge coloring was worked out in November, 1988, and first
appears in [B]. Our general framework for removing randomness from (log® n)-wise independent NC
calculations was worked out and written up by mid-December, 1988. In January, 1989, Motwani,
Naor. and Naor [MNN] obtained our results for discrepancy-based problems such as edge coloring.

2 An Example of the Method — Set Discrepancy

2.1 Definition of Problem

Spencer [S, p. 30] defines the set discrepancy problem as follows. Let A C 20, |A] = |T| = n, be a
family of finite sets. Let x : ' = {—1,+1} be a 2-coloring of the underlying points. Define

WA = oA

€A
dise(x) = max|x(4)].

We want to find a \ such that dise(y) is small.

How small can we make dise(x)? Spencer [S, p. 73-77] shows that there exists a \ with
dise(x) = O(y/n). He also shows that ihis is the best possible; i.e., that there exists an A such
that all x have disc(x) = Q(v/n).

It is interesting to bound discrepancy in terms of maximum degree A = maxa¢4 |4|. Spencer’s
lower bound can be easily modified to give, for any A, an A with cardinality n and maximum
degree A such that all x have disc(x) = QD). It is easily shown in Section 2.2 that if we pick
x at random, with high probability disc(x) will he at most 2,/Algn. This immediately gives an
RNC algorithm achieving that bound. Raghavan and Spencer [Rag,S] show how to cornvert this
into a deterministic poly-time algorithm. In the sections to follow, we develop an NC algorithm
which outputs a \ with disc(y) < AV2+¢/Ign.

An interesting special case of the set discrepancy problem is the graph discrepancy problem.
Given a graph (G = (V, E). we want to find a 2-coloring of the vertices \ : V — {—1,+1} such that
max,ev | Xyen(y ()] is small. We can reduce this problem to sot discrepancy by letting I' = V
and A = {N(vr)jv € V}. Plugging in our Nf' algorithm for di-crepa.cy, we will get a y with
maxyev | 2 e () V()] < Al Jlogn, where A is the maximum degree of 6.

2.2 An RNC Algorithm

Consider the following algorithm for set discrepancy: randomly pick x until disc(x) < 2V Alnn.
One iteration of this is clearly in RNC. We will show that the expected number of iterations is less
than two. The following lemmas will prove useful.

Lemma 2.1 (S, p. 29) Let Xy,...,Xa be independent and identically distributed with Pr(X; =
+1] = Pr{X; = ~1] = 1/2. Let § = 5; Xi. Then Pr[§ > A] < e=**/28,

Lemma 2.2 Pr [disc(\(\ > 2yAln n] < 2/n.

Proof Straightforward application of Lemma 2.1. O

Thus, the expected number of iterations is at most 1/ (1 - %) < 2. So the above is clearly an
RNC algorithm. Also, one can easily show using Lemma 2.2 that E{disc(x)] = 2V Alnn.

2.3 The Overall Approach

Lemma 2.2 shows that the probability of disc(x) being larger than 2v/Alnn is small. This implies
that there exists a x with disc(x) < 2V Alnn. We wish to find such a x deterministically. Unfor-
tunately, the random construction of Section 2.2 assumed a fully independent distribution, which
must have 2" sample points. Clearly, we cannot search this sample space exhaustively. However,
Raghavan and Spencer [R,S] developed a method to perform a binary search on the sample space.
While they achieve a polynomial time algorithm, it requires n decisions to be made. Since each
decision depends on previous ones, it seems very unlikely that these decisions could be made in
parallel. To get an efficient parallel algorithm, we must work with a smaller distribution space. A
natural choice is a k-wise independent distribution, where k& is small.

Definition 2.3 Xi,..., X, are k-wise independent if for any k-subset of X1,..., X, and for any
Tlyeooy Tk,

PriXiy=riAXy=ro AN X, =7g]
= PT[X'I =T1]PT[X{2 :1‘2] . ‘PT[X"k =Tk]'

Ideally our goal is to find a x with small discrepancy by finding a x for which dise(x) <
Eldise(x)], where the expectation is taken over a k-wise independent distribution for some small
k. The choice of k is influenced by two factors:

1. if k is too small, then E[disc(x)] might be too large and

2. if k is too large, then finding a x which achieves the expectation takes too long.

logn

As a compromise, we will eventually choose k = (—1-555—5, e> 0.

There are other problems with this approach, however. Most important, to find a good x, we
will need to compute expectations of disc(x) conditioned on some knowledge of the distribution in
NC. This is hopelessly complicated by the maz and absolute value in disc(x). To get around these
problems, we will use higher moments, and use 3" 4c 4 |x(A)|¥ as an upper bound on disc*(x). For
even k, this gets rid of both the max and the absolute value. In other words, we will

1. show that E [EAGA lx(A)["] is small for suitable k where the expectation is taken over a
k-wise independent distribution, and then

2. find a x such that T e 4 IN(A)F < E [Caca (A

As a consequence, we will have found a y for which disc®(x) is small, and thus for which dise(x)
is small. By choosing k = ;lfi"—_,}, we will produce a x for which disc(x) < AY/?*¢/Togn. This is
not quite the \/Alogn bound we got with the RNC algorithm, but it is close.

2.4 Bounding the Independence Needed

Our first task is to bound £ [ZAGA xk(A)]. This is accomplished in the following lemmas.

Lemma 2.4 Any function which is the sum of functions depending on at inost k random variables
each has the same expected value taken over any distribution with k or greater independence.

Proof Follows directly from the definition of k-wise independence and linearity of expected value.
0

Lemma 2.5 For any even k-wise independent distribution and for all A € A,
E[M(A)] < O((ka/e)*/?).

Proof E[*(A)] = 232, Pr(x(4) = i]. Break up the sum into blocks of VA. For i €
k
[1,...,\/Z], ik is bounded above by (\/Z) ; for 7 € [\/A + 1,...,2\/5-], i* is bounded above

k
by (2\/5) , and so on. Then.

2f:i’=p-r[x(A) =i < 2i(r\/_A—)kPr[(r ~ VA < x(A) < VA

1=1

A

oo
2Z(r\/Z)ke'("l)2/2
r=1

(where the last inequality is from Lemma 2.1). The terms of the sum geometrically increase to a
point, and then at some large 7, they begin geometrically decreasing. Use the ratio test to get a
sense of this:

k
(r + 1)st term — (1 + %) — kIT=8(k[r?)=r+1/2
rth term e(2r=1)/2 ’
So for small r the terms are growing at least geometrically, and ior large r they decrease at least
geometrically. The maximum term is about where ek/T=0(k/r*)=-+1/2 .. | = €0 which occurs at
r = vk 4+ 6(1). The constant will go away in the () notation, so we will ignore it. We could show
that this ratio will be bigger than e or less than 1/e more than one or two terms away from r = VEk.

Hence,
E[xk(A)] =0 ((\/E\/K)ke_k/z) =0 ((Eé)kﬁ) .

€

The above calculations assume a fully independent (or at least A-wise independent) distribution.

However,
XE(A) = o xG)F = X0 3 - D0 x(in) -~ x(iw).

1€A 11€EAI,EA k€A

So Lemma 2.4 applies to show that any k-wise independent distribution gives the same expected
value. O

Corollary 2.8 For any even k-wise independent distribution,

E[Y" XA < nO((kA/e)!/?).
A€A

We can now give a lower bound on the value for k. We want £[3 44 X¥(A)]V/* < AY/?+</Togn;
this is roughly captured by having n'/% < A¢. This implies we need & = 2 (-2%(1’;—‘5%‘—}. If k is thus,
and we are able to find a Y such that 3~ 4. 4 \¥(A) is at most its expectation, this implies that

disch(x) < 3 \H(A) < B[xM(A)] <€ O(n(ka/e)?).
AcA AcA

So,
dise(x) < O(nY*\/kA/e)
< O(AVEVA)
< AV flogn.

Remark 2.7 For any n and A, we can construct a (?l—l—‘:;%)-wise independent distribution and a
set system A with mazimum degree A such that E[disc(x)] = Q(A). Therefore, to get disc(x) <

AV any method based on independence alone will require (-21;—‘;%) -wise independence.

The next three sections will be devoted to finding a x such that) 4¢ 4 x*(A) is at most its
expectation. If we let x({) = (=1)%", finding a x is identical to finding an X which satisfies this
relation. From this point on, we will let

F(X) - — Z Xk(A) = — Z Z Z(_I)X,l+...+x'k.

A€A A€A €A €A
So henceforth we want an X such that F(X) > E[F(X)].

2.5 Generating k-Wise Independent Variables

It still remains to demonstrate a k-wise independent distribution on which we can perform a binary
search efficiently in parallel.

Luby [L2] gave the following such probability space for the case k = 2. Let | = [logn] + 1 and
w be picked uniformly from Zé. For each point ¢, let <i;,...,7,_1> be the binary expansion of ¢.
Define random variables Xq,..., X, so that

-1
X = (Z(‘ijw]') +w1) mod 2.
Jj=1

Observe that Luby’s distribution is not 4-wise independent since, in particular, X4, X5, Xe, and
X7 are dependent.

We extend Luby’s distribution to be k-wise independent for all k as follows. We will assign
a label a; € Z} to each point i, where [is bounded by some polylogarithmic function of n. Pick
w € Z} uniformly at random, and let

X; = a; -w.

Note that we can express Luby’s distribution in this framework by leting a; =<iy,...,1-1.1>.

The main benefit of our distribution is that we can now give a necessary and sufficient condition
for the X;’s to be independent and unbiased. The following result is similar to others in the literature
[MS,ABI] and can probably be considered to be well-known.

W

Theorem 2.8 X;,,...,X;, are independent and unbiased if and only if a;,,...,a;, are linearly
independent as vectors over Z3.

Proof Utilizes elementary linear algebra. O

To get X,...., X, which are (logn)-wise independent, we need a set of labels ay,...,an such
that every logn of them are linearly independent. (By Theorem 2.8, this gives us logn-wise
independence of the X;'s.) In fact, it suffices to get an n x r matrix over G F(2°) with the property
that any logn rows are linearly independent. Letting a; be the ith row with each element oo +
1T+ -+ 0,1 2% € GF(2°) expanded out to < ap,...,a,_1 > gives length [= rs labels such
that any logn are linearly independent over Z;. Several well-known ways of getting such matrices,
for | = O(log®n). are described in [ABI. Rab]. Even randomly chosen labels of this length will
work.

Theorem 2.9 For a random set of labels {a;,....an} C Zzﬂol‘z", X1,...,X, are (logn)-wise
independent with high probability.

Proof Omitted. O

Since any probability space with n k-wise independent random variables must contain Q((n/k)k/2)
sample points [ABI,CGHFRS], the labels ay,...,a, must be 2(log? n) bits long.

One final thing to note is that we can easily extend the above to give (log® n)-wise independence
for any ¢ by using the same techniques to obtain labels with { = O(log®*! n), also matching the
lower bound.

2.6 Zeroing in on a Good Sample Point

Now that we have a k-wise independent distribution, we will explain how to do a binary search on
it efficiently in parallel. We will use the strategy introduced by Luby in [L2] for zeroing in on a
“good” sample point; i.e., an w such that F(X) > E[#(X)).

To zero in on a good w, one bit of w is determined at a timne, thereby performing a binary
search on the w’s. This is done as follows. At the beginning of iteration ¢, assume we have
set w; = 81,...,wi—1 = 8;_1. Then we compute E[F(X) | wy = 81,...,wp—1 = $4_1,w¢ = 0] and
E[F(X)]| w1 =81 .,ws_1 = 84—1,wy = 1]. We then set w; to the s, € {0,1} which maximizes
E{F(X)]| w = 81,...,wi—1 = S$4—1,wr = 8¢). We will show how to compute these conditional
expectations in Section 2.7.

Lemma 2.10 After step t of the above procedure, E[F(X)|wi=81,...,w=38]2> E[F(X)].

Proof (by induction on |s])
The case |s| = 0 is clearly true. Assume this lemma is true for t — 1; i.e., we have
E[F(X)|wi=31,...,wi-1=8;—1] > E[F(X)]. Then

ElF(X)|wi=s81,...,0,=8]

= max(E[F(X)|w1=81,...,wi-1=8-1,w; =0}, E[F(X) | wy1=81,...,wi-1 =8—1,wr=1])
(E[F(X)|w1=81,...,wi_1=8-1,wt =0}, E[F(X) | w1 =381,...,wi—1 =S4, wr =1])/2
E[F(X)|wi=81,...,wi_] =841]
E[F(X)] (by inductive hypothesis). O

v

v

Corollary 2.11 The outpul of the above procedure is an X such that 1 (X) > E[F(X)].

2.7 Computing Conditional Expectations

In gencral. computing conditional expectations is hard to do and separates when one can and
cannot use Raghavan/Spencer-like techniques to zero in on a a good sample point. Fortunately.
in the case of discrepancy, we have devised a simple and efficient approach for computing condi-
tional expectations. Recall that to solve discrepancy. we need to compute conditional expectations
FrPeX) oy =500 o= s b where FUX) is of the special form

SR S ST S SR I Y

AcA e €A

Using linearity of expected value, we can break this up into components
A I

: SE X,
(s = Fi(=1)ea=t7 Jw=8p,.. . wy =8
k

e F[(*l)zl:lql).w|w‘1:51.....u«‘t:St]

a

BN

= E{(=1)" w1 =814 owr = 8¢

where q = Zle a;,. Let r be the last position vhich contains a 1 in a. If 1 < r, then a-w is
unbiased, and therefore A, ., (s) = 0. Otherwise, @ - w is the same for all w which extend s. and
henee by, = ET(—=1)"*]. Assuming we have precomputed @ and r, we can compute hi i (s)in
constant time by extending a partial sum Z;:, a, s; at each iteration and outputting h,,..;, (s) =0

ST
ift <rand h, . (8)=(=D)&o=7 00t > r.

To compute E{F(X) | w; = $1.....w = $¢). we need one processor for each possible <
Allie. 7k >, that is. at most nAX total. Therefore, k must be O({;"g%). Letting & be the

minimum possible, 2[1% implies that n3*+!/¢ processors is sufficient.

2rlog A
Then we can compute all h; ., (s) terms in parallel in constant time and sum them to get
E[F(X)|wi=51..... wr =8¢ | in O(logn) time. Thus we spend O(! logn) time in the [iterations

of our procedure. In addition. we can perform the precomputation required above in O(! logn)
time as well. Since { = O(log? n). this vields an O(log® n) algorithm for discrepancy.

2.8 Application to Edge Coloring

An edge coloring of a graph (= (V, F') is an assignment of colors to all edges of the graph, so that
any two edges that share a common vertex are assigned different colors. Let A be the maximum
degree in (. Observe that any coloring requires at least A colors. In fact, Vizing [V] mplicitly gives
a polynomial time algorithm to A + 1 color any graph. Karlofl and Shmoys [KS) provide a parallel
implementation of this algorithm to get a A + 1 coloring of any graph in time O(AC(M]og®! n)
using a polynomial number of processors. Also of interest, there exist NC algorithms for optimally
coloring bipartite graphs with A colors [GK.LPV,('H,AIS]. Furthermore, there is a trivial NC
algorithm to 2A — 1 color any graph by A + 1 vertex coloring [1.2] the line graph. Berger and Shor
(BS], Karloff (K], and Naor [N] found NC algorithms to A + A/ log? n color any graph.

Of particular interest here, there is an RNC' algorithm in [KS] which A + AY2+¢ colors any
graph. We will remove the randomness from this algorithm by using the techniques discussed
above. The RNC algorithm. Algorithin A, is as follows:

1. If A < (log)/, then use the [KS] A + 1| deterministic algorithm.

2. Run an RNC algorithm for graph discrepancy, randomly picking x unul dise(x) < Al/2*e,
Let A = {v|\(v) = +1} and B = {v| x(v) = —1}. This partition gives us two graphs, both
with vertex set 1. bipartite graph Gy, which has all the edges of G between A and B; graph
(G, which has all the other edges of G.

3. Color G, using the A coloring algorithm for bipartite graphs.

4. Recurse on G, using a new set of colors.

This algorithm works because the above partition implies that both G} and G, have maximum
degree at most A/2 + Al/2+e,

To make Algorithm A deterministic, we need only demonstrate a deterministic method for graph
discrepancy, which we said in Section 2.1 was a special :ase of the set discrepancy problem. Plugging
in the set discrepancy results with ¢ = ¢/2, we get a x such that disc(x) < Al/2*¢'\/logn. Note
that A > (log n)!/, since we handled the other case in Step 1 of Algorithm A. Thus, \/logn < A%2,
So we have disc(y) < A'/?*¢, which implies x(N(v)) < AV?*¢ forall v € V.

3 Setting up a General Framework

For discrepancy-based problems, we considered a very specific class of functions, namely those of
k

the form Z:‘:](—I)ZFI X‘", and showed how to achieve the expected value for these. What can
we do in general? In particular, for which functions can we compute conditional expectations (the
method of Section 2.6 will then apply to achieve the expected value)? In order to give ourselves a
fighting chance, we will restrict our attention to functions of the form

m
F(X)= 3 filXin, Xigy ooy Xi).

=1
These are exactly the functions for which we can apply Lemma 2.4 to show that k-wise independence
gives the same expected value as full independence. Since we will require at least one processor for
each f; term, we will require m to be polynomial in n. In Section 3.1, we will show how to compute
conditional expectations for arbitrary! f; when & = O(logn). In Section 3.2, we will describe the
fi’s for which we can handle the case & = O(log® n).

3.1 Logarithmic Number of 0/1 Variables

In this section, we will present two different methods for computing conditional expectations for
functions of the form

n®
F(X) =Y filXit, s Xiblogn)-

1=1
We present both methods because, depending on what problem we wish to solve, either of the two
methods may be more efficient.

The first method is to rewrive F to be of the form solved in Section 2.7. Let g : 2{1-k} L R

be such that
1 ifjeAd
0 ifjgAa
(i.e., g of a set is f; applied to its characteristic vector). The following lemma follows from the
theory of harmouic analysis on the cube.

g(A) = fil Xi1,..., Xix) such that X;; = {

'[n fact, we will require a uniformity condition, but will ignore this issue for now.

Lemma 3.1 (KKL) g(A) = Zscqy,.. .k as(=1)1*"4], where as = 27% Tpcqq,. 4y 9(B)-1)1SNBL
Thus,

filXin, -, Xig) g({jl Xi; =1})

> as(-DWIXu=1 (by Lemma 3.1)
S

Y as(-1)Zes X
S

fl

]

. : +b [\ . . -
Since we have now written F s 000 (=1)Z. A 7 we can apply the technique of Section 2.7 to
compute conditional exnectat.ons. This gives us the following theorem:

Theorem 3.2 There is an NC algorithm which given any F : Z} — R of the form

F(‘X') = Zfi(‘xri.la- . -,Xi,blogn)a
=1

outputs an X with F(X) > E[F(X)].

An alternative method for computing conditional expectations for F' is as follows. First note
that, by linearity of expectation, it suffices to compute the conditional expectations of the individual
fi and sum. Assume we wish to compute E[fi(Xi1,..., Xiplogn) | w1 =51,...,w=25]. Let z be
the vector <X i,....X;s10gn>, and let A be the matrix whose rows are the corresponding labels
ai1,...,8iplogn. Then r = Aw. So

E[fi(z\'..lw.-,Xi,blogn)|w1=31»---,wt=“¢] = Zf,-(x)Pr[Aw: T |w1:31v--~»wt=st]-

If welet W =<wy,...,w;>, W =<wiy1,...,w; >, A’ and A” be the first t and last [— ¢t columns
of A respectively, and s =<s;,...,8 >, then

Elfiz)lwi=51,...,0i=8] = Zfi(l‘)PT[A'w'-{»A"w” —z|o = s]

= Y fiz)Pr[AW" =z~ A's].

For each z, we can test if the linear system A”w” = z— A’s is solvable; if it is Pr[A"w" = 2~ A's] =
grank(A")+t—1 otherwise Pr[A"w" = 2 — A’s] = 0. Since we can compute the contribution of each
of the z’s in parallel, we can corpute the desired conditional expectation in NC, thus giving an
alternate proof for Theorem 3.2.

3.2 Polylogarithmic Number of 0/1 Variables

Now we will consider the case of functions depending on a polylogarithmic number of variables. A
simpie counting argument shows that in NC we cannot compute all functions of log® n variables,
when ¢ > 1, let alone compute conditional expectations of them. In fact, both techniques of
Section 3.1 require evaluating f; at every point; if f; depends on more than a logarithmic number
of variables, there will be a superpolynomial number of points to evaluate. However, there are some
special cases for which we can compute conditional expectations.

The first special case we can handle 1s
. . X,
ft(/\z,ls--..‘\,"k):(_-1)2_, 3

This function can be evaluated using the techniques of Section 2.7, even if & = log® n. In Section 3.1,

we -howed how to transform any function into a linear combination of these; if this transformation

is 2lready known and provides only a polynomial number of non-zero a’s, we can use this technique.
The next special case will be based on the second technique of Section 3.1. Recall, we had

E{ fiX,1,..... X, x)lwi=81,..,wr=8] = Zfi(z)l’r[A”w" =z - A's).

We can restrict our attention to those r for which fi(z) # 0. If there are a polynomial number
of these. we can compute conditional expectations of f; for k = log® n. Some examples of this are
logical AND and NOR of a polylogarithmic number of variables (each has one non-zero point).

A variant of the above is the case of monomials, fi(X,1,...,X;%) = XinXi2-+-X;,. This
is equivalent to logical AND described above. Note that handling monomials is strictly weaker
since. for example, it is impossible to write a poly-log variable NOR as a linear combination of a
polynomial number of monomials.

Finally. we give a type of f; which can simulate all the above and more. Consider functions of
the form

_J 1 ifz=y+ Tz for some z € Z§
fil=) = { 0 otherwise

kllk
for some y € Z5. T € Z, Il (which may be different for different f;).
These are the characteristic functions of affine subspaces. Included are characteristic functions
of all single points; we can write any function with a polynomial number of non-zero points as

. . N . X, . .
a linear combination of these. Functions (—1)21 7 can also be put in this form. To compute
conditional expectations, we use a variant of our linear algebra method:

Elfi{z)|wi=s1,....w1=8]

Zf;(lf)PT[szy+Tz|w'.—_s]

S AE)Pr[A" + Tz =y — A's]
~

which can be computed by performing Gaussian Elimination to determine how many bits of w are
free to vary. This gives us the following theorem:
Theorem 3.3 There is an NC algorithm which given any F : Z} — R of the form

na

F(X) =Y filXinve ooy Xiblogen)s

=1
where each f; is the characteristic function of some affine subspace of ZI_,OSL", outputs an X with
F(X)> E[F(X))].
4 Handling Multivalues — the Hypergraph Coloring Problem

In the previous sections, we were only concerned with the case where the random variables took
on values 0 and 1 each with probability 1/2. Yet, for many problems, this model is too restrictive,

10

e

In this section, we expund o.r framework to consider random variables drawn from a uniform
distribution over a large: set o' values. This can 1hen be used to simufate non-uniform distributions.
We will demonstrate our tech niques for handling multivalued random variables on the following
provien::

A hypergraph H = (V, €) is a wystem € of subsets of V called edges. H is d-uniform if every edge has
d elements. Kleitman and Alon, Babai, and Itai [Kl, ABI] define the large d-partite subhypergraph
problem as follows. Given a d-uniform hypergraph H = (V,£), find a d-coloring of V' such that the
number of edges in £ having precisely one vertex of each color is at least llSld!/de. [ABI] showed
this problem is in NC for constant d. We will show in this section that this problem is in NC for
all d. Since the case of d > In |£] + Q(lglg|£]) is trivially satisfied by any coloring that colors one
hyperedge correctly, we will henceforth restrict our attention to the case d < In[&| + O(lglg |€]).

4.1 Randomniized Algorithm

In this section, we give a randomized parallel algorithm and prove that the expected number of
properly colored edges is as desired. The randomized algorithm is as follows. Randomly assign to
each ver'ex an | = 3log|£] bi' label. Designate these as random variables ¥ = ¥7....,Yy|. Let
p= [QI/JJ. A vertex is mappe.d to color ¢ if its label isin C;={(i—1)p,...,ip—1}. Note that every
color has p vaiues associated with it. Vertices with values in the range dp to 2! — 1 are uncolored.
Note that fewer than d of the 2/ possible values vield an uncolored node.

Now for the analysis. We define a benefit function, G(Y'), which will be the sum of terms g.(Y),
one for each e € £. Each g.(Y) will be 1 if the vertices of edge e are assigned d different colors,
and 0 otherwise. In calculating the expected value of g.(Y), we get

Elg.(Y)]
> Pr{g.(Y)=1]no vertex on edge e gets non-color| — Pr{some vertex on edge e gets non-color]
2
= j—i ~ Tglz—i (since ! = 3log|&]).
Then,
B = Y Bla)] 2 1615 - o > [ie1%] -1

e€f

In fact, since G(Y) is integral, we know that G(Y') > E{G(Y)] implies that G(Y) > [ISI%J , which
is exactly what is desired.

4.2 The Basic Approach

In this section, we discuss various approaches for determinizing algorithms which use multivalued
random variables. These approaches have different advantages and disadvantages and may all prove
useful in applications.

The easiest approach to handling functions of multivalued random variables is to represent
each variable by a collection of boolean random variables. In particular, for the large d-partite
subhypergraph problem, if d is a power of 2, d = O(log|£|/loglog|€|), we can represent the
color of each vertex by lgd boolean random variables. Then each g, would become a function of

11

dlgd = O(log|€|) boolean variables, allowing us to apply the general framework of Section 3 to
find a good coloring.

A second approach we might consider would be to replace Z, in our distrubution with some
other finite field GF(gq). For the large d-partite subhypergraph problem, if d is any prime power,
d = O(log €|/ loglog|£]), we can replace Z3 with GF(d). Theorem 2.8 will still hold and all of the
approaches to get labels can be easily modified to work, giving us a distribution with (logn)-wise
independent random variables uniformily distributed over GF(d). Since d is small (we only require
polynomial in n), we can try each possible value for the next element of w in parallel and pick the
one with the best conditional expected benefit G. To evaluate the conditional expectations, we can
still use the linear algebra method of Section 3.1 to find the probability a collection of d random
variables take on some particular value. And we can do this for each possible value, since d? is
polynomial in n. Thus we can still efficiently zero in on a good sample point.

To find a good coloring for any d up to log ||, we musy use a more complicated approach, one
which is similar to the one used by Luby for A + 1 vertex coloring [L2]. In essense, we repeatedly
use the 0/1 problem as a subroutine to set one bit of the random variables at a time. We have
multivalued random variables Y = Y1,...,Y|y| where Y; = Y1 Yi - - -Y;;. We will compute the Yi’s

bit by bit. At step t, we will compute X (*) such that
EGY)|Yy = XV for 1<5<t) > E[GYV)Y;; = X for 1<j<t ~ 1).

If we let ‘
FOXWY = E[GY)|Y;; = XY for 1<j <],

then the above is equivalent to finding an X (9 with FOX M) > E[F®(X®)]. Letting
FO(x0) = Elg (Y)Y = X1 for 1<5<1]

allows us to write F()(X () as a sum of |€| functions, each depending on at most d < Ig |€| random

variables Xi(t). Assuming that, given XV ..., X(*=1) we can construct functions fe(') (we will show
how to do this in the next section) we can find a good X (*) using the general framework of Section
3.1.

A simple inductive argument shows that for all ¢,

E[G(Y)Yy = X for 1<j<t) > E[G(Y)).

It follows that letting Y be such that Y;; = X,v(j) for all 7 and j implies that G(Y) > E[G(Y)].

4.3 The Deterministic Algorithm

To apply the last multivalued approach described in the previous section, we must show how to
construct, for any t and for any settings of the first ¢t — 1 bits X(1) ... X (=1 functions

SN = Elgo(y 1Y, = X for 1< <),
To do this, we will show he.w to compute

Elge(Y) Vi = X for 1< <t);

it then suffices to plug in the given XU .../ XU=1 and every possible setting of the variables
{X,.m]i € ¢} to construct f{').

Given edge e and the first ¢ bite of cach label, fe() will be the probability that the edge is
properly colored. To calculate fem, we sort the vertices of edge e into groups having the same ¢-bit
prefix. For each t bit string a, we let S, be the set of vertices which have prefix a and let /, be the
set of 2/~* values which have prefix a. We let T, be {1+ T g0 [Sal,- . -» Lg<a [Ssl}. Observe that
edge e will be properly colored if and only if for each « the vertices in S, are assigned the colors
in T,.

Now we can calculate jew as follows:

fOx®y = H Pr[vertices in S, are assigned colors in T}]
lal=7+1
= H |Sal! H Pr{vertex in S, gets color 7]
Ial=j+l 1€7a
= H |Sa |'H[§1-TI1I
lal=3+1 €T,

Theorem 4.1 The large d-partite subhypergraph problem, finding a coloring of V which properly
colors at least [|£|d!/de edges, s in NC. In fact, a more careful analysis shows that finding a

coloring of V' which properly colors at least |£|d!/d* edges is possible in NC.

5 Remarks

There are many other problems for which discrepancy can be used to obtain a solution. It is
interesting to observe that, although high independence is required for discrepancy (Remark 2.7), for
other problems (e.g. set cover type problems) where it might appear one needs it [MNN2], pairwise
independence suffices [BRS]. This makes a real difference, because with lower independence, it is
possible to use far fewer processors, and even approach an optimal processor-time product.

As a final note, the discrepancy algorithm of Section 2 can be improved to yield a 2v/ATogn
bound in the special case A = log®n. The improved algorithm, besides achieving a better discrep-
ancy bound, is a nice example of how to apply the techniques of this paper. The basic approach
is as follows. For each A € A, we let g4(X) be 0 if [x(A4)] < 2/ATogn, and 1 otherwise. Let
G(X) =Y ae494(X),i.e. G(X) is the number of unbalanced edges. We want to find an X such
that G(X) < E[G(X)] < 1. To do this we first partition T into a poly-log number of subsets
['y,..., T, such that the intersection of any I'; with any A € A is O(loglogn) (this can be done
using O(loglog n)-wise independence combined with some techniques from [BRS]). Then for each
j in sequence, we can construct a function FU)(XU)), where X () are the random variables corre-
sponding to T';, which is the expected value of G(X) conditioned upon the values of X1, ... X (-1
set already and the given X(9), Each F() will be a sum of functions depending on O(loglogn)
variables each, so we can apply our general framework to find a good X(9). A simple inductive
argument shows that when we are done, we have a good X. The number of processors required for
this algorithm is n1og®™) n.

6 Acknowledgements

We thank Tom Leighton and David Shmoys for helpful discussions. We also thank David Shmoys
for suggesting the parallel edge coloring problem, and Joel Spencer for suggesting the parallel set
discrepancy problem.

13

References

[ABI]

[AIS]

B]

[BRS]

[BS]

[CGHFRS]

[CH]

(GK]

[KKL]

(K]
[KS]

(KW]

(K1)
[LPV]

(L1]

[MS]

[MNN]

[MNNZ]

(N]
[Rab]

Alon, N., L. Babai, A. Itai, “A Fast and Simple Randomized Parallel Algorithm for the Maximal
Independent Set Problem”, Journal of Algorithms, 7, pp. 567-583, 1986.

Awerbuch, B., A. Israeli, and Y. Shiloach, Finding Euler Circuits in Logarithmic Parallel Time,
Proc. 16th Ann. ACM Symp. on Theory of Computing, 1984, pp. 249-257.

Berger, B., “Data Structures for Removing Randomness”, MIT Lab. for Computer Science
Technical Report, MIT/LCS/TR-436, Dec. 13, 1988.

Berger, B., J. Rompel, P. Shor, “Efficient NC Algorithms for Set Cover with Applications to
Learning and Geometry”, submitted to FOCS 1989.

Berger, B., P. Shor, personal communication.

Chor, B., O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolenski, The Bit Eztraction
Problem or i-Resilient Functions, Proc. 26th IEEE Symposium on Foundations of Computer
Science, 1985, pp. 396-407.

Cole, R., J. Hopcroft, “On Edge Coloring Bipartite Graphs”, SIAM J. Comput., vol. 11, 1982,
pp. 540-546.

Gabow, H.N., O. Kariv, “Algorithms for Edge Coloring Bipartite Graphs and Multigraphs”,
SIAM J. Comput., vol. 11, 1982, pp. 117-129.

Kahn, J., G. Kalai, N. Linial, The Influence of Variables on Boolean Functions, Proc. 29th
IEEE Symposium on Foundations of Computer Science, 1988, pp. 68-80.

Karloff, H., personal communication.

Karloff, H.J., D.B. Shmoys, “Efficient Parallel Algorithms for Edge Coloring Problems”, Journal
of Algorithms, 8, pp. 39-52, 1987.

Karp, R.-M., A. Wigderson, “A Fast Parallel Algorithm for the Maximal Independent Set Prob-
lem”, JACM, vol. 32, no. 4, October 1985, pp. 762-773.

Kleitman, D., personal communication.

Lev, G.F., N. Pippenger, and L.G. Valiant, “A Fast Parallel Algorithm for Routing in Permu-
tation Networks”, IEEE Trans. Comput., vol. 30, 1981, pp. 93-100.

Luby, M., “A Simple Parallel Algorithm for the Maximal Independent Set Problem”, SIAM J.
Comput., vol. 15, no. 4, November 1986, pp. 1036-1053.

Luby, M., Removing Randomness in Parallel Computation Without a Processor Penally, Proc.
29th IEEE Symposium on Foundations of Computer Science, 1988, pp. 162-173.

MacWilliams, F.J., Sloane, NJ.A., The Theory of Error Correcting Codes, North-Holland,
Amsterdam, 1977.

Motwani, R., J. Naor, M. Naor, “A Generalized Technique for Derandomizing Parallel Algo-
rithms ”, draft, Jan. 17, 1989.

Motwani, R., J. Naor, M. Naor, personal communication.
Naor, J., personal communication.
Rabin, M.O., “Efficient Dispersal of Information for Security Load Balancing and Fault Toler-

ance”, JACM, to appear.

14

[Rag] Raghavan, P., “Prababilistic Construction of Deterministic Algorithms: Approximating Pack-
ing Integer Progranis”, JCSS, vol. 37, no. 4, O-tober 1988, pp. 130-143.

[S] Spencer, J., Ten Lcctures on the Probabilistic Method, SIAM, Philadelphia, 1987.

[V] Vizing, V.G., “On an Estimate of the Chromatic Class of a P-graph”, (in Russian), Diskrel.

Anal., vol. 3, 1964, pp. 25-30.

15

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street

Arlington, VA 22217

Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities

1800 G, Street, N.W.

Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department

Naval Weapons Center

China Lake, CA 93555

