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Program
Synthesis

) Up to now in this book, we have defined a function by introducing a set of
axioms. Typically these axioms are computationally suggestiva, that is, they have
suggested a method for computing the function. But it is not always obvious that
the axioms define the function we intend. From these atioms, we have established
properties of the function they define. which gives us some assurance that that
function is indeed the correct one.

o . 7
For example, we may define the greatest-common-divisar function ged(sy, 1) c ‘

by the axiom (see Section ({}-u.11) 3”2“-""" : (’Z'ﬁ )

i

s « S ’ - Ll aa Soarle )
e fcfij/,ww) v‘L Nas®,

if 2a=0 "~
(Y integer 2y, x3) |ged(zy, 23) = {Uml ) } f :

else ged(zq, rem(zy, 23})

‘This axiom is computationally suggestive, but it ia by no means obvious that the
function it defines is in fact the greataat common divisor.

~

From this axiom, howuver, we can prove the greatest-common-divisor props
erly

et et — 7



4 CHAPTER 14: PROGRAM SYNTHESIS

ged(z1, £2) 24w 1 and  ged(zy,22) Zdiv 22

(¥ integer 21, 23) if y=<giv 21 ond y <giv 32]

int
(¥ integer y) [ihen Y Zdiv ged(z1, 22)

{ well-founded induction must apply to tuples of different sorts as in §14.7 m-
tuples of sort i-obs })

In short, ged(z;, z3) i8 the “greatest” nonnegative integer that divides both z,
and z;, where “greatest” means greatest with respect to the divides relation < 4,v.
This property does not suggest a computational method, but it does describe the
behavior we expect from the greatest-common-divisor function.

Although both of these are sentences in the theory of the nonnegative in-
tegers, we regard the former as a program, because it describes a method of
computation, and the latter as a specification, because it describes the intended
behavior of the program. Up to now, we have defined our functions by programs
and then proved that they satisfy certain specifications.

In this chapter, we would like to reverse this procedure. We now suppose
that we are given only a specification and try to derive a program that satisfies
the specification. Thus we might be given the greatesi-common-divisor property
as a specification and attempt to derive the computationally suggestive axiom as
a program.

As another example {{ out? )}, to specify the guotient-remainder program in

the theory of the nonnegative integers, we might be given the quotient-remainder
property

: 1=+ 22
if not (29 =0) then and
22 < 22

Here z; is the quotient and z; the remainder of dividing z; by z2. The sentence
specifies the behavior of the program only for the case in which the divisor z; is
not zero; otherwise we do not care what the program returns.

From this specification we may hope to derive a program such as ({ less space
around minus )

if 21 <2
quot(zy, z2) = { then 0
else quot(z, — z3, z2) + 1
and
if 23 <z
rem(zy, 22) = {then 1,

else rem(z) — z2, £2).
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14.1 SPECIFICATIONS AND PROGRAMS

{{ mention program transformation here?? }

So far, we have used the deductive tableau system only to establish the
validity of sentences. In this chapter we extend it to derive programs from speci-
fications as well.

14.1 SPECIFICATIONS AND PROGRAMS

In this section we are a little more precise about the specifications we accept, the
programs we derive, and the relationship between them.

In a theory, we suppose that we are given a specification sentence

Q(z; 7
T is an abbreviation for zy,2;, ..., Zm, the input variables and ¥ is an abbrevi-
ation for ¥1,y2, ..., ¥n, the oniput variables. (We use the semicolon informally,

instead of a comma, to separate the input and output variables.) It is assumed
that there are no free variables in Q other than ¥ and z.

For example, the specification for the guotient-remainder program is the
sentence
integer(z;)
and

21 2div 1 ond 21 <giv T
Q[Il. z9; 11]5 div iv £2

and
if y=<aivzy and y<gqip 32]

Y int

( integer y) then y <4iv 21

We are also given inpul sorts obj (), that is,
obj {z1), objza), .., 0bjm(zm)l

where each obj; is a unary predicate symbol, which characterizes a class of ele-
ments in the theory. We would like to define functions f(%), that is, fi(%), f2(%), -
and f,(%). Each function f; is intended to be applied-to tnpsts T = 21, 232, ..., Zm,
where each input z; is an element of the class odj;. We assume that the function
symbols J are “new,” in the sense that they do not occur so far in the vocabulary
of the theory. For example, for the quotient-remainder program, obj, and obj,
are both ‘inieger, and f, is ged.

Avuilabllity Codoa*
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6 CHAPTER 14: PROGRAM SYNTHESIS

We define the functions f by constructing a program P[] : f(Z) = ¥[Z], that
i8, a sentence ’

fl(i) = 11[.5] and

f2(Z) = 43]F) and
Plz):

fo(Z) = tafZ),
where each ¢;{Z] is a term containing no variables other than Z.

For example, the greatest-common-divisor program we shall define is

lf Z;:O

Plzy,za):  ged(zy, 23) = {them z
. else ged(z,, rem(zy, z3)).

The program must satisfy the specification, in the sense that the correctness
condition

i (v ol HPE
then (¥ obj D)Q[F; F(2)]

must be valid in the theory. Here (¥ 0dj ) ia an abbreviation for
¥ objy 2 0¥ objy 22) - - (¥ obfy Zm).

For example, the grestest-common divisor program satisfies the specification
in the sense that the correctness condition

if (V integer 2y, 29)Pl2y, 2]
" then (V.integer 1, 22)Q{z1, 23; ged(zy, €3]

is valid in the theor& of the nonnegative integers.

In any theory, there are some symbols that are in the basic vocabulary,
that have. been defined by axioms that suggest some method of computation,
or that define functiona for which programs have already been derived. These
“primitive” symbols may be used freely in a program sentence. In the theory of
the nonnegative integers, for example, the constant symbol 0 and the successor
function symbol 2 4 1 are in the basic vocabulary. The multiplication function
symbol z - y and the less-than' predicate symbol z < y have been defined by
computationally suggestive axioms. Therefore, 0, z +1, z -y and z < y are
primitive symbols we can use in the greatest-common-divisor program.

o v -




14.1 SPECIFICATIONS AND PROGRAMS 7

On the other hand, there are symbols that denote entities we do not know
how to compute, such as quantifiers and skolem function symbols. These “non-
primitive” symbols may occur in specifications and in the axioms for a theory but
not in any program. -

In short, to ensure that the programs f(Z) = [Z] we derive are actually com-
putationally suggestive, we shall require that only primitive constant, function,
and predicate symbols, including the function symbols f themselves, may occur
in the terms #[z]. We shall define primitivity more precisely later.

Remark (single input or output)

In the case in which the program has only one input or only one output, we
shall drop the subscript and write z or z instead of z; or z;. Thus, in the above
example we may write Q[z1, z2; z] instead of Qfz,, 23; 21]. 3

Example (quotient-remainder) {{ out? )

In the theory of the nonnegative integers, we may specify the guolient-
remainder program by the sentence

integer(z;) ond integer(zz)
and
Qlzy, z2; 71, 22 : if not (z2=0) then [z =29 -2+ 2
. . and
722 < 22

where the input sorts obj, and obj, are both integer. Here 2, is the quotient and
23 is the remainder of dividing z; by z;. The sentence specifies the behaviof of
the program only for the case in which the divisor 23 is not zero; otherwise we
do not care what the program returns.. {( out?? )

Using the extended deductive-tableau system, we shall be able to derive the
program

if 21 <z
quot(zy, z2) = { then 0
else quot(z) — 22, z2) + 1
Plzy, 23} : and
. if 2y 14
rem(zy, z2) = {Men N
| else rem(zy — 29, £3)

{ less space around minus?? }
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The correctness condition in this case is the sentence

if (¥ integer z1, z3)Plz,, zJ]
then (¥ integer z,, z,)Q[zl, z3; quot(zy, z2), rem(zy, 22)] R

which can be shown to be valid in the theory of the nonnegative integers. Thus the
program does satisfy the specification. It also contains only primitive symbols. 4

Example (redhead)

This example suggests that deriving programs may have applications to
“database retrieval.” We outline a new family theory. In the intended inter-
pretation for this theory,

person (z) is the person relation (“z is a person”)
par (z, y) is the parent relation {“z is a parent of y”)
red (z) is the redheadedness relation (“z is redheaded”).

One of the axioms for the theory is

(V person u, v) [

if par(u,v) ]
then not par (v;u) i

that is, the parent relation is asymmetric.

We are given the specification sentence

if par(zy, £2) and par(za, z3) and
red(zy) end not red(z3)
Az, 23, z3; 21, 23] : then person (z1) and person(z;) and
par (21, z2) and
red(z1) and not red(zs),

where the input sorts obj,, obj,, and obj are all person. In other words, if z; is
a grandparent of z3, and z, is redheaded but z3 ia not, then we are to find people
71 and z3 such that z) is a parent of z; and z; is redheaded but z4 is not. We
regard all three predicate symbols as primitive.

The redhead program we are to derive from this specification is
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if red(zsz)
rh(z,, 23, z3) = { then z,
° else z,
Plzy, z3, 23} : and
if red(zz)
nrh (z,, 22, z3) = { then z3
else z

This program can be shown to satisfy the specification, in the sense that
if (¥ person z,, 22, z3)P11, 23, 23]
then (V person zy, z3, zs).Q[zl, z3, z3; th(21,22,23), nrh(z1, 22, za)]

is valid in the theory. a

The derivation of this program will be given later in the chapter.

PROGRAM TRANSFORMATION

Up to now, we have been considering specifications that describe a relation be-
tween the inputs and outputs but do not suggest any method of computation.
Sometimes, however, we know a method for computing the function and want to
find another, perhaps more efficient one. This is known as program transforma-
tion. The same extended deductive-tableau system we use for ordinary program
derivation will also be used for program transformation.

Example (flattree)

In a combined theory of trees and strings (Section [1)8.4), we introduced a
function flattree(z) to form a string from the atoms of a given tree z. The function
was defined by the following pair of computationally suggestive axioms

(V atom u)[flattree(u) = u (atom)

(V tree u, v)[flattree(ue v) = flattree(u) s flatiree( )] (construction) -
—

Suppose we would like to discover a different methodfor computing the same func-
tion. Then we may attempt to derive a program flattree1(z), whose specification
is simply

Q1z;2]: z = flattree(z),.
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Our input sort is iree.

We shall be able to derive many different programs to meet the above specifi-
cation, all of them computing the same flattree function. Some of these programs
will use the computational method suggested by the flatiree axioms; others will
use different, perhaps more efficient, methods.

The derivation of the flattreel program is facilitated if we first derive a pro-
gram flattree2(z1,z2) to form a string from the atoms of a given tree z; and
concatenate that string and a given string z,. The specification sentence for
flatiree2 is

Qafzy, 22;2]: 2z = flatiree (z1) * 23,
Our input sorts obj, and obj, are tree and string respectively.
From this specification, we can construct a program sentence such as

if atom(zy)
th .
Pz, 2} fattreed(e1, 23) = { oo fattreed(left(21),

flattree2(right (z,), 22))
This program satisfies the specification, in the sense that the correctness condition
{ out )

(V tree 81)

V string t,)[Plzh”?]'f “tom(xl)]

if (
then (¥ tree z‘)[ﬂaﬂnﬂ(z z3) = flatiree (z1) ¢ z ]
(¥ string z3) b v
is valid. -

Once we have derived the program for flatiree2, we may use it in deriving a
program for flattreel. The program we obtain is

P1: flattreel(z) = flatiree2(z, A).

The computational method described by the flattreel and flatiree2 programs
turns out to be more efficient than that suggested by the original axioms for
flattree.

_This derivation will be presented in full detail later in the chapter. P

THE APPROACH

Suppoee that we are given a specification
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Q[ 7]

with input sorts 0b;, and would like to derive a program
f(7) =12

that satisfies this speciﬁt;,ation. We shall extend the deductive-tableau system so
that the program can be obtained as a byproduct of proving the sentence

() (¥ ol )3 7)Q[F 7).

In other words, we prove the existence of output objects ¥ satisfying the given
specification for given input objects Z. The proof must indicate a method for
finding the desired output objects, and this method provides the computational
basis for the program f(Z) = {[Z] that computes the output objects.

We shall now discuss how the deductive-tableau system can be extended so
that programs can be extracted from proofs.

14.2 OUTPUT ENTRIES

Up to now, a deductive tableau has had two columns, one for assertions and one
for goals. To derive a program, we now extend our tableaux by introducing a
number of orlput columns.

I we are given a specification
Qzy, ..., Zm; 21, ...y 2]

with n output variables, we introduce n new output columns. The jth output
column is used in the derivation of the jth conjunct

fi(®) =17

of the desired program. -It is labelled f;(@), where @ = 81,03, ... ,am are new
constants called the input constanis. For any row, whether it contains an assertion
or a goal, the output columns may all be blank or may each contain a term of the
theory, called\an output entry. The output entries will be used to derive programs
from specifications. -

We shall call a tableau with output columna an ertended tabdleas, in contrast
to a tableau with only assertion and goal columns, which we shall henceforth call
a basic tableas.
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Example (extended tableau)

The following is an extended tableau from the derivation of a quotient-
remainder program:

assertions goals quot(ay, az) rem(a,,a2)
nol (a3 = D)
integer(z,) and
integer(2z)
and 7 z2
e = 61-21+22
s
23< a3
u-0=0
ay < 83 0 ay
e) < a3 guot{a) — az,a2) + 1 rem(a; — az,ay)
— Tableau T}, —

Here the assertions mot(az = 0) and u -0 = 0 have no output entries; the other
rows all do. a2

SUITING A ROW

We have given the meaning of the assertions and goals of a basic tableau hy
defining its truth (under an interpretation) and validity (in a theory). The same
definitions apply to extended tableaux, ignoring the output entries. To give the
meaning of the output emtries themselves, we define what it means for terms
to suit ¢ tablean (under an interpretation) and setisfy a tableaw (in a theory).
Loosely speaking, the terms that suit a tableau will denote acceptable outputs
for the desired program. We first define what it means for terms to suit a single
row of a tableau. The terms that suit the row will be acceptable outputs when
that row’s assertion is falee [or that row’s goal is true].

In the definition that follows, we consider a row of a tableau with an assertion
A [or goal §) snd output entries 7= sy, ..., sy, that is,
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assertions goals

~

—
&

-

A

|

L L L=
We consider any substitution ) such that the instances £ « A [or § <] and
F) are closed, that is, they contain no free variables. According to the definition,

the terms 5« ) sust the row under an interpretation I if £ <) is false for G« is
true] under J. But let us be more precise.

or

Definition (terms suit row)

Consider a row of a tableau containing an assertion £ [or goal §]. Let
T=1t,ts, ...,t, be closed terms and J be an interpretation. We shall
say that the terms f suil the row under I if, for some substitution A, the
following conditions hold:

o Truth condition. The sentence A <) is closed and false under
I [or the sentence § <) is closed and true under I].

o QOutput condition. If the row has output entries § = 51,83, ..., 8y,
the instances

RPN DWIE D N A
are cloved and have the same values, respectively, asf = t;,13, ... ,1n
under J.

We shall call such a substitution A a suiting substitution. 3

Remark (rows with no output entries)

The output condition holds vacuously in the case in which the row has no
output entries. In other words, any closed terms t will suit such a row, previded.
there is some \subst.itution A for which A <) is false [or G <) is true] and closed
under I.

When it is convenient, such a row may actually be treated as a row with
output entries

W =uyug, ..., Un,
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where the u; are distinct variables that do not occur free elsewhere in the row. For
if the closed terms f suit a row with output entries %, then 1 suit the corresponding
row with no output entries at all, with the same suiting substitution, because the
ostput condition holds vacuously. And if f suit a row that has no output entries,
with suiting substitution ), then 1 suit the corresponding row with output entries
W, with suiting substitution

{ur—t,ug—ta, ..., us —t, 30O
Here O is the composition function for substitutions.

By the same token, we may find it convenient to treat a row whose output
entries U are all distinct variables that do not occur free elsewhere in the row as

a row without output entries at all. a

Let us now illustrate the new definition.

Example (suiting a row)

The following {{ ?? above? )) extended tableau T is obtained from a deriva-
tion of the redhead program described in an earlier example.

Let I, be any model for the theory under which
red(as) is true,

that is, a; is a redheaded person, and under which assertion 1 is true, that is,

" par(ay, a3), par (az,a3), red(ay), and not red(a3) are all true. In other words, a,

is a parent of a3, a; is a parent of ay, and a; is redheaded but a3 is not.
Under this interpretation, the two closed erms
t: ay a3

suit row 5,

5. red(a;) ag a3

which has no free variables. To show this, we may take the suiting substitution
A to be the empty substitution { }. The truth condition holds under I,, because
the instance of the goal, G <), is

. red(as),

which is true under J,. (In this discussion, we shall use A or § to stand for the
assertion or goal of the row under discussion.) The owtput condition also holds,
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assertions goals rh (ay, az2) nrh (a1, a2)
. 1. par(a;,a3) and . '
par(ay,a3) and
red(a,) and
not red(as)
2. par(z1,z2) and B
red(z1) and z - 22
not red(zz)
3. if par(u,v)
then not par (v,u)
4. not red(az) aj a;
5. red(ag) p2 a3
if red(az) if red(ay)
6. true then ay then a3
else ay else a2
— Tableau T; —

because the corresponding instances of the output entries, a; <« and a3 <), are
precisely the same as the closed terms f:a, a3.

Under the same interpretation, the same closed terms f: a3, ag also suit row
2, .

2. par(z1,22) and

red(z1) and not red(z;) o 2

which does have free variables. To show this, we take the suiting substitution A
to be

{21« a3, 22 - as}.
The truth condition holds under I,, because the instance of the goal, <X, is

p&r(a,, a3) and
red(az) and ‘not red(as),

which is true under I,. The outp¥t condition holds, because the corresponding
instances of the output entries, z; <) and z; <), are precisely the same as the
closed terms : a3, as.
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The same closed terms {: a3, a3 also suit row 6,

if red(aj) if red(az)
6. true then a; then as
else a; else a3

under J,. To show this, we take the suiting substitution to be the empty substitu-
tion { }. The truth condition of course holds, because any instance of the goal true
is true under I,. The output condition also holds; although the corresponding
instances of the output entries,

if red(az) if red(az)
then a3 and then a3
else a, else aj,

are not identical to #: az, a3, they have the same values under I, because red(a;)
is true under J,.

By the same reasoning, the closed terms

if red(a3) if red(as)
I: them a; and then as
- else a; else a,,

also suit row 6 under I,, for these terms are identical to the output entries for
this row. In fact, these terms also suit rows 2 and 5 under I,.

{{ remaining examples out?? )
Let I, be any model for the theory under which
" red(ay) is false,

that is, a; is not a redheaded person, and under which, as in I,, assertion 1 is
true, that is, par (a,, a2), per (a3, a3), red(a,), and not red(as) are all true. Under
this interpretation, the two closed terms

i: ay, a2

suit rows 4 and 2

4. not red(ay) 8y az

2. par(z, z3) and

red(z1) and not red(z;) z‘ 2

To show this { out?? )), we take the Isuiting substitution ) to be { } and

{21 —ay, 22 — a3},
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respectively. The same terms i:a;,a; can be shown to suit row 6

if red(aq) if red(az)
6. ftrue N then a2 thern a3
else a; else ay

under I.

We can also show that the terms

_if red(ar) if red(a;)
t: then a3 and then a3
else a) else ag,

suit rows 2, 4, and 6 under I,. In fact, these terms have the same value as a;
and az under I,,, because red(a;) is false.

Let Ip be any model for the theory under which assertion 1’,‘

1. par(ay, a3) and par (a2, a3} and
red(ay) and not red(aa)

is false. Then any closed terms 7 suit this row under Jo. To show this, we take
the suiting substitution to be { }. The truth condition holds under Iy, because
the instance of the assertion, A <), is A iteelf, which is closed and false under J;.
The output condition holds vacuously, because this row has no output entries.

Suppose I is any interpretation under which some instance

[if par (u,v) ] Y

then not par(v,u]

of the asymmetry axiom in row 3,

3. if par(u,v)
then not par (v, u)

for the paren{ relation is false. (Consequently I is not a model for the theory.)
Then any closed terms Z suit row 3, under I. Takipg the suiting substitution to
be ) itself, we see that the truth condition holds, because A <) has been assumed
to be false under J. The output condition holds vacuously, because the row has
no output entries. ({ explain purpose of examples? }) 2 )
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Remark (true assertions)

Suppose [ is any interpretation under which no closed instance £ <) of the
assertion A is false [or no closed instance of the goal § is true]. Then no closed
terms I suit the assertion A for the goal §] under I because the truth condition
cannot hold. In particular, if A is valid in a theory, no closed terms £ can suit the
assertion A under a model for the theory. a

SUITING A TABLEAU

We can now say what it means for terms to suit an entire tableau, rather than a
single row, under an interpretation: ’

Definition (terms suit tableau)

Let T be a tablean, ¥ = #,,23, ...,t, be closed terms, and I be an
interpretation. We shall say that the terms ¢ suit the tableay T under
-1 if f suit some row of T under J. 2

Example (suiting a tablean) {( Marianne: too many examples )

Let us refer back to the tableau T3 of the preceding example, from the deriva-
tion of the redkesd program.

We have seen that the closed terms
t: a3, a3

suit the rows 2, 5, and 6 under the interpretation I, in which a3 is redheaded.
Therefore, these terms suit the entire tableau under ..

Also, the terms
‘1 ay, a3 ‘

suit the rows 2, 4, and 6 under the interpretation I, in which aj is not redheaded.
Therefore, these terms suit the entire tableau under I,.

It can be shown that a; and ag do not suit the tableau under I,, that is,
they do not suit any row under this interpretation. Similarly, a; and a2 do not
suit the tableau under I,.
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We have also seen that the terms

_of red(ap) if red(a3)
t: then a3 and then ag
else ay - else ag

suit the rows 2, 5, and 6 under the interpretation I,. Therefore, these terms suit

" the entire tableau under I,. These same terms suit the rows 2, 4, and 6 under

I,; therefore, they suit the entire tableau under J,. a

SATISFYING A TABLEAU

Finally, we can say what it means for terms to satisfy a tableau for a given theory.
By discovering closed terms that satisfy the appropriate tableau, we shall be able
to construct a program that satisfies a given specification.

Definition (terms satisfy tableau) -

Let T be a tableau, and T = ¢;,¢t3, . ..,t, be closed terms.
In a given theory, the terms ¢ satisfy the tableaw T if { suit T under

every model for the theory. 3

Example (satisfying a tableau)

Consider once more the tableau T; from the derivation of the redhesd pro—
gram. We claim that, in the family theory described earlier, the terms

_ if red(a;) if red(ay)
t: then a; and then as
else a; else ag

satisfy this tableau. For consider any model I for the theory, we show that smt
the tableau under J. We distinguish among three cases.

o If
red(a)
and

per(ay, a3) and par(az, as) and
red(a;) and not red(as)
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are both true under I, we have seen that the terms f suit the rows 2, 5,
and 6. Since they suit a least one row, they suit the entire tableau.

o If

not red(a;)

and

per (ay, az) and par(as, a3) and
red(a;) and not red(as)

are true under I, we have seen that the terms  suit the rows 2, 4, and
6, and hence the entire tableau.

o Finally, if

par (ay, a2) and par(as, a3) and
red(a;) and not red(ag)

is false under I, we have seen that any terms will suit row 1, and hence
the entire tableau.

These three cases exhaust all possibilities. Therefore, { suit the tableau under
I, as we wanted to show. 2

14.3 PROPERTIES OF EXTENDED TABLEAUX

The properties we have established for basic deductive tableaux carry over to ex-
tended tableaux. In particular, the duality, instantiation, and renaming properties
of basic tableaux all bave their counterparts for tableaux with output entries. We
begin by adapting the notion of equivalence to extended tableaux.

« Definition (equivalence)

In a theory, two tableaux T and T’ are equivalent if, for any mode} I
for the theory,

T is true under J
precisely when
T’ is true under

e

3')‘
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and, for any closed terms f,

t suit T under J
precisely when
t suit 7' under J. ;

Sometimes the notion of equivalence is too strong. We introduee a weaker
notion, that of two tableaux having the “same meaning.” -

Definition (same meaning) { out? ) {( later? )) { example? }
In a theory, two tableaux T and T’ have the same meaning if

T is valid in the theory
precisely when
T’ is valid in the theory

and, for any closed terms ?,

t satisfy T in the theory
precisely when
t satisfy T/ in the theory. 9

It is clear that if two tableaux are equivalent, they have the same meaaing.

We can now state the three propert.iesj as they are adapted for extended
tableaux. _

DUALITY

The duality property states that we can move sentences freely between the asser-
tion and goal columns simply by negating then, obtaining an equivalent tableau.

Property (duality)

In a theory, _
o A tableau containing an assertion A with output entries 3 [or
none) . -
is equivalent to
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the tableau containing instead the goal (not A) with the same
output entries 7 [or none].
o A tableau containing a goal § with output entries 3 [or none}
is equivalent to

the tableau containing instead the assertion (not-§) with the
same output entries # [or none]. 4

The justification is straightforward, but we present it to give the definitions
some exercise.

Justification (duality)

We show only the first part. Let J be any model for the theory in question.
Let T be the tableau with the assertion £ and output entries 3 [if any], and T’
be the tableau with the goal (not A) and output entries 7 {if any] instead. By the
duakity property for basic tableaux, we know that T is true under I if and only
if T’/ is true under I.

Suppose that the closed terms f suit T under I; then they suit some row of
T under I. If that row is not that of the assertion A, then the row also occurs in
T, 80 the terms f also suit T* under I.

In the case in which 7 suit the assertion £ itself under I, we know that there
is a suiting substitution A such that the truth condition holds, that is,

A« is closed and false under I,
and the owtput condition holds, that is,

Ah the instances 7« A of the output entries [if any]
are closed and have the same values, respectively, as ¢ under J.

From the {trutk condition, we have
® . (not A)<X'is closed and true under .

Henf.e (by (1) and (1)) the terms 1 suit the goal (not A) in the tableau 7', with
suiting substitution A, and therefore suit the tableau T itself.

Similarly, we can show that, if closed terms 7 suit T’ under I, they also suit
T under J. Hence T and T’ are equivalent. 2
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RENAMING

The renaming property states that we may systematically rename the free vari-
ables of any row, obtaining an equivalent tableau. Recall that a permutation
substitution is one that always replaces distinct variables with distinct variables
{{ Section 6.877 )). Permutation substitutions have inverses; in fact, x is a per-
mutation substitution if and only if there is a permutation substitution #~! such
that .

»Ox1={}. -

Property (renaming)
In a theory, for any permutation substitution =,

a tableau containing an assertion [or goal] ¥ with output entries
3 {or none]

is equivalent to

the tableau containing instead the assertion [or goal] ¥ «x with
the output entries 5« [or none]. 2

Justification (renaming)

Let I be any model for the theory in question, and let x be any permutation
substitution. We consider only the assertion case. Let T be the tableau with
the assertion 7 and cutput entries ¥ for none], and T’ be the tableav with the
asgertion ¥ «x and output entries 7 «x [or none] instead. By the renaming prop-
erty for basic tableaux, we know that T is true under J if and only if T’ is true
under J.

Suppose the closed terms 7 suit T under . Then they suit some row of T
under J. If that row is not the assertion ¥, then the row also occurs in T, so
the terms f also suit T* under J. N

Suppose the terms 7 suit the assertion ¥ under J. Then for some suiting
substitution A, we have the truth condition, . -

7 <) is closed and false under J,
and the oufput condition,

the instances 3 of the output entries [if any] are closed
and have the same values, respectively, as ¥ under J.
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Suppose x~! is the inverse of . Then x J#~! = { } {{ out?? )} {( mentioned
earlier? }), and we have (by properties of substitutions)

Farx = (Fe{))<r = (Fe(xOs1) <A

((F <x)<271) <>
(F<m)<(x-1ON)

and, if there are output entries 3,

7ad = (14{)) A = GO <A

(m)<x=1) 2

GFem)«(x"10A).

Consequently (by the truth and output conditions),
(¥ <x)<(x~1 ) is closed and false under J
and

(F<x) «(x~1 [JX) are closed and have the same values, respectively,
as # under I.

In other words, the terms { suit the assertion 7 <, with suiting substitution
»~1[J), and therefore suit the tableau itself.

Similarly, we can show that, if closed terms # suit 7/ under J, they also suit
T under I. {{ exercise?? ). Hence T and T’ are equivalcnt. a

INSTANTIATION

The instantiation property states that we may add to the tableau any instance
of any of its rows, obtaining an equivalent tableau.

Property (instantiation)
In a theory, for any substitution 8,

a'tableau containing an assertion [or goal] ¥ with output entries
7 [or none]

is equivalent to

- the tableau containing in addition the assertion [or goal] ¥ <4
with the output entries 7«8 [or none]. 3
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Note that, in the duality and rena.ning properties, we replaced one row with
another; in this instantistion property, we add a new row but do not remove the
original one. {{ The justification is left as an exercise? })

Justification (instantiation)

Let I be any model for the theory in question, and let # be any substitution.
We consider only the assertion case.

Let T be a tableau with the assertion ¥ and output entries 7 [or none], and
T’ be the tableau with the assertion 7 <4 and output entries <8 [or none] in
addition. By the tnstantiation property for basic tableaux, we know that 7 is
true under J if and only if T’ is true under J.

Suppose that the closed terms f guit T under J. Since every row in T is also
in T’, we know that 7 also suit T’ under J.

Suppose, on the other hand, that the closed terms  suit T’ under J. Then
they suit some row of T’ under I. If that row is not the assertion ¥ <4, then the
row also occurs in T, so the terms { also suit T under J.

Suppose the terms f suit the assertion ¥ <6 in T’ under I. Then, for some
suiting substitution A, we have the truth condition,

(F «8) <), thatis, F «(9J)), is closed and false under J,
and the output condition,

the terms (5«9) <) = F<(8[)) are closed and have the same values,
respectively, as 7 under J.

Hence the terms { suit the assertion ¥ in T, with suiting substitution § (] A, and
therefore suit the tableau T itself.

Hence T and T’ are equivalent. a

\
VALID ASSERTION -

The valid-assertion property states that we may add any valid assertion to a
tableau, obtaining an equivalent tableau.
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Property (valid assertion)
In any theory, for any valid sentence A,

a tableau T
is equivalent to
the tableau T’ obtained from T by adding the assertion A. 4

Justification (valid assertion)
{ easy? exercise )

Let I be any model for the theory in question. That T is true under J
precisely when T’ is true under I follows from properties of basic tableaux.

Suppose the closed terms { suit T under J. Since every row of T is also a
row of T’, we know that { also suit T’ under J.

Suppose, on the other hand, that the closed terms f suit T under I. Then
they suit some row of T’ under . That row cannot be the assertion A, because,
as mentioned in a previous remark, no terms can suit a valid assertion of the
theory; therefore 1 must suit one of the original rows of 7. That is, f suit T
under I. 2

OUTPUT ENTRY

The outpst entry property is the one we use to relate the output entries of tableaux
with the specifications of programs.

Property (output entry)
In any theory, if the closed terms i[4] satisfy a tableau

assertions goals 1@

R(3; %) z

where @ are new constants and ¥ are the only free variables in R([A; 3],
then the sentence

(VER[E: T[]
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is valid in the theory. 4
Let us illustrate the property.

Example (output entl;y propérty)

In the theory of trees, suppose we establish that the closed term a; o a3 suits
the tableau .

assertions goals tr(ay, az)

a1 = left(z) and a2 = right(z) z

Then, by the output entry property, we know that the sentence
(¥ z,, zz)[z, = left(zy o 23) and z; = right(z; « z;)]

is valid in the theory of trees. 2

Justification (output entry)

Suppose that the closed terms [a} satisfy the above tableau. To show that
(VZ)R[z; {[Z]] is valid (in the theory), it suffices (by the universal guantifier-
elimination proposition) to show that

R [a; 7[al]
is valid, since @ are new constants. Consider an arbitrary model J; we show that
(%) R{a; 7[d]] is true under 7.

Because Z[d] satisfy the above tableau, they suit the sole row of the tableau
under I. In other words, for some suiting substitution A, we have the truth
condition,

R[@; 7] < is closed and true under J,
and the output condition

'z'\<_X are closed and have the same values, respectively,
as {{d] under J.

Because 7 are all the free variables of R[@;z], this means that

R(&; 7 « ] is true under J,
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or, equivalently (by the output condition),
R|[a;t[a]] is true under I.

But this is the condition (*) we wanted to show. g

{ example

Now that we have established the properties of extended deductive tableaux,
we are ready to show how tableaux may be used for program derivation.

14.4 THE DERIVATION PROCESS

Let us review the problem of program derivation. We are given a specification

Qz: 7
iu a theory, with input sorts obj, and we would like to derive a program
f@ = i)

that satisfies this specification. [n other words, we want to find terms I[Z} such
that the correciness condition

if (v oy B[F@) = 1)
then (V oby T)Q[E; 7(5)]

is valid in the theory.

THE INITIAL TABLEAU

Our approach is to prove the theorem
(v o8y 7)(3 T)Q[E; 3)
and obtain the terins {[F] as a byproduct of the proof proc;*ss<
This sentence is an abbreviation (using the relative quantifier notation) for

- [ eli(®)
v [lhen 3n{elz ?]]]_
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We shall actually establish the skolemized form of this sentence,

e =1 0bi(@)
Q@ 7 then Qla;z],

where @ = ay, a3, . ..,am are “new” constants, i.e., constants that do not already

occur in the vocabulary of the theory.

At the same time, we shall derive the desired terms I[a] using the output
columns of the tableau. For this purpose, we establish the validity of a particular

“initial tableau.”

Definition (initial tableau)

For a given specification Q[Z; 3] in a theory, with input sorts 0bj, an
initial tableau is as follows:

assertions goals F@)

if obj(@)
then Q[a;7]

t

The skolem constants @ are called the input constants. Note that this
tableau has n output columns, one for each output variable T = 5, 2,

L in.

An initial tableau may also contain as assertions any valid senteuces of
the theory in question, without output entries. a4

The initial tableau has an important property. expressed in the following

result.

Proposition (initial tableau)

In any theory,

if the closed terms {[d) satisfy the initial tableau for a specification,
then the program f(F) = 1{F] satisfies the specification. 4
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Proof

Assume that, in a theory, the closed terms [a] satisfy the initial tableau
for the specification Q[F;Z], with input sorts obj. We show that the correctness

condition
if (V9% 2)[f(z) = (3]
then (v o8 2)Q[%, F(7)]
is valid in the theory.
Assume that (under a given model)
(*) (v obj 7)[f(z) = {z]]
is true. We show that then
(¥ obj 2)Q[7; f(7)]
is also true.
It suffices, by our assumption (*), to show that
(¥ obj 2)Q[z; 1(z]],
that is (expanding the relativized quantifier),
Vo) [:'{.e,‘:”’ﬁ;; i(z)]]

is true. By the outpul eniry property, to show that the above sentence is actually
valid, it suffices that the closed terms 1[a] satisfy the tableau

assertions goals F(@)
if obj(a)
then Q[a;3)

N

The valid-assertion property allows us to add any valid sentences of the theory to
this tableau as assertions, without changing the satisfying terms. In other words,
it suffices that the closed terms #[d) that satisfy the initial tableau, as we have

assumed. 4
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Example (flattreel)

In our example of program transformation (Section ?7), we specified the
program flattreel, which computes the flattree function, with the sentence

QYz; 2]: z-= flattree(z)
in a combined theory of trees and strings, where the input sort is tree.

The initial tableau is thus

assertions goals flattreel(a)

if tree(a)
then z = flatiree (a)

Properties of the combined theory of trees and strings may be included in the

initial tableau as assertions. 4

PRIMITIVE EXPRESSIONS

We have mentioned that some symbols are “primitive”; they denote objects, func-
tions, or relations we know how to compute. Other symbols, such as quantifiers
and some skolem functions, are “nonprimitive”; we do not know how to compute
what they denote. We shall assume that at the beginning of each derivation we
are given a list of primitive constant, function, and predicate symbols, called the
primitive list. Typically this list shall include the truth symbols true and false, the
propositional connectives, the term constructor if-then-else, the basic constant,
function, and predicate symbols of the theory, and any symbols that have been
defined by computationally suggestive axioms. In addition, we may include in the
primitive list any function symbols for which we have already derived programs.

We may now define a primitive ezpression as follows:

We define an expression e to be primitive in a given initial tableau, if each
symbol that becurs in e is a variable, an element of the primitive list, or one of
the input constants @. For example, for the flatiree2 derivation, the term

if atom (ay) then ay *ay else z

i8 primitive.
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INTERMEDIATE TABLEAUX

When we are establishing the validity of a basic tableau, we apply deduction
rules that add new rows but preserve validity, until we obtain the final assertion
false or the final goal tree. In deriving a program, we apply deduction rules to
an extended tableau. In addition to maintaining the validity of the tableau, the
extended rules will “maintain the satisfying terms” of the tableau. In other words,
a closed term will satisfy the new tableau if and only if it satisfies the old tableau.
When we obtain the final assertion false or the final goal true, its output entries
will provide the final program, as we shall see.

The tableaux we develop all have a property expressed as follows.

Proposition (intermediate tableau)

In a theory, at each stage in the derivation of a program from a specifi-
cation, the following property holds:

if the closed terms #[a] satisfy the tableau,
then the program f(z) = #[Z] satisfies the specification. 2

Proof

To establish that the desired property holds at each stage of the derivation,
we show that .-

4} the property holds for the initial tableau
and
(69 if the property holds for the tableau before application of a

deduction rule, it also holds afterwards

That (1) is true is exactly the content of the initial-tableau proposition, that
if the closed terms 1[a) satisfy the initial tableau (in the theory), then the program
J(%) = 1[z] satisfies the specification.

To show (}), we assume that

(*) the property holds for the tableau T before application of a deduction rule,

and show that then the property holds for the tableau T after application of the
rule. For this purpose, we supposee that

(»%) the closed terms [a] satisfy the tableau T’
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and show that then the program f(%) = I[%] satisfies the specification.

Because the deduction rules maintain satisfying terms, we know, by our sup-
position (*#), that t[a) also satisfy the tableau 7. But then, by our assumption
(), the program f(Z) = {[z] satisfies our specification, as we wanted to show. g

THE FINAL TABLEAU

In a later section, we shall adapt each of our rules to apply to extended tableaux,
in such a way that an extended justification condition will hold. The rules add
new rows to the tableau, but the set of satisfying terms is the same at each stage.
The deductive process continues until we obtain the final assertion

false » '[a)

or the final goal

irue 1'(a)

where we require that the terms T[E] be primitive. These terms are not necessarily

closed. Let #[a] be obtained from I [a] by replacing all the variables with primitive
constants, it does not matter which. At this point, we extract the firal program

7(®) = 2.

Remark

If the terms £[a] are not primitive, we must continue the derivation until
a final row goal true assertion false with primitive output entries is obtained.
In fact, even if the ?[ﬁ] are primitive, we may continue the derivation, perhaps
to obtain a final row with different output entries, and hence a different final

program.

That the final program is indeed satisfactory is established as follows:
\

Proposition (final tableau)

The final program f(Z) = #[z] satisfies the specification Q[%; 7] in the
theory. a4

,IA.iv e AN T
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Proof

By the intermediate-tableas proposition, it suffices to show that the closed
terms #[a] satisfy the tableau in the theory. Let J be any model for the theory;
it suffices to show that #[a] suit the tableau under J. We actually show that Z[a]
suit the final row.

We have taken I[a] to be closed instances of the output entries 7 (@] of the
final row. That is, #[a] are (7' [a]) <), for some substitution X. Let us take our
suiting substitution to be A. To show the truth condition, we must show that
the sentence false <), that is, false, is closed and false under I [or the sentence
true <), that is frue, is closed and true under I; but this is clearly the case.

To show the owtput condition, we must show that the instances (Z'[a]) < are
closed and have the same values, respectively, as i[a) under I; but in fact these
terms are respectively identical. 2

Even before we describe the extension of the deduction rules, we illustrate
the derivation process with a simple example.

Example (sex)

In the family theory, suppose that all people are either male or female, that
is,

(¥ person u)|sez (u, male) or sez(u, female))] (sez)

Suppose we would like to construct a program s(z) = t[z] to find the sex of a
given person, that is, to meet the specification

Qz; 2] :  sez(z, 2),
where the input sort is person.

From the specification, we form the initial tableau

assertions goals s(a) I

G1. if person(a)
then sez(a, z)

We assume that the constants male and female and the predicate symbol sez are
all primitive. We include the sez axiom as an assertion:
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if person (u)
thensez (u, male) or sez(u, female)

By the initial-tableau proposition, we know that, if any closed term t[a]
satisfies the above tableau in the family theory, the program s(z) = t[z] must
meet the specification.

By applying some extended deduction rules, we shall be able to obtain the
goal row

G2. not sez (a, female) male

By the intermediate-tableaw proposition, we know that if any closed term t[a]
satisfies the new tableau in the family theory, the program s(z) = t{z] again must
meet the specification.

By applying another extended deduction rule, we shall be able to obtain the
final goal row

if sez(a, female)
G3. true then female
else male

The conditional term (if sez (a, female) then female else male) is primitive
and contains no variables. Therefore, we may stop the derivation process and
derive the program

if sex(z, female)
8(z) = S then female
else male

By the final-tableau proposition, we know that this program must meet the spec-
ification. 3

\ 14.5 RECURSIVE PROGRAMS

Some special treatment is necessary to derive recursive programs f(Z) = I[Z], in
which the function symbols f may occur in the terms #{Z]. Such programs are
obtained by using the well-founded induction principle in the derivation.




T

-

36 CHAPTER 14: PROGRAM SYNTHESIS

We derive a program to satisfy the specification Q[z; Z] by proving a theorem
(¥ obj E)(3 7)QIZ; 7). If we remove the outer quantifiers of this theorem in
forming the initial tableau, we cannot complete the proof by induction on any
of the variables Z. If instead we leave the quantifiers in place and invoke the
induction principle before forming the initial tableau, we shall be able to obtain
a recursive program.

The induction will be with respect to a well-founded relation over m-tuples
of sort obj. (See Section 77).

Definition (initial tableau, recursive)

In any theory, for a given specification Q[Z; Z] with input sorts ‘obj and
for a given relation < well-founded over m-tuples of sort obj, an initial
tableas for deriving a recursive program is as follows:

goals f(@)
if obj(a)
== | () < (@) -
then if (V obj W) [thcn ofs; T(Ti)]] z
then Q[g; 7
Here @ = a;, ...,am are new constants. The function symbols 7 are

included in the primitive list. Any valid sentences of the theory may be
included in the tableau as assertions, without output entries. a

Example (flattree2)

In a combined theory of trees and strings, the specification for the program
flatiree2, which flattens a tree and concatenates it with a list, is

Qzy, z2; 2] : z = flattree (z)) » T2,
with  input sorts iree and string. To construct a recursive program from this

specification, with a well-founded relation < over 2-tuples of trees and strings, we
form the initial tableau
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goals

if tree(ay) and string(az)

(Y tree uy) ['f {u1, u2) < (a1, a3) ]

then if (¥ string uz) then flatiree2(u;, ug)

= flattree (u1) x u2
then z = flattree (a1) * a3

Properties of the combined theory of trees and strings, may be included in
the initial tableau as additional assertions. a

The initial tableau for recursive programs may be shown to have the desired
property.

Proposition (initial tableau for recursive programs)

In any theory,

if the closed terms £[a] satisfy the (recursive) initial tableau
for a specification Q[F; z] with input sorts obj,

and if < is well-founded over m-tuples of sort obj, .

then the program f(%) = [Z] satisfies the specification. a

Proof

To show that the program f(F) = I(Z] satisfies the specification, we establish
the validity of the correctness condition

if (v o B)[f(2) = 1[a]]
then (¥ oby 7)Q(Z; f(%)]
in the theory.
Under a given model for the theory, we assume that
(*) (¥ od %)[f(z) = i[z]).
is true and show that then
(v o8 2)Q[=: (%))
is also true.
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By the well-founded induction principle over m-tuples of sort 0bj, it is enough
to show the inductive step ’
if (@) < (@)
then QO[%; f(3)]
[ then o[z f(z)]

wmavw@m[

It suffices, by our assumption (), to show that

i (v oh [:ief.ﬁ);[a(;i;(a)]]
| then Q[7; ¥[z]]
or, expanding the outermost relativized quantifier,
if H5(2) ,
wavawmmmfzg%J
then QI[E; e

(¥ 0 %)

is true.

By the output entry property, to show that the above sentence is actually
valid, it suffices to find closed terms #[a) that satisfy the tableau

goals f@)

if obj(@) ®
‘ —_Jif ® < (3

then if (¥ obj 6) [then Q[ﬁ;?(ﬁ)]]
then Qfa;z]

wf

The valid-assertion property allows us to add as assertions to this tableau any
valid sentences of the theory, without changing the satisfying terms. Thus, it
suffices that the closed terms f[d] satisfy the (recursive) initial tableau, as we

have assumed. a4

Remark (one input case)

{{ MB: too trivial to be mentioned; ouT )
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In the special case in which there is only one input object (i.e., m = 1),
we have no need to use well-founded induction over tuples of sort obj; we may
use well-founded induction over individuals of sort obj,, that is, obdj, instead.
(Recall that in this case we drop the subscripts from the input symbols.) For the
specification Q{z;7], we take our (recursive) initial tableau to be

py f(a)
if obj(a) |

) . [if u<a ‘
then if (V obj u) [then Q[u;T(“)]]

then Qfa;3

N

where < is well-founded over obj.

By the same argument as for the general case, we may show that if the closed
terms [a] satisfy this tableau (with optional valid sentences of the theory added
assertions), then the program f(z) = I[z] satisfies the specification. a

14.6 THE DEDUCTION RULES

We are now ready to adapt the deduction rules of our system to apply to extended
tableaux. Each rule will introduce new output entries as weli as assertions or goals
and will maintain satisfying terms as well as validity.

JUSTIFICATION PROPOSITION

Each deduction rule requires that certain rows (the “required rows”) already be
present in the tableau and generates certain new rows (the “generated rows”) to
be introduced into the tableau. For each deduction rule we require an ezfended
justification condition which consists of the original justification condition, which
guarantees that the rule maintains validity, plus a new condition, which guaran-
tees that the {ule maintains satisfying terms.

Proposition (justification)

A deduction rule maintains the terms satisfying a tableau to which it is
applied if the following justification condition for satisfying terms holds:
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For any model I for the theory and for any closed terms ¢,

if  suit any of the generated rows under I

then 7 suit at least one of the required rows under I. 4

Proof

Assume that the justification condition for salisfying terms holds; we would
like to show that the deduction rule maintains satisfying terms.

Consider arbitrary closed terms i. We show that, in the theory, the terms {
satisfy the given tableau T if and only if they satisfy the new tableau 7.

In one direction, the proof does not require the justification condition at all.
Suppose that the terms { satisfy the original tableau T in the theory. Let I
be any modél for the theory, then 7 suit some row of T under J. But because
deduction rules do not delete rows, every row of T is also a row of T'. So { suit
some row of T, that is,  suit T’ under J. Hence ? satisfy the new tableau T',
as we wanted to show.

For the other direction, suppose that the terms  satisfy the new tableau T'.
We would like to show that then 7 satisfy the original tableau T. Let I be any
model for the theory; then it suffices to show that f suit T under I.

Because the terms f satisfy T/ in the theory, { suit some row of T under I.
If this row was already a row of T, then # suit T under J, as we wanted to show.
Otherwise, the row must have been generated by the deduction rule. In this case
(by the justification condition for satisfying terms), { must suit at least one of the
required rows, which must appear in T. Hence { suit T under I, as we wanted
to show. 4

SIMPLIFICATION

Any sentence or term introduced into a tableau is automatically subjected to a
simplification process, in which certain subsentences are replaced by equivalent
but simpler sentences, and certain subterms are replaced by equal but simpler
terms. For extended tableaux, simplification is applied to the output entries as
well as the assertions and goals. Simplification is not regarded as a separate rule;
we apply it automatically whenever we add a new row to a tableau.
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Example

Suppose that the following row is to be added to a tableau:

assertions . goals fa)
' if p(z)

p(z) and p(z) then a

else a

The goal of this row would automatically be simplified to p(z), by application of
the simplification

(F and F)= 7.

Also, the output entry would be simplified to a, by application of the simplification
{{ do we simplify terms }) E

(if F then s else s) = s.

The entire row would thus be simplified to

p(z) a

Simplification is easily justified because we always replace a subsentence by
an equivalent sentence or a subterm by an equal term. In particular, the satisfying
terms are maintained.

SPLITTING RULES

The splitting rules break rows down into their logical components. The extended
rules are very similar to the basic splitting rules. The output entries of the
generated rows are the same as those of the required rows. We present all three
splitting tules in tableau notation.

o And-split rule
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assertions goals 7®
A, and A2 3
A 5
Az 3
o Or-split rule
assertions goals f(@) T
G or G 5
5 5
§2 3
o If-split rule
r ) —
assertions goals f(@)
if A then § s
A 3
s |

In each rule, there are n output columns, containing the output entrivs 3 =

81,82, -+ 1 5n-

Remark

In deriving a nonrecursive program from a specification Q[Z, 7], we formed

the initial tablean

assertions

goals

1(3)

if obj(a)
then Q[a;Z]

Ny

By application of the if-split rule, we may decompose this row into an assertion

and a goal
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obj (@) z

Qla; 7] 5

- Because the output entries Z do not occur free in the assertion, they may be
dropped; of course, the output entries for the goal must remain.

We shall automatically apply the if-split rule to the initial tablean. In fact,
we shall henceforth regard the initial tableau to be the resulting assertion and

goal, that is,

assertions goals 1@

obj(@)

nf

Q[a; 7]

Similarly, in deriving a recursive program from a specification Q[T; 7], we
took the initial tableau to be

goals 1@
if obj(a)
o | () < (@) -
then if (V obj ) [ihcn o —f(ﬁ)]] T
then Qla, 7]

By application of the if-split rule, we may decompose this row to obtain an
assertion and a goal

assertions goals f(@®
obj (a) z
L= [ @ < (@
\ if (¥ obj §) [then olg; T(q)]] z
then Q(a; Z] -

By a second application of the if-split rule, we may decompose the goal further,
to obtain
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o

¢ m<@®
b %) [thcn ol T(v)]}

Qlg; 7} z

The new assertion correspands to the induction hypothesis, and the new goal
to the derived conclusion, for the inductive step of a proof. Again, because the
output entries Z do not occur free in the assertions, the output entries for these

rows may be dropped.

We shall automatically apply the if-split rule to the initial tableau for a
recursive program; in fact, we shall henceforth regard the following three rows as

the initial tableau:

assertions goals f(@)

ob;(@)

—= . |if @ < (@)
(v obj 7) [thcn ofw; T(i)]]

|

LQ[E; z]

Example (initial tableaux after splitting) {{ necessary? MB ))
For the flatireel program, which flattens a tree, the specification is
Qlz; 2z} : z = flatiree (z),

with input sort #ree. To construct a (nonrecursive) program to meet this specifi-
cation, we form the initial tableau

assertions goals flattreel(a)

tree (a)

z = flattree (z) z

As usual, valid sentences of the theory may be included as additional assertions.
{ out?? MB )
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For the flattree2 program, which flattens a tree and concatenates the result
with another string, the specification is
Qlzq, 29; 2] 2 = flattree (zy) + z2,

with input sorts tree and string..To construct a recursive program to meet this
specification, we form the initial tableau

tree(ay) and string(as)

(V tree ul) ['f (u1,|‘z) < (aly az) ]

. then flattree2(u, uz)
(V siring u2) = flatiree (ul) .l

z = flattree (a;) + a3 z

Again, valid sentences of the theory may be included as additional assertions.
out?? MB )) 2

We shall justify only the if-split rule.

Justification (if-split rule)

We would like to establish that the justification conditions hold for the sf-split
rule. The justification condition for validity was established when we introduced
the rule for basic tableaux. We need only show the justification condition for
satisfying terms. -

Let I be a model for the theory in question and let f be closed terms that
suit one of the generated rows under J. We would like to show that f suit the
required goal (if A then §) under J.

If the terms  suit the generated assertion A under J, then for some suiting
substitution A, we have the truth condition,

A« is closed and false under I,

\
and the output condition,

7<) are closed and have the same values, respectively, as { under J.

Suppose 6y, . . ., uy are the free variables of GeA and let A = {u;—q, ..., uga},

where a is any constant. We claim that, as we wanted to show, the terms  suit

assertions goals’ . flattree2(a;, a2)
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the goal (if A then §), with suiting substitution Ao X. The truth condition

holds, that is, ’
(if A then §)<(AO}X) = if (A<r)<X then (Gar)<X

if A<) then (G2))<X
(because A <) is closed)
is closed and true under I (since A <) is false under I),

and the oulput condition holds, that is,
5<(ADX) = (FeA)<d

]

= Fa)
(because 5« are closed)
are closed and have the same values, respectively, as # under I.

Similarly, if the terms 7 suit the generated goal § under I, with suiting
substitution ), we can construct a substitution A such that { suit the required
goal (sf A then §), with suiting substitution AgA. a

THE RESOLUTION RULE

The resolution rule allows us to perform a case analysis on the truth of a sub-
sentence. In extending the rule, the output entries for the generated row are, in
general, .conditional terms.

Let us write the rule in tableau notation.

Rule (A A-resolution)

assertions goals f@
A 3
A3 ]
(Ay 40) «{P <8 « false} if Pef
or then T <9
(A2 20) <{P <0 — true} else 548
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{ informal notation? )

The notation and requirements for the rule and the new assert.lon introduced are
the same as for the rule th.hout output entries.

The new output entries are conditional terms, each of whose if -clauses is the
unified subsentence P <8, and whose then- and else-clauses are the corresponding
instances t <4 and 79, respectlvely, of the output entries and § for the required
rows. In other words,

if P <8 then {40 else 5«0

is an abbreviation for the n terms

if Pag if Pd if Paf
then t) <0 then ty <8 then t, <8
else 5,8 else 5548 else s, =0.

As usual, by duality, the rule can be applied to two goals or to an assertion and
a goal; the output entries are the same as for the AA version of the rule. The
polarity strategy is as before. In the case in which one (or both) of the two
required rows has no output entries, the row is treated as if it has output entries
U = uy,uy, ...,U,, where none of the variables u; occur free in the row.

We first look at an example that does not require unification.

Example (no unification)

Suppose we have the two rows

assertions goals rh (a1, a2) nrh (a;, a2)-

The boxed subsentences of the two goals are identical, and hence unifiable with
most-general unifier { }. Therefore we may apply the resolution rule to obtain

not false if red{as) if red(az)
and then ag then a3
tree else a; else a3

which is automatically simplified to
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if red (az) if red(az)
true then a; then a3
else a; else a3

The output entries are conditional terms each of whose if-clause is the unified
subsentence red (az). The then-terms and else-terms are the output entries of the
given rows (in reverse order). a

Now let us see an example in which a unifier is necessary to create common
subsentences in the goals.
Example (with unification)

{{ ms. unclear here - eed??? }) In a derivation for the sez program s(z), we
obtain the two rows

assertions goals s(a)

not | sez (a, female) - male
re@a] :

The boxed subsentences of the two goals are unifiable, with most-general unifier
{z — female}. Therefore, we may apply the resolution rule to obtain

not false if sez (a, female)
and then female
true else male

which is automatically simplified to

if sex (a, female)
true then female
else male

Note that the most-general unifier has been applied to the output entries as well
as the goals. a9 )

Now let us see an example in which one of the given rows has no output
entry.
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Example (one output entry)

Suppose we have the rows

assertions ) goals 8(a)

sez (a,2) z

sez (u, male) or sez (u, female)

Note that the second initial assertion has no output eniry. We may therefore
treat it as if it had the new variable u; as its output entry.

_, or sez (u, female) Uy
The boxed subsentence of this assertion is unifiable with the goal
fe@a]” | -

A most-general unifier is {u — a, z — male}. Therefore, we may apply the
resolution rule to obtain

not (false or sez (a, female)) if sez (a, male)
and then male
true else uy

which is automatically simplified to

if sez(a, male)
not sez (a, female) then male
else u;

Remark

Suppose we apply the resolution rule to two rows whose ith output entries
s; and t; become identical after the unifying substitution @ is applied, that is, the
terms s; <0 and ; <8 are identical. Then the ith output entry of the generated
row, (if P <8 then t; <0 else s; <8), is automatically simplified to s; <8, by
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application of the simplification
(if F then s else s) = s.
Suppose in applying the resolution rule we generate output entries of form
(if F then u else 8) or (if 7 then s else u),

where u is a variable that does not occur free elsewhere in the row. This oc-
curs when we apply the rule to a row without output entries. Then we shall
automatically replace those output entries with 5.

To justify this, observe that, by the instantiation property, we may apply the
substitution A: {u — s} to the generated row. This transforms the output entries
into (if ¥ then s else 5) and has no effect on the remainder of the row. We may
then simplify the output entries, obtaining s.

In particular, in applying the resolution rule to rows that do not both have
output entries, we do not actually introduce conditional terms into the output
columns. If only one of the rows has output entries Z, the generated row has
output entries { 8, where 8 is the unifying substitution. "

Example

In the previous example, we have obtained the row

assertions . goals s(a)
N if sez(a, male)
not sez (a, female) then male
else u,

Note that the variable u; in the output entry does not occur elsewhere in the row.
In accordance with the preceding remark, we can replace the output entry of this
row with male, to obtain

3. not sez(a, female) male

Remark (no output case)

Suppose we are applying the resolution rule to two rows, both of which have
no output entries. We treat each row as if it had as its output entries the new
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variables @ and 7. The rule will then produce a row whose output entries are of
form (if P <@ then ¥ else u). These output entries are automatically replaced
by the output entries @, in accordance with our previous remark. The variables
4, being new, do not occur in the newly generated row. For this reason, the new
row will be treated as if it had no output entries.

In short, if the resolution rule is applied to two rows without output entries,
the resulting row has no output entries either. a

Let us now justify our adaptation of the resolution rule to extended tableaux.

Justification (extended resolution rule)

We consider only the AA-iorm of the rule and show that the justification
conditions hold. The justification condition for validity was established when we
introduced the basic resolution rule.

To show the justification condition for satisfying terms, let'J be a model for
the theory and let 7 be closed terms that suit the generated assertion under I.
We would like to show that then T suit one of the required assertions under I.

Because the terms F suit the generated assertion under J, we have, for some
suiting substitution ), the truth condition,

[(/1l «0) «{P <8 — false} or (Ay<0)<{P <8 — true}| <2
is closed and false under J,
and the output condition,

the terms (if P «0 then T <0 else 5«6) <) are closed and have the
same values, respectively, as ¥ under I.

Consequently (by properties of substitutions), we have

M [AL<(80X)] «{P <« (8O )) — false}
is closed and false under I,

[A24(80A)] «{P <(8D)) — true}
is closed and false under 7,

{ clarify these last two steps earlier })

and

89) the terms if P «(00)) then T« (D)) else 5<(00N)
are closed and have the same values, respectively, as ¥ under J.
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We distinguish between two cases.

Case: P <(9D)) is false under JI.

We claim that then the terms T suit the required assertion A; with suiting
substitutior #0 ). To show this, we must show the appropriate truth and output

conditions.

In this case, P «(f0)) and false have the same truth-value under J. Because
[.41 4(00))] < {P «(00)) « false} is false under I (by (1)), it follows (by the
value property) that the closed {{ why? }) sentence A; «(00 ) is false under I,
that is, the {ruth condition holds.

{{ use valse property in previous proofs )}

Also, because in this case P < (6D )) is false under I, it follows (from (1))
that the closed terms 5« (0 D) have the same values, respectxvely, as ¥ under I,
that is, the oxiput condition also holds.

Case: P «(60)) is true under J.

This case is symmetric to the previous case. We show that the terms ¥ suit
the required assertion A, with suiting substitution 6. 4

THE EQUIVALENCE RULE

The equivalence rule allows us to replace a subsentence of the tableau with an
equivalent sentence. For extended tableaux, we may replace subsentences of the
output entries as well as the assertions and goals. The output entries for the
generated row are, in general, conditional terms. Let us write the rule in tableau

form.

Rule (A A-equivalence, left to right)

asgertions 7{&)
A 3
A, i
_(lmﬂ) {(P = Q) <0 — false) if (P=Q)=0
then (f«8)a{P <0 — Q <4}
(A3 <0){P <0 — 0 <6} eles T
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{{ <and @not as in Vol. 1, p. 43 })

Note that the substitution # may unify occurrences of subsentences in the
output entries { as well as in the assertion A2 and these occurrences may be unified
by the rule. (An output entry may have subsentences if it contains a conditional
term.) A right-to-left version of the rule allows us to replace occurrences of Q <6
with P <.

We have presented the rule as it applies to two assertions. As usual, by
duality, we may also apply the rule to an assertion and a goal, or to two goals, and
obtain conditional output entries in each case. As was the case for the resolution
rule, if one of the two given rows has no output entries, the conditional is not
introduced into the output entries for the generated row. If both given rows have
no output entries, the generated rows have no output entries either. The polarity
strategy applies as usual.

Example (equivalence rule)

Suppose our tableau contains the two rows

assertions goals f@) .
[ = q(z)]_ g(z)

v
then 2

else y

The boxed subsentences of the two rows are unifiable, with a most-general unifier
{z —b y—a, z—b}.

We may apply the AA-equivalence rule to obtain

\ if p(d, a) = q(b)
false ‘f then if q(b)
or then b
q(b) else a
else g(b)
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or, after true-false simplification,

if p(b, a) = q(b)
then if q(b)

q(®) then b
else a
eise g(b)

Here we have replaced an occurrence of p(b, a) with ¢(b) in the output entry as well
as in the assertion. It would also have been legal for us to make a replacement
in the assertion but not the output entry, or in the output entry but not the

assertion. The unifiers would have been different in each case. 3

The justification for the extended eguivalence rule is analogous to that for
the extended resolution rule. {( exercise! )

Justification (extended equivalence rule)

‘We consider only the AA, left-to-right version of the rule and show that the
justification conditions hold. The justification condition for validity was estab-
lished when we introduced the basic equivalence rule.

To show the justification condition for satisfying terms, let I be a model for
the theory and ¥ be closed terms that suit the generated assertion under J. We
would like to show that then 7 suit one of the required assertions under J.

Because the terms ¥ suit the generated assertion under I, we know that, for
some suiting substitution A, we have the truik condition,

(A, <0)«{(P = Q)«0 — false}
or «)
(A240)a{P <6 — Q =0}
is closed and false under I,
and the ostput condition
the terms
if (P=Q)«8
then (T«8)a{Paf — Q<6}| <X
else 5«0

are closed and have the same values, respectively, as ¥ under J.
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Cons quently (by properties of substitutions {{ ?? ), we have ({ small box? check
subst. chapter })

*) [A1<(00X)] <{(P<(8D)) = Q«(§0))) — false}
is closed and false under I,

1) [A2« (0] a{P «(80)) — Q«(8D)}
is closed and false under I,

and
the terms
if P<(for)=Q<(fu))
3] then [t<(faA)] a{P <(fO)) — Q«(fu))}

else 5<(dnA)
are closed and have the same values, respectively, as ¥ under J.

We distinguish between two cases.

Case: (P <(8n)) = Q<(9a))) is false under I.

We claim that then the terms ¥ suit the required assertion A; with suiting
substitution #0 . To show this, we establish the appropriate truth and output
conditions.

In this case, (P «(§0)) = Q «(61))) and false have the same truth-value
under I. Because {4, «(00))] «{(P<(80)) = @ «(¢0))) «— false} is false under
I (by (»)), it follows (by the value property) that the closed {{ why? )) sentence
Ay «(80)) is false under I, that is, the truth condition holds.

Also, because in this case (P +(fD)) = O <(80))) is false under I, it follows
(from (1)) that the closed terms 5« (6 0 A) have the same values, respectively, as
7 under I, that is, the oulput condition also holds.

Case: (P <(00A) = Q «(fa))) is true under I.
We claim that the terms ¥ suit the required assertion A; with suiting substi-

tution §aA. To show this, we again establish the appropriate truth and output
conditions.

In this case, P «(00)) and @ «(f0)) ave the same truth-value under J.
Because

[A2<(60X)] a{P <(6D)) — Q <(81))}

is false under I (by (1)), it follows (by the value property) that the closed {{ why?
) sentence A; «(#0)) is false under I, that is, the truth condition holds.
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Also, because in this case (P «(#u)) = Q«(60))) is true under I, it
follows (from (1)) that the closed terms
[f«(@oXn]a{P <(6o)) — Q<(fON)}

have the same values, respectively, as ¥ under J. Because in this case P <(f0))
and Q «(#0)) have the same truth-value under I, it follows that the closed ({
why? )} terms { «(60 ) have the same values, respectively, as ¥ under I, that is,
the output condition also holds. a

THE EQUALITY RULE

The equality rule is analogous to the equivalence rule: it allows us to replace a
subterm of the tableau with an equal term. For tableaux with output columns,
we may replace subterms of the output entries as well as the assertions and goals.
The output entries for the generated row are, in general, conditional terms.

The rule allows us to omit the iransitivity and symmetry axioms for equality
from our list of assertions; the reflezivity axiom u = u is retained.

Let us write the rule in tableau form.

Rule (A A-equality, left to right)

assertions i@
A 5
A2 {
(A <8) <{(p = q) <0 — false} f (p=q)=f
(As+0)3{p8 — g <6) ot 3ap P

o

{{ Here the symbols p and ¢ stand for terms. )} A right-to-left version of the rule
allows us to replace occurrences of ¢ <8 with p«f.

"We have presented the rule as it applies to two assertions but, by duality, it
may be applied as well to two goals or to an assertion and a goal. As usual, if
only one of the rows has an output entry, the conditional is not introduced into
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the generated output entry; if neither row has output entries, the generated row
also has no output entry. The polarity strategy applies as before.

We omit the justification for the equality rule, since it is closely analogous
to that for the equivalence rule.

Example (equality rule)

Suppose our tableau contains the two rows

assertions goals f(@

2=

z24+a|=b z

The boxed subsentences of the two rows are unifiable, with a most-general
unifier

{z —a, z —0}.

We may apply the AG-equality rule to obtain

not false
and 0
a=1b

which simplifies to

| a=s IE

Note that because the assertion had no output entry, we did not introduce a
conditional into the generated row. a

THE SKOLEMIZATION RULES

The universal and ezistential quantifier-elimination propositions are invoked in
forming the initial tableau, because we remove the quantifiers for the input and
output variables before the tableau is formed. Nevertheless, there may be other
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quantifiers in the specification that must be removed once the derivation is un-
derway. For this purpose, we can apply the gquantifier-elimination rules, which
allow us to remove quantifiers of strict force from the assertions and goals. The
output entries remain the same.

Rules (quantifier elimination)

assertions goals @)

A E

A E

Here A’ is obtained from A by dropping a quantifier of striv force,
either universal or existential, as in the basic V- and 3-elimination rules.

Precisely the same rules apply to goals. 4

Remark

In forming the initial tableau for a recursive program, we introduced into the
initial tableau the induction hypothesis

v [-‘f (@) < (@) ]

then Q(w; F(uw)]

which is an abbreviation of

if obj(w)
(¥ ©)? | then if (®) < (a@)
then Q[H; F@)

The universal quantifier (¥ %) is of strict existential force, as indicated by its
annotation. Therefore, by the 3-elimination rule, we may drop this quantifier, to
obtain

if (%)
- then if (&) < (@)
then Q[u; T(ﬁ)]
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In fact, whenever we want to construct a recursive program, we shall automatically
remove the quantifier and include the above row in our initial tableau. 2

THE INDUCTION RULE

The well-founded induction principle is used in forming the initial tableau for a
recursive program, in which we include the induction hypothesis among our initial
assertions. Nevertheless, we may wish to use the principle at subsequent stages of
the derivation. For this purpose, we can apply the usual induction rules, which,
extended, have no effect on the output entries. We present only the extended
well-founded induction rule.

Rule (well-founded induction)

assertions goals f(@)
(V obj z)¥[z] 5
obj(r) 5
if obj(u)
then if u<r 5
then F[u]

7(r)

@)

Here the required goal is a closed sentence, odj is a unary predicate
symbol, < is a well-founded relation over obj , and r is a new constant. a

14.7 REVIEW OF PROGRAM SYNTHESIS

\

At this point we review our basic synthesis befof@ presenting examples of the
derivations of specific programs.

In a chosen theory, we are given a specification Q[Z; ], with input sorts obj,
where T and 7 are the input and output variables, respectively. We would like to
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construct a program f(Z) = I[Z] that satisfies this specification, in the sense that
the correciness condition

if (¥ ol 2)[f(z) = 1[z]]

then (¥ obj 7)Q[7; F(7)]
is valid in the theory.

If we want to exclude recursive programs, we take the following initial tableau:

assertions goals f(@)
obj(a)
QOfa; 7] z
We include n output columns, one for each output variable z = 2,23, ..., 2q.

If we want to allow recursive programs, we take the following initial tableau:

assertions goals @

ok (a)

if obj (%)

then if (u) < (@)
then Q[w; F(w)

Qla 7] z

| S

Whether we allow recursive prograimns or not, we may include any valid sen-
tences of the theory as assertions of the tableau.

We include in the primitive list the function symbols f and any other symbols
that are permitted to occur in the final program.

To derive a program, we successively apply extended deduction rules to the
initial tableau. These rules add new rows to the tableau while maintaining validity
and satisfying terms. The derivation must continue until we obtain the final
assertion false or the final goal frue, whose output entries 7'[a] are all primitive
expressions. At this point, we may stop the derivation.

Let i[@) be obtained from 7 '[a) by replacing any variable with an arbitrary
primitive constant. Then the final program we obtain is

i@ = 13
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We have shown that this program will satisfy the specification.

Even if we obtain a final row with primitive output entries, we may choose
to continue the derivation. If we again derive the final assertion false or the final
goal true, it may have different primitive output entries. In this case, we obtain
a different program meeting the same specification.

Once we have derived a program, we may use it in deriving other programs.

We extend our theory by introducing the new axiom

if obj (%)

then f(%)=1[zF)
This axiom may be included as an assertion in the initial tableau for future
derivations. We may also include the assertion that the program does meet its
specification,

if obj(z)

then Q[7; f(Z)]

By our correctness condition, this is a valid sentence of the extended theory.

Now that we have reviewed the derivation process, let us illustrate it with
the derivation of a program.

FULL EXAMPLE: REDHEAD

In this section, we present the full derivation of the redhead program; fragments of
this derivation have already been presented. In a family theory, for given persons
z1, z9, and z3, we are told that z; is a parent of z, that z, is a parent of z3,
and that z; is redheaded but z3 is not (we are not told the hair color of z3). We
are asked to construct two programs, rk (z1, z2, z3) and nrh (z;, z2, z3), to yield
two persons z; and z,, respectively, such that z; is a parent of z; and that z; is
redheaded but z3 is not. In short, we are given the specification

if par(zq, z2) and par(z2, z3) and
red (z,) and not red(x3)
then par(zy, z3) and
red (21) and not red(z7)

9[1'1. 22 21, lz] :

A

The input sort for each of the three inputs is person. Here par and red are
primitive predicate symbols. In this theory, every element is of sort person. This
is expressed by the simplification

person(u) = true.
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(If we were dealing with a combined theory, we would not include this simplifica-
tion.) ’

We shall derive a nonrecursive program. {{ capital heads, A, G numbers )}

The initial tableau is:

assertions goals ' rh(a;, a2, a3)

Al. person(a;) and
person (a2) and
person (as)

G2. if per(ay, az) and par(ay, as) and
red (a;) and not red (a3)
then par(z1, z2) and
red(z;) and not red(z;)

2

Note that the initial assertion Al is immediately simplified to the trivial assertion
true. By the if-split rule, followed by the and-split rule:

a8, [Erena]

A4. par(az, as)

A5. red(a))

AB. not red (as)

+
ot nd ol n

red(z1) and not red(z;)

Note that the output entries z; and zz have been dropped from the assertions,
because they have no occurrences of these variables.

By the resolution rule applied to A3 and G7, {z; ~ a3, 22 — a3}:

G8. + and not red (az) a) az

Note that no conditional terms were formed in the output entries, because only
one of the required goals has output entries.

arh (a1, a2, as)

z2



-~

——— e o«

14.7 REVIEW OF PROGRAM SYNTHESIS 63
Recall
a5, (RG] < |
By the resolution}ru‘le {}. .
G9. not red (az) ‘ a as ‘

According to this row, in the case in which a3 is red-headed, a; and a; will be
suitable outputs for rh(s;, a2, ag) and nrh (@), a2, as), respectively. Let us set

this row aside for a while.

Recall assertion A4 and goal GT7:

. [porGeas]

+
GT. and z 2

red (z1) and not red (z2)

By the resolution rule, {z; — a2, 29 «— aa}:

G10. red(az) ond [nof red(as) |’ | a2 | os

Recall assertion A6:

0. [mot )]

By the resolution rule, { }

on. [w@)]’ @ | o

Recall

G9. notl red (az) l- ay a3

By the resolution rule, { }:
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if red(a3) if red(az)
G11. true then as then a3
else a, else ay

Note the conditional terms have been formed in the output entries, because both
required goals have distinct output entries. ‘

We have derived the final goal true with primitive output entries. Therefore
we may stop the derivation and obtain a final program.

if red(zz)
vk (z1, 23, z3) = { then z2
else z,
and .
if red(z;)
nrh (21, 22, 23) = {thcn z3
else x4

14.8 FULL EXAMPLE: FRONT-LAST

{{ should this be a section or a subsection? ))

In this section, we present the full derivation of a front-last program to find the
string of all but the last character in a nonempty string, and the last character
iteelf (see Problem 1]7.5).

In the theory of strings, we are given the specification
if not (z = A)

Q[z; z1, 23] :  then string(z1) and char(z;) and
2= 2 %29

with input sort string. { box? )}’

We shall derive a recursive program. Because there is only one input, { MB:
out?? )) we may use a.well-founded relation over odj, that is, over string, rather
than over tuples of strings; in this case, we take < to be <, the tail relation
over strings. This is defined by the axiom

8 <¢ait ¥
© (V¥ string u, v) [ = J
' (3 char w)[weu=v]

{( have we said this is well-founded? )
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Because we are working in a pure theory of strings, rather than a combined
theory, we know that every element is a string. This is expressed in the simplifi-

cation
string(u) => frye.

Qur initial tableau is therefore

assertions goals .| front(a) [.last(a)

Al if u<gaa
then if not (u=A)
then char(last(u)) ond
u = front(u) * last (u)

G2. if not{a=A)
then char(z3) and
' a=21823

z 23

Note that the rows have been transformed by the simplification string(u) = u.

We include in the primitive list the basic symbols of the theory of strings (A, .
head, tail, char) as well as the function symbols front and last themselves.

We include as assertions in the initial tableau certain axioms and valid sen-
tences of the theory of strings, including the above definition of the tasl relation.

We shall use the property

(V string u, v) [gw:o‘u(:l‘(:) A<)m'1 u] (M”).

{ out? %
We shall need an assertion expressing the trickotomy property
(V string u){u = A or char(u) or not (tail(u) = A)] (trickotomy)

that is, every string is either empty, consists of a single character, or has a
nonempty tail. -

We can immediately decompose the goal.

By the sf-split rule applied to G2:
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A3. not(a=A)

G4. char(z;) and z 2
a=12 %2

Note that the output entries z; and z; have been dropped from row A3, because
they do not occur free in the assertion.

THE CHARACTER CASE

We begin by deriving the portion of the program corresponding to the case in

which a is a single character. We focus on our goal G4 and use an axiom for
concatenation.

Recall the lefi-empty axiom for concatenation:

(-

Recall goal G4.

G4. char(z;) and

By the equdl't‘y‘mle, {z1 — A, u— 22}

G5. ‘cher(z;) and
+ A 22

Recall tile reflezivity axiom for equality:

By the resolution rulé, {u —a, 33 — a}: »

"~ G6. char(a) ‘ A a
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Note that, by this stage, the output entries for front(a) and last (a) have been
chosen to be the terms A and a, respectively. In other words, when char(a) is
true, A and a will be suitable outputs.

. INTRODUCTION OF THE .RECUR.SIVE CALL

Let us set aside goal G6 for a while and return our attenfion to goal G4. We
again use an axiom for concatenation. -

Recall the left-prefiz axiom for concatenation:

if char(w)
then [: we (utv)]_

Recall goal GT:

G4. char(z;) and

n | =z
a=[nen]

By the eguality rule, {2; — weu, v — 2,}, rename u to z}:

GT7. char(w) and
char(z;) and wez} 22

As a result of this step, the output entry for front(a) has been taken to
be we z], where w and z] have yet to be selected. We now use our induction
hypothesis twice in succession.

Recall our induction hypothesis:

Al if u <t a
then if not (u=A)
Y then char(last (u)) and

ionmongl

By the eguality rule, right-to-left, {z{ — front(u), 22 — last(u)}:
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G8. not [if ¥ ~eail a} and
then u=A

char{w) and

A= wWel

w o front(u) last (u)

Recall our induction hypothesis again (renaming u to u'):

Al if u <t @
then if not (v =A)
don (BT o0
o' = fromt(u') « last (u')

By the resolution rule, {u~v'})

G9. not if o <6l gng
fhen u' =
char{w) and w o front(u') last (u')

[e=w]

As a result of thia step, the output

been taken to be w ¢ fromt(u’) and lest (v'),
introduced recursive calls into the program.

entries for front(a) and last (a) have
respectively. In other words, we have
Note that the subsentence

not (if o' <ieit @ then v =A)

is propositionally equivalent to
o <eeit ¢ and wot (v = A).

Let us réwrite it that way for clarity, although which form we use has no bearing

on the rest of the derivation.
~ _ At the next stage, the input a is decompoeed.

Recall the decomposition property of head and tail:

-if wot (u=A)
then r = head(u) o ui@‘
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By the resolution rule, {u — a, w — head(a), v — tail(a)}:

G10. not (a = A) and
tail(a) <iair a and head(a). _
not (tail(a) = A) and front(tail(a)) last(tail(a))
(Gartie@)] '
Recall the sort property of head:
if not (u=A)
then [ar(hesd@)]
By the resolution rule, {u — a}:
G4. not(a=A) and head(a)
tail(a) <tait @ and i last(tail(a))
not (tail(a) = A) fm_nt(taﬂ(a))

FINISHING THE NON-CHARACTER CASE

We now show that the well-founded relation <¢q,; does indeed hold between the
argument tail(a) and the original input a. We then use goal G9, which we.had

developed and set aside.

Recall the tail property of the tail relation:

if not (u=A)

then [ tail(u) <eau u |

Recall goal G11:

\ G11.

not (a = A) and

[(al(e) <aeaa]'

and
not (tail(a) = A)

head(a) .
fmnt(!qil(n))

last (tail(a))
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{({ repeat G117 )

By the resolution rule, {u — a}:

4 G12. not(a=A) and head(a) e
last(tas
not (tail(a) = A * front(tail(a)) ast (tail())
1 Recall the trichotomy property:
u=A or char(u) or [not(tail(u) = A) |
By the resolution rule, {u — a}:
nol (-: =(A) or) head(a)
char(a ¢ y
G13 and front(tail(a)) last(tail(a))
Recall assertion A3:
A6. not [a=A]"
By the resolstion rule { }:
G14. not ch head(a). last (tail(a))
. not char(a) front(tail(a)) st(taii(a)
COMBINING THE TWO CASES
Recall our previous goals G6 and G14:
o6, [Far@]' A !
N - Ae“(d)o X
Gl4. notl char(a) I front (tail(a)) last(tail(a))
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By the resolution rule, { }:

. :—'{lé:h;r(a) if char(a)
G18. true else head(a)e then o
front(tail(a)) els’e last(tail(a})

At this point conditional terms have been formed in the out;;ut column,
because the goals G9 and G17 both have output entries.

We have derived the final goal true with primitive output entries. Therefore,
we may stop the derivation and obtain the final program

if char(z)
front(z) = {tllcn A
else head(z) o front(tail(z))

and
if char(z)
last(z) = { then =z
{clse last(tail(z))

{{ exercise: reversing a string. See SOL14 file ))

149 FULL EXAMPLE: FLATTENING A TREE

In this section, we present the full derivation of a program for flattening a tree.
This is actually an example of program transformation, because we are given one
method of computing a function and we derive another one. The reader will recall
that we have defined by the following axioms a function flattree (Section [1]8.4),
which takes a tree as its argument and yields the string of all its atoms:

(V atom u)[ﬂattnc (v) = u] (atem)

(V tree g, v)[flattree (uov) = flattree (u)*flattree (v)] ( construction)

Here o is the tree construction function and # is the string concatenation function.

These axioms are computationally suggestive; they provide a method for
computing the function.
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This example illustrates two points. First, we have observed that, in proving
a theorem, it may be necessary to prove a more general theorem, so as to have
the benefit of a stronger induction hypothesis. This often occurs when the proof
is part of the derivation of a program. In that case, the program we derive from
the proof of the more general theorem is used as a “subprogram” by the main
program, which we derive from the proof of the given theorem.

The example also illustrates the use of a combined theory in program deriva-
tion. The program is applied to a tree and yields a string; therefore, we must work
in a combined theory of trees and strings. In the combined theory, we identify
the atoms of the trees with the characters of the strings; this is expressed by the
axiom

(¥ u)[char(v) = atom(u)) (character-atom)

The specification for the new program flattreei(z) is simply
Qiz;z]: z = flatiree(z)

In other words, the flattreel program is to yield the same result as the given
flatiree program. We shall take 0dj to be tree.

"We shall not inchude the function symbol flattree itself in the primitive list.
This will ensure that we cannot obtain a flattreel program that relies on the
flattree program. We shall also omit the concatenation function symbol + from
the primitive list; this will force us to express the new program in terms of the
prefix function « rather than the less efficient concatenation function.

To conduct this derivation, we must first derive a more general program
flatiree2(z;, 22), to meet the specification

B;[zl, z3; z]: z = flatiree(z,)*z3 J

We take z; to be a tree and z; to be a string; that is, our input sorts are
tree and siring, respectively. {( out? )) This generalization step is not done by
any rule of the system; we assume that the generalized specification is supplied
to us.

Before we begin the derivation of flattree2, let us see how it will enable us to
complete the derivation of flattreel.

THE DERIVATION OF FLATTREE]1

The program for flatireel will not be recursive. We may therefore take our initial
tableau without an induction hypothesis, as follows:
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assertions goals flattreel(a)

. A2, tree(a) -

*G2. Z = flatiree(a) z

Because our theory is a combined theory of trees and strings, rather than a pure
theory, we must retain sort conditions, such as tree(a), to distinguish between
the two sorts of elements tree and siring.

Assuming that the derivation of flatiree2 has been successful, we may include
in the initial tableau for flattreel an assertion that flattree2 does indeed meet its
specification, namely

A3. if tree(zy) and siring(za)
then flattree2(zy, z2) = flatiree(z,) » z2

For this derivation, we include flatiree2 but not flattreel or flatiree in the primitive
list. .

We first obtain a special case of the above assertion by invoking a property
of concatenation. This result will be useful in establishing the initial goal.

Recall the right-empty property of concatenation:

if string(u)

then [ = u]_

Recall assertion A3:

A3. if tree(z,) and string(zs)

then fattree2(zy, z3) =

By the eguality rule, {u «— flattree(z,), zz — A}, and removal of a sort
condition. .
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A4. not (string(flaitree (2,)))
or
if tree(z)) and siring(A)
then [ flattree2(z,A) = flattree (z,) |
Recall goal G2:
G2. | z = flattree (a) * z
By the resolstion rule, {z; « a, z — flatiree2(a, A)}, and removal of sort
conditions: '
G5. siring(flattree (a)) and
; tiree2(a, A
tree(a) and string(A) flatiree(a, A)

We have obtained the final goal ¢rue with a primitive output entry. This
completes the derivation of flstireel; we may extract the program

flattreel(z) = flatiree2(z,A)

Remark (flattrec is not primitive)

If the function symbol flatiree had been taken to be primitive, we could have
completed the derivation more esaily, but the result would not have been useful.

Recall goal G2 and the reflerivity axiom for equality:

. (= @] :

=0

By the resolstion rule, {Iz + flattree (a), u — flattree(a)}:

GY. true

flattree (a)

-If the symbol flatirec is primitive, we may conclude the derivation, obtaining
the final program

flattreel(z) = ﬂcttnn _(é).
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This program satisfies the specification z = flattree (z), of course, but we have
not transformed the given program flatirec as we had intended. When flattree is
excluded from the primitive list, we are prevented from stopping the derivation

at this stage. 4 -

THE DERIVATION OF FLATTREE2

Now let us present the derivation of flattree2. We are given the specification
Q2fzy, 22; 2]:  z = flattree (z1) % 22
where the input sorts are tree and .stn'ng, respectively.
The program for flattree2 will be ;-ecursive. Because there are two inputs, a
tree and a string, we must take our well-founded relation < to be over 2-tuples

(that is, pairs) of sort tree and string. In this case, we shall take < to be <y, (chiid),
the first projection of the child relation, defined by the axiom -

» Uz} <xy(chitd) (V1,v2)
(V tree u, Vl) (ul_ u,) 1(chs . )
(V¥ siring ug, v2) | — (first projection)

Uy <child V1

where the child relation < a4 is defined by the axiom

U <child V
(V tree u, v) (_3_ tree w){uow = 1] (child) -
or :
(3 tree w)weu =1} ‘ - .

\

In other words, the two subtrees left (v) and n'giu (v) are the two children of
the nonatomic tree v. {{ shown to be well-founded? .}

Our initial tableau is:
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assertions ‘ goals flattree2(

Al. tree(ay) and string(a2)

A2, if (u1,u3) <ey(chitg) {01, 82)
then if tree(u;) and string(u,) .
then flattree2(u;,uz) = flattree (uy) + uy

G3. z = flatiree(a;) * a2 z

Recall that we include flattree2 itself in the primitive list, but neither flattree
nor the concatenation function z*y.

THE ATOMIC CASE

We begin with the portion of the derivation that pertains to the case in which
the first input @, is an atom. 'We focus our attention on the initial goal.

Recall the atom axiom for flattree:

if atom(u)

then [ = u]‘

G3. z=tag z

By the equalily rule, {u — a,}:

G4. atom(ay) and
. z
z =

~ Recall the character property of :

if char(u) and string(v)
-then [@ =ue v] -

By the equality rule, {u — a;,v — a3} and removal of sort ooﬁditiom:
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G5. char(ay) and
atom(a,) and

o]’

Recall the reflezivity axiom for equality:

[u=u]

By the resolstion rule, {u — ay e a3, z —a; s a2}

atom(a;)

GS. and

a) e G2

As a result of this step, the output has been taken to be a; « az..

Recall the character-alom axiom for the combined theory:

[ = atom(u)]—

By the equivalence rule, {u ~ a;}:

G7. atom(a;)

G) ¢ G2

Let us set this goal aside for a while.

DECOMPOSITION OF THE INPUT

The balanee of the derivaiion concerns the case in which @, is nonatomic. In this

case, we may decompose a; into its two components.

Recall goal G3:

G3. 2z = flatiree ( * a3

Recall the decomposition property of trees:
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if tree(u)
then if not atom(u)

then E = leﬂ (u) » right (u)] -

By the eguality rule, {u «— a,}, and removal of a sort condition:

G8. ol atom(a;) and
z = Lﬂctim(lcfl (a1) o right (a‘)) It as

Recall the constructor axiom for flattree:

if tree(u) end tree(v)

then [ = flatiree (u) » flatiree (v)] -

By the eqwelity rule, {u «— lefi(a;), v — right(a,)}, and removal of a sort
condition:

G9. not slom(a;) and i
z = | (Raitrec(lcft (ay)) » fattree(right (a1))) » az i ‘

Recall the sssociadivily property of concatenation:

if siring(u) end string(v) and siring(w)
then [ = ut(vtw)]—

By the cquality rule, {u — flattree(left (a;1)), v — flattree(right (a;)), w —
a3}, and removal of sort conditions:

- G10. not'stom(a;) end .
z = flattrec(left (ay)) » (Aattree(right (a;)) » a,)

INTRODUCTION OF THE RECURSIVE CALL

We are now in a position to use our induction hypothesis. This will result in the
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appearance of a recursive call in the output column.

Eecall the induction hypotilesis:

A2. if (ux,uz) <y (child) (01,02)
then if tree(u;) and string(ua)

then [ﬂattree2(u1, uz) = m] )

Recall goal G10:

G10. not atom(a,) and A
z = flattree(left (a1)) * Lﬂcﬂm(n’ght (ay)) * ng

By the eguality rule, right-to-left, {u; «— right (a;), uz — aa}, and removal
of sort conditions:

G11. (right(a1), az) <x,(chitd) (01, 62) and
not atom(a,) and z

[= = flatirec(lcft (a1)) + latiree2(right (a1), ag) |

Recall the induction hypothesis, again:

A2, if (u1,93) <uy(chitd) (31,02)
then if tree(u:) and siring(uz)

then IﬂauneZ(ul,u;) = flattree (u1) * uz ]—

By the resolution rule, {u, «— left (a1), uz « flattree2(right (a1), a2), z — °

fattree2(left (a,), flatiree2(right (a,), az))}, and.removal of sort conditions:
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G12.

(lcfl (al), ﬂuttree?(n'ght (01), ag))
< xy(child)
(81, a2)
and
string{flattree2(right (a,), a3))
and
(right (a1), a3) <y, (crita) {01, az) and

flattree2(left (ay),
flattree2(right (a1), a2))

not atom(a,)

Note that, as a result of this step, we have introduced two nested recursive calls
into the output entry.

ESTABLISHING THE WELL-FOUNDED RELATION

We now show that the argument pairs for the recursive calls are “less than” the
given argument pair (a;, a3), with respect to our selected well-founded relation
<, (chitd). We use properties of the first-projection and child relations.

Recall the definition of the first-projection relation and goal G'12:

tree(vy)

if tree(uy) and string(ua) and

and string(vs)

w1, 2) <, (chig) (01, va) | i

then

U1 <child V1

L 612,

(left(ay), ﬂa!tree2(n'gllt (a1), ag))
<, (child)
{81,83)
and
string(flattree2(right (a;), az)) and
(right (1), 82) <« (chita) (82, a2) and
not atom(a,)

flattree2(left (a,),
flattree2(right (a,), a2})

By the eguivalence rule, {u) «— left(a1), uz — ﬂattne2(n’ghl (a1), a2), v —
a1, v3 — a3}, and removal of sort conditions:
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G13. left(n)) <chua a1 and

[string(attree2(right (1), 02)) |* | Aattree2(ieft (a1),

[ (right (a1), aa) <, (chua) (a1, ay) |

flattree2(right (a;), az))

and not atom(ay)

Contrary to our habit, we have not automatically removed the sort condition
string (ﬁattree2(n'ght (a1), 02)); the removal of this condition is unusual in that

it requires the induction hypothesis.

Recall the induction hypothesis:

A2. if (w1, uz) <5, (chitg) (a1 a2)
then if tree(u;) and string(uz)

then [string(ﬂattrce2(u1,uz)) I- and

flatiree2(uy, uy) = flattree (uy) * uz

By the resolution rule, {u; «— right(ay), u3 «— a}, and removal of sort

conditions:

Gl4. left(ay) <cnid 81 and
(ﬁgh‘ (al)r a’)
~xy (child) and
a8y, ag)
not atom(a;)

flattree2(left (ay),
flattree2(right (a1), az))

We now invoke properties of the first-projection and child relations.

Recall the definition of the first-projection relation:

if tree(u,) and string(uz) and
tree(vi) and string(ve)

(61, u2) <, (cnatay (v1, v2) |

then
Uy <child vy

By the equivalence rule, {u; — right(ay), ug — a2, vy «— a3, v2 — ay}, and

removal of sort conditions:

, -
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mot atom(a,)

—+
G15. I Ieﬂ (al) < child G1 I ;"ld ﬁq“re¢2(kﬂ (al),
Lright(a) < ar|" end | fastreed(right (a1), as))

Recall the left and right properties of the child relation:

if iree(u) end not atom(u)

then [ 0) <anaaw]”

if tree(u) end not slom(u)

then [FAIG) <amen]

By two applications of the resolution rule, {u — a,}, and removal of sort

conditions:

G16. not stom(ay)

Pattree2(left (as),
flattree2(right (a1), a2))

THE FINAL STAGE

We now use the eatlier goal, which we developed and set aside.

Recall goals G16 and GT:

G16. not -

flattree2(left (a1),
Pattree2(right (a), a2))

6. [eomfan]"

a1 ¢ G2

By the resolution rule, { }:
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if atom(a,)
then @)+ a2 .
G17. true - else flattree2(left (ay),

flattree2(right (a;), a1))

At this stage a conditional term has been introduced into the output column.

‘We have obtained the final goal true with a primitive output entry. Therefore,
we may conclude the derivation and obtain the program

if atom(z,)
flatiree2(z;, £2) = { then zye23
else flattree2(left (z1), flattree2(right (z1), z2))
This program, combined with the program we obtained from the first derivation,
flattreel(z1) = flattree2(z,, A)

gives us an alternative method for computing the flattree function.

PROBLEMS

Problem (sex)

Consider the extension of the family theory, in which every person is either
male or female, that is,

(V person u)[sez (u, male) or sez (u, female)] (sez)

In this theory, give the full derivation of a program s(z) = t[z] to find the sex of
a given person, that is, to meet the specification

Qlz; 2):  sex(z, z),

where the input sort is person.

Solution (sex)

From the specification, we forn the initial tableau
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assertions goals s(a)

1. person(a)

2 feal | -

the sez axiom:

if person(u)

then _ or ser (u, female)

= By the resolution rule, {u — a, z — male}, removal of sort condition.
{{ use not(if F then G) = F and not § as a simplification? })

3. not| sez(a, female) |~ male

= By the resolution rule, {z — female}

tf sezx (a, female)
4. true then female
else male

We have obtained the final goal tree with a primitive output entry. Therefore
we may extract the program

if sex (z, female)
s(z) = < then female
else male

Problem (reverse)

In the theory of strings, suppose we are given a program reverse (u) to reverse
a string u (Section [I]7.4) in the form of two axioms.

reverse(A) = A (emply)
if char{u)
(V string u. v) then reverse(usv) = reverse(v)«u (prefiz)

Here u+ v is the prefix function (where u is a character) and vy « v2 1s the con-
catenation function.
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(a) Derive a program reverse2(zy, 72} for reversing a string z and concatenating
the result and the string y.
This program must meet the specification
Qofzy, 29 2] 1 z = reverse(z1) « 22
where the input sorts obj, and obj, are both string.

(b) Use this program in the derivation of a program reversel(z) (more efficient
than reverse) for reversing a stri  This program must meet the specification

Qiz; 2} 1 z = reverse(x)

The program for reverse2 derived in part (a) of the problem may be included in the
tableau as an axiom. Also, the property that this program meets its specification,
that is,

(V string u,, ug)[rwerse2(u1, uz) = reverse (ui) « uz],

may be included.




