
WORKING MATERIAL

for the lectures of

Z o~amr MIan n

C\F rogr errn Syrnthe~uis

(N DTIC
ELECT
OCT31198ii < B

Internationa! Summer School

C>"

LOGIC, ALGEBRA AND COMPUTATION

Marktoberdorf, Germany. July 25 - AuRuat 6. 1989

ApprIed iw pI. b -6

89 10 27 013
This Summer School is organized under the auapicea of the TeChllSChe V yffri& Milk-
chen am, Is ,ponsored by the NATO SvleMe Comntee as part of the r Adyo,,-,,
Study Institutes proRramme. partial aupport for the conference was" provtded by thbe
European Research Oflce'and the National Science Foundation am iny Yviou, wwkrul
companie.

(j~ ZOIIBAR flANNA and RICHARD tJA)jVWtI

DRAYT

June 1989

Up to now in this book, we have defined a function by introducing a set of
axiom.s. Typically theme axioms are computationally suggestivq, that is, they have
suggested a method for. computing the rituction. But it is not always obvious that
the axcioms define the function we intend. From theee &aioms, we have established
properties or the function they define which gives us some assurance that that
function is indeed the correct one. A; .. l4 . r--

For example, we may define the greatest-common-dlivisor function Ved(I, Zr')
bythe &xiomi (see Section (1)4 11)

[V intge zI, X2 cdiii z21A X
(V :legc Zi,~) [Cd(Z. ~ else ged(z?, rein(CI 1,)) f

rhbis axiom is computationally suggestive, but it iA by no means obvious thol the
function it defines L- in fact Lhe greatest common divisor.

From this axiom, howvver, we eawi prove the frva test. common. divisor prop.
erty

4 CHAPTER 14: PROGRAM SYNTHESIS

[gcd(zI, z 2) ___. x1 and gcd(xl,x 2) _ ,o X21
(V integer z1 , X2) and .if y -_djZ and y _d.,x2 J

I integer y) lthen y __d , gcd(x1 , _-2) 1
((well-founded induction must apply to tuples of different sorts as in §14.7 m-
tuples of sort i--j))

In short, gcd(zi, z2) is the "greatest" nonnegative integer that divides both x,
and z2 , where "greatest" means greatest with respect to the divides relation -d4 .
This property does not suggest a computational method, but it does describe the
behavior we expect from the greatest-common-divisor function.

Although both of these are sentences in the theory of the nonnegative in-
tegers, we regard the former as a program, because it describes a method of
computation, and the latter as a specification, because it describes the intended
behavior of the program. Up to now, we have defined our functions by programs
and then proved that they satisfy certain specifications.

In this chapter, we would like to reverse this procedure. We now suppose
that we are given only a specification and try to derive a program that satisfies
the specification. Thus we might be given the greatesi-common-divisor property
as a specification and attempt to derive the computationally suggestive axiom as
a program.

As another example ((out?)), to specify the quotient-remainder program in
the theory of the nonnegative integers, we might be given the quotient-remainder
property

if not (X2 = o) then and]
IZ2 < X I

Here z, is the quotient and z2 the remainder of dividing xI by z2 . The sentence
specifies the behavior of the program only for the case in which the divisor z2 is
not zero; otherwise we do not care what the program returns.

From this specification we may hope to derive a program such as ((less space
around minus))

(if Xi <2
quot(zI, X2) = then 0

else quot(zl - z 2 , X2)+
and

f Zi < X2
rem(zI, 22) = <then z2

else rem(ZI - X2, X2).

14.1 SPECIFICATIONS AND PROGRAMS

((mention program transformation here??))

So far, we have used the deductive tableau system only to establish the
validity of sentences. In this chapter we extend it to derive programs from speci-
fications as well.

14.1 SPECIFICATIONS AND PROGRAMS

In this section we are a little more precise about the specifications we accept, the
programs we derive, and the relationship between them.

In a theory, we suppose that we are given a specification sentence

Q[T; 71,

I is an abbreviation for zi, n2,..., x., the input variables and g is an abbrevi-
ation for yl, y2, ... , y, the output variables. (We use the semicolon informally,
instead of a comma, to separate the input and output variables.) It is assumed
that there are no free variables in Q other than - and T.

For example, the specification for the quotient-remainder program is the
sentence

integer(zl)
and

:2, Z2; z1] : z, < ,, x, and ZI i<ds. X2

and

(V integer y) then y _di z aX

We are also given input sorts "o-b(!), that is,

obj 1(Z), obj 2(z 2) . objm(zM),

where each obj, is a unary predicate symbol, which characterizes a class of ele-, 0
ments in the theory. We would like to define functions 7(i), that is, f:(7), f2(7),.

and fn(f). Each function f, is intended to beapplied-to inputs = zI, z2.
where each input :, is an element of the clan obji. We assume that the function
symbols 7 are "new," in the sense that they do not occur so far in the vocabulary
of the theory. For example, for the quotient-remainder program, obj, and 042 i

are both integer, and f, is gcd.

Availability Codea

D' OPYst S peo1is

1 t4
...- ...• • -

6 CHAPTER. 14" PROGRAM SYNTHESIS

We define the functions 7 by constructing a program P[-zl f(:) = i], that
is, a sentence

fj(7)=ts[1 and

f2(y) = t2Z[1 and

MY) = t,,[]1
where each tj (2] is a term containing no variables other than y.

For example, the greatest-commoa-divisor program we shall define is

(if Z2 =0

PzXI, 2]: gCd(z 1 , Z2) = (then C,

else gcd(X2, reM(Z1 , X2)).

The program must satisj the specification, in the sense that the correctness
condition

if (V -;uil)p [X

then (V ih 1y1; 7()1
must be valid in the theory. Here (V oj -) is an abbreviation for

(V objl z1)(V obj2 2).(V obi. X.).

For example, the utest-common divsor program satisfies the specification
in the sense that the correctness condition

if (V inteer z, z2)P[zi, 22l
then (V.integer z1, z2)Q(2x, z2; gcd(z:, r2)]

is valid in the theory of the nonnegative integers.

In any theory, there are some symbols that are in the basic vocabulary,
that have. been defined by axioms that suggest some method of computation,
or that define functions for which programs have already been derived. These
"primitive" symbols may be used freely in a program sentence. In the theory of
the nonnegative integers, for example, the constant symbol 0 and the successor
function symbol z + 1 Ire in the basic vocabulary. The multiplication function
symbol r Y and the lse-than predicate symbol x < y have been defined by
computationally suggestive axioms Therefore, 0, z + 1, z . y and z < y are
primitive symbols we can use in the greatest-common-divisor program.

14.1 SPECIFICATIONS AND PROGRAMS 7

On the other hand, there are symbols that denote entities we do not know
how to compute, such as quantifiers and skolem function symbols. These "non-
primitive" symbols may occur in specifications and in the axioms for a theory but
not in any program.

In short, to ensure that the programs 7(f) = i[z we derive are actually com-
putationally suggestive, we shall require that only primitive constant, function,
and predicate symbols, including the function symbols f themselves, may occur
in the terms i[-]. We shall define primitivity more precisely later.

Remark (single input or output)

In the case in which the program has only one input or only one output, we
shall drop the subscript and write z or z instead of x, or z1 . Thus, in the above
example we may write Q(zi,z 2; z] instead of Q(ZI,Z2; z1].j

Example (quotient-remainder) ((out?))

In the theory of the nonnegative integers, we may specify the quotient-
remainder program by the sentence

Finteger(zi) and integer*2)"

and
O :[X, X2; z 1 , z 2]: if not (z2 =0) then ZI = X2- ZI + Z2

and
LZ2 < X2

where the input sorts ob.j and obj 2 are both integer. Here z, is the quotient and
z2 is the remainder of dividing zi by z2. The sentence specifies the behavior of
the program only for the case in which the divisor z2 is not zero; otherwise we
do not care what the program returns. ((out??))

Using the extended deductive-tableau system, we shall be able to derive the
program

(if Z < X2
quot(zi, Z2) = then 0

P'ZI, X2] and else quot(ri - Z2, Z2) + 1

* (f .ZI <Z2
rem(zi, X2) = ten z

else rem(zl - Z2, Z2)

((less space around minus??))

CHAPTER 14: PROGRAM SYNTHESIS

The correctness condition in this case is the sentence

if (V integer z1 , Z2)P[zl, z 2]
then (V integer z 1 , z 2)OQ[z, z2; quot(xl, z 2), rem(z1 , z 2)],

which can be shown to be valid in the theory of the nonnegative integers. Thus the
program does satisfy the specification. It also contains only primitive symbols.

Example (redhead)

This example suggests that deriving programs may have applications to
"database retrieval." We outline a new family theory. In the intended inter-
pretation for this theory,

person (z) is the person relation ("z is a person")

par (r, y) is the parent relation ("z is a parent of y")

red(z) is the redheadedness relation ("z is redheaded").

One of the axioms for the theory is

(V person i, Vf par (u,v) 1

('[then not par (,, u).,

that is, the parent relation is asymmetric.

We are given the specification sentence

if par(z1 , Z2) and par (Z2 , X3) and
red(zi) aid not red(z3)

Qjz1, X2 , zs; z1, z]: then person(zi) and person (z2) and

par(zi, Z2) and
red(zi) and not red(z2),

where the input sorts obj 1 , obj 2 , and obj 3 are all person. In other words, if x is
a grandparent of z3, and zI is redheaded but zs is not, then we are to find people
z1 and z, such that z1 is a parent of z2 and zi is redheaded but zj is not. We
regard all three predicate symbols as primitive.

The redhead program we are to derive from this specification is

14.1 SPECIFICATIONS AND PROGRAMS 9

P~zi, Z2, xs] " .d rif vd(2)

nrh(I,z 2 , Zs) = then zslelse X2P[Z1,t~ Z2, X3.an

This program can be shown to satisfy the specification, in the sense that

if (V person xi, Z , zs)P[zl, X2, X3]
then (V person xI, z2, zs)Q [-I, z2, -s; rk(XI,z 2 , z 3), nrh(IlZ2,-s)]

is valid in the theory. A

The derivation of this program will be given later in the chapter.

PROGRAM TRANSFORMATION

Up to now, we have been considering specifications that describe a relation be-
tween the inputs and outputs but do not suggest any method-of computation.
Sometimes, however, we know a method for computing the function and want to
find another, perhaps more efficient one. This is known as program transforma-
tion. The same extended deductive-tableau system we use for ordinary program
derivation will also be used for program transformation.

Example (flattree)

In a combined theory of trees and strings (Section [18.4), we introduced a
function flatiree(z) to form a string from the atoms of a given tree z. The function
was defined by the following pair of computationally suggestive axioms

(V atom u)[flattree(u) = u] (atom)

(V tree u,v)[flattree(u~v) = flattree(u)*flattreef)(construction)

Suppose we would like to discover a different method-for computing the same func-
tion. Then we may attempt to derive a program flattreel(z), whose specification
is simply

Q1[z; z] :z = flaitree(z)1 .

10 CHAPTER 14: PROGRAM SYNTHESIS

Our input sort is free.

We shall be abile to derive many different programs to meet the above specifi-
cation, all of them computing the same flattree function. Some of these programs
will use the computational method suggested by the flattree axiomns; others will
use different, perhaps more efficient, methods.

The derivation of the ftattree I program is facilitated if we first derive a pro-
gram flattree2(zj,Z2) to form a string from the atoms of a given tree x, and
concatenate that string and a given string X2. The specification sentence for
flattree2 is

:2ZI 2; z] : Z= flattree (X1) * X2,

Our input sorts obj1 and oh42 are tree and string respectively.

From this specification, we can construct a program sentence such as

if atom(xi)
then X1, *Z2

P2EZI, *2] : jlatiree2(zi, *2) = Ielse flattree2(left (ZA)
I. flaflree2(right (XI), Z2))

This-program satisfies the specification, in the sense that the correctness condition
(out))

if (V tne ,ZI) j(*[i,21sf atom(Xi)]

tMen {Vte)flsutree2(:zi, *2) =flat ree (Zi) 21

is valid. '

Once we have derived the program for fiattree2, we may use it in deriving a

program for flattreel. The program we obtain is

PI1 fletireel(z) = jlattree2(z, A).

The computational method described by the flattree I and flattree2 programs
turns out to be more efficient than that suggested by the original axioms for
flattree.

This derivation will be presented in full detail later in the chapter.

THE APPROACH

Suppose that we awe given a specifcation

14.2 OUTPUT ENTRIES 11

with input sorts 0bj, and would like to derive a program

7(y) = 4[i--

that satisfies this specification. We shall extend the deductive-tableau system so
that the program can be obtained as a byproduct of proving the sentence

(I) (Y obj Y)(3 Y)QL ; -

In other words, we prove the existence of output objects T satisfying the given
specification for given input objects F. The proof must indicate a method for
finding the desired output objects, and this method provides the computational
basis for the program 7(7) = i[7J that computes the output objects.

We shall now discuss how the deductive-tableau system can be extended so
that programs can be extracted from proofs.

14.2 OUTPUT ENTRIES

Up to now, a deductive tableau has had two columns, one for assertions and one
for goals. To derive a program, we now extend our tableaux by introducing a

number of or*put columns.

If we are given a specification

Q[X1 Z,; Z.]

with n output variables, we introduce n new output columns. The jth output
column is used in the derivation of the ith conjunct

fi (7) = tj -"]

of the desired program. -It is labelled f,(a), where i = at,2 . a. are new
constants called the input conststs. For any row, whether it contains an assertion
or a goal, the output columns may all be blank or may each contain a term of the
theory, calledan output entry. The output entries will be used to derive programs
from specifications.

We shall call a tableau with output columns an ertended tableau, in contrast
to a tableau with only assertion and goal columns, which we shall henceforth call
a basic tableau.

12 CHAPTER 14: PROGRAM SYNTHESIS

Example (extended tableau)

The following is an extended tableau from the derivation of a quotie,,t-
remainder program:

assertions goals quot(a, a2) rem(al, a2)

not (a2 = 0)

iateler(zl) and
intefer(z2)

and i Z2
a, - a2 " ZI + Z2

and
z2 < a2

U-0=0 II

at < a2 0 al

a, < a2 quoi(aI - a2, a2) +l rem(al - a 2, a2)

- Tableau T -

Here the assertions -ot(a 2 = 0) and u 0 = 0 have no output entries; the other
rows all do.

SUITING A ROW

We have given the meaning of the assertions and goals of a basic tableau by
defining its truth (under an interpretation) and validity (in a theory). The same
defnitions apply to exitded tableaux, ignoring the output entries. To give the
meaning of the output utries themselves, we define what it means for terms
to suit a tablas (undsr sa interpretation) and sastur a tableau (in a theory).
Loosely speaking, the terus that suit a tableau will denote acceptable outputs

for the desired program. We fast define what it means for terms to suit a single
row of a tableau. The term that suit the row will be acceptable outputs when
that tow's asertion is false [or that row's goal is true].

In the definition that follows, we consider a row of a tableau with an assertion

A [or goal 9] and output setrisl =s ., s., that is,

14.2 OUTPUT ENTRIES 13

,a2) assertions goals 7(a)
A

or

T9

We consider any substitution A such that the instances A -,A [or- g A] and
94A are closed, that is, they contain no free variables. According to the definition,
the terms -o A suit the row under an interpretation I if A o A is false [or 9 - A is
true] under 1. But let us be more precise.

Definition (terms suit row)

Consider a row of a tableau containing an assertion A [or goal 91. Let
i = t1,t 2, . .. t, be closed terms and I" be an interpretation. We shall
say that the terms i suit the row under 2 if, for some substitution A, the
following conditions hold:

" Truth condition. The sentence A , A is closed and false under
I [or the sentence 9, 4, A is closed and true under .].

* Output condition. If the row has output entries 9 = si, s2, •s,
the instances

"!. = 5 A, s 2 A,..., A

are cloed and have the same values, respectively, as t = I, t2 , .. ,t
under 1.

We shall call such a substitution A a suiting substitution.

Remark (rows with no output entries)

The output condition holds vacuously in the case in which the row has no
output entries. In other words, any closed terms i will suit such a row, provided.
there is some substitution A for which A 4 A is false [or g -oA is true] and closed
under I.

When it is convenient, such a row may actually be treated as a row with
output entries

U1 , U2, . Un,

14 CHAPTER 14: PROGRAM SYNTHESIS

where the uj are distinct variables that do not occur free elsewhere in the row. For
if the closed terms i suit a row with output entries 11, then t suit the corresponding
row with no output entries at all, with the same suiting substitution, because the
oatput condition holds vacuously. And if i suit a row that has no output entries,
with suiting substitution A, then i suit the corresponding row with output entries
U, with suiting substitution

(Ul - it, U 2 - t2, ... , in A.

Here 0 is the composition function for substitutions.

By the same token, we may find it convenient to treat a row whose output
entries U are all distinct variables that do not occur free elsewhere in the row as
a row without output entries at all.

Let us now illustrate the new definition.

Example (suiting a row)

The following ((?? above?)) extended tableau T2 is obtained from a deriva-
tion of the redhead program described in an earlier example.

Let I. be any model for the theory under which

red(a2) is true,

that is, a2 is a redheaded person, and under which assertion 1 is true, that is,
par(ah a2), par(a 2,as), red(a 1), and not red(a3) are all true. In other words, a,
is a parent of a2, 42 is a parent of as, and a, is redheaded but as is not.

Under this interpretation, the two closed terms

i : a2,03s

suit row 5,

115. red(all) 02 03

Which has no free variables. To show thi, we may take the suiting substitution
A to be the empty substitution {). The truth condition holds under 14, because
the instance of the goal, 9 -A, is

red(a2),

which is true under 1_ (In this discussion, we shall use A or 9 to stand for the
assertion or goal of the row under discussion.) The output condition also holds,

14.2 OUTPUT ENTRIES 15

assertions goals rh (a,, a2) nrh (a,, a2)

1. par(ai,a2) and

par (a2, a3) and
red(al) and
not red(a3)

2. par(zl,z2) and
red(zi) and z - Z2
not red(z2)

3. if par (u,v)
then not par (v,u)

4. not red(a2) al a2

5. red(a2) 92 a3

if red(a2) if red(a2)

6. true then a2 then a3
else a, else a2

- Tableau T2 -

because the corresponding instances of the output entries, a2 4 A and a3 *A, are
precisely the same as the closed terms 1: a2, a3.

Under the same interpretation, the same closed terms t: 02, a3 also suit row
2,

2. par (zi, Z2) and Z
red(zi) and not red(z2) I 1

which does have free variables. To show this, we take the suiting substitution A
to be

{zl - a2, Z2 i- as}.

The truth condition holds under I1, because the instance of the goal, A4 A, is -

pir(a2 , as) and
red(a2) and -not red(as),

which is true under 1., The output condition holds, because the corresponding
instances of the output entries, x, -4A and z2 -4A, are precisely the same as the
closed terms t: a2, a3.

16 CHAPTER 14: PROGRAM SYNTHESIS

The same closed terms i: a2 , a3 also suit row 6,

if red(aj) if red(a2)
6. true then a2 then as

else a, else a2

under I. To show this, we take the suiting substitution to be the empty substitu-
tion { }. The truth condition of course holds, because any instance of the goal true
is true under I,. The output condition also holds; although the corresponding
instances of the output entries,

if red(a 2) if red(a2)
then a2 and then a3
else a, else a2,

are not identical to i: a2 , as, they have the same values under J,, because red(a2)
is true under Zt.

By the same reasoning, the closed terms

if red(a2) if red(a2)
t: then a2 and then as

else a, else a2,

also suit row 6 under .,, for these terms are identical to the output entries for
this row. In fact, these terms also suit rows 2 and 5 under J,.

((remaining examples out??))

Let I,, be any model for the theory under which

rd(42) is fase,

that is, a2 is not a redheaded person, and under which, as in Z,, assertion I is
true, that is, per (a,, al), per (a2 , as), red(al), and not red(as) are all true. Under
this interpretation, the two closed terms

i: ai,,2

srit rowi 4 and 2

4. not'red(" 2) at a2

2. par(z:, Z2) and
red(zi) and not red(z2)

To show this ((out??)), we take the suiting substitution A to be { and

(z- a,, z2 -2),

14.2 OUTPUT ENTRIES 17

respectively. The same terms i: al, 42 can be shown to suit row 6

if red(a 2) if red(a 2)
6. true - then a2 then as

else a, else a2

under I..

We can also show that the terms

if red(a 2) if red(a 2)
t: then G2 and then as

else a, else a2,

suit rows 2, 4, and 6 under I,,. In fact, these terms have the same value as at
and a2 under I,, because red(a2) is false.

Let 10 be any model for the theory under which assertion 1,

. p (a,, a2) and par (a2,
red(al) and not red(as)

is false. Then any closed terms i suit this row under 10. To show this, we take
the suiting substitution to be {). The truth condition holds under Jo, because
the instance of the assertion, A 4-A, is A itself, which is closed and false under lo.
The output condition holds vacuously, because this row has no output entries.

Suppose I is any interpretation under which some instance

ifpar (u,) .
then not par (v, u]J

of the asymmetry axiom in row 3,

3. if par (u, v)
then not par (ti, U) "

for the parent relation is false. (Consequently I is not a model for the theory.)
Then any closed terms i suit row 3, under 1. Taking the suiting substitution to
be A itself, we see that the truth condition holds, because A 4A has been assumed
to be false under 1. The output condition holds vacuously, because the row has
no output entries. ((explain purpose of examples?))

* I Il l

18 CHAPTER 14: PROGRAM SYNTHESIS

Remark (true assertions)

Suppose 1 is any interpretation under which no closed instance A, 4 A of the
assertion A is false [or no closed instance of the goal g is true]. Then no closed
terms 1 suit the assertion A for the goal 9] under I because the truth condition
cannot hold. In particular, if A is valid in a theory, no closed terms i can suit the
assertion A under a model for the theory.

SUITING A TABLEAU

We can now say what it means for terms to suit an entire tableau, rather than a
single row, under an interpretation:

Definition (terms suit tableau)

Let T be a tableau, i = t02, ... ,t. be closed terms, and I be an
interpretation. We shall say that the terms i suit the tableau T under
-1 if 1 suit some row of T under 1.

Example (suiting a tableau) ((Marianne: too many examples))
Let us refer back to the tableau 72 of the preceding example, from the deriva-

tion of the redkesd program.

We have seen that the closed terms

Q 2, as

suit the rows 2, 5, and 6 under the interpretation t, in which a2 is redheaded.
Therefore, these terms suit the entire tableau under .1.

Also, the terms

't: a,, a2

suit the rows 2, 4, and 6 under the interpretation I., in which a2 is not redheaded.
Therefore, these terms suit the entire tableau under I.

It can be shown that (2 and as do not suit the tableau under I., that is,
they do not suit any row under this interpretation. Similarly, a, and a2 do not
suit the tableau under I,.I

14.2 OUTPUT ENTITIES 19

We have also seen that the terms

if red(a2) if red(a2)
i: then a2 and then a3

else a, else a2

suit the rows 2, 5, and 6 under the interpretation 4. Therefore, these terms suit
the entire tableau under I-. These same terms suit the rows 2, 4, and 6 under$I.; therefore, they suit the entire tableau under .

t

SATISFYING A TABLEAU

Finally, we can say what it means for terms to satisfy a tableau for a given theory.
By discovering closed terms that satisfy the appropriate tableau, we shall be able
to construct a program that satisfies a given specification.

Definition (terms satisfy tableau)

Let T be a tableau, and i = t1 ,t 2 , t. be closed terms.
In a given theory, the terms i satisfy the tableau T if i suit T under
every model for the theory. j

Example (satisfying a tableau)

Consider once more the tableau T2 from the derivation of the redhead pro-
gram. We claim that, in the family theory described earlier, the terms

if red(a 2) if red(aa)
I: then a2 and then a3

else a, else a2

satisfy this tableau. For consider any model A for the theory; we show that i suit
the tableau under I. We distinguish among three cases.

* If

" 4(a2)

and

par(al, a2) and par(a 2, as) and
red(al) and not red(as)

-I

IIIII / llllll I I I I m ll lll IIII . |I

20 CHAPTER 14: PROGRAM SYNTHESIS

are both true under I, we have seen that the terms i suit the rows 2, 5,
and 6. Since they suit a least one row, they suit the entire tableau.

not red(a 2)

and

par (a,, a2) and par(a2 , as) and
red(al) and not red(as)

are true under 1, we have seen that the terms i suit the rows 2, 4, and
6, and hence the entire tableau.

* Finally, if

par (a,, a2) and par(a2, aa) and

red(a 1) arid not red(as)

is false under 1, we have seen that any terms will suit row 1, and hence
the entire tableau.

These three case exhaust adl posibi ities. Therefore, i suit the tableau under
I, as we wanted to show.

14.9 PROPERTIES OF EXTENDED TABLEAUX

The properties we have established for basic deductive tableaux carry over to ex-
tended tableaux. In particular, the-duality, instantiation, and renaming properties
of basic tableaux all have their counterparts for tableaux with output entries. We
begin by_ adapting the notion of equivalence to extended tableaux.

D.Klitiob (equi.al"c)

In a theory, two tableaux 7 and T' are equivalent if, for any model J
for the theory,

T is true under I
precisely when

T' is true under I

Ag

.4

14.3 PROPERTIES OF EXTENDED TABLEAUX 21

and, for any closed terms i,

i suit T under I
precisely when

i suit 7" under 1. 1
Sometimes the notion of equivalence is too strong. We introduse a weaker

notion, that of two tableaux having the "same meaning.""

Definition (same meaning) ((out?)) ((later?)) ((example?))

In a theory, two tableaux T and T' have the same meaning if

T is valid in the theory
precisely when

T is valid in the theory

and, for any closed terms i,

1 satisfy 7 in the theory
precisely when

i satisfy T' in the theory.

It is clear that if two tableaux are equivalent, they have the same meaning.

We can now state the three properties as they are adapted for extended
tableaux.

DUALITY

The duality property states that we can move sentences freely between the asser-
tion and goal columns simply by negating them, obtaining an equivalent tableau.

Property (duality)

In a theoy,

e A tableau containing an assertion A with output entries i (or
none]

is equivalent to

22 CHAPTER 14: PROGRAM SYNTHESIS

the tableau containing instead the goal (not A) with the same
output entries i [or none].

A tableau containing a goal 9 with output entries 1 [or none]

is equivalent to

the tableau containing instead the assertion (not 9) with the
same output entries W [or none]. J

The justification is straightforward, but we present it to give the definitions

some exercise.

Justification (duality)

We show only the first part. Let I be any model for the theory in question.
Let T be the tableau with the assertion A and output entries 1 [if any], and T'
be the tableau with the goal (not A) and output entries X [if any] instead. By the
desutp property for basic tableaux, we know that T is true under I if and only

if T' is true under I.

Suppose that the closed terms i suit T under 1; then they suit some row of
T under I. If that row is not that of the assertion A, then the row also occurs in
T', so the terms i also suit T' under I.

In the cae in which i suit the assertion A itself under I, we know that there

is a suiting substitution A such that the truth condition holds, that is,

A -a A is closed and false under I,

and the OStput condition holds, that is,

(t) the instances W - A of the output entries [if any]
are closed and have the same values, respectively, as I under I.

From the truth condition, we have

(() .(not A) 4A'is closed and true under I.

Hence (by (t) and (t)) the terms i suit the goal (not A) in the tableau T', with

suiting substitution A, and therefore suit the tableau T' itself.

Similarly) we can show that, if closed terms 1 suit T' under 1, they also suit

T under. I. Hence T and T' are equivalent. j

14.3 PROPERTIES OF EXTENDED TABLEAUX 23

RENAMING

The renaming property states that we may systematically rename the free vari-
ables of any row, obtaining an equivalent tableau. Recall that a permutation
substitution is one that always replaces distinct variables with distinct variables
((Section 6.8??)). Permutation substitutions have inverses; in fact, w is a per-
mutation substitution if and only if there is a permutation substitution ir- such
that

- - { }.

Property (renaming)

In a theory, for any permutation substitution v,

a tableau containing an assertion [or goal] 7 with output entries
3 [or none]

is equivalent to

the tableau containing instead the assertion [or goal] 74 with
the output entries 14,K [or none]. ,

Justification (renaming)

Let I be any model for the theory in question, and let r be any permutation
substitution. We consider only the assertion case. Let T be the tableau with
the assertion I and output entries 1 [or none], and T' be the tableam, with the
assertion T'-ir and output entries 141r [or none] instead. By the renaming prop-
erty for basic tableaux, we know that T is true under I if and only if T' is true
under I.

Suppose the closed terms i suit T under I. Then they suit some row of
under I. If that row is not the assertion jr, then the row also occurs in T', so
the terms i also suit T' under 1.

Suppose the terms i suit the assertion I under I. Then for some suiting
substitution A, we have the truth condition,

.4A is closed and false underI,

and the. output condition,

the instances 1 . A of the output entries [if any] are closed
and have the same values, respectively, as i.under 1.

24 CHAPTER 14: PROGRAM SYNTHESIS

Suppose r- ' is the inverse of ir. Then w 0 r-' { } ((out??)) ((mentioned
earlier?)), and we have (by properties of substitutions)

jr.A=(7s)..A (vs r-w))A -4 W(4) 41 1) 4A

and, if there are output entries i,

74A I A ((4(r)-)))4A

Consequently (by the truth and output conditions),

(I ow) - (w-- C A) is closed and false under I

and

(l4w) 4(w- I [IA) are closed and have the same values, respectively,
as i under I.

In other words, the terms 1 suit the assertion I -* ir, with suiting substitution
Qr- Q A, and therefore suit the tableau itself.

Similarly, we can show that, if closed terms i suit T' under I, they also suit
T under I. ((exercise??)). Hence T and T' are equivalnt. j

INSTANTIATION

The inatantishou property states that we may add to the tableau any instance
of any of its rows, obtaining an equivalent tableau.

Property (instaniatlo-)

In a theory, for any substitution 0,

a'tableanu conaining an assertion (or goal] I with output entries

I for none]

is equivalent to

- the tableau containing in addition the assertion for goal] 1"4 0
with the outputentries 1 0 [or none].

14.3 PROPEE.rIES OF EXTENDED TABLEAUX 25

Note that, in the dsality and rena.ning properties, we replaced one row with
another; in this instantiation property, we add a new row but do not remove the
original one. ((The justification is left as an exercise?))

Justification (instantiation)

Let I be any model for the theory in question, and let 0 be any substitution.
We consider only the assertion case.

Let T be a tableau with the assertion I and output entries W [or none], and
T' be the tableau with the assertion 9 40 and output entries W49 [or none] in
addition. By the iustantiation property for basic tableaux, we know that 7 is
true under I if and only if T' is true under 1.

Suppose that the closed terms i suit T under 1. Since every row in T is also
in T', we know that i also suit T' under .

Suppose, on the other hand, that the closed terms i suit T' under 1. Then
they suit some row of T' under 1. If that row is not the assertion 7'40, then the
row also occurs in 7', so the terms i also suit T under ..

Suppose the terms t suit the assertion Tr- 9 in T' under ". Thei, for some

suiting substitution A, we have the truth condition,

(74e*) 4A, that is, I 9o(0{[1A), is closed and false under I,

and the output condition,

the terms (9-40) A = W 4(0 A A) are closed and have the same values,
respectively, as i under 1.

Hence the terms i suit the assertion I in 7, with suiting substitution 9] A, and
therefore suit the tableau T itself.

Hence T and T' are equivalent. J

VALID ASSERTION

The valid-assertion property states that we may add any valid assertion to a
tableau, obtaining an equivalent tableau.

26 CHAPTER 14: PROGRAM SYNTHESIS

Property (valid assertion)

In any theory, for any valid sentence A,

a tableau T
is equivalent to

the tableau T' obtained from 7 by adding the assertion A.

Justiflcation (valid assertion)

((easy? exercise))

Let I be any model fot the theory in question. That T is true under I
precisely when T' is true under I follows from properties of basic tableaux.

Suppose the closed terms i suit T under I. Since every row of T is also a
row of T', we know that i also suit T' under I.

Suppose, on the other hand, that the closed terms i suit T' under I. Then
they suit some row of T' under I. That row cannot be the assertion A, because,
as mentioned in a previous remark, no terms can suit a valid assertion of the
theory; therefore i must suit one of the original rows of T. That is, 1 suit T
under I.

OUTPUT ENTRY

The output entry property is the one we use to relate the output entries of tableaux
with the specifications of programs.

Property (output entry)

In may theory, if the closed terms i[N] satisfy a tableau

amertions goal 7(a)

R[NI'; 7]

where I are new constants and 1 are the only free variables in 1[4; z,
then the sentence

(V)R [T; [41

14.3 PROPERTIES OF EXTENDED TABLEAUX 27

is valid in the theory.

Let us illustrate the property.

Example (output entry property)

In the theory of trees, suppose we establish that the closed term a, * a2 suits
6he tableau

assertions goals tr(al, a2)

a, = left (z) and a2 = rilght (z) z

Then, by the output entryj property, we know that the sentence

(V z 1 , Z2)[XI = le0 (21 *22) and Z2 = right (z, I22)]

is valid in the theory of trees.

Justification (output entry)

Suppose that the closed terms i[a] satisfy the above tableau. To show that
(V-)R[; i[]] is valid (in the theory), it suffices (by the universal quantifier-
dhmanation proposition) to show that

P [a; ?[rI]
is valid, since d are new constants. Consider an arbitrary model 1; we show that

(*) R[d; i[a-I] is true under I.

Because iEa] satisfy the above tableau, they suit the sole row of the tableau
under .. In other words, for some suiting substitution A, we have the truth
condition,

Rt A;]4A is closed and true under !,

and the output condition

7 A are closed and have the same values, respectively,
as i(41 under I.

Because T are all the free variables of 1[a; -', this means that

[5;,74A] is true under 1,

28 CHAPTER 14: PROGRAM SYNTHESIS

or, equivalently (by the output condition),

Z[a; [a]] is true under .1.

But this is the condition (*) we wanted to show. a

((example))

Now that we have established the properties of extended deductive tableaux,
we are ready to show how tableaux may be used for program derivation.

14.4 THE DERIVATION PROCESS

Let us review the problem of program derivation. We are given a specification

Q[X; 1

i;, a theory, with input sorts obj, and we would like to derive a program

7(y) = iy

that satisfies this specification. In oth, r words, we want to find terms ify1 such

that the correctness condition

if (V ohi) [7(y) = m

then (v bj)Q[x; 7(y)]
is valid in the theory.

THE INITIAL TABLEAU

Our approach is to prove the theorem

(V ohj Y)(3 F)Q[i; f1
and obtain the terms i[F] as a byproduct of the proof process.

This sentence is an abbreviation (using the relative quantifier notation) for

then (3 z)[Q[i;i1].

14.4 THE DERIVATION PROCESS 29

We shall actually establish the skolemized form of this sentence,

Q*.[-a; T1: if bj()

then Q[-; Y],

where F =- al,a2, ... , m are "new" constants, i.e., constants that do not already

occur in the vocabulary of the theory.

At the same time, we shall derive the desired terms Ifa-1 using the output
columns of the tableau. For this purpose, we establish the validity of a particular
"initial tableau."

Definition (initial tableast)

For a given specificatiori Q[; zJ in a theory, with input sorts obj, an

initial tableau is as follows:

assertions goals

if obj(z5) r
then Q[i;Tz]

The skolem coustants 6 arc called the input constants. Note that this
tableau has n output columns, one for each output variable T, z,,

An initial tableau may also contain as assertions any valid sentences of

lh I heory in question, without output entries. l

'Tl[initial tableau has an important property, expressed in the following
result.

Proposition (initial tableau)

In any tlieory,

if the closed terus i(f] satisfy the initial tableau for a specification,
then the programi f(y) = t71 satisfies the specification. l

30 CHAPTER 14: PROGRAM SYNTHESIS

Proof

Assume that, in a theory, the closed terms t[a] satisfy the initial tableau
for the specification Qf[;7], with input sorts bj. We show that the correctness
condition

if (V bi -) ri(o) rEI]

then (V Y j)Q(-, 7(y))

is valid in the theory.

Assume that (under a given model)

(*)b -9) [f(T) = t[]

is true. We show that then

is also true.

It suffices, by our assumption (*), to show that

(V -j)Q [-; i],

that is (expanding the relativized quantifier),

1

is true. By the output entry property, to show that the above sentence is actually

valid, it suffices that the closed terms t[N] satisfy the tableau

assertions goals f(0)

if obj()
then Q[i; Z]

The valid-asertion property allows us to add any valid sentences of the theory to
this tableau as assertions, without changing the satisfying terms. In other words,
it suffices that the closed terms i[] that satisfy the initial tableau, as we have
assumed.

14.4 THE DERIVATION PROCESS 31

Example (flattreel)

In our example of program transformation (Section ??), we specified the
program flattreel , which computes the flattree function, with the sentence

21(x; z]: z= flattree(z)

in a combined theory of trees and strings, where the input sort is tree.

The initial tableau is thus

assertions goals flattreel(a)

if tree(a) I
then z = flattree (a) I

Properties of the combined theory of trees and strings may be included in the
initial tableau as assertions.

PRIMITIVE EXPRESSIONS

We have mentioned that some symbols are "primitive"; they denote objects, func-
tions, or relations we know how to compute. Other symbols, such as quantifiers
and some skolem functions, are "nonprimitive"; we do not know how to compute
what they denote. We shall assume that at the beginning of each derivation we
are given a list of primitive constant, function, and predicate symbols, called the
primitive list. Typically this list shall include the truth symbols true and false, the
propositional connectives, the term constructor if-then-else, the basic constant,
function, and predicate symbols of the theory, and any symbols that have been
defined by computationally suggestive axioms. In addition, %e may include in the
primitive list any function symbols for which we have already derived programs.

We may now define a primitive expression as follows:

We define an expression e to be primitive in a given initial tableau, if each
symbol that occurs in e is a variable, an element of the primitive list, or one of
the input constants U. For example, for the flattree2 derivation, the term

if atom (a,) then a * a2 else z

is primitive.

3T
2

CHAPTER 14: PROGRAM SYNTHESIS

INTERMEDIIATE TABLEAUX

When we are establishing the validity of a basic tableau, we apply deduction
rules that add new rows but preserve validity, until we obtain the final assertion
false or the final goal true. In deriving a program, we apply deduction rules to
an extended tableau. In addition to maintaining the validity of the tableau, the
extended rules will "maintain the satisfying terms' of the tableau. In other words,
a closed term will satisfy the new tableau if and only if it satisfies the old tableau.
When we obtain the final assertion false or the final goal true, its output entries
will provide the final program, as we shall see.

The tableaux we develop all have a property expressed as follows.

Proposition (intermediate tableau)

In a theory, at each stage in the derivation of a program from a specifi-
cation, the following property holds:

if the closed terms !(a] satisfy the tableau,
then the program f(Y) = i[-] satisfies the specification. j

Proof

To establish that the desired property holds at each stage of the derivation,
we show that .

(t) the property holds for the initial tableau

and

(?) if the property holds for the tableau before application of a
deduction rule, it also holds afterwards

That (t) is true is exactly the content of the initial-tableau proposition, that
if the closed terms i[-] satisfy the initial tableau (in the theory), then the program
f() = i[] satisfies the specification.

To show (t), we assume that

(*) the property holds for the tableau T before application of a deduction rule,

and show that then the property holds for the tableau 7' after application of the
rule. For this purpose, we suppose that

(**) the closed terms i[3] satisfy the tableau T'

I

14.4 THE DERIVATION PROCESS 33

and show that then the program 7(x) = [-] satisfies the specification.

Because the deduction rules maintain satisfying terms, we know, by our sup-
position (**), that i[a] also satisfy the tableau T. But then, by our assumption
(*), the program 7(7)= 1[7] satisfies our specification, as we wanted to show. J

THE FINAL TABLEAU

In a later section, we shall adapt each of our rules to apply to extended tableaux,
in such a way that an extended justification condition will hold. The rules add
new rows to the tableau, but the set of satisfying terms is the same at each stage.
The deductive process continues until we obtain the final assertion

Ifalse

or the final goal

true]

where we require that the terms ?[a] be primitive. These terms are not necessarily
closed. Let 1ri] be obtained from t[] by replacing all the variables with primitive
constants, it does not matter which. At this point, we extract the fiaal program

7(i') = [.

Remark

If the terms ?[a] are not primitive, we must continue the derivation until
a final row goal true assertion false with primitive output entries is obtained.
In fact, even if the ?[a] are primitive, we may continue the derivation, perhaps
to obtain a final row with different output entries, and hence a different final
program. J

That the final program is indeed satisfactory is established as follows:

Proposition (final tableau)

The final program 7(7) = i[!] satisfies the specification Q[z; -1 in the
theory. ,

-A

34 CHAPTER 14: PROGRAM SYNTHESIS

Proof

By the intermediate-tableas proposition, it suffices to show that the closed
terms i[] satisfy the tableau in the theory. Let I be any model for the theory;
it suffices to show that ifa1 suit the tableau under 1. We actually show that -]
suit the final row.

We have taken I[-a to be closed instances of the output entries i[] of the
final row. That is, i[a] are (r [a]) .s A, for sone substitution A. Let us take our
suiting substitution to be A. To show the truth condition, we must show that
the sentence false . A, that is, false, is closed and false under I [or the sentence
true -. A', that is true, is closed and true under I]; but this is clearly the case.

To show the output condition, we must show that the instances (ia]) ,A are
closed and have the same values, respectively, as 43-] under I; but in fact these
terms are respectively identical.

Even before we describe the extension of the deduction rules, we illustrate
the derivation process with a simple example.

Example (sax)

In the famiy theory, suppose that all people are either male or female, that
is,

(V person u)[sez (u, male) or se (u, female)] (sex)

Suppose we would like to construct a program s(x) = t[z] to find the sex of a
given person, that is, to meet the specification

1[; z]: sex (Z, z),

where the input sort is person.

From the specification, we form the initial tableau

assertions goals (a)

Gl. if person(a)
then sex(a, z)

We assume that the constants male and female and the predicate symbol set are
all primitive. We include the sex axiom as an assertion:

14.5 RECURSIVE PROGRAMS 35

if person (u)
*heasex (u, male) or sex (u, female)

By the initial-tableau proposition, we know that, if any closed term t[a]
satisfies the above tableau in the family theory, the program s(z) = t[:] must
meet the specification.

By applying some extended deduction rules, we shall be able to obtain the
goal row

G2. not sex (a, female) male

By the intermediate-tableau proposition, we know that if any closed term tfa]
satisfies the new tableau in the family theory, the program s(z) = tfx] again must
meet the specification.

By applying another extended deduction rule, we shall be able to obtain the
final goal row

if sex (a, female)
G3. true then female

I I else male

The conditional term (if sex (a, female) then female else male) is primitive
and contains no variables. Therefore, we may stop the derivation process and
derive the program

if sex (Z, female)
s(z) then female

I else male

By the final-tableau proposition, we know that this program must meet the spec-
ification.

14.5 RECURSIVE PROGRAMS

Some special treatment is necessary to derive recursive programs 7() = 11), in
which the function symbols 7 may occur in the terms (iff. Such programs are
obtained by using the well-founded induction principle in the derivation.

36 CHAPTER 14: PROGRAM SYNTHESIS

We derive a program to satisfy the specification Qr; T] by proving a theorem
(V o 'f)(3)[; -i. If we remove the outer quantifiers of this theorem in
forming the initial tableau, we cannot complete the proof by induction on any
of the variables Y. If instead we leave the quantifiers in place and invoke the
induction principle before forming the initial tableau, we shall be able to obtain
a recursive program.

The induction will be with respect to a well-founded relation over m-tuples
of sort obj. (See Section ??).

Definition (initial tableau, recursive)

In any theory, for a given specification Q[H; 7] with input sorts obj and
for a given relation -< well-founded over m-tuples of sort obj, an initial
tableau for deriving a recursive program is as follows:

goals 7(a)

if obj(5)

then if (V oh, H) 1Lthen Q ; A()j

then ON; I

Here 3 a,, . . , a. we new constants. The function symbols 7 are
included in the primitive list. Any valid sentences of the theory may be
included in the tableau as assertions, without output entries.

Example (flattree2)

In a combined theory of trees and strings, the specification for the program
flattree2, which flattens a tree and concatenates it with a list, is

02[ZI, X2 ; z] : z = flatre (z,), z 2 ,

with" input sorts tree and string. To construct a recursive program from this
specification, with a well-founded relation -< over 2-tuples of trees and strings, we
form the initial tableau

14.5 RECURSIVE PROGRAMS 37

goals

if tree(a1) and string(a 2)
(V tree .U,) if (ul, U2) -< (a,, a2) 1

then if * I ' then flattree2(u,, u2)
(V string u2) I = flattree (ul) * U2I

then z = flattree (a,) * a2

Properties of the combined theory of trees and strings, may be included in
the initial tableau as additional assertions.

The initial tableau for recursive programs may be shown to have the desired
property.

Proposition (initial tableau for recursive programs)

In any theory,

if the closed terms ![U] satisfy the (recursive) initial tableau
for a specification Q0[; T] with input sorts -j,

and if -< is well-founded over m-tuples of sort obj, -

then the program 7(9) = t[] satisfies the specification. J

Proof

To show that the program 7(y) = i[f] satisfies the specification, we establish
the validity of the correctness condition

if (V 1)() =1

then (V 7b" F)Q[F;7(Y)]

in the theory.

Under a given model for the theory, we assume that

(, (o-j Y) V () = [1]

is true and show that then

(V true.

is aso true.

38 CHAPTER 14: PROGRAM SYNTHESIS

By the well-founded induction principle over m-tuples of sort obj, it is enough
to show the inductive step

F'f (.U < M-)
(V 7b- 00) if(T 9 ikn]-;0

Lthen o rz;7(--)] J

It suffices, by our assumption (*), to show that

[then ;1[--,i[
or, expanding the outermost relativised quantifier,

[then the Q [!]
; j

(V)lc f(U then 12V; 7(1i)J

is true.

By the output entry property, to show that the above sentence is actually
valid, it suffices to find closed terms i[N] that satisfy the tableau

7agoals)

then if (v - 9 i (U) -< (a)
T

[then Q [-U; 7()1
then Qfi;i]j______

The valid-assertion property allows us to add as assertions to this tableau any
valid sentences of the theory, without changing the satisfying terms. Thus, it
suffices that the closed terms i[a] satisfy the (recursive) initial tableau, as we
have assumed.

Remark (one input case)

((MB: too trivial to be mentioned; OUT))

14.6 THE DEDUCTION RULES 39

In the special case in which there is only one input object (i.e., m = 1),
we have no need to use well-founded induction over tuples of sort obj; we may
use well-founded induction over individuals of sort obj 1, that is, obj, instead.
(Recall that in this case we drop the subscripts from the input symbols.) For the
specification Q[x; 1, we take our (recursive) initial tableau to be

goals 7(a)

if obj(a)

then if (V ob'j u) [then]
then Q[a; 1

where -< is well-founded over obj.

By the same argument as for the general case, we may show that if the closed
terms i[a] satisfy this tableau (with optional valid sentences of the theory added
assertions), then the program 7(z) = i[z] satisfies the specification. j

14.6 THE DEDUCTION RULES

We are now ready to adapt the deduction rules of our system to apply to extended
tableaux. Each rule will introduce new output entries as well as assertions or goals
and will maintain satisfying terms as well as validity.

JUSTIFICATION PROPOSITION

Each deduction rule requires that certain rows (the "required rows") already be
present in the tableau and generates certain new rows (the "generated rows") to
be introduced into the tableau. For each deduction rule we require an extended
justfication condition which consists of the original justification condition, which
guarantees that the rule maintains validity, plus a new condition, which guaran-
tees that the rule maintains satisfying terms.

Proposition (justification)

A deduction rule maintains the terms satisfying a tableau to which it is
applied if the following jusification condition for satisfying terms holds:

40 CHAPTER 14: PROGRAM SYNTHESIS

For any model I for the theory and for any closed terms t,

if t suit any of the generated rows under I
then i suit at least one of the required rows under 1.

Proof

Assume that the justification condition for satisfying terms holds; we would
like to show that the deduction rule maintains satisfying terms.

Consider arbitrary closed terms i. We show that, in the theory, the terms
satisfy the given tableau T if and only if they satisfy the new tableau 7'.

In one direction, the proof does not require the justification condition at all.
Suppose that the terms i satisfy the original tableau T in the theory. Let I
be any model for the theory, then i suit some row of 7 under I. But because
deduction rules do not delete rows, every row of T is also a row of T'. So i suit
some row of ', that is, i suit T' under T. Hence i satisfy the new tableau T',
as we wanted to show.

For the other direction, suppose that the terms i satisfy the new tableau T'.
We would like to show that then i satisfy the original tableau T. Let I be any
model for the theory; then it suffices to show that i suit T under 1.

Because the terms i satisfy T' in the theory, i suit some row of T' under I.
If this tow was already a row of T, then t suit 7 under 1, as we wanted to show.
Otherwieb, the row must have been generated by the deduction rule. In this case
(by the justification condition for satisfying terms), i must suit at least one of the
required rows, which must appear in T. Hence i suit T under 1, as we wanted
to show.

SIMPLIFICATION

Any sentence or term introduced into a tableau is automatically subjected to a
simplification process, in which certain subsentences are replaced by equivalent
but simpler sentences, and certain subterms are replaced by equal but simpler
ternis. For extended tableaux, simplification is applied to the output entries as
well as the assertions and goals. Simplification is not regarded as a separate rule;
we apply it automatically whenever we add a new row to a tableau.

14.6 THE DEDUCTION RULES 41

Example

Suppose that the following row is to be added to a tableau:

assertions goals f(a)

if p(z)
p(r) and p(z) then a

else a

The goal of this row would automatically be simplified to p(z), by application of
the simplification

(.7 and 7)= '.

Also, the output entry would be simplified to a, by application of the simplification
((do we simplify terms))

(if I then s else s) -, s.

The entire row would thus be simplified to

A-z) a

Simplification is easily justified because we always replace a subsentence by
an equivalent sentence or a subterm by an equal term. In particular, the satisfying
terms are maintained.

SPLITTING RULES

The splitting rules break rows down into their logical components. The extended
rules are ver) similar to the basic splitting rules. The output entries of the
generated rows are the same as those of the required rows. We present all three
splitting rules in tableau notation.

. And-split rule

42 CHAPTER 14: PROGRAM SYNTHESIS

assertions goals

A1 and A2

*Or-split ride

assertions goals 7i

F7!191 Or 92

*If-split ride

assertions goals 7a

if A then 9

A

93

In each rule, there are n output columns, containing the output entries =

Rensaik

In deriving a nonrecursive program from a specification Q11, 1z, we formed

the initial tableau

asrtions goals70

if bj(a

then Q(J;J]

By application of the if-split rule, we may decompose this row into an assertion

and a goal

14.6 THE DEDUCTION RULES 43

I[I

Because the output entries T do not occur free in the assertion, they may be
dropped; of course, the output entries for the goal must remain.

We shall automatically apply the if-split rule to the initial tableau. In fact,
we shall henceforth regard the initial tableau to be the resulting assertion and
goal, that is,

assertions goals Al)
obi(f)

V[; Z]1

Similarly, in deriving a recursive program from a specification Q[i; zl, we
took the initial tableau to be

goals O()

if obj([d)
then if (V o b U) if N) T

[then Q[i; (a)]]

then Qfa; 71I______

By application of the if-split rule, we may decompose this row to obtain an
assertion and a goal

assertions goals AN)

then QQ; F]

By a second application of the if-split rule, we may decompose the goal further,
to obtain

44 CHAPTER 14: PROGRAM SYNTHESIS

tVoi~jhen 121Ia; 7(-g)]J
[a-; T•

The new assertion corresponds to the induction hypothesis, and the new goal
to the derived conclusion, for the inductive step of a proof. Again, because the
output entries 7 do not occur free in the assertions, the output entries for these
rows may be dropped.

We shall automatically apply the if-split rule to the initial tableau for a
recursive program; in fact, we shall henceforth regard the following three rows as
the initial tableau:

sertions goals 7(u)

Example (initial tableaux after splitting) ((necessary? MB))

For the flattreeI program, which flattens a tree, the specification is

Q z; z]: z = flatree (z),

with input sort free. To construct a (nonrecursive) program to meet this specifi-
cation, we form the initial tableau

assertions goals flautreel(a)

free (a)

S= flUttree (z) z

As usual, valid sentences of the theory may be included as additional assertions.
((out?? MB))

14.6 THE DEDUCTION RULES 45

For the flaitree2 program, which flattens a tree and concatenates the result

with another string, the specification is

[z, X2 ; z] : z = flattree (z) * z2 ,

with input sorts tree and string.. To construct a recursive program to meet this
specification, we form the initial tableau

assertions goals' flattree2(aa 2)

tree(al) and string(a2)

(V tree u,) rif (uI,u 2) -< (aa)]
I then flattree2(u ,u 2)

(V string U2) L flttree (ul) * u21

z = flattree (al) *as z

Again, valid sentences of the theory may be included as additional assertions. ((
out?? MB)) J

We shall justify only the if-split rule.

Justification (if-split rule)

We would like to establish that the justification conditions hold for the if.split
rule. The justification condition for validity was established when we introduced
the rule for basic tableaux. We need only show the justification condition for
satisfying terms.

Let .7 be a model for the theory in question and let 1 be closed terms that
suit one of the generated rows under 1". We would like to show that i suit the
required goal (if A then 9) under ..

If the terms 1 suit the generated assertion A under 1, then for some suiting
substitution A, we have the truth condition,

A A is closed and false under 1,

and the output condition,

14A are closed and have the same values, respectively, as i under ".

Suppose u., uk are the free variables of .4A and letA = {ui ,-a, uk-a),
where a is any constant. We claim that, as we wanted to show, the terms i suit

46 CHAPTER 14: PROGRAM SYNTHESIS

the goal (if A then 9), with suiting substitution A 13. The truth condition
holds, that is,

(if A then 9)-(Ao-X) = if (A-A)-qX then (9-4A)-

= if A-A then (9.,A)4-
(because A 4 A is closed)

is closed and true under I (since A -*A is false under I),

and the output condition holds, that is,

14(AIJA) = A)

= 54A,

(because T -4 A are closed)
are closed and have the same values, respectively, as i under I.

Similarly, if the terms i suit the generated goal 9 under I, with suiting
substitution A, we can construct a substitution X such that i suit the required

goal (if A then 9), with suiting substitution An A.

THE RESOLUTION RULE

The resolution rule allows us to perform a case analysis on the truth of a sub-
sentence. In extending the rule, the output entries for the generated row are, in
general, .conditional terms.

Let us write the rule in tableau notation.

Rule (AA-resolution)

assertions goals 7(a)

Ai1

A2

(A, -40)4 {P -*0 - false} if P40
or then 1 49

-(A2 40){ '40-true else 149o
.a

14.6 THE DEDUCTION RULES 47

((informal notation?))

The notation and requirements for the rule and the new assertion introduced are
the same as for the rule without output entries.

The new output entries are conditional terms, each of whose if -clauses is the
unified subsentence P .,O, and whose then- and else-clauses are the corresponding
instances t-oO and W40, respectively, of the output entries l and i for the required$rows. In other words,

if P-40 then i-4O else "-40

is an abbreviation for the n terms

if P40 if P 49a if P-40
then t .49 then 240 ... then tn, '0
else s, -40 else 82 'dO else s. -49.

As usual, by duality, the rule can be applied to two goals or to an assertion and
a goal; the output entries are the same as for the AA version -of the rule. The
polarity strategy is as before. In the case in which one (or both) of the two
required rows has no output entries, the row is treated as if it has output entries

U1, U2, ..., un, where none of the variables uj occur free in the row.

We first look at an example that does not require unification.

Example (no unification)

Suppose we have the two rows

assertions goals rh (a,, a2) nrh (a,, a2)-

not a, () 02

ed -(-2) a2 a3

The boxed subsentences of the two goals are identical, and hence unifiable with
most-general unifier I). Therefore we may apply the resolution rule to obtain

not false if rtd.a2l) if red(a2)
and then a2 then as

true else a, else a2

which is automatically simplified to

48 CHAPTER 14: PROGRAM SYNTHESIS

f red (a2) if red (a2)
true then a2 then a I

else a, else a2

The output entries are conditional terms each of whose ifclause is the unified
subsentence red (a2). The then-terms and else-terms are the output entries of the
given rows (in reverse order). j

Now let us see an example in which a unifier is necessary to create common
subsentences in the goals.

Example (with unification)

((Ins. unclear here - eed???)) In a derivation for the sex program s(z), we
obtain the two rows

assertions goals s(a)

no s . (a, female) I m ale

The boxed subsentences of the two goals are unifiable, with most-general unifier
{z - female). Therefore, we may apply the resolution rule to obtain

.t false if sex (a, femae)
and then female

true else male

which is automatically simplified to

I if sex (a,female)
true then female

else male

Note that the most-general unifier has been applied to the output entries as well
as the goals.

Now let us see an example in which one of the given rows has no output
entry.

14.6 THE DEDUCTION RULES 49

Example (one output entry)

Suppose we have the rows

assertions goals s(a)

sex (a, z) z

sex (u, mate) or sex (u,female)

Note that the second initial assertion has no output entry. We may therefore
treat it as if it had the new variable ul as its output entry.

FT- (u,mae) - or sex (u,female) U1

The boxed subsentence of this assertion is unifiable with the goal

z

A most-general unifier is {u - a, z - malej. Therefore, we may apply the
resolution rule to obtain

not (false or sex (a,female)) I if sex (a, male)

{ and then male

____ true else u1

which is automatically simplified to

I if sex (a, male)
not sex (a, female) then male

else ul

Remark \

Suppose we apply the resolution rule to two rows whose ith output entries
s, and ti become identical after the unifying substitution 0 is applied, that is, the
terms si 40 and ti 4G are identical. Then the ith output entry of the generated
row, (if P 40 then t .4 0 else s* .40), is automatically simplified to si 40, by

50 CHAPTER I: PROGRAM SYNTHLSIS

application of the simplification

(if T then s else s) =* s.

Suppose in applying the resolution rule we generate output entries of form

(if I then u else s) or (if F then s else u),

where u is a variable that does not occur free elsewhere in the row. This oc-
curs when we apply the rule to a row without output entries. Then we shall
automatically replace those output entries with 8.

To justify this, observe that, by the instantiation property, we may apply the
substitution A: {u - s to the generated row. This transforms the output entries
into (if F then a else a) and has no effect on the remainder of the row. We may
then simplify the output entries, obtaining s.

In particular, in applying the resolution rule to rows that do not both have
output entries, we do not actually introduce conditional terms into the output
columns. If only one of the rows has output entries 1, the generated row has
output entries 040, where 0 is the unifying substitution.

Example

In the previous example, we have obtained the row

assertions goals s(a)

if se (a, male)

not sex (a, female) fhen male

else ul

Note that the variable ul in the output entry does not occur elsewhere in the row.
In accordance with the preceding remark, we can replace the output entry of this
row with male, to obtain

3. not set (a, female) male

J

Remw-k (no output case)

Suppose we are applying the resolution rule to two rows, both of which have
no output entries. We treat each row as if it had as its output entries the new

14.6 THE DEDUCTION RULES 51

variables U and V. The rule will then produce a row whose output entries are of
form (if P -4 0 then V else U). These output entries are automatically replaced
by the output entries U, in accordance with our previous remark. The variables
-, being new, do not occur in the newly generated row. For this reason, the new
row will be treated as if it had no output entries.

In short, if the resolution rule is applied to two rows without output entries,
the resulting row has no output entries either.

Let us now justify our adaptation of the resolution rule to extended tableaux.

Justification (extended resolution rule)

We consider only the AA-iorm of the rule and show that the justification
conditions hold. The justification condition for validity was established when we
introduced the basic resolution rule.

To show the justification condition for satisfying terms, letI be a model for
the theory and let F be closed terms that suit the generated assertion under 2.
We would like to show that then F suit one of the required assertions under 1.

Because the terms V suit the generated assertion under 1, we have, for some
suiting substitution A, the truth condition,

[(A, -,0)-{P -0 - falseI or (A2-),P -4 0 - true)]
is closed and false under 1,

and the output condition,

the terms (if P.a6 then 146 else -40) A4) are closed and have the
same values, respectively, as F under 2'.

Consequently (by properties of substitutions), we have

() [At -4(0o A)] 4.P .4(oA) - false)
is closed and false under 1,

[A2 4(90 A)] .4{P-4(OoA) - true)

is closed and false under 1,

((clarify these last two steps earlier))

and

(t) the terms if P-o(0oA) then 14(0oA) else (04(oA)
are closed and have the same values, respectively, as F under 1.

52 CHAPTER 14: PROGRAM SYNTHESIS

We distinguish between two cases.

Case: P a(oA) is false under 1.

We claim that then the terms F suit the required assertion A1 with suiting
substitution 0 a A. To show this, we must show the appropriate truth and output
conditions.

In this case, P 4(OoA) and false have the same truth-value under I. Because

[A -4(90A)] -{P -4(O0A) -false} is false under I (by (t)), it foUows (by the
value property) that the closed ((why?)) sentence A, 4(oA) is false under I,
that is, the truth condition holds.

((use value property in previous proofs)

Also, because in this case P 4(0 oA) is false under 1, it follows (from (t))
that thp closed terms i 4 (0 E3 A) have the same values, respectively, as f under 1,
that is, the output condition also holds.

Case: P 4 (0 o A) is true under I.

This case is symmetric to the previous case. We show that the terms f suit
the required assertion A2 with suiting substitution 0 0A.

THE EQUIVALENCE RULE

The equivalence rule allows us to replace a subsentence of the tableau with an
equivalent sentence. For extended tableaux, we may replace subsentences of the
output entries as well as the assertions and goals. The output entries for the
generated row are, in general, conditional terms. Let us write the rule in tableau
form.

Rule (AA-equivalence, left to right)

assertions

A1

A2

(A e) -{(P -) -false) if (P-)4,
Aor then (.4)-4{P., - Q40-

(A2 4,) P.O ,- O) else 1.4o

14.6 THE DEDUCTION RULES 53

and -0 not as in Vol. 1 p. 43))

Note that the substitution 9 may unify occurrences of subsentences in the
output entries 1 as well as in the assertion A2 and these occurrences may be unified
by the rule. (An output entry may have subsentences if it contains a conditional
term.) A right-to-left version of the rule allows us to replace occurrences of Q .'0
with P 4 0.

We have presented the rule as it applies to two assertions. As usual, by
duality, we may also apply the rule to an assertion and a goal, or to two goals, and
obtain conditional output entries in each case. As was the case for the resolution
rule, if one of the two given rows has no output entries, the conditional is not
introduced into the output entries for the generated row. If both given rows have
no output entries, the generated rows have no output entries either. The polarity
strategy applies as usual.

Example (equivalence rule)

Suppose our tableau contains the two rows

assertions goals f(a)

FP =(, q()] g(X)

EKE, then z

else y

The boxed subsentences of the two rows are unifiable, with a most-general unifier

{f b, y -a, z -b).

We may apply the AA-equivalence rule to obtain

_I p(b, a) = q(b)
false then if q(b)

or then b

q(b) else a
else g(b)

54 CHAPTER 14: PROGRAM SYNTHESIS

or, after true-false simplilication,

if p(b, a) - q(b)
then if q(b)

q(b) then b
else a

ele Y(b)

Here we have replaced an occurrence of p(b, a) with q(b) in the output entry as well
as in the assertion. It would also have been legal for us to make a replacement
in the assertion but not the output entry, or in the output entry but not the
assertion. The unifiers would have been different in each case.

The justification for the extended equivalence rule is analogous to that for
the extended resolution rule. ((exercise!))

Justification (extended equiwalence rule)

We consider only the AA, left-to-right version of the rule and show that the
justification conditions hold. The justiication condition for validity was estab-
lished when we introduced the basic equivalence rule.

To show the justification condition for satisfying terms, let I be a model for
the theory and F be closed terms that suit the generated assertion under 1. We
would like to show that then F suit one of the required assertions under I.

Because the terms i suit the generated assertion under I, we know that, for
some suiting substitution A, we have the truth condition,

I (A, -6) 41(P =-Q)--0 - false)

(A2.4) {P 0 - Q 04} 3
is closed and false under 1,

and the output condition

the terms

if (P-0)-4 0
then (I49).4{P460 Q4- o 'A

else T40

are closed and have the same values, respectively, as F under 1.

14.6 THE DEDUCTION RULES 55

Con' quently (by properties of substitutions ((??))), we have ((small box? check
subst. chapter))

(.) [A-4(0oA)] 4{(P -(0oo)_ -4(o0.)) -fase)
is closed and false under 1,

(t) [A2 (0oA)] I{P- (eoA) -Q-(eoA)}
is closed and false under I,

and

the terms
if P -(0O3) - (o0)

(t) then [b.(6oA)] {P s(oA) - Q.(GoA)}
else 3'.(0oA)
are closed and have the same values, respectively, as under 1.

We distinguish between two cases,

Case: (P 4(0a,) = Q 4(OoA)) is false under I.

We claim that then the terms T suit the required assertion At with suiting
substitution 0 o A. To show this, we establish the appropriate truth and output
conditions.

In this case, (P 4(OoA) Q- 0 .(eoA)) and false have the same truth-value

under I. Because [Ai- (OoA)] 4{(P--(OOA) = Q 4(OOtA)) -- false} is false under
I (by (*)), it follows (by the value property) that the closed ((why?)) sentence
At - (0 oA) is false under I, that is, the truth condition holds.

Also, because in this case (P *s(OoA) = Q.4(BoA)) is false under 1, it follows
(from (t)) that the closed terms 9 4 (0 o A) have the same values, respectively, as
f under I, that is, the output condition also holds.

Case: (P q(0o A) -_Q .(0oA)) is true under 7.

We claim that the terms F suit the required assertion A2 with suiting substi-
tution #a A. To show this, we again establish the appropriate truth and output
conditions.

In this case, P .4(OoA) and 4 (9o A) iave the same truth-value under I.
Because

[A2 4(0o A)] -{P -(0 o) - Q s(0oA))

is false under I (by (t)), it follows (by the value property) that the closed ((why?
)) sentence A2 4 (8 o) is false under 1, that is, the truth condition holds.

56 CHAPTER 14: PROGRAM SYNTHESIS

Also, because in this case (P -4 (0 0 A) =Q (0 o A)) is true under 1, it
follows (from (1)) that the closed terms

[t-(0oA)],a{P-(0A) .- Q4(OoA)}

have the same values, respectively, as F under I. Because in this case P .4(OoA)
and Q 4(0 o A) have the same truth-value under ', it follows that the closed ((
why?)} terms i4(9oA) have the same values, respectively, as f under 1, that is,
the output condition also holds.

J

THE EQUALITY RULE

The equality rule is analogous to the equivalence rule: it allows us to replace a
subterm of the tableau with an equal term. For tableaux with output columns,
we may replace subterms of the output entries as well as the assertions and goals.
The output entries for the generated row are, in general, conditional terms.

The rule allows us to omit the transitivity and symmetry axioms for equality
from our list of assertions; the reflezivity axiom u = u is retained.

Let us write the rule in tableau form.

Rule (AA-equality, left to right)

assertions 7(a)

A,

A2

(A1--0)-- {(p = q) -- false} if (p =q).-o
or then (.6).4p4O - q 4,}

(A 2 4)4{p'40- q O} else T40

((Here the symbols p and q stand for terms.)) A right-to-left version of the rule
allows us to replace occurrences of q 4O with p 40.

We have presented the rule as it applies to two assertions but, by duality, it
may be applied as well to two goals or to an assertion and a goA. As usual, if
only one of the rows has an output entry, the conditional is not introduced into

14.6 THE DEDUCTION RULES 57

the generated output entry; if neither row has output entries, the generated row
also has no output entry. The polarity strategy applies as before.

We omit the justification for the equality rule, since itis closely analogous
to that for the equivalence rule.

Example (equality rule)

Suppose our tableau contains the two rows

assertions goals

E+-=b
Z

The boxed subsentences of the two rows are unifiable, with a most-general
unifier

{x - a, z -0).

We may apply the AG-equality rule to obtain

not false I
and 0

a=b

which simplifies to

.=b 0

Note that because the assertion had no output entry, we did not introduce a
conditional into the generated row.

THE SKOLEMIZATION RULES

The universal and existential quantifier-elimination propositions are invoked in
forming the initial tableau, because we remove the quantifiers for the input and
output variables before the tableau is formed. Nevertheless, there may be other

58 CHAPTER 14: PROGRAM SYNTHESIS

quantifiers in the specification that must be removed once the derivation is un-
derway. For this purpose, we can apply the quantifier-elimination rules, which
allow us to remove quantifiers of strict force from the assertions and goals. The
output entries remain the same.

Rules (quantifier elimination)

assertions goals

A

A'

Here A' is obtained from A by dropping a quantifier of strict force,
either universal or existential, as in the basic V- and 3-elimination rules.
Precisely the same rules apply to goals. 3

Remark

In forming the initial tableau for a recursive program, we introduced into the
initial tableau the induction hypothesis

I then Q1u; 7(u)]J

which is an abbreviation of

[if ' -(u)1
(V -)3 thken if (-u) -< (a)

then Q[W; 7(U)J

The universal quantifier (V U) is of strict existential force, as indicated by its
annotation. Therefore, by the 3-elimination rule, we may drop this quantifier, to
obtain

if T6iI(0)
then if (U) -< (i)

then Q [U; 7PU)

14.7 REVIEW OF PROGRAM SYNTHESIS 59

In fact, whenever we want to construct a recursive program, we shall automatically
remove the quantifier and include the above row in our initial tableau.

THE INDUCTION RULE

The well-founded induction principle is used in forming the initial tableau for a
recursive program, in which we include the induction hypothesis among our initial
assertions. Nevertheless, we may wish to use the principle at subsequent stages of
the derivation. For this purpose, we can apply the usual induction rules, which,
extended, have no effect on the output entries. We present only the extended
well-founded induction rule.

Rule (well-founded induction)

assertions goals 7(a)

(V obj X)F[z]

obj (r) I

if obj(u)
then if u -<r

then F[u]

7(r)

Here the required goal is a closed sentence, obj is a unary predicate
symbol, -< is a well-founded relation over obi , and r is a new constant.

14.7 REVIEW OF PROGRAM SYNTHESIS

At this point we review our basic synthesis beforW presenting examples of the
derivations of specific programs.

In a chosen theory, we are given a specification Q[Y; 7], with input sorts obj,
where 7 and I are the input and output variables, respectively. We would like to

60 CHAPTER 14: PROGRAM SYNTHESIS

construct a program 7(7) = i[x] that satisfies this specification, in the sense that
the correctness condition

if (V J)[7bi) -[]]
then (V ob F)Q[x; 7(Y)]

is valid in the theory.

If we want to exclude recursive programs, we take the following initial tableau:

assertions goals 7(u)

Q[ad; Y]

We include n output columns, one for each output variable T = zj, z2 , Z.

If we want to allow recursive programs, we take the following initial tableau:

assertions goals f(i)

fbj(o)

if o bi (U)

then if (92) -< (5)
then Q[u; 7(u)]

Whether we allow recursive programs or not, we may include any valid sen-
tences of the theory as assertions of the tableau.

We include in the primitive list the function symbols 7 and any other symbols
that are permitted to occur in the final program.

To derive a program, we successively apply extended deduction rules to the
initial tableau. These rules add new rows to the tableau while maintaining validity
and satisfying terms. The derivation must continue until we obtain the final

assertion false or the final goal true, whose output entries 7'[] are all primitive
expressions. At this point, we may stop the derivation.

Let i[a] be obtained from 1[a] by replacing any variable with an arbitrary
primitive constant. Then the final program we obtain is

7(7) = []

14.7 REVIEW OF PROGRAM SYNTHESIS 61

We have shown that this program will satisfy the specification.

Even if we obtain a final row with primitive output entries, we may choose
to continue the derivation. If we again derive the final assertion false or the final
goal true, it may have different primitive output entries. In this case, we obtain
a different program meeting the same specification.

Once we have derived a program, we may use it in deriving other programs.
We extend our theory by introducing the new axiom

if obj (Y)
then 7(y) =

This axiom may be included as an assertion in the initial tableau for future

derivations. We may also include the assertion that the program does meet its
specification,

if obj(7)

then Q[Y; 7(y)]
By our correctness condition, this is a valid sentence of the extended theory.

Now that we have reviewed the derivation process, let us illustrate it with
the derivation of a program.

FULL EXAMPLE: REDHEAD

In this section, we present the full derivation of the redhead program; fragments of

this derivation have already been presented. In a family theory, for given persons
X1, x2 , and x3 , we are told that z is a parent of z 2, that z2 is a parent of x,
and that x, is redheaded but x3 is not (we are not told the hair color of x2). We
are asked to construct two programs, rh (xi, X2 , Z3) and nrh (xI, X2 , X3), to yield
two persons z, and z 2 , respectively, such that z1 is a parent of Z2 and that 21 iS
redheaded but z2 is not. In short, we are given the specification

if par (xi, Z2) and par (Xq2, X3) and
red (xi) and not red (X3).Q[X , X2r; Z , Z 21 : th en p ar (z , Z2) an d

red (zj) and not red(z2)

The input sort for each of the three inputs is pi-son. Here par and red are
primitive predicate symbols. In this theory, every element is of sort person. This
is expressed by the simplification

person(u) true.

62 CHAPTER 14: PROGRAM SYNTHESIS

(If we were dealing with a combined theory, we would not include this simplifica-
tion.)

We shall derive a nonrecursive program. ((capital heads, A, G numbers))

The initial tableau is:

assertions goals rh(a 1 ,a2,a3) nrh(al,a 2 ,as)

Al. person(al) and

person (a2) and
person (as)

G2. if par(al, a2) and par(a 2, a3) and
red (a) and ot red (a3)

thean Pa(zI, z2) and

red(zi) and not red(z 2)

Note that the initial assertion Al is immediately simplified to the trivial assertion
true. By the if-split rule, followed by the and-split rule:

A3. par(a1 , a)-

A4. par(a 2, as)

A5. red (a)

A6. not red(as)

G7. psr(zs, z2)1+ and ZI Z2

red(zi) and not red(z 2)

Note that the output entries zi and z2 have been dropped from the assertions,
because they have no occurrences of these variables.

By the resolution rule applied to A3 and G7, {z - a,, z 2 - a 2):

G8. re a) and net red (-2) 1a, a2

Note that no conditional terms were formed in the output entries, because only
one of the required goals has output entries.

14.7 REviEw OF PROGRAM SYNTHESIS 63

Recall

A5. rd(1

By the resolution rule { },

G9. not ied (42) a, a2

According to this row, in the case in which a 2 is red-headed, a, and a2 will be

suitable outputs for rh (a,, a2, as) and nrh (a, a2, as), respectively. Let us set

this row aside for a while.

Recall assertion A4 and goal G7:

A4. {,ar(a,, 03)]

G7. par(zt, +2) and

red(zi) and not red (z2)

By the resolution rule, {z -- a2, z2 - a3):

GlO. red(a 2) and -ot ae~s 3 0

Recall assertion A6:

A6. noren)

By the resolution rule, {

Gil. redIa2)i+ 0

Recall

G9. not e(=a2) a~ 2

By the resolution rule, {):

64 CHAPTER 14- PROG.AM SYNThESIS

if red (a2) if red (a2)

GIl. true then a2 then a3
else a, else a2

Note the conditional terms have been formed in the output entries, because both

required goals have distinct output entries.

We have derived the final goal true with primitive output entries. Therefore
we may stop the derivation and obtain a final program.

if red (Z2)

A (zi , Z3) = then z 2
Lelse zx

and
aif red (Z2)

nrh (xi, Z2 , Z3) then z3
else z 2

14.8 FULL EXAMPLE: FRONT-LAST

((should this be a section or a subsection?))

In this section, we present the full derivation of a front-last program to find the
string of all but the last character in a nonempty string, and the last character

itself (see Problem [117.5).

In the theory of strings, we are given the specification

if not (z = A)
Q[z; Zj, 22] : then string(z1) and char (z2) and

Z = Z1 * Z2

with input sort string. ((box?))

We shall derive a recursive program. Because there is only one input, ((MB:
out??)) we may use a~well-founded relation over obj, that is, over string, rather
than over tuples of strings; in this case, we take -< to be -<,.,, the tail relation
over strings. This is defined by the axiom

n -.<tail V

(3 char u]

((have we said this is well-founded?))

14.8 FULL EXAMPLE: FRONT-LAST 65

Because we are working in a pure theory of strings, rather than a combined
theory, we know that every element is a string. This is expressed in the simplifi-
cation

string(u) = true.

Our initial tableau is therefore

assertions goals front(a) .Jast(a)

Al. if u -<t~,a
then if not (u = A)

then char(last(u)) and

u = front(u) * last (u)

G2. if not (a =A)
then char (Z2) and I Z

a = zi * z2

Note that the rows have been transformed by the simplification string(u) :, u.

We include in the primitive list the basic symbols of the theory of strings (A,
head, tail, char) as well as the function symbols front and lost themselves.

We include as assertions in the initial tableau certain axioms and valid sen-
tences of the theory of strings, including the above definition of the tail relation.

We shall use the property

(V string u, v) if not (u = A) (tail
[then tail(u) -<t ul

((out?))

We shall need an assertion expressing the trichotomy property

(V string u)(u A or char(u) or not (tail(u) = A)] (trichotomy)

that is, every string is either empty, consists of a single character, or' has a
nonempty tail.

We can immediately decompose the goal.

By the if-.split rule applied to G2:

66 CHAPTER 14: PROGRAM SYNTHESIS

A3. not (a A)
G4. char(z2) and

gIa 21*2a = zl * z2 I I I

Note that the output entries zI and Z2 have been dropped-from row A3, because
they do not occur free in the amertion.

THE CHARACTER CASE

We begin by deriving the portion of the program corresponding to the case in
which a is a single character. We focus on our goal G4 and use an axiom for
concatenation.

Recall the left-empty axiom for concatenation:

Recal goal G4.

G.ckar(z2) andt 0. aj~~ IX1 2

By the euality rule, {zi .- A, U -2):

05. 'char (z2) ad

Recall the reflezivity axiom for equality:

By the resolaboi rule, {u*- a, X2 - a):

G6. char(a) A a

14.8 FULL EXAMPLE: FRONT-LAST 67

Note that, by this stage, the output entries for front(a) and last (a) have been
chosen to be the terms A and a, respectively. In other words, when char(a) is
true, A and a will be suitable outputs.

INTRODUCTION OF THE RECURSIVE CALL

Let us set aside goal G6 for a while and return our attention to goal G4. We
again use an axiom for concatenation.

Recall the left-prefix axiom for concatenation:

if char(w)

then [(wu0 tv(UsI * _______]__

Recall goal G7:

04. char(z 2) and 2

By the equality rule, {z, - w u, v - z 2}, rename u to z:

G7. char(w) and
char(Z2) and w. z2

a = W. [

As a result of this step, the output entry for front(a) has been taken to
be w* z, where w and z have yet to be selected. We now use our induction
hypothesis twice in succession.

Recall our induction hypothesis:

Al.. if u-4,a
then if not (u = A)

then char(last(u)) and I
u r rot() * last (u)] [__(_

By the equality rule, right-to-left, f{~ j-rVat(u),z -2 1a~t(U)}:

68
CGAPTZR 14: PROGRAM SYNTHESIS

G8. not I then u= Al

char(n() iW. frost() last (u)

F ha, + an

Recall our induction hypothesis again (renaming U to '):

then if not (Vs' =A)

Al f '~ ten aand~) *,

' = fvOst(u') *lat (U')

By the resolution rile, ju - ¢:

c (Wuo) and ,.. front(u') last (U')

ca r(J) nd
U'+

As a result of this step, the output entries for front(a) and last (a) have

been taken to be to ,fru((e) and lnt (u'), respectively. In other words, we have

introduced recursive ca&l into the program. Note that the subsentence

.ot (if u' -<,.j a then u' = A)

ispropositionally equivalent to

u' -(wa a and not ('
= A).

Let urEwrije it thjA way fo clarity, although which form we use has no bearing

on the reat of the derivation.

At the next stage, the input a is decomposed.

Recall the decomposition property of head and tail:

-if s.ot (=A)

tkef

14.8 FULL EXAMPLE: FRONT-LAST 69

By the resolution rule, {u - a, w - head(a), u' -tail(a)):

G10. not (a= A) and
tail(a) -<s.a, a and head(a).

not (tail(a) = A) and front(tail(a)) lat(tai(a))
• [char head(a))[

Recall the sort property of head:

if not (u = A)

then char(hed(u) -

By the resolution rule, {u - a}:

G4. not (a = A) and eda
tail(a) -<ta,, a and ront(tail(a)) last(tail(a))

not (tail(a) = A)

FINISHING THE NON-CHARACTER CASE

We now show that the well-founded relation -<t.,, does indeed hold between the

argument tail(a) and the original input a. We then use goal G9, which wehad

developed and set aside.

Recall the tail property of the tail relation:Eif not (u = A) 1
then tai(u) (tal

Recall goal GIl:

G_. not(a=A) and

- +a head i heed(a).

and f (ont(tail(a))

not (tail(a) = A)

70 CHAPTER 14: PROGRAM SYNTHESIS

((repeat Gil?))

By the resolution rule, {u - a}:

G12. not (a = A) and + head(a). ataia)
Inot (tail(a) = A)+ front(tai1(a)) last(taL(a))

Recall the trichotomy property:

u = A or char(u) or Inot (tail(u)=A

By the resolution rule, {u - a}:

n3 Or() head(a)
G3 and front(tail(a)) last (tail(a))

not F -

Recall assertion A3:

A6. not II

3y the resolution rule {):

G14. not char(a) rn,(,a(a)) last (tatl(a))

COMBINING THE TWO CASES

Recall our, previous goals G6 and G14:

G6. r + A a

"Aed(a).
G14. not chrfront (ta(o)) last (tal(a))

14.9 FULL EXAMPLE: FLATTENING A TREE 71

By the resolution rule, { }:

if char(a) if char(a)
then A oa e ar (a)

G18. true else head(a)o then afront (tl(a)) els Ie last (tail(a))

At this point conditional terms have been formed in the output column,
because the goals G9 and G17 both have output entries.

We have derived the final goal true with primitive output entries. Therefore,

we may stop the derivation and obtain the final program

(if char(z)

front(x) = then A
jelse head(r) .,front(tal(r))

and

if char(z)
last (z) = then z

else last(tail(z))

((exercise: reversing a string. See SOL14 file)

14.9 FULL EXAMPLE: FLATTENING A TREE

In this section, we present the full derivation of a program for flattening a tree.
This is actually an example of program transformation, because we are given one
method of computing a function and we derive another one. The reader will recall
that we have defined by the following axioms a function flattree (Section [I]8.4),
which takes a tree as its argument and yields the string of all its atoms:

(V atom u)[Slattree (u,) = u) (stem,)

(V tree4, v)[#/aiiree (u~v) = flatiree (u)iflattree (v)] (construction)

Here * is the tree construction function and * is the string concatenation function.

These axioms are computationally suggestive; they provide a method for
computing the function.

72 CHAPTER 14: PROGRAM SYNTHESIS

This example illustrates two points. First, we have observed that, in proving
a theorem, it may be necessary to prove a more general theorem, so as to have
the benefit of a stronger induction hypothesis. This often occurs when the proof
is part of the derivation of a program. In that case, the program we derive from
the proof of the more general theorem is used as a "subprogram" by the main
program, which we derive from the proof of the given theorem.

The example also illustrates the use of a combined theory in program deriva-
tion. The program is applied to a tree and yields a string; therefore, we must work
in a combined theory of trees and strings. In the combined theory, we identify
the atoms of the trees with the characters of the strings; this is expressed by the
axiom

(I u)[cAer(u) -- m(u)] (character-.tom)

The specification for the new program flattreel(z) is simply

QI[;Z]: z = flatoree(z)

In other words, the fleifreel program is to yield the same result as the given
flattree program. We shall take obj to be tree.

'We shall not include the function symbol flattree itself in the primitive list.
This will enure that we cannot obtain a flattreel program that relies on the
flatiree program. We shall also omit the concatenation function symbol * from
the primitive list; this will force us to express the new program in terms of the
prefix function e rather than the leas efficient concatenation function.

To conduct this derivation, we must first derive a more general program
floaree2(zl, X2), to Ineet the specification

9O[X,, Z2; Z] : z = fllre(zI)*z 2

We take z2 to be a tree and 22 to be a string; that is, our input sorts are
tree and &Msi, respectively. ((out?)) This generalization step is not done by
any rule of the system; we assume that the generalized specification is supplied
to us.

Befote we begin the derivation of flettree2, let us see how it will enable us to
complete the derivation of flattreel.

THE DERIVATION OF FLATTREE!

The program for jaffreel will not be recursive. We may therefore take our initial
tableau without an induction hypothesis, as follows:

14.9 FULL EXAMPLE: FLATTENING A TREE 73

assertions goals flattreel(a)

A2. tree(a)

G2. z = flattree (a) z

Because our theory is a combined theory of trees and strings, rather than a pure
theory, we must retain sort conditions, such as tree (a), to distinguish between
the two sorts of elements tree and string.

Assuming that the derivation offlattree2 has been successful, we may include
in the initial tableau for flattreel an assertion that flattree2 does indeed meet its
specification, namely

A3. if tree (xI) and String(X2)I
then flattree2(zh, z2) = flattree(zI)* z 2

For this derivation, we include flattree2 but not flattreel orflattree in the primitive
list.

We first obtain a special case of the above assertion by invoking a property
of concatenation. This result will be useful in establishing the initial goal.

Recall the right-empty property of concatenation:[if string(u)
then [u*A = l

Recall assertion A3:

A3. if tree(zl) and string(z 2)then flotree2(,b x2) = [ttree (xl)*.j]

By the equality rule, {u -- flattree (zl), z 2 - A), and removal of a sort
condition.

74 CHAPTER 14: PROGRAM SYNTHESIS

A4. not (strng (fla .^ree (z =.))
or

[eft r e e (i A l ue e ()(
) a n d s tr in g (A)]

$ Recall goal G2:

G2. z=fl+tvee(a) + z

By the resolution rule, {zl 4- a, z - flattree2(a, A)), and removal of sortt conditions:

c n i i n : G 5. t r i a (f l s~ f f t (a)) n d f l a tr e e 2 (a , A)
I tree(a) and string(A) II

We have obtained the fial goal true with a primitive output entry This
completes the derivation of flstreel; we may extract the program

jlsttrvel(r) = flhurie2(z, A)

Remark (flattree is not primitive)

If the function symbol flattree had been taken to be primitive, we could have
completed the derivation more easily, but the result would not have been useful.

Recall goal G2 and the reflezivty axiom for equality:

G2. Iz = fleafrec(a) +

By the resolutioit rule, {z - flatree (a), u 4- flettree (a)}:

G3'. true . iue(a

-If the symbol flattree is priintive, we may conclude the derivation, obtaining
the final program

jlsureel(z) = flaree z).

14.9 FULL EXAMPLE: FLATTENING A TREE 75

This program satisfies the specification z = flattree (z), of course, but we have
not transformed the given program flattrec as we had intended. When flattree is
excluded from the primitive list, we are prevented from stopping the derivation
at this stage. J

THE DERIVATION OF FLATTREE2

Now let us present the derivation of flattree2. We are given the specification

Q2 [zl, Z2; Z] : z = flattree (zl) * Z2

where the input sorts are tree and string, respectively.

The program for flattree2 will be recursive. Because there are two inputs, -a
tree and a string, we must take our well-founded relation -< to be over 2-tuples
(that is, pairs) of sort tree and string. In this case, we shall take -(to be -(w(i),

the first projection of the child. relation, defined by the axiom -

(V tree ul, v)(6,)-<. ,id VV) (is rjc(V string U2, V') ujU 2 -< .aCh d i (V2)

where the child relation '<,,hld is defined by the axiom

U -<ck,1d V

(V tree U, V) (3 t ree w)Eu w v] (child)
or

(3 tree Wv)[=] .

In other words, the two subtrees left (v) and right (v) are the two children of
the nonatomic tree v. ((shown to be well-founded? .))

Our initial tableau is:

76 CHAPTER 14: PROGRAM SYNTHESIS

assertions gols flattree2(

Al. trec(al) and string(a 2)

A2. if (ul,u2) 4,(hzd) (a,a2)
then if tree(ui) and strin%(u 2)

then flattree2(ul, U2) = flaree (ul) * U G

G3. z = fittree(aj)*a2

Recall that we include flaffree2 itself in the primitive list, but neither flattree
nor the concatenation function z*y.

THE ATOMIC CASE

We begin with the portion of the derivation that pertains to the case in which
the first input a, is an atom. We focus our attention on the initial goal.

Recall the atom axiom for flattree:

if asta(u)

then [Ff-lure(u) = u-
03. z a2attre(ai) 0 ,

By the equality rule, {u 4- aI):

G4. atom(al) and

Recall the character property of *:

if char(u) and strg()

~then i= oV

By the equality rule, fu a-l0, v a 2) and removal of sort conditions:

14.9 FULL EXAMPLE: FLATTENING A TREE 77

G5. char(a,) and
atom(a1) and

Recall the reflezivtg axiom for equality:

By the resolution rule, {u a- a1 * 02, z --a * a2}:

G6. chra)and

atom(al)

As a result of this step, the output has been taken to be a, * a2.

Recall the character-atom axiom for the combined theory:

[chr =- aiom(u)]- I

By the equivalence rule, {u .- al :

G7. atom(a_ I a,*02

Let us set this goal aside for a while.

DECOMPOSITION OF THE INPUT

The balance of the derivalion concerns the case in which a1 is nonatomic. In this
case, we may decompose al into its two components.

Recall g&al G3:

03. z =flattree([U a02

Recall the decomposition property of trees:

f ...

78 CHAPTER 14: PROGRAM SYNTHESIS

if free(u)
then if not storm(u)

then left (u) 'nght (U)]

By the equality rule, {u -- atl, and removal of a sort condition:

G8. not tom(a) dad
. = flttree (left (a) .right (a)) .a2

Recall the coaruactr aoiom for flattree:[if tree(u) ad tree(ti)

then [ftftwe(%v* v) jlattee (u) flat te (v)]-

By the-eWpfei1 rule, {u i-- left (at), v *- riyht (at)}, and removal of a sort
condition:

t . n tu(al) and

Recall the asociativitp property of concatenation:[if string(u) and striaogv) dud stng(u,)

then 5Us.).-s = " u(V.,]) I
By the equ lity rule, {u -- flatree(left (at)), v -- flattree(right (ax)),w -

a2), and removal of sort conditions:

z = fitree(left (a,)) * (.e..,.e(. ht (a)) * a2)

INTRODUCTION OF THE RECURSIVE CALL

We are now in a position to use our induction hypothesis. This will result in the

14.9 FULL EXAMPLE: FLATTENING A TREE T9

appearance of a recursive call in the output column.

Recall the induction hypothesis:

A2. if (u1, U2) <4.,(.hild) ('i, 02)

then if tree(ul) and string(U2)

then [flattree2(ui, U2) =flattree (U1) aU 2

Recall goal G 10

GbO. not atom(al) and a) j

By the equality rule, right-to-left, {ui - fight (al), U2 - a2), and removal
of sort conditions:

Gil. (right (a,), a2) <,(,hjjd) (a,, a2) and
not atom(a 1) and jz
z = flattrec (left (a 1) * flattree2 rgh t (a I), 02+

Recall the induction hypothesis, again:

A2. if (ui, u 2) -<w1 (hjld) (a,,a2)
then if tree(uz) and string(u2)

then Iflattree2(u1 , U2) = flttree (Ul) a U23

By the resolution rule, (u, 4- left (a,), U23 - jlattree2(nght (ai), 02),: Z

ftattree2(left (a,), lattree2(right (a,), a,))), andremoval of sort conditions:

so CHAPTER 14: PROGRAM SYNTHESIS

[(left (a,), flatree2(rght (a,), a2))

G12. "<.(chd)

(as, al) flattre2(lefl (a,),
and

fate2rgt(,,a)
strng(flattree2(right (a1), a2))fltre(igla),2)

and

nol atom(ai)

Note that, as a result of this step, we have introduced two nested recursive calls
into the output entry.

ESTABLISHING THE WELL-FOUNDED RELATION

We now show that the argument pairs for the recursive calls are "less than" the

given argument pair (a,, a2), with respect to our selected well-founded relation
w,(5 U). We use properties of the first-projection and child relations.

Recal the definition of the first-projection relation and goal G12:

if tree(ul) and Stniag(u 2) and

tree(vi) and Strwug(V2)

" (Ul, U2) -i(Chd) (! , V2)]
then 'I

ulJ " child vil

(el (a,), ftatlree2(right (a,), a2))
G12. -w,(chId)

(01, 02) fiae2(let (aI),

sring(flautree2(right (at), a2)) and fllle2(righl(01), 02))

(right (at), a2) -<,(child) (01, 02) and

not atom(al)

By the equsalence rule, {u - left (a,), u2 -flattree(right (a,), 02), VI -
a0, v2 - a}2, and removal of sort conditions:

14.9 FULL EXAMPLE: FLATTENING A TREE 8

strng (fiatree2(right (ai), 02 + ltre(lf a)

(right (a,), a2)- -<,, (h,d) (a,0) flatree2 (right (a,), a2))

Contrary to our habit, we have not automatically removed the sort condition
string(flattree2 (right (a,), a2)); the removal of this condition is unusual in that
it requires the induction hypothesis.

Recall the induction hypothesis:

then if tree(ul) and Stling(v 2)
then Istring (flattree2(ui,uV2)) and

flattree2(ul, uL2) = flaffrec (u1) * U2

By the resolution rule, Jul .- right (at), Us2 - 02), and removal of sort
conditions:

G14. left (a1) -<,hjId a, and

(right (a1),)02) flattree2(!eft (a,),

<~ 1(&ild and flattree2(right (a,), a2))

not atovn(ai) _____________

We now invoke properties of the first-projection and child relations.

Recall the definition of the first-projection relation:

if tree(ui) and String(U2) and11
free(vi) and striag(v2)f

the [(Ul, U2) -<wi(chid) (VI, V2)

By the equivalence rule, Jul right (a1), U2 a02, V1 al 0, V2 -a 2), and
removal of sort conditions:

82 CHAPTER 14: PROGRAM SYNTHESIS

G15. I eff (a) -<child al + and fattree (left(a) ,

[ight (aj) .<°,,,d01 and flaree2(rght (at), Q2))

not atom(a,)

Recall the left and right properties of the child relation:

if tree(u) and not stom(u)

tMen left (U) -<d.jj U

if tree(u) and not atom(u)

By two applications of the resolution rule, {u - al, and removal of sort
conditions:

f G16. not atown(ai) fta~tt-4e(left (-I),
.[)flattree2(righi (a), a2))

THE FINAL STAGE

We now use the eatlier goal, which we developed and set aside.

ROeZU goals G16 and G7:

G16. notF)- flaree2(left (a,),

.fltree2(ryht (a,), a2))

G7. Fato-(a,)+ a * a2

By the resoltion rule, {):

PROBLEMS 83

if atom(al)
then ale a2• G17. true else flattree2(ieft (a,),

flauree2(ri-eht (ai), a2))

At this stage a conditional term has been introduced into the output column.

We have obtained the final goal true with a primitive output entry. Therefore,
we may conclude the derivation and obtain the program

(,r atom(Xj)
flailree2(xi, x 2) then z *X2

else flattree2(Qeft (z1), flettree2(riht (zi), X2))

This program, combined with the program we obtained from the first derivation,

flatireel(zi) = flattree2(zl, A)

gives us an alternative method for computing the flattree function.

PROBLEMS

Problem (sex)

Consider the extension of the family theory, in which every person is either
male or female, that is,

(V person u) [sex (u, male) or sex (u, female) (set)

In this theory, give the full derivation of a program s(x) = t[z] to find the sex of
a given person, that is, to.meet the specification

Q(z; Z]: sex(x, z),

where the inout sort is person.

Solution (sex)

From the specification, we form the initial tableau

84 CHAPTER 14: PROGRAM SYNTHESIS

assertions goals s(a)

1. person(a)

the sex axiom:

if person(u)

then sex(u, male) or sex (u, female)

x By the resolution rule, {u - a, z - male), removal of sort condition.
use not(if T then 9) = I and not 9 as a simplification?)

3. not sez(a,female) male

a By the resolution rule, {z -female)

if sez(a, female)
4. true then female

else male

We have obtained the final goal trte with a primitive output entry. Therefore
we may extract the program

if sex (z, female)
s(x) = then female

I else male

Problem (reverse)

In the theory of strings, suppose we are given a program reverse (u) to revorse

a string u (Section [1]7.4) in the form of two axioms.

reverse(A) = A (empty)

(V string u, v) [if char(u) (P reverse(v). (prefix)

[then reverse (u .v ="ere()*uJ

Here u. v is the prefix function (where u is a character) and v, v2 is the con-
catenation function.

PROBLEMS 85

(a) Derive a program reverse2(xl, y) forr reversing a string x and concatenating

the result and the string y.

This program must meet the specification

Q 2 [z1 , X2 ; Z]: z = reverse (x 1) * x 2

where the input sorts obj and obj 2 are both string.

(b) Use this program in the derivation of a program reversel(x) (more efficient

than reverse) for reversing a stri This program must meet the specification

QI[; zi]: z = reverse (x)

The program for reverse2 derived in part (a) of the problem may be included in the
tableau as an axiom. Also, the property that this program meets its specification,
that is,

(V string ul, u2)[reverse2(ul, u 2) = reverse (ul), U1],

may be included.

