WORKING MATERIAL

for the lectures of

John V. Tucker

Theory of Computation and Specification
over Abstract Data Types,
and its Applications

International Summer School
on
LOGIC, ALGEBRA AND COMPUTATION

Marktoberdorf, Germany, July 25 - August 6, 1989

This Summer School is organized under the auspices of the Technische Universität München and is sponsored by the NATO Science Committee as part of the 1988 Advanced Study Institutes programme, partial support for the conference was provided by the European Research Office and the National Science Foundation and by various industrial companies.
THEORY OF COMPUTATION AND SPECIFICATION
OVER ABSTRACT DATA TYPES,
AND ITS APPLICATIONS

J V TUCKER

Department of Mathematics and Computer Science,
University College of Swansea,
Singleton Park,
Swansea, SA2 8PP,
Wales.

Overview of lectures at NATO Summer school on Logic, algebra and

Draft June 1989

1. INTRODUCTION

The author sketches

In these lectures I will sketch a theory of functions and relations that are computable and specifiable, uniformly over a class of many sorted algebras. Such a class \(K \) of algebras is a mathematical model of the semantics of a software module; in particular, a module defining an abstract data type. The theory of computation, specification and verification over \(K \) has many applications; those I will describe concern the following subjects:

- Program specification and verification;
- Logic programming modules and abstract data types; and
- Synchronous concurrent algorithms and their application in hardware design.

My research on these apparently disparate applications is part of a programme based on the algebraic theory of abstract data types, that aims at the formulation and analysis of the many interesting notions of computability, specifiability, and verifiability that exist in different areas of computer science and mathematics. The material in these lectures is based on collaborative work with J I Zucker (SUNY, Buffalo) and B C Thompson (Manchester).

Origins

The mathematical theory presented is a generalisation of classical computability
theory on the natural numbers, or on strings of symbols, to any abstract algebra. The theory of computability for algebras originates with work by E Engeler in 1965. Subsequent well-publicised work in logic by H Friedman and Y N Moschovakis, and in computer science by D Luckham, D Park and M Paterson, Z Manna and A Chandra, and A J Kfoury has also been significant; see Shepherdson [85] and Tucker and Zucker [88].

The models of computation used in these lectures are those developed in Tucker and Zucker [88]. In this monograph, the semantic and correctness theories of while programs, while array programs, and recursive programs established in de Bakker [80] are generalised to allow programs that compute not simply on the natural numbers but on any abstract data type. In addition, error or exceptional states are introduced into the semantics, which arise when a variable is called in a computation without first being initialised. These enhancements involved mathematical work on: many sorted algebras A and classes K of many sorted algebras; error and exceptions in semantics and proof rules; weak second order logic assertion languages; and the theory of computable functions on A and K. The basic semantical theory of programs on which we relied is that in de Bakker [80].

Summary

In Lecture 1 some important concepts concerning abstract data types will be explained, including the technical rôle of classes of algebras.

Lecture 2 summarises the computability theory on abstract data types as it stands in Tucker and Zucker [88]; it includes the Generalised Church-Turing Thesis for the process of deterministic parallel computation on abstract data types. This computability theory is founded upon recursive functions on algebras and classes of algebras. An important point is that it distinguishes between primitive recursion and course-of-values recursion, as these are not equivalent on abstract algebras.

Lecture 3 begins with the study of program specifications and their validity over a class K: for S a program and p,q input and output conditions we consider properties of the condition that

$$K \models (p) S (q)$$

which means that executing S on inputs satisfying p results in outputs satisfying q, on each A in K. The computability theory of Lecture 2 was developed to prove that important sets of program states, such as the weakest preconditions and strongest post conditions of programs and conditions, were expressible in a weak second order many sorted logical language. At the heart of this exercise is a theorem that represents generalised recursively enumerable sets in the language. Next the idea of a module appropriate for logic programming is examined. This requires us to distinguish more carefully between specification and computation, and to begin work on the scope and limits of methods for the specification of relations on abstract data types, to complement the computation theory described in Lecture 2. This work with J I Zucker is a natural continuation of our studies of subjects that we first met in the preparation of
our book.

In Lectures 4 and 5 the idea of a synchronous concurrent algorithm (sca) is defined and studied. A sca is a network of processors and channels that compute and communicate in parallel, synchronised by a global clock. Such algorithms compute on infinite streams of data and are characteristic of hardware. Examples of scas include: clocked hardware; systolic algorithms; neural nets; cellular automata; and coupled map lattice dynamical systems. This type of computation is formalised using the course-of-values recursive functions over classes of stream algebras. The study of this and other models of these clocked algorithms, and their application, is a substantial task: it aims at a general mathematical theory of computation based on hardware. The special case of unit delays throughout the network corresponds with the use of primitive recursive functions and has been studied intensively in joint work with B C Thompson (Manchester). Significant contributions to the theory and to the development of case studies have been made by: K Meinke (ETH, Zurich), N A Harman (Swansea); S M Eker and K Hobley (Leeds). The application of the ideas to software for simulation and verification has begun in work by A R Martin (Infospec Computers Ltd) and G Lajos (Leeds). Some of these contributions will be surveyed in Lecture 5.

Acknowledgements
I would like to thank J Derrick, K Hobley, G Lajos, K Meinke, T E Rihill, H Simmons, B C Thompson, S S Wainer, and J I Zucker for valuable conversations in the course of preparing these lectures.

1. LECTURE 1: ALGEBRAS, MODULES AND ABSTRACT DATA TYPES

1.1 Modules and algebras
In the theory of abstract data types, computation is characterised by a module the semantics of which is a class K of many-sorted algebraic structures or models. A many-sorted algebraic structure or model A consists of a number of sets of data, operations, and relations on the data. Such a structure, possibly satisfying some further properties, can be used to model semantically a concrete implementation of a module. A class K of structures, again possibly satisfying some further properties, can be used to model semantically the module abstractly as a class of implementations. For example, one standard definition of an abstract data type is that it is an isomorphism type i.e. a class of all isomorphic copies of an algebra: see Goguen, Thatcher, Wagner and Wright [78]. Among the properties of algebras that we will use to characterise meaningful or useful implementations are: minimality, initiality, and computability (see 2.3).

See Ehrig and Mahr [85] and Meinke and Tucker [89] for background material on algebra.
1.2 Modularisation
Consider the general idea that programming can be formulated as the creation of modules:

Programming creates a program module P from a component module C in order to obtain a task module T.

Consider a programming task in the case when the modules define implementation algebras. Suppose we want to compute a function \(F \) and a relation \(R \) on a set \(A \) using operations \(f_i \) and relations \(r_i \). Then the *task algebra* is \((A; F, R)\) and the *component algebra* is \((A; f_i, r_i)\). The program may introduce a new data set \(B \) and functions \(g_j \) and relations \(s_j \) leading to *program algebra* \((A, B; f_i, g_j, F; r_i, s_j, R)\). Of course this generalises to the case of many sets in the obvious way. To a user the finished product is the task algebra, and only the function \(F \) and the relation \(R \) are visible, for the \(f_i, g_j \) and \(r_i, s_j \) are hidden. When, in the normal case, the modules define *classes* of implementation algebras, we uniformise the above. These ideas are derived from those of R Burstall and J Goguen.

1.3 Classes of models
For the purposes of specification and verification, we expect \(K \) to be a subclass of \(\text{Mod}(T) \), the class of all models of some axiomatic theory \(T \). Among the classes of interest are:

\[
K = \text{Mod}(T) \\
K = \{ A \in \text{Mod}(T) : A \text{ is finite} \} \\
K = \{ A \in \text{Mod}(T) : A \text{ is computable} \} \\
K = \{ A \in \text{Mod}(T) : A \text{ is semicomputable} \} \\
K = \{ A \in \text{Mod}(T) : A \text{ is initial} \} \\
K = \{ A \in \text{Mod}(T) : A \text{ is final} \}
\]

Each of these classes formalises an interesting aspect of the semantics of \(T \). For example, consider initiality and computability. If model \(A \) is initial then it is (isomorphic to) a certain form of *standard implementation* by computer. To study the computation of \(F \) and \(R \) with respect to this \(K \) is to study the properties of a program module for \(F \) and \(R \) uniformly across all standard implementations. That a model \(A \) is computable means that it is *implementable in some way* by computer, according to the classical Church-Turing Thesis. To study the properties of \(F \) and \(R \) with respect to this \(K \) is to study the properties of a program module for \(F \) and \(R \) uniformly across all possible computer implementations.

1.4 Higher-order computation and logic
Many sorted algebra and logic may be employed as a unified framework for representing higher order computation and logic. For example, two forms of second order computation and logic over a structure \(A \) can be represented by applying first order computation and logic to the extended structures \(A \) and \(A^* \), being \(A \) with streams, and arrays adjoined (with appropriate evaluation
operations), respectively.

1.4.1 Augmentation of time cycles and streams Let A be an algebra and add to the carriers of A a set T of natural numbers and, for each carrier A_i of A, the set $[T \to A_i]$ of functions $T \to A_i$ or streams over A_i. To the operations of A we add the constant 0 and operation of successor $t+1$ on T, and
\[\text{eval}_i : T \to A_i \text{ defined by } \text{eval}_i(t,a) = a(t). \]
Let this new algebra be A.

1.4.2 Augmentation of arrays Let A be an algebra and add to the carriers of A a set of natural numbers T and the simple constant 0 and operation of successor $t+1$ on T. Next add an undefined symbol u_i to each carrier A_i of A, and extend the operations by strictness. This forms an algebra A_u with carriers $A_{i,u} = A_i \cup \{u\}$. We model a finite array over A_i by a pair (α, l) where $\alpha : T \to A_{i,u}$ and $l \in T$ such that $\alpha(t) = u$ for all $t > l$.

Thus the pair is an infinite array, uninitialised almost everywhere. Let A_i^* be the set of all such pairs. We add these sets to the algebra A_u to create carriers of the array algebra A^*. The new constants and operations of A^* are: the everywhere undefined array; functions that evaluate an array at a number address; update an array by an element at a number address; evaluate the length and update the length.

We will use both extensions of A in the next sections. The second augmentation is an enhancement of the array algebras that we made in Tucker and Zucker [89]. It has many interesting extensions and potential applications.

2. LECTURE 2: COMPUTABILITY THEORY

2.1 Computable functions on abstract data types
In Tucker and Zucker [88] we have examined some classes of functions over an adt that are generated from its basic operations by means of

- sequential composition;
- parallel composition;
- simultaneous primitive recursion;
- simultaneous course of values (cov) recursion;
- search operators.

These function building operations are defined by straightforward generalisations of the classical concepts on the natural numbers to concepts over a class K of many-sorted algebras whose domains include the natural numbers; such structures are called standard algebras. An important class $\text{COVIND}(A)$ of functions on A is that of the course-of-values (cov) inductively definable functions, formed by combining sequential and parallel composition, course of values recursion, and least number search. If course-of-values recursion is
replaced by primitive recursion in this definition then the class $IND(A)$ of functions obtained is the class of inductively definable functions. In either case, the functions are defined by a parallel deterministic model of computation. The simultaneous recursions, which are responsible for this parallelism, are also required when computing on many-sorted structures. The basic definitions and theory are taken from Tucker and Zucker [881 in which it is argued in detail that whilst effective calculability is ill-defined as an informal idea when generalised to an abstract setting, the ideas of deterministic computation and operational semantics are meaningful and equivalent and, furthermore, the following is true:

Generalisation of the Church-Turing thesis for computation

Consider a deterministic programming language over an abstract data type D. The set of functions and relations on a structure A, representing an implementation of the abstract data type D, that can be programmed in the language, is contained in the set of cov inductively definable functions and relations on A. The class of functions and relations over a class K of structures, representing a class of implementations of the abstract data type D, that can be programmed in the language, uniformly over all implementations of K, is contained in the class of cov inductively definable functions and relations over K.

We now define the main constructs of course-of-values and primitive recursion.

2.2 Course of values recursion

Let $g: A^n \rightarrow A^m$ and $h: T \times A^n \times A^m \rightarrow A^m$.

Let $\delta_i: T \times A^n \rightarrow T$ for $i = 1, \ldots, p$ be functions which are subject to the condition that

$$\delta_i((t,a),a) < t$$

for all t in T and a in A^n.

Then the function $f: T \times A^n \rightarrow A^m$ defined by

$$f(0,a) = g(a)$$
$$f(t,a) = h(t, a, f(\delta_1((t,a),a)), \ldots, f(\delta_p((t,a),a)))$$

is defined by (simultaneous) course-of-values recursion of g, h and δ_i on A.

Let us consider this definition in more detail. Each of the functions g and h has m coordinate functions

$\delta_i: A^n \rightarrow A$

$\delta_i: T \times A^k \times A^m \rightarrow A$.

The functions δ_i for $i = 1, \ldots, p$,

$\delta_i: T \times A^k \rightarrow T$

which are subject to the condition that

$$\delta_i((t,a),a) < t$$

for all t, a.
The maps \(f_i \) for \(i = 1, \ldots, m \) are defined by the following:

\[
f_i(0,a) = g_i(a) \\
\vdots \\
f_m(0,a) = g_m(a) \\
f_j(t,a) = h_j(t,a,f_1(\delta_1(t,a),a),\ldots,f_m(\delta_m(t,a),a)) \\
\vdots \\
f_m(t,a) = h_m(t,a,f_1(\delta_1(t,a),a),\ldots,f_m(\delta_m(t,a),a)). \\
\]

Of course the functions \(g \) and \(h \) need not depend on all the arguments. But in the case displayed above, each \(f_i \) depends on \(t, a, \) and \(p \) previous values of each of \(f_1, \ldots, f_m \).

Let \(d_i: T \times A^n \to T \) be any function. Then we can define \(\delta_i((t,a),a,x) = \min(d_i(t,a),0) \) such that \(\delta_i((t,a),a) < t \).

There are several simple conditions we may impose on the \(\delta_i \). For instance, we may assume that a fixed constant delay \(d_i \) is assigned so that \(\delta_i((t,a),a,x) = \min(t - d_i, 0) \).

2.3 Primitive recursion

If we take \(\delta_i((t,a),a,x) = \min(t - 1, 0) \) then we can rewrite the equations for the maps as follows.

Let \(g: A^n \to A^m \) and \(h: T \times A^n \times A^m \to A^m \).

Then the function \(f: T \times A^n \to A^m \) defined by

\[
f(0,a) = g(a) \\
f(t+1,a) = h(t, a, f(t,a)) \\
\]

is defined by (simultaneous) primitive recursion of \(g \) and \(h \) on \(A \).

Let us again unfold this definition to see the simultaneity. Each of the functions \(g \) and \(h \) has \(m \) coordinate functions

\[
g_i: A^n \to A \\
h_i: T \times A^k \times A^m \to A. \\
\]

The maps \(f_i \) for \(i = 1, \ldots, m \) are defined by the following:

\[
f_i(0,a) = g_i(a) \\
\vdots \\
f_m(0,a) = g_m(a) \\
\]
\[f_I(t,a) = h_I(t, a, f_I(t,a), \ldots, f_m(t,a)) \]

\[\ldots \]

\[f_m(t,a) = h_m(t, a, f_I(t,a), \ldots, f_m(t,a)). \]

2.4 Computation on \(A^* \)
For many purposes it is convenient to present the recursive functions on \(A \) using primitive recursion and the least number search operator on \(A^* \). This is possible because of the following fact:

Lemma Let \(f \) be a function on \(A \). Then \(f \in \text{COVIND}(A) \) if and only if \(f \in \text{IND}(A^*) \).

Much new work on translating recursions is necessary: see Simmons [88].

2.5 More on primitive recursion
Let \(g: A^n \rightarrow A^n \). Then the function \(f: T \times A^n \rightarrow A^m \) defined by

\[f(t,a) = g(g(\ldots g(a)))) \quad (t \text{ times}) \]

\[f(t,a) = g^t(a) \]

is defined by primitive iteration of \(g \) on \(A \).

Lemma Let \(F \) be a set of functions on \(A \) containing the projection functions and closed under parallel and sequential composition. Then \(f \) is definable by primitive recursion over elements of \(F \) if and only if \(f \) is definable by primitive iteration over elements of \(F \).

3. LECTURE 3: SPECIFICATION IN PROGRAM CORRECTNESS
AND IN LOGIC PROGRAMMING

We consider algorithmic notions of specification using our theory of computation. We examine specification in two areas and develop the general concepts afterwards.

3.1 Specification and program correctness
Consider a program \(S \) in a programming language \(P \) over \(K \). Let \(S \) be specified by input and output conditions \(p,q \) written in an assertion language \(L \) over \(K \).

Let \(K \models \{p\} S \{q\} \)

mean that the specification is valid under partial correctness uniformly over \(K \).

Thus, for each \(\sigma \in \text{State}(A) \), if \(A \models p(\sigma) \) and \(M(S)(\sigma) \downarrow \sigma' \) then \(A \models q(\sigma') \), uniformly for all \(A \in K \).

A general question of importance is: **How expressive is the assertion language \(L \) with respect to the programming language \(P \)?** More specifically: Does the assertion language allow us to capture important set of states such as
the weakest precondition and strongest postcondition? Does the assertion language allow us to capture the meaning of a program completely? These questions can be formulated precisely as follows:

Expressiveness question Is \(wp_A(S,q) = \{ \sigma \in \text{State}(A): if M(S)(\sigma) \downarrow \sigma' then A \models q(\sigma') \} \) definable by \(L \) uniformly for all \(A \in K \)?

Determinacy question Let \(S, S' \in P \). If for any \(p, q \in L \)
\[K \models \{ p \} S \{ q \} \text{ if and only if } K \models \{ p \} S' \{ q \} \]
then is it the case that \(S \equiv S' \) on \(K \)? (Clearly the converse holds for any reasonable assertion language.)

The computability theory of 2.1 was developed in order to answer the expressiveness question. Suppose we have formulated some operational semantics that describes computation in terms of sequences of states. Then we have a computation relation defined by

\[\text{COMP}(S,\sigma,\tau,\sigma') \text{ if and only if } M(S)(\sigma) \downarrow \sigma' \text{ via some sequence } \tau = \sigma = \sigma_1, \ldots, \]
\[\sigma_l = \sigma' \].

And, in particular,

\[M(S)(\sigma) \downarrow \sigma' \text{ if and only if } (\exists \tau)\text{COMP}(S,\sigma,\tau,\sigma'). \]

The process of representing this computation predicate in a satisfactory way in an assertion language \(L \) is fundamental. In Tucker and Zucker [88] it is carried out in detail for the first order language \(L(\Sigma^*) \) of \(\Sigma^* \) which is, of course, a weak second order language over \(A \). The method is first to represent computation by \(P \) over \(A \) by inductively computable functions and relations over \(\Sigma^* \). Then to use the fact that inductively computable functions and relations are definable in \(L(\Sigma^*) \).

This representation of the programs of \(P \) by inductive functions is in fact a compiler. In general, proofs of expressiveness are based on the following principle: if \(P_1 \) and \(P_2 \) are programming languages and \(c : P_1 \rightarrow P_2 \) is a compiler then if \(P_2 \) is expressive then \(P_1 \) is expressive.

For information on the Determinacy question see Bergstra, Tiuryn and Tucker [82].

3.2 Specification and computation in logic programming

A logic programming language is a language for specification and computation in which the means of computation is deduction in a logical system. More precisely, a program is a module that uses axiomatic theories expressed in formally defined logical languages, such as many-sorted first order logic, to define classes of implementation algebras (recall 2.1). This introduces proof theory as the basis for the semantics of computation; and, in particular, the model theory of logical systems as the basis for the semantics of specification. Unfortunately, the subject of proof dominates research on logic programming.
mainly in the form of work on practical deduction for implementations, and the subject of the model-theoretic semantics of specification has hardly been examined.

Clearly, to create modules we need theoretical accounts of constructing sets, defining relations, and evaluating functions. Thus research involves a range of programming paradigms and their integration: functional, relational, logical and, in its use of modules, object oriented. A relevant discussion is contained in Goguen and Meseguer [87].

3.3 Relational, functional and logic paradigms
The relational paradigm is for specification and the functional paradigm is for computation. The connection made in logic programming is of the following kind:

Let A be a set and R a subset of A^{n+m}. A selection function for R is a map $f: A^n \rightarrow A^m$ such that $\forall x[R(x,y) \Rightarrow R(x,f(x))]$.

The result of a logic program is the definition of a relation R and the computation of some family of selection functions for R. These constitute the task module of 2.2. A more appropriate general formulation is as follows:

Let T be a theory and let P be a logic program with goal relation R. Then we want to interpret P in a class K of models of T in order to specify relation R and compute selection functions f uniformly over some class K.

Thus we want to design P to be valid over a class K of algebras, and to compute one or more f such that:

$K \models \forall x[R(x,y) \Rightarrow R(x,f(x))]$.

Note that this central problem of specifying relations and functions is a motivating problem of classical model theory: quantifier elimination. And that the problem of computing selection functions by logical deduction is a motivating problem of proof theory, and of the programs as proofs paradigm.

3.4 Scope and limits of specification
In Tucker and Zucker [89], the following basic question, related to the Expressiveness question in 3.1, is asked and answered:

Does Horn clause computability on K, with its nondeterminism and potential for parallelism, specify all and only the cov inductively definable functions and relations on K?

The answer requires the basic step of formalising Horn clause computability over any structure or class of structures. It has been shown that Horn clause definability is fundamentally stronger than cov inductively definability in general. It corresponds with an extension we have called projective cov inductive definability.

In the computability theory of 2.1, we define a semicomputable set or relation R on A or K to be a set that is the domain of a partial computable function on A or K. It can be proved that R is computable if and only if R and its complement $\neg R$ is semicomputable.

A set or relation R is projective semicomputable if it is a projection of a
semicomputable set: there is a computable function \(f: A^n \times A^m \rightarrow A \) such that for all \(x \),
\[
R(x) \iff (\exists y \in A^m) [f(x,y) \downarrow].
\]
Turning to course-of-values inductive definability, with Lemma in 3.2 in mind, we find:

Theorem A relation \(R \) is definable by Horn clauses, uniformly over all \(A^* \) in \(K^* \) if, and only if, \(R \) is projective cov inductively semicomputable over \(K^* \).

Not every set that is projective cov inductively semicomputable over \(A^* \) is cov inductively semicomputable over \(A^* \). However, in the case of classes of minimal structures, Horn clause computability and cov semicomputability are equivalent.

These and other results begin to clarify the sense in which Horn clauses constitute a *specification language*, for it is possible to define Horn clause "programs" over certain models that cannot be executed deterministically. When axiomatic specifications of abstract data types are employed in formal reasoning about programs it is not always possible to avoid such structures.

3.5 Program specifications and other characterisations

Returning to the discussion in 3.1 we take from Tucker and Zucker [88] the following:

Theorem A relation \(R \) is definable by a \(\Sigma_1 \) formula of \(L(\Sigma^*) \) uniformly over all \(A^* \) in \(K^* \) if, and only if, \(R \) is projective cov inductively semicomputable over \(K^* \).

Horn clause definability is equivalent to several other characterisations of nondeterministic models for specification including *while-array with initialisation; while-array with random assignments;* and older notions such as *search computability* in the sense of Y N Moschovakis, for example. J I Zucker and I are working on the following general kind of Church-Turing Thesis for specification to complement that for computation in 3.1.

A general thesis for specification

Consider a nondeterministic programming or algorithmic specification language over an abstract data type \(D \). The set of functions, and relations, on a structure \(A \), representing an implementation of the abstract data type \(D \), that can be expressed in the language, is contained in the set of selection functions for projective inductively definable relations, and projective inductively definable relations, on \(A^* \), respectively. The class of functions and relations over a class \(K \) of structures, representing a class of implementations of the abstract data type \(D \), that can be expressed in the language, uniformly over all implementations of \(K \), is contained in the class of selection functions for inductively definable relations, and projective inductively definable relations, over \(K^* \), respectively.
This is a more complex task: for many more details see Tucker and Zucker [89].

3.6 Applications
This work on logic programming is relevant to the development of the concept of a logic programming module that generalises the abstract data type module. There is a close connection between logic programming modules and algebraic specification modules: see Goguen and Meseguer [84], Tucker and Zucker [89] and Derrick, Fairtlough and Meinke [89]. This idea of a module is, of course, many sorted. Many sorted logic programming has been studied in depth by Walther [87] and Cohn [87], motivated by theorem prover efficiencies made possible by typing. See Derrick and Tucker [88] for a general discussions of these issues.

4. LECTURES 4 & 5: SYNCHRONOUS CONCURRENT ALGORITHMS, PARALLEL DETERMINISTIC COMPUTATION, AND HARDWARE

A synchronous concurrent algorithm (sca) is an algorithm based on a network of modules and channels, computing and communicating data in parallel, and synchronised by a global clock. Synchronous algorithms process infinite streams of input data and return infinite streams of output data. Examples of scas include: clocked hardware; systolic algorithms; neural nets; cellular automata; and coupled map lattice dynamical systems.

4.1 A general functional model of synchronous concurrent computation
To represent an algorithm, we first collect the sets A_i of data involved, and the functions f_i specifying the basic modules, to form a many sorted algebra A. To this algebra we adjoin a clock $T=\{0,1,\ldots\}$ and the set $[T\rightarrow A_i]$ of streams, together with simple operations, to form a stream algebra A as in 2.5.1. This stream algebra defines the level of computational abstraction over which the sca is built.

A sca implements a specification that may be a mapping of the form $F: [T\rightarrow A^n] \rightarrow [T\rightarrow A^m]$ called a stream transformer. The network and algorithm is then represented by means of the following method.

Suppose the algorithm consists of k modules and, for simplicity, that each module has several input channels, but only one output channel. Suppose that each model is connected to either other modules or the input streams.

Let us also suppose that each module produces an output at each clock cycle. To each module m_i we associate a total function $V_i: T \times [T \rightarrow A^n] \times A^k \rightarrow A$ which defines the value $V_i(t,a,x)$ that is output from m_i at time t, if the
Figure 1: Architecture of synchronous concurrent algorithm.

Figure 2: A module
Figure 3: Value functions
algorithm is processing stream $a = (a_1, ..., a_k)$ from initial state $x = (x_1, ..., x_k)$. The behaviour of the algorithm is represented by the parallel composition of functions $V_1, ..., V_k$.

More precisely, suppose that each module m_i has $p(i)$ input channels, 1 output channel, and is specified by a function $f_i: A^{p(i)} \to A$. Suppose that the module m_i is connected to the modules $m_{\beta(i,1)}, ..., m_{\beta(i,p(i))}$ or to input streams $a_{\beta(i,1)}, ..., a_{\beta(i,p(i))}$.

We will assume that there is a delay along the channels that is specified by functions

$$\delta_{i,j}: T \times [T \to A^n] \times A^k \to T$$

which are subject to the condition that

$$\delta_{i,j}(t, a, x) < t$$

for all t, a, x. The maps V_i for $i = 1, ..., k$ are defined by the following:

For any i, $V_i(0, a, x) = x_i$.

For i an input module,

$$V_i(t, a, x) = f(a_{\beta(i,1)}(\delta_{i,j}(t, a, x)), ..., a_{\beta(i,p(i))}(\delta_{i,p(i)}(t, a, x))).$$

For i another module,

$$V_i(t, a, x) = f(V_{\beta(i,1)}(\delta_{i,j}(t, a, x)), ..., V_{\beta(i,p(i))}(\delta_{i,p(i)}(t, a, x)), a, x).$$

This represents a simultaneous course-of-values recursion on the stream algebra A.

4.2 A constant delay model
There are several simple conditions we may impose on the $\delta_{i,j}$ that directly reflect operational properties of the module, channels or network. For instance, we may assume that a fixed constant delay $d_{i,j}$ is assigned to each channel so that

$$\delta_{i,j}(t, a, x) = \min(t - d_{i,j}, 0)$$

and the algorithm is given by these equations for the maps V_i for $i = 1, ..., k$:

$$V_i(t, a, x) = x_i \text{ for } t < d_{i,j} + 1$$

$$V_i(t, a, x) = f(a_{\beta(i,1)}(t - d_{i,j}), ..., a_{\beta(i,p(i))}(t - d_{i,j}))$$

$$V_i(t, a, x) = f(V_{\beta(i,1)}(t - d_{i,j}, a, x), ..., V_{\beta(i,p(i))}(t - d_{i,j}, a, x)).$$

4.3 A unit delay model
If we take $d_{i,j} = 1$ then $\delta_{i,j}(t, a, x) = t - 1$ and we can rewrite the equations for the maps V_i for $i = 1, ..., k$:

$$V_i(0, a, x) = x_i$$
This is a simultaneous primitive recursion over Δ.

By the theorem in 2.4 there is a sense in which the general model in 4.1 and the unit model in 4.3 are equivalent.

Let us note that we have considered computation over a single algebra A and its stream algebra Δ. In practice the above discussion invariably applies to a class of algebras. For example, often in the case of systolic algorithms, we design for the class of all initial (= standard) models of an axiomatisation of the integers or characters; or for some subclass of the class of all commutative rings.

4.4 Applications to hardware of the unit delay model

Much of my research arose from the aim to create a unified and comprehensive theory of hardware design based on the concept of a sca and the methods and tools of algebra. To achieve this, B C Thompson and I have concentrated on the simple unit delay case which is already general enough to treat a huge number of interesting examples. The emphasis has been on case studies that evaluate practically applicable formal methods and software tools, and are useful in teaching. The programme can be divided into the following categories:

4.4.1 Models In addition to the functional model based on simultaneous recursive functions on Δ, which is suited to work on specification and verification, other models have been considered in the unit delay case:

(i) A von Neumann model based on concurrent assignments and function procedures on A; this is suited to work on programming, simulation and testing.

(ii) A directed graph model based on A; this is suited to work on architecture and layout.

Some models from each of these families have been formally defined by means of small languages, and, in particular, proved to be computationally equivalent. In formulating and classifying models of synchronous computation we are following the pattern of work associated with computability theory and which ends with a Church-Turing Thesis to establish the scope and limits of parallel deterministic models of computation: see 4.5. The idea of a multi-representational environment, in which it is possible to intercompile between representations depending on one's work in the design of the algorithm, also motivates our work.

See: Thompson and Tucker [85, 88, 89], Thompson [87], Meinke and Tucker [88] and Meinke [88].
4.4.2 Specification of scas and hardware A substantial study of the specification of scas and their rôle in the process of designing hardware is underway. An important contribution is a very simple mathematical theory of clocks, and retimings between clocks, based on the following notions:

A clock is an algebra \(T = (\{0,1,2,\ldots\}, 0, +1) \). A retiming of clock \(T \) to clock \(T' \) is a function \(r : T \to T' \) such that (i) \(r(0) = 0 \); (ii) \(r \) is monotonic; and (iii) \(r \) is surjective.

Some theoretical results have been obtained on nonlinear retimings, hierarchical design, and synchronising clocks but the main interest remains the application of the theoretical concepts in detailed case studies of the design of correlators and convolvers; counters; uarts; computers (including RISCII and VIPER).

The emphasis in this area is on the rigorous analysis of methodological models and practical formal methods. Very general methodological frameworks, based on formally defined notions of specifications as stream transformers over many sorted algebras, and their consistent refinement, have been developed.

See: Harman and Tucker [87, 88a, 88b] and Hobley and Tucker [89].

4.4.3 Derivation The systematic and formal derivation of scas have been studied in connection with rasterisation algorithms: see Eker and Tucker [87, 88, 89]. However, derivation is an area that requires further work. There is a large literature on developing systolic algorithms of various kinds, but much of it is \textit{ad hoc}, informal, and application specific. Nevertheless research by H T Kung, P Quinton, and the more formal work of C Lengauer provide us with a platform on which to build an analysis of the algorithm design process that complements our analysis of the specification design process of mentioned in 4.4.2. Studies in the transformation of scas have been initiated in connection with a theoretical analysis of compilation of functional to graph descriptions. Using equational specifications for data types and term rewriting techniques, optimising transformations for scas have been defined as preprocessors to simple, but verified, compilers: see Meinke [88].

4.4.4 Verification of algorithms. The functional model is beautifully suited to verification and a substantial study of the verification of scas, based on that model, is well underway. A large number of case studies of hardware, and systolic algorithms (for linear algebra and string-processing), have been verified: see Thompson and Tucker [85, 89]; Hobley, Thompson and Tucker [88]; and, in particular, Thompson [87].

In the light of this it is tempting to create independent software tools for verification, customised to our theories and techniques. However, we see that the mathematical concepts and methods are of use in many existing approaches to machine assisted formal verification, including those of K Hanna, N Daeche and M Gordon (HOL, based on Church's type theory); R Constable (Nuprl,
based on Martin Lof's type theory); and J Goguen (OBJ, based on term rewriting). Thus work with a number of existing theorem provers would be more useful for demonstrating the usefulness of our tools. We have begun work with Nuprl; see Derrick, Lajos and Tucker [89].

Of course, the logical foundations of the mathematical techniques are based on the use of many sorted first order logic found in Tucker and Zucker [88].

4.4.5 Algebraic specifications The recursive functions are closely related to equational logic and algebraic specification techniques based on initial algebra semantics. (And these in turn are easily related to Horn clauses and logic programming techniques). This is the subject of much research with J A Bergstra about the power of algebraic specification techniques to define computable algebras of various kinds: see Bergstra and Tucker [79, 80, 83, 87], for example. With a general theory of computability the relevance of some of those ideas and techniques used in the proofs is revealed more clearly; and they are found to have practical application! As part of our work for a definitive paper on the unit delay model, B C Thompson and I have been using a generalisation of one of the simplest lemmas in Bergstra and Tucker [80] (which was published as Bergstra and Tucker [87]).

Let program algebra A_f be A augmented by all the subfunctions involved in the definition of f, obtained from its parse tree as a primitive recursive function in a certain straightforward way.

In the terminology of 2.2, A is the component algebra, A_f is the program algebra and (A_f) is the task algebra.

Let (Σ, E) be an algebraic specification of the component algebra A. Let f be a primitive recursive function over A. Then the program algebra $A_f \equiv I(\Sigma, E)$ and hence (Σ, E) is an algebraic specification for the task algebra (A_f).

Using a detailed proof of this fact, the functional definition of f over Σ can be mapped or compiled into an algebraic specification (Σ, E_f).

We can now work on the application of the proof of this result: we take scas, represented by primitive recursive functions over stream algebras, and map them into algebraic specifications, in preparation for machine processing.

Corollary Let (Σ, E) be an algebraic specification of the stream algebra Δ. Let V be primitive recursive over Δ, representing a sca. Let program algebra Δ_V be Δ augmented by all subfunctions involved in the definition of V. Let (Σ_V, E_V) be the signature and equations corresponding with the primitive
recursive function V.

Then the program algebra $\Delta V \equiv I(\Sigma V, E V)$ and hence $(\Sigma V, E V)$ is an algebraic specification for the sca algebra (A, V).

Some prototype programs based on the algorithmic nature of the proof of the theorem have been constructed and applied to scas by B C Thompson.

This material will be included in a definitive paper on the unit delay model: Thompson and Tucker [89]. I may add that this machinery provides a huge number of algebraic specifications that are not related to the stack: clocked hardware; systolic arrays; cellular automata; neural nets, for instance!

The nature of the stream algebras have inspired a special theory of higher order algebraic specifications: see Meinke [1989].

4.4.6 Software tools A detailed design of a programming language and programming environment based on the von Neumann model (i) has been undertaken, and a prototype system has been constructed. This system includes: the language, which is called CARESS (for Concurrent Assignment REpresentation of Synchronous Systems); a C compiler; a preprocessor; and an interactive tracing/debugging tool. The prototype is robust and convenient enough to have been used in undergraduate teaching. A multilingual shell for animating, editing and debugging specifications of scas has been built. With this tool, it is possible to test specifications against their scas automatically. A test compiler from a functional notation for the recursive functions to Caress has been made. See Martin and Tucker [87].

4.5 Toward a general theory of synchronous concurrent computation

The Generalised Church-Turing Thesis applies to delimit the class of computable functions over any algebra or class of algebras: the class is identified by $COVIND(A)$ or $IND(A^*)$. Thus we have a tool to speed us toward the goal of establishing the scope and limits of synchronous computation in hardware by devising an appropriate generalisation of the Church-Turing Thesis. This synchronous computation is further identified with the notion of parallel deterministic computation over abstract data types with streams. A string transformation $F: [T \rightarrow A^*] \rightarrow [T \rightarrow A^m]$ is identified with its cartesian form $F: [T \rightarrow A^*] \times T \rightarrow A^m$ in $COVIND(\Delta)$ or $IND(\Delta^*)$.

However, our interest in scas, and deep involvement with their applications, requires a comprehensive and independently justifiable theoretical foundation. Thus full generalisations of the different models are needed to allow for more complex processing elements and timing characteristics; and these models must be compared with one another and classified by constructing compilers. A meticulous study of the equivalence of the concurrent assignment model and the unit delay model is made in Thompson [87]; here there is an emphasis on compiler correctness, and performance is included in the analysis. A general study of the equivalence of the graph model and other models is made in
Meinke [88]; see also Meinke and Tucker [88].

A central problem is to understand partiality in terms of scas, which affects all aspects of the theory.

It is possible to model asynchronous nondeterministic computation in terms of synchronous deterministic computation in several ways. In a sense this was done for nondeterministic data flow by D Park, for example. The study of the nondeterminism and asynchrony as abstractions of determinism and synchrony is an important foundational task that has applications in practical modelling of hardware.

Extensive research on the functional model and its connections with equational specifications of modules, and with logic programming techniques, is necessary in order to support work on verification and software tools.

6. REFERENCES

K Hobley and J V Tucker, Clocks and retimings, in preparation.

K Meinke, Universal algebra in higher types, Technical report, Mathematics Institute, ETH, Zurich, 1989.

K Meinke and J V Tucker, *Universal algebra* in S Abramsky, D Gabbay, T
Maibaum (eds.) Handbook of logic in computer science, OUP, to appear.

C Walther, A many sorted calculus based on resolution and paramodulation, Pitman, 1987.