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L Introduction

Laboratory experiments have been conducted on forced coning gyroscopes to simulate

the motion of spin-stabilized, liquid-filled projectiles 1,2,3,4. However, these tests have always
been for cases where the coning rate was slower than the spin rate. These experiments support

theoretical analysis used to design payload configurations. During flight, pressures inside

coning/rotating liquid-filled cavities can lead to destabilizing moments. The behavior of the
liquid pressure is a strong function of the cylinder aspect ratio, the Reynolds number (Re), 2nd

the non-dimensional coning frequency (t) denoted by:

Re =pa2 /v

where, fh is the inertial coning rate

p is the inertialspinrae
v is the fluid kinematic viscosity
a is the internal cylinder radius.

The present experiments have investigated a new region of interest that is applicable to a
vehicle whose spin moment of inertia is larger than the tranverse 1ornent of inertia and whose

flight can achieve a value of t greater than I. Further smtall-scale experiments in this unusual

range of coning and spin frequencies are possible and support ongoing tieoretical analysis of
liquid payloads. Full-scale experiments of this type are possible on the Ballistic Might

Simulator.

Previous tests at high Reynolds numbers and low coning frequencies performed by
Whiting verified linear theories and showed pressure coefficient response (Cp) plots

corresponding to a resonance-type behavior (Ref 1). Nusca, DAmico, and Beims (Ref 2) and
later Hepner et al. (Ref 3) provided data for low Reynolds numbers and low coning rates.

Under this condition, the behavior of Cp was relatively linear with the non-dimensional coning

frequency (t). Hepner also used a flight simulator to conduct experiments where phase

differences between the liquid internal pressure and the coning motion were measured (Ref 4).
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This report presents experimental data taken on a gyroscope where the coning rate

exceeds the spinning rate (c >1). This was accomplished by rebuilding the coning drive

system and associated pressure circuits. Hence, lower spin rates (nominally 20 Hz) and faster
coning frequencies produced the high ratio of coning to spin frequencies (t >1). Date were

taken for two endwail transducers at a single cylinder aspect ratio and Reynolds number. These
experiments are intended to establish the -xperim:ntal technique and to provide initial
comparisons with available theories.

The Ballistic Research Laboratory has invested considerable effort in developing
theoretical applications in the area of spinning/coning liquid payloads. Stewartson considered

the stability of a liquid-filled top under very idealized conditions (Ref 5). D'Amico extended
the original'Stewartson tables of eigenvalues and residuals to coning frequencies greater than
unity (Ref 6). Murphy examined the original Siewartson model and produced an improved

linear theory (Ref 7) and further examined the case of unusual coning frequencies (Ref 8).
Reference 8 showed that the liquid oscillations could not produce unstable flights where the
non-dimensional coning frequency was greater than unity. Recent work by Hall, Sedney, and
Gerber has produced a method that can treat low Reynolds. numbers and unusual coning
frequencies (Ref 9). Applicable theories are verified through laboratory simulation as more
unusual or new payload concepts or flight vehicles evolve.

II. Experiment Description

The forced gyrcscope apparatus used in References 1-3 has undergone several

improvements. The belt and pulley system has been discarded for a uirect drive motor with
flywheel attachment (Figure 1). This direct drive system allows for higher coning frequencies

approaching 20 Hz. Higher coning rates are possible by proper balancing of the coning
apparatus. The adjustable angle cam was replaced with interchangeable fixed-angle coning
plates. The plates allow the spindle to rest in a bearing encasement at a constant

inclination angle ranging from 0 to 5 degrees (Figure 2).

The two-channel amplifier/filter circuit was modified to increase its gain at low
frequencies for the present series of tests. The amplifier gain was roughly 843 for the inner
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gage and 622 for the outer gage. A typical transfer function for the inner transducer of this

circuit was taken and curve-fitted for easier data processing (Figure 3).

Silicon oil was used to completely fill the cylinder. At 25 0C the oil has a kinematic

viscosity of 525 centistoke (cs) and a density of 0.968 gm/cc. For comparison, water has a

kinematic viscosity of approximately I cs = Icm2/s at standard temperature and pressure. The
cylinder has an aspect ratio (half height to diameter) of 3.148 (Figure 4). The cylinder was
filled and fitted with bearing spindles. The complete assembly was then dynamically

balanced.

Internal pressures were measured for two coning angles: 0.463 and 0.987 deg. Large

coning imbalance responses were present when a high coning angle plat: was utilized A
motion sensor was positioned next to the apparatus to monitor vibration. Some reduction in

the coning imbalance was accomplished through the addition of weights to the flywheel. The
rotor spin was provided by another DC motor within the cage support. For these experiments a

constant spin rate of 16 Hz produced a Reynolds number of 193. For a fixed coning angle

and spin rate, the coning rate was varied to achieve a desired t value. After an appropriate

settling ti-me, pressure magnitudes were noted and the coning rate was then changed. This
process was continued to produce a sufficient survey range fort and ensure the repeatability of

the pressure data.

An instrumentation schematic is included as Figure 5 showing how the voltage outputs
from the transducers (located at r/a=0.434, r!a=0.667) were amplified, filtered, and then

transferred through the twelve channel slip ring. A 10 volt bipolar DC power supply was

transferred to the rotating franit via the slip ring. A dynamic signal analyzer was used' to find

the peak amplitude of the pressure signal Since the pressure transducers are located in the

body-fixed frame, the pressure oscillations will appear at frequencies relative to the spin rate.

In the previous experiments the desired pressure signal was located at a frequency equal to the
spin rate minus the coning rate. The dynamic analyzer folds this negative frequency about

0 Hz so the response is observed at the value of coning rate minus the spin rate (fI- p) as

shown by the Fourier spectrum of Figure 6. All testing was conducted for prograde motion

where the spinning' and coning motions are in the same direction. References 3 and 4 contain

retrograde pressure data for Reynolds numbers of 3.1 to 8 and Re=-18,200 mspectively.

3



MI. Experimental Results

It was anticipated that temperature of the liquid would increase due ID viscous heating.

This was observed and disc ssed in Ref-rence 3. Since the Reynolds number depends upon

the reciprocal of the liquid scosity, changes in temperature will produce an error in Reynolds

number. Temperature ch ges of only a few degrees were observed, changing the Reynolds

number less than 4 %. As the liquid expanded in the cylinder, the absolute pressure steadily

increased and the experi tal run times were limited by the linear response pressure

limit of the gages R,!•f 3)

Table I shows the gyr ope system errors for the instrumentation and equipment used.

The relevant formula to diet e pressure coefficients is shown below:

Cp = P/(ap a2p2)

where, Cp the non-dimensional pressure coefficient

P illating pressure magnitude

a s the coning angle

p s the fluid density

p s the inertial spin rate

a is the internal cylinder radius.

All data expe-iments started with a slow coning rate and increased to higher rates. The

experiment was complete by performing the survey in reverse order. Tabulations of Cp

versus r were made for eah gage position and for each angle (Tables 2,3). The experimental

conditions and results are upplied for each set of transducer locations with errou calculations

included. The overall expe imental error was due mostly to low pressure signals and a low spin

rate. The inner gage had s naller error ba-s due to a higher gain that helped increase the signal

levels. System errors also decreased for a coning angle of 0.987 degrees as the signal level
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was increased. Error bars are omitted for clarity in Figure's 7 and 8, but included in Figure 9
where it is seen that the data scatter is well within the error bounds.

Data from the same gage position for two coning angles can be coplotted to examine die

linearity of the Cp data, as shown in Figure 8. Within the scatter of the data, r single trend

was established for gage position r/a=0.667, thus verifying linear Cp behavior.

Experimental results of pressure coefficient data were compared to the theory in Figure 9.
The Spatial Eigenvalue Method (Ref. 9) is applicable in this range of Reynolds number from I

to 2000. This theory predicted approximately 75 percent of the pressure magnitude that was
actually measured. An exact solution for the case when t = I is also included in Figure 9, and
can be computed by the following formula

Cp - (r/a) * (c/a).

IV. Summary

A forced coning gyroscope device was modified to measure endwall pressures on a
cylinder whose coning rate was faster than the spin rate. For the two different coning angles
tested, pressure coefficient data were shown to be linear with respect to coning angle. The data
were compared to the Spatial Eigenvalue Method. Measured and computed pressures differed

by 25 %. This is unusually high, and explanations are not available.

5
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Table 1: Gyroscope System Errors

Parameter Range Error

Mechanical Data: ........
Coning Rate 17.39-19.64 Hz ± 0.05 Hz

Spin Rate 16 Hz ± 0.25 Hz
Cylinder Radius 3.1761 cm ±0.0012 cm
Cylinder 1/2 Ht 9:9986 cm ± 0.0014 cm
Fluid Viscosity 540 cs ±4.0 %
Fluid Density 0.968 g/cc ± 1%
Coning Angle 0.4630 and 0.9870 0.0020

Transducer Data: ........
Pressure Signal 14.7-51.6 mV rms ± 1.0 mV rms

Pressure Calibration (r/a - 0.434/r/a - 0.667) ----
Slope 017798/0.7722 psia/mV ± 0.2%

Intercept 1.652/-1.184 psia ±2.0 %
Signal Gain 843/622 ± 2.0%

15



Table 2: Oscillatory pressure data for Re - 193.2, alpha - 0.463 deg.,
r/a - 0.667 and r/a - 0.434.

Coning Rate Amplitude Sigral Pressure - Minimum Maximum
Run (Hz) Tau (V rms) Gain (dyne/cmA2) Cp Cp Cp
1 17.63 1.102 0.0188 623 2.27E+03 2.52 2.85 3.23
2 17.85 1.116 0.0201 622 2.43E+03 2.71 3.05 3.45
3 18.10 1.131 0.0204 622 2.47E+03 2.76 3.10 3.50
4 18.54 1.159 0.0212 622 2.57E+03 2.87 3.22 3.63
5 18.69 1.168 0.0214 622 2.59E+03 2.90 3.25 3.66
6 18.97 1.186 0.0221 622 2.67E+03 3.00 3.35 3.78
7 19.23 1.2'02 0.0231 621 2.80E+03 3.14 3.51 3.95
8 19.44 1.215 0.0240 621 2.91E+03 3.27 3.65 4.10
9 19.23 1.202 0.0228 621 2.76E+03 3.10 3.47 3.90

10 19.05 1.191 0.0221 622 2.67E+03 3.0C 3.35 3.78
11 18.86 1.179 0.0217 622 2.63E+03 2.94 3.29 3.71
12 18.50 1.156 0.0207 622 2.51E+03 2.80 3.14 3.55
13 18.23 1.139 0.0203 622 2.46E+03 2.74 . 3.08 3.48
1 4 18.00 1.125 0.0195 622 2.36E+03 2.63 2.96 3.35
15 17.77 1.111 0.0193 622 2.34E+03 2.60 2.93 3.32

Spin Freq(Hz): 16.0 Aspect Ratio(c/a):3.148 Fill Ratio(%): 100 Re Num: 193.2
Radius(cm):3.176 Rad Position(r/a):0.667 Position (cm):2.120 Alpha(deg): 0.463
Gage ID Num: 33 Slope (psi/mV): 0.7722 Intercept(psi): -1.1838 Channel ID Num:
Room Temp(OC): 23.0 Viscosity(cs): 524.8 Density(g/cc):0.968 Cyl. Type: Lucite
Motion Prograde Gaae Exc;tation(V DC): 10.0

Coning Rate Amplitude Signal Pressure Minimum Maximum
Run (Hz) Tau (V rms) Gain (dyne/cmA2) Cp Cp Cp
1 17.63 1.102 0.0165 844 1.49E+03 1.64 1.86 2.13
2 17.85 1.116 0.0171 844 1.54E+03 1.70 1.93 2.20
3 18.10 1.131 0.0173 844 1.56E.,+03 1.72 1195 2.23
14 18.54 1,159 0.0183 843 1.65E+03 1.83 2.07 2.35
5 18.69 1.168 0.0193 843 1.74E+03 1.94 2.18 2.47
6 18.97 1.186 0.0202 843 1.82E+03 2.03 2.28 2.58
7 19.23 1.202 0.0207 842 1.87E+03 2.09 2.34 .2.65
8 19.44 1.215 0.0215 842 1.94E+03 2.17 243 2.75
9 19.23 1.202 0.0204 842 1.84E+03 2.06 2.31 2.61

10 19.0F 1.191 0.0200 843 1.S0E+03 2.01 2.26 2.56
11 18.86 1.179 0.0188 843 1.70E+03 1.88 2.13 2.41
12 18.50 1.156 0.0182 843 1.64E+03 1.82 2.06 2.34
13 18.23 1.139 0.0173 844 1.56E+03 1.72 1.95 2.23
14 18.00 1.125 0.0170 844 1.53E+03 1.69 1.92 2.19
15 17.77 1.111 0.0169 844 1.52E+03 1.68 1.91 2.18

Spin Freq(Hz): 16.0 Aspect Ratio(c/a): 3.148 Fill Ratio(%): 100 Re Num: 193.2
Radius(cm): 3.176 Rad Position(r/a): 0.434 Position (cm): 1.380 Alpha(deg):, 0.463
Gage ID Num: 32 Slope (psi/mV): 0.7798 Intercept(psi): 1.6518 Channel ID Num: 1
Room Temp(°C). 23.0 Viscosity(cs): 524.8 Density(g/cc): 0.968 Cyl. Type: Lucite
Motion: Proarade Gage Excitation(V DC): 10.0

16



Table 3: Oscillatory pressure data for Re - 193.2. alpha - 0.987 deg.,
rna a 0.667 and r/a - 0.434.

Coning Rate, Amplitude Signal Pressure Minimum Maximum
Run (Hz) Tau (V rms) Gain (dyne/cmA2)' Cp Cp Cp

1 17.56 1.098 0.0410 623 4.95E+03 2.66 2.91 3.19
2 17.90 1.119 0.0419 622 5.07E+03 2.61 2.98 3.26
'3 18.64 1.165 0.0435 622 5.27E+03 2.83 3.10 3.39
4. 19.08 1.193 0.0464 622 5.62E+03 3.02 3.30 3.61
5 19.47 1.217 0.0502 621 6.09E+03 3.28 3.58 3.90
6 19.64. 1.228. 0.0516 621 6.26E+0% 3.37 3.68 4.01
7 19.00 1.188 0.0462 622 5.59E+03 3.01 3.29 3.59
8 18.77 1.173 0.0456 622 5.52E+03 2.97 3.25 3.55
9 18.38 1.149 0.0446 622 5.40E+03 2.90 3.18 3.47

10 17.65 1.103 0.0415 623 5.02E+03 2.69 2.95 3.23
11 18.13 1.13a3 0.0437 622 5.29E+03 2.84 3.11 3.40
12 18.59 1.162 0.0447 622 5.41 E+03 2.91 3.18 3.48
13 18.90 1.181 0.0458. 622 5.54E+03 2.98 3.26 3.56
1 4 19.53 1.221 0.0502 621 6.09E+03 3.28 3.58 3.90

Spin Freq(Hz): 16.0 Aspect Ratio(c/a):3.148 Fill Ratio(%): 100 Re Num: 193.2
Radius(cm):3.176 Rad Position(r/a):0.667 Position (cm):2.120 Alpha(deg): 0.987
Gage ID Num: 33 Slope (psi/mV): 0.7722 Intercept(psi): -1.1838 Channel ID Num:2
Room Temp(*C): 23.0 Viscosity(cs): 524.8 Density(g/cc):0.968 Cyl. Type: Lucite
Motion: Prograde Gaoe Excitation(V DC): 10.0

Coning Rate Amplitude Signal Pressure Min~mum Maximum
Run (Hz) Tau (V rms) Gain (dynelcmA2) Cp Cp Cp
1 17.56 1.098 0.0320 844 2.88E+03 1.53 1.70 1.87
2 17.90 1.119 0.0356 844 3.21E+03 1.71 1.89 2.07
3 .18.64 1.165, 0.0384 843 3.46r'+03 1.85 2.04 2.23
4 19.08 1.193 0.0,425 843 3.83E+03 2.06 .2.25 2.47
5 19.47 1.217 0.0444 842 4.01E+03 2.15 2.36 2.58
6 19.64 1.228 0.0460 842 4.15E+-03 2.23 2.44 2.67
7 19.00 1.1188 0.0402 843 3.63E+03 1.94 2.13 2.34
8 18.77 1.173 0.0382 843 3.45E+03 1.84 2.03 2.22
9 18.38 1.14,9 0.0358 843 3.23E+03 1.72 1.90 2.09
10 17.65 1.103 0.0318 844 2.86E+03 1.52 1.68 1.86
11 18.13 1.133 0.0337 844 3.04E+03 1.62 1.79 1.96
12 18.59 1.162 0.0358 843 3.23E+03 1.72 1.90 2.09
13 18.90 1.181 0.0' 9 843 3.33E+03 1.78 1.96 2.15
14 19.53 1.221 0.0428 842 3.86E+03 2.07 2.27 2.49

Spin Freq(Hz): 16.0 Aspect Ratio(c/a): 3.148 Fill Ratio(%): 100 Re Num: 193.2
Radius(cm): 3.176 Rad Position(r/a): 0.434 Position (cm): 1.380 Alpha(deg): 0.987
Gage ID Num: 32 Slope (psi/mV): 0.7798 Intercept(psi): 1.6518 Channel ID Num:1
Room Temp(°C): 23.0 Viscosity(cs): 524.8 Donsity(g/cc): 0.968 Cyl. Type: Lucite
Motion: Prograde Gage Excitation(V DC): 10.0 1
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List of Symbols

a internal cylinder radius

C half height of cylinder

Cp 'nondimensional pressure coefficient

f fill ratio of cylinder

I internal length of cylinder (0=2c)

p inertial spin rate of cylinder

P oscillating pressure magnitude

Re Reynolds number = pa2/n

r radial position

a cylinder coning angle

p fluid density

01 cylinder inertial coning rate

T ratio of coning rate to spin rate

v fluid kinematic viscosity
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