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Abstract

The structural problem of a viscoelastically damped rod is considered. A four parameter
fractional derivative viscoelastic model rather than the traditional viscous model is used to de-
scribe the stress-strain relationship. The introduction of fractional order derivatives leads to high
order matrix equations, which are cumbersome and time consuming to solve. Thus, there exists a
motivation to seek alternate solution techniques. An existing technique, modifi. ! matrix iteration,
is presented. and a new one, employing spec.rum shift concepts, is proposed. The spectrum shift

technique is shown to be significantly more efficient.
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IMPROVED SOLUTION TECHNIQUES FOR THE

EIGENSTRUCTURE OF FRACTIONAL

ORDER SYSTEMS

I. Introduction

The fractional derivative viscoelastic model has its earliest roots in Nutting’s observations that
fractional powers of time could model the stress relaxation phenomenon [5]. Gemant later noted
that stiffness and damping properties of viscoelastic materials seemed porportional to fractional
powers of frequency, implying that fractional order time differentials might be used to model the
behavior [13]. Scott-Blair combined the ideas of Nutting and Gemant by proposing the use of
fractional order time derivatives {2]. Caputo applied the concept to the viscoelasic behavior of
geological strata [4]. Then he and Minardi showed that constitutive relationships employing the
fractional calculus described the mechanical properties of some metals and glasses (5]. Bagley
proposed incorporating fractional derivatives into finite element models of viscoelastically damped
structures. Since then, he and Torvik have jointly published several papers demonstrating the
feasibility and benefits of using fractional calculus. Of particular note is “A Theoretical Basis for
the Application of Fractonal Calculus to Viscoelasticity” [5], which uses molecular theory to derive
the existence of generalized derivatives. Their efforts have shown that fractional calculus is an
attractive approach to modelling viscoelastically damped structures. The resulting model requires

very few parameters and is often accurate over six decades of frequency [2).

Generalized calculus is not a new concept - - mathematicians have dealt with 1t for some time

[9:115-118]. A generalized derivative is represented in this paper as

De[z(1)).




The generalized derivative can be defined for complex a, but only real values will be considered here.
Fractional derivatives ar~ generalized derivatives with rational a. The term “fractional calculus”

implies the use of fractional derivatives.

This thesis reviews the properties of generalized derivatives and the expanded equations
of motion for a fractional order system describing a viscoelastically damped rod. The technique
proposed by Bagley tosolve for the eigenstructure is presented. A more efficient method is presented

in Chapter V, along with some examples.




Il. Brief Overview of Generalized Derivatives as Applied to Viscoelastic Materials

Before applying generalized derivatives to structural problems, it is necessary to understand
the properties of generalized derivatives and their use in viscoelastic theory. As will be shown,
generalized derivatives behave in much the same way as conventional derivatives. When used
to mode! viscoelastic materials, generalized derivatives typically provide an excellent model over a
broad range of frequencies [4]. To show how generalized derivatives can be used to model viscoelastic
materials, it is appropriate to first present the properties of generalized derivatives. especially the

Laplace and Fourier transforms. The generalized derivative is defined as [1:2)

o _ 1 d ' z(r)
D [I(t)]zr(l—a)z‘/; T=r)e dr for0<ac<l (1)

Note that this definition is only valid for @ < 1. However, the definition requires only a slight

modification for a generalized derivative of order greater than one. Let m be a nonnegative integer,

and a defined as before. Then [1:11]

‘o _ 1 dmtt o rtoz(7)
D™+ [r(t)]:r(l_a) P /o (t—r)"dr for0<a<l (2)

Although imposing in the time domain, in the Laplace (or Fourier) domain, the generalized
derivative manifests itself as a fractional power of s (or w). To calculate the Laplace transform, let

T =1 — 1. Then,

1 d ftz(t—n
Applying Leibnitz’s rule,
D°[z(1)] = / r(t—r;)d +—(9)——~ for0<a<1 (4)
l—a) n* 8t Il - a)te =

Noting that the integral is a time convolution, and that

i) = 5 ®




the Laplace transform is

L (sLiz(t)] - 2(0) + 22

L{D*[=z(1)]) =

sl~—a sl—a

or, more simply,
L[D®[z(t)]] = s= L{z(1)]
where

Liz(t)] = /:o z(t)e~*' dt

(6)

(7)

(8)

Notice that for initial conditions equal to zero, the Laplace transform of a generalized derivative

of order o has the same property as the conventional derivative: the transform is s® times the

transform of the function. In fact, the generalized derivative satisfies many of the same properties

as the conventional derivative, particularly linearity and the compostion property [1:8-10]

De[y(t) + ()] = D[y(t)] + D[=z(?)]
D°[D°[z(t)] = D***[z(1)]

The Fourier transform is defined as

oc

Flz(t)] = / z(t)e ' dt

- 00

Ifz(t) =0 fort <0, then the Fourier transform can be written as

oo .
Flz(t)] = / z(t)e 't dt
0
It is easily seen that the Fourier transform of a generalized derivative is

F[D?[z(1)] = (iw)® F[z(t)]

(9)

(10)

(11)

(12)

(13)

In the preceding discussion, the only restriction placed on a was that it be a nonnegative

real number less than one. However, for engineering applications, an irrational number can be

approximated by a rational number. So o will now be restricted to be rational as well. Using the

term “fractional derivative” will indicate this additional restriction.




To illustrate the use of fractional derivatives in viscoelastic theory, consider the standard

linear viscoelastic model relating stress and strain [2]

M N n
o)+ 3 b T = gty + Y £, £ (14)
mz=] n=1

dim dtn
Recalling Scott-Blair’s proposal, replace the conventional derivatives by derivatives of fractional

order. The result is the general form of the fractional derivative viscoelastic model {2]

M N
labelsumea(t) + Z bm DPm[0(t)] = Epe(t) + E En.D%"[e(t)] (15)
m=1 n=1

A large number of materials can be modelled by replacing each sum in Equation refsum by a

single term involving a fractional derivative
o(t) + b DP[o(t)] = Eoe(t) + E1D°[¢(t)) (16)

Invoking the Second Law of Thermodynamics requires that [3]

Eob 2 0 Ey > bE
E, > 0 a = 8 (17)
b > 0

These constraints ensure nonnegative energy dissipation and nonnegative work. The stress-strain

relation in the Laplace domain is

o(s) _ Eg+ E,s”
e(s) ~ 1+bs° (18)

This is known as the four parameter model, and has been shown to be very accurate over several

decades of frequency [4, 13, 14].




b Ill. Erpanded Fquations

Although the fractional derivative viscoelastic model may provide an excellent description
of a material’s properties, in order for it to be useful, its application to a structure must lead
to a solvable problem. This chaper illustrates the existence of a solution by examining the finite
element model of a viscoelastically damped rod. The equations of motion are developed using the
elastic-viscoelastic correspondence principle, which states that a viscoelastic problem is equivalent
to an elastic problem with the elastic moduli replaced by the appropriate viscoelastic moduli [7:42].
This chapter develops the finite element model of a viscoelastically damped rod, constrained at
each end. Figure 1 shows a five degree-of- freedom rod, constrained at each end, with viscoelastic
damping pads at each node. Assume the rod is uniform and purely elastic. Using standard finite

element techniques, the stiffness matrix for the elastic rod is of the form [8:300]

[Kel=—4| 0 -1 2 -1 o0 (19)

viscoelastic pads

S/

| —’Il(t) —’1‘2(!) —’1‘3(t) —.Iq(t) 25 (1)

\ 0 1 1 I 11
AUURIRRRNNNNNNNNNNNNANN

rod elements

Figure 1. Finite Elements of Rod
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where E' is the Young's modulus for the material in the rod, A is the cross-sectional area, and L is

the length of one element. Assume the modulus of the viscoelastic material is

_ o(s) _ Ey+ Eys*
Es) = e(s) ~ 1+ bse

(20)

as derived in the previous chapter. The damping pads provide an out of phase shear stress to the
rod. The shear stress is partially elastic and partially viscous, due to the real and imaginary parts
of the modulus. As an example, let a = 1/2, b = 0, and s = iw, where w is an observed frequency

of the system. Then

By
€
]

Eo + Ey(iw)'/?

Eo+ (w)/2Ee'"/4 (21)

(Eo + (w)!/2E1 cos §) + (w)'/2Ey sin §

The real part represents the elastic component of the shear stress, and the imaginary part represents

the viscous component, which is ninety degrees out of phase.

The contribution to the structure’s stifiness matrix due to the viscoelastic pads is

( A/t 0 0 0 0 -
0 A/t 0 0 0
G(s)[Kv] = %—iﬁ,ﬁ 0 0 Asfts 0 0 (22)
0 0 0 Aufta O
' 0 0 0 0 As/ts

where A, is the area of the pad attached to the rod at i** degree of freedom and ¢, is the pad’s thick-
ness. The ratios A;/t; are the stiffness coefficients for the damping material at the corresponding

degree of freedom. Then the stiffness matrix for the total structure is

Go + G, s”

(K (e)) = (5] + T

(K] (23)

‘ The mass matrix for the rod is [8:301-302]




1 41 00
pAL
[M]= < |0 1410 (24)
0 01 4 1

00014J

where p is the density of the rod, and A and L are defined as above.

The equations of motion in the Laplace domain are

[s2[M] + [K(s)] {X(s)} = {F(s5)} (25)

where {F(s)} is the Laplace transform of the forcing function. Setting {F(s)} = 0 yields the

homogeneous equation, form which the eigenstructure is found.

To clear the denominator in [K(s)], multiply through by (1 + bs®). Defining

(Ao

Go[Kv]+ [KE] (26)

(4] Gi[Kv] + b[KE] (27)

and expressing a as a ratio in lowest terms, ¢/m, gives

(sm*o/m bM] + /™ (M) + 597 [Ag] + [Ad]) (X ()} = (L+ 6"/ ™){(F(a)}  (28)

In order to obtain an orthogonal transformation and decouple the equations of motion, cast

the equations of motion in the following format

s/ M) {X(s)} + [K]{X(s)} = {F(s)} (29)




o) 0 - (0] b
(0] - A
A1) = [4,]
0] bla1] (4]
b[M] (4 - (0]
ol [0 0] —b[M]
© [ ~b[M]
N (4]
e o]  ~b[M] [~Aq)
—b{] [~4d0 - (0]
(0] (0] [0] [0]
sam-im (x(5)) |
sEm=DIm (X (s))
{X(s)} = f
s/m {X(s))
1 {X©)} |
0 ‘
[0]
{Fs)} = ' f
[0]
| (14 bs9/™){F(s)} ]

(0]
[0]

[0]
[0)

[Ao]




With {F(s)} = 0, the problem is now in terms of real, square, symmetric matrices. Thus,
the eigenvalues will be distinct and either real or occur in complex conjugate pairs. Also, the
eigenvectors will be orthogonal to one another. It is a straightforward matter to decouple the
expanded equations of motion using standard techniques [1:67-68] Notice that for an n degree-of-
freedom structure, the order of the expanded equations is n{2m + ¢). From Equation 28, it can
be seen that there are (2m + ¢) branches to the problem, with n eigenvalues on each, resulting
in n(2m + q) eigenvalues. In a standard viscous formulation of the problem, only 2n eigenvalues
would be found. The additional ones are due to the use of the fractional order derivatives. For a
large structure, the higher order of the equations of motion represents a significant computational
burden. Now that the existence of the solution has been proved, it will be beneficial to consider

solution techniques that avoid solving the expanded equations of motion.

10




IV. Modified Matriz Iteration Solution

The current method of determining for the eigenstructure of the fractional order system
deveoped in the previous chapter is to use a modified matrix iteration scheme on the homogeneous
form of the original equation. Matrix iteration avoids computing and solving the characteristic
polynomial of the matrix. Unlike using a Hessenberg matrix, which requires knowing the eigenvalue

before the eigenvector can be calculated, matrix interation determines both at the same time.

Matrix iteration is typically used to find the eigenstructure of undamped systems. With
some modification, the concept can be applied to damped systems. Two different algorithms will
be needed to find all n(2m + ¢) modes. For convenience, the modes on a given branch will be
numbered beginning with the one corresponding to the eigenvalue with the smallest magnitude. A
mode corresponding to an eigenvalue with larger magnitude will be referred to as a higher mode.

Lower modes are defined in the same way.

For an undamped system, the homogeneous form of the equations of motion in the Fourier

domain 1s
-’ [M]{g} +[K]{¢} =0 (30)
or

(K]~ [M){¢} = = {4} (31)

To demonstrate matrix iteration, select a trial vector,{1}, and express it as a linear combination

of the eigenvectors of [K]™![M]:

(¥} =) ci{ei} (32)

=1

This is possible since the eigenvectors of [K]~![M] span n-space. The only restriction on the c;’s

is that ¢; # 0. Premultiplying both sides of Equation 32 by [K]~![M] produces

K17 (M)} = 3 5{40) (33)

izl !

11




Subsequent multiplications produce

(KA {9 = 3 = (o) (34)

Since for large k,

Wk & wgk € K wk (35)

it is clear that Equation 34 converges to the lowest mode [10:124- 125]. If Equation 34 is normalized
with respect to the same element between premultiplications by [K']~![M], the the normalization
factor reaches a constant value, equal to 1/w? (since ¢; # 0), and the normalized vectors converge to

the first mode. To find higher modes, subtract off lower modes using Turner’s method [6:168-269].

Letting |
(D) = [K]~'{a1] - Z ARty (36)
then i
[D){¢} = = {4} (37)

converges to the j*» mode. Note that the lower modes must be normalized such that {¢,;}T[AM]{éi} = 1.
To apply this technique to a fractional order system, let A = s!/™. Then Equation 30 can be
written as
AT M){g} + [K(A)}{e} =0 (38)
or
(KO [M){8} = 15 {6 (39)

where [K())] is equivalent to [A(s)] in Equation 25. Each time the estimate of A is updated, [K(A)]
must be recomputed. Notice that for A2™, there are 2m possible values of A. The different values
arise because z1/2™ is a multivalued function and has 2m branches. T'e value of A on the k'*

branch is computed using DeMoivre’s Theorem [12:22]. Using the form A2™ = re'?,

k k
A =rl/2m (cosg-;:l 7r+isin0;:1 ”> (40)

12




The primary branch is assigned the number “0”,s0 £ =0,1,2,...,2m — 1.

Since the stiffness matrix is a function of A, to find the higher modes Equation 36 must be

modified:
i-1
. _ 1
(DO} = K 7HM] = 3 e A®H @) T IM) (41)
=1 "t
The quantities A; and {®,} are called pseudoeigenvalues and pseudoeigenvectors. They are com-

puted from the eigenvector problem:

(KO0 M@} = {0 (42

It is important to realize that the pseudoeigenvalues and pseudoeigenvectors are not modes
of the system. Their computation is merely an intermediate step in calculating the solutions of the
equations of motion. In computing the j** mode of the system, only the first j — 1 pseudomodes
of Equation 42 are needed. Then Equation 41 is used to converge on the j** mode of the system.
Notice that for each new guess of A, j — 1 pseudoeigenvalues and pseudoeigenvectors must be
recalculated. This repesents a significant computational burden. The next chapter proposes a

technique to reduce the amount of computation required.

Note that this technique produces 2mn eigenvalues, but Equation 28 predicted n{2m + q)
eigenvalues. The remaining ¢n of the n(2m + ¢) eigenvalues and eigenvectors are found using a
scheme very similar to the one above [1:80-83]. After clearing the denominator of Equation 38, it

can be written as

A2M(1 4+ bAY)[M]{6} + (1 + AN [Ke{o}+ 43)
(Eo+ E1M9)[Kv){¢} = ©

Writing the equation in this form allows A? to appear explicitly in the equation, making it possible

to find the remaining roots. Notice that these additional roots only exist for b # 0.
The solution method used to find the additional roots is somewhat subtle. By defining

Q

b/\2m+q + ,\2m (44)

[K'(2)]

(1 + 89 [KEg] + (Eo + E1A)[Ry]) (45)

13




Equation 43 can be written in the more recognizable form

(K] M6} = %§{¢} (46)

Matrix iteration is applied to this equation. with the i** estimate of A determined from

/9
Q- \1 ]
o [(—*—) J o

The k** branch of the ¢** root of the quantity in brackets is used to determine the eigenvalue on

that branch.

Turner’s method is again employed to find the higher modes on each branch, as in Equation 41,

with Q(),) replacing w?. A program which uses the above methods to comput. the additional modes

18 given in Appendix D.

This chapter has shown that it is possible to find all n(2m + ¢) eigenvalues and eigenvectors
without solving the expanded equations of motion. However, the technique still requires a substan-

tial amount of computation. In the next chapter, a technique is proposed which greatly reduces

the computational burden.

14




V. Spectrum Shift Technique

While the modified matrix iteration technique is effective, it is not very efficient. In this
chapter, spectrum shift methods will be combined with the matrix iteration technique. reducing
the amount of computation required. The purpose of spectrum shift is to shift the eigervalues of
the system so that the desired eigenvalue becomes the fundamental one. Matrix iteration will then
produce the desired eigenvalue. If spectrum shift methods could be used to compute the higher
modes in the viscoelastic model, the pseudoeigenvalues and pseudoeigenvectors of the corresponding
[K(A))~!{M] would not have to be computed. Determining the appropriate spectrum shifts is not

easy, and requires certain precautions, which will be presented later.

The spectrum shift technique is usually used in elastic systems when a particular frequency
and corresponding mode shape are of interest. To illustrate the theory behind the spectrum shift

technique, consider again an undamped system

[[K]-w?[M]]{¢} =0 (48)

Picking the shift factor, u, close to the desired w? gives the shifted equations [8:330)

(1K)~ u[M) = (w* ~ wM] {8} = 0 (49)
Letting
(R)=(K]- u[M] and P=u?-—p (50)
Then
[R)-F]4ey=0 o [R)7(M)(6} = ={4) (51)

Applying matrix iteration to this equation produces the mode closest to ;-.

15
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Now consider the matrix [K (),)]~'[A] of the viscoelastic model. Only the i*" eigenvalue and

eigenvector are desired. By letting A = s'/™ = (iw)!/™, Equations 50 and 51 can be written as

Ammo = N4
(KO = [K)] - u(M) (52)
[EOOHMIe) = Z5{¢}

As a first guess of the appropriate shift factor for the i** mode, the eigenvalue of [K'();-1)] 7! [1)

closest to X;_ is used. It is computed by using Turner’s method. The dynamical matrix is

[DOi-1)] = [Ki-)] (M) = == {ima}{8i-1) T [M]
AT (83)
[DA-HS) = {6}
If p;_, was the shift used to find A;_;, then by Equation 52, the new shift factor is
fi = pioy — A2 (54)
Since the magnitude of the i** eigenvalue must be larger than the magnitude of A;_1, if
luil < i1l (55)
then A2™ was in the wrong direction. The shift is recomputed as
i = piot + AP (56)
Notice that matrix iteration on
o
~ =~ _ 1 -
[A (A, w7 [M] = ;ﬁ{'ﬁ-‘} (57)

will converge to the i — 1 mode if the magnitude of y; is not large enough. If this occurs, y; is
adjusted by adding the new azm (as in Equation 56). A program employing these techniques is

listed in Appendix C.

For undamped systems, the j** eigenvalues on all 2m branches have the same magnitude and

are evenly spaced on a circle about the origin. For lightly damped systems, the j'* eigenvalues lie

16




o — undamped system
x — damped system

o .

Figure 2. Locations of A and A? values

near the those for an undamped system. This is portrayed graphically for a single degree of freedom
system with @ = 1/2 in Figure 2a. Since A2™ is roughly the same magnitude for all the eigenvalues,
the program in Appendix C can be modified slightly to use the A?™ values on the principal branch
to calculate shifts for the other branches. This modification is valid for systems with less than a

0.01 damping ratio.

To understand the location of the A? values in the s-plane, it is necessary to realize that the
Riemann surface for the function w = z!/2 consists of two Riemann sheets, joined together at the

branch cut. Taking the branch cut along the negative real axis, the sheets can be defined by

o
So = {z]-7<arg(z) <7}
(58)
S1 = {z|r <arg(z) < 37}
® So the eigenvalues in the first and fourth quadrants of the s!/2-plane map into the second and third
quadrants, respectively, of So. These are shown in Fiqure 2b. But the eigenvalues in the second and
third quadrants of the s!/2-plane map into tiie fourth and first quadrants, respectively, of §;. To
L

17




see this let re*(37/4+%) represent the second quadrant eigenvalue, where 6 is an small angle. Then

arg(A\?) = 3?” + 26 (59)

Since this angle is greater than 7, A% is on S; at the angle given by Equation 59.

The third quadrant eigenvalue is a little more subtle. Its angle is —(37/4 + 6), so

arg(A\?) = —3?” - 26 (60)

But neither sheet contains values with this angle. When the value crossed the negative real axis
in the negative direction, its angle experienced a 47 jump discontinuity from —# to 3x. Therefore

the angle is really

3 5
arg(v):—?"—z«s“w:?”-% (61)

This angle is in the first quadrant of S;. Notice that for undamped systems, the A% values in S lie

directly above those in Sy. To map back into the s!/2-plane, the 47 must be subtracted off before

taking the square root.

For a ten degree-of-freedom system, the spectrum shift technique more than halved the com-
putation time required by the modified matrix iteration technique. Storing the principal branch’s
A?™ values reduced the computation time by another 50%. (Exact computation times are given in

the next chapter.) Computed eigenvalues were accurate to at least five significant figures.

18




VI. FErample Problem

To demonstrate the efficiency of this technique, a ten degree-of-freedom model was considered.
The rod was similar to the one in Figure 1, and its equations of motion had the same form. The rod
was assumed to be pure aluminum, with Butyl B252 damping pads. The values of the naraineters

were [4)(all values are in compatible mks SI units)

p = 271103 E = 5516-10'°

A = 0.0625 Gy = 7.6.10°

A = 00625 G, = 295.10° (62)
L = 0.909 b = 0.001

;i = 0.1

These parameters resulted in low damping, on the order of 10~2, so it could be solved using the
modified spectrum shift technique, as well as by using modified matrix iteration or spectrum shift.
The computation times for two different pad thicknesses are given in Table 1. The solution took

longer than for the thinner pad due to the increased damping.

The damping in the system was increased by decreasing the thickness of the viscoelastic pads
to 0.01m. For this case, the equivalent damping ratio was 0.069, as computed from the fundamental
mode. The eigenvalues and eigcnvectors for the spectrum shift solution are listed in Appendix E.
For completeness, the additional roots (computed using modified matrix iteration) are also included

in Appendix E. For the principal branch, the complex frequencies and mode shapes were found to

be

Technique t=0.1m = 0.05m
Modified matrix iteration 0:52.11 1:14.51
Spectrum shift 0:21.78 0:32.43
Modified spectrum shift 0:12.06 0:15.15

Table 1. Computation Times (in CPU minutes)
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-61 + 9606:
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—-69 <+ 13567:
~74 + 15415:
{ =79 + 16779
® and i -
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.9 1.7 1.3 0.8 03 -03 -08 -13 -17 -1.9
o . 27 18 07 -03 -09 -09 -03 07 18 27
3.2 14 -04 -11 -0.5 0.6 1.1 04 -14 -3.2
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The first three mode shapes are plotted in Figures 3 to 5. The magnitude of the complex frequencies
o for the first five modes is less than 10% higher than those for an undamped continuum model (refer
to Appendix B for a description of the continuum model), but the higher frequencies differ by up
to 20%.
‘o
20
o
| | - R )




Figure 3. First Mode Shape for Damped Rod

Figure 4. Second Mode Shape for Damped Rod
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Figure 5. Third Mode Shape for Damped Rod

The spectrum shift method complements the finite element model. With spectrum shift,

finite element problems with viscoelastic damping can be solved much faster than with modified

matrix iteration. For a ten degree-of- freedom model, the savings was more than 50% of the CPU

time.
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VII. Conclusions and Recommendations

The spectrum shift technique is inore efficient than the matrix iteration technique. The com-
putational burden does not increase as drastically with increasing degrees of freedom. For lightly

damped systems, the modified spectrum shift technique represents even greater computational

savings.

The existing program can be made more efficient by realizing that in real systems eigenvalues
and eigenvectors appear in complex pairs, and by taking advantage of the symmetry of the stiffness
and mass matrices. Also, for larger systems, it would be beneficial to examine matrix inversion

techniques that are designed to handle large matrices.

Spectrum shift techniques were attempted on the solution for the additional gn eigenvalues
due to b # 0, but the initial results were discouraging. The eigenvalues are all close in magnitude,
which presents a challenge to the spectrum shift method. Time constraints prevented a closer look
into this approach, but the results presented in the last chapter suggest it would be worth while to

look into this some more, especially for large m.
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Appendix A. Programming Flowcharts and Special Techniques

This appendix presents flowcharts for the three programs included in this thesis in Figures 6
through 8. The first one is for the program in Appendix D, VDRMI, which calculates the first 2mn
modes of a viscoelastically damped rod using modified matrix iteration. The second flowchart is
for the program in Appendix E, NONZEROB, which calculates the additional modes due to b # 0
by modii:~d matrix iteration. Notice that its flow chart is very similar to the one for VDRMI. The
third flow chart is for the program in Appendix C, VDRSS1, which computes the first 2mn modes
by the spectrum shift technique presented in Chapter V. The programs are similar in the logic used
in each one. Both VDRMI and VDRSS! calculate the new guess of A from A2 by Equation 40,
while NONZEROB uses Equation 47. If X is within tolerance, then A and {¢} are printed out.
If A is not within tolerance, it is used to compute [D())] (See Equation 41 and following text for

VDRMI and NONZEROB, Equation 52 for VDRSS1).

In VDRMI and NONZERORB, if this is not the fundamental mode on the current branch, then

the pseudomodes (discussed in Chapter IV) must be computed and subtracted off by Equation 41.

The inverse of [K())] is needed to compute [D())]. This inversion is carried out by first

expressing [K ()] in terms of a Choleski decomposition [11:170]:
[K)] = [U]T[U]
This is valid as long as [K())] is symmetric. The inverse of [K()))] is given by
K]~ = U177

Once [D())] is determined, a new estimate of A and {¢} can be computed. The process is repeated

until A is within the desired tolerance.

The new estimate of A and {¢}, and the pseudomodes in VDRMI and NONZEROB, are de-

termined using matrix iteration. Convergence in the matrix iteration portions of the programs was

25




Dol10 N\, _ _.__._
BRANCH=0,2m - - =
T

Initialize
Variables

Compute

[D(V]

Is - :
No ) within o] Priat X,{9}
tolerance Check value of A

[D(M)] = [D)}+
= {vH¥}T [M]

Figure 6. Flowchart for VDRMI
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NONZEROB

Do 10
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Figure 7. Flowchart for NONZEROB
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VDRSS
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determined by comparing the norm of the difference of successive guesses. Convergence occurred

when this norm was below a desired tolerance. Clearly, as n increases, the tolerance on {¢} does
not have to be as tight for the same accuracy in A. In VDRMI and NONZEROB, the tolerance
values were picked through trial and error to find ones that gave convergence with the desired

accuracy in A. In VDRSS]1, the tolerance for {¢}, €1, was related to the tolerance of A, ¢g, by
€ = (é/m \/;

After the j** eigenvalue and eigenvector are found in VDRSS1, the shift factor for the 7 + 1

eigenvalue must be computed. This is done by applying Equations 53 through 56.

Once an eigenvalue and eigenvector have been computed, they are put back into the expanded
equations of motion to check the accuracy of the solution. To make the equaitons of motion more
manageable, multiply Equation 29 by {Es'} Setting {F(s)} = 0, s/™ = X, and replacing {#} by

{X(s)},
__GTEE -
{}7[M]{s}
Expanding,

) = [@m+g—1)bA™* + (2m — DA} [M]{6) + (¢ = 1)A*{6}T[4,){d} - {¢}T[4,]{¢}
- [(2m + @)bA2m+9=1 + 2mAzm=1{g}T[M]{0} + qA1-1{4}T[A,]{0}

(66)
This is a convenient check on the computed value of A, 2nd its value is printed out right after

A so that a direct comparison can be made. With the proper ¢ values, accuracy to 5 significant

digits was typical for all programs.




Appendix B. Correlation of FORTRAN Program for Purely Elastic Rod

This appendix contrasts the first three mode shapes of a ten degree-of- freedom finite element
model against those of a continuum model for a purely elastic rod. This will give an indication of

the accuracy of the model for the viscoelastically damped case.
The continuum model for a purely damped elastic rod is developed from the harmonic equa-

tion

= —_— 67
at? or? (67)
with boundary conditions

u(0,t) = u(L,1) = 0

The resonant frequencies of the system are found to be

w:% -l;— n=12... (68)
The mode shapes are
¢(z) = sin(2) (69)

In Figures 9 through 11, the first few modes of the continuum model are plotted against the
computed modes of a ten degree-of- freedom finite element model. The modes were computed
using the program in Appendix C, with the viscoelastic term set to zero. These comparisons

demonstrate the validity of the program for elastic systems.
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Appendix C. FORTRAN Program for Spectrum Shift Technique

This computer program calculates the first 2mn eigenvectors and eigenvalues for a viscoelas-
tically damped rod using the spectrum shift technique presented in Chapter V. A flowchart for
this program is presented in Appendix A. The program uses unformatted READ and WRITE
statements, which may produce output different from that shown in Appendix F on computers
other than a VAX/VMS. Some of the input parameters are the number of degrees of freedom and

the physical characteristics of the rod and pads, including the mass and stiffness matrices.
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PROGRAM VDRSS1

FORTRAN Code for viscoelastically damped rod using matrix
iteration with spectrum shift.

Set up variables needed in program
Declaration statements for variables.

INTEGER 1Q,IM,IMAX1,IMAX2, IMAX3,N

REAL A,ALPHA,B,E0,El,EPS1,LE,MAG, RHOE

COMPLEX IMRIO,IMRIOC,IOMA,IOMAL,IOMAS,ITA,IOM2H,10M2S, I0MEGA,
PTAOP, PTAQP, PTMP, PROD, SUN,

10M2, MU, MUS,
KE(10,10),KV(10,10),M(10,10),
D(10,10),ERR(10),K0(10,10),K1(10,10),
KINV(10,10),KOMEGA(10,10),PHIG(10),PHILG(10),PPTM(10,10),
PSI(10),PSIG(10),SHIFT(10),U(10,10),UINV(10,10),
PHI(10)

N = Number of Degrees of Freedom
IMAX = Maximum number of times to run iteration loop
= Stiffness matrix for viscoelastic damping material
KE = Stiffness matrix for elastic rod
M = Mass Matrix of total structure
LE = Length of one element
A = Cross-sectional area of rod
RHO = material density
E = Young's modulus for elastic material.
E0,E1,B,ALPHA = Parameters of Young's modulus for viscoelastic
material.
(I*OMEGA)**2 = eigenvalue
= i * system frequency (sometimes also referred to
as an "eigenvalue"
PHI = eigenvector
PHIG = guess at an eigenvector
PHILG = last gquess at an eigenvector
D = Dynamical matrix
EPS = Tolerance level

I0M2 =
IOMEGA

Open input and output data files.

OPEN (UNIT=5,FILE='INPUT',6 STATUS='0OLD"')
OPEN (UNIT=9,FILE='DEBUG',STATUS='NEW')
OPEN (UNIT=10,FILE='OUTPUT1',STATUS='NEW')
write (10,%*) 'OUTPUT FOR VDRSS1'

Set value of PI
PI = 3.141592654

Read in EPS, RHO, A, LE, parameters for E
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50
40

52

READ (5,*) EPSO
READ (5,*) RHOE
READ (5,*) AE

READ (5,%) LE

READ (5,%) E

READ (5,%*) EO,El,B

write (10,%) 'rhoe',rhoe

write (10,*) 'ae',ae

write (10,*) 'le',le

write (10,%) 'e',e

write (10,*) 'e0',e0,' el',el,' b',b

READ (5,*) N, IQ, IM

ALPHA = REAL(IQ)/REAL(IM)
READ (5,%) IMAX1,IMAX2,IMAX3

write (10,*) 'n',n,' iq',iqg,' im',im,' alpha',alpha
write (10,%) 'imaxl',imaxl,' imax2',imax2,' imax3',imax3

EPS1 = (EPSO**(1/REAL(IM)))*SQRT(REAL(N))
write (10,*) 'eps0',eps0,' epsl',epsl

Read in stiffness and mass matrices for both elastic and
viscoelastic materials.

DO 40 1CcOL = 1,N
DO 50 IROW = 1,N
READ (5,*) KE(IROW,ICOL)
write (10,*)'ke',irow,icol,ke(irow,icol)

KE(IROW,ICOL) = KE(IROW,ICOL)*E*AE/LE
write (10,%*)'ke',irow,icol,ke(irow,icol)

CONTINUE
CONTINUE

DO 42 1COL = 1,N
DO 52 IROW = 1,N
READ (5,*) KV(IROW,ICOL)
write (10,*)'kv',irow,icol,kv(irow,icol)

Compute KO and K1 elements.

KO (IROW, ICOL)
K1(IROW,ICOL)

EO*KV(IROW, ICOL)
E1*KV(IROW,ICOL)

CONTINUE
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42 CONTINUE

DO 43 IcoL = 1,N
DO 53 IROW = 1,N
READ (5,*) M(IROW,ICOL)
write (10,%*)'m',irow,icol, m(irow,icol)

M(IROW,ICOL) = M(IROW,ICOL)*RHOE*AE*LE/6.
write (10,%*)'m',irow,icol, m(irow,icol)
53 CONTINUE
43 CONTINUE

C******************************************************t*****t**

Cct Calculate roots for branch = IBRANCH b
C**********************************************t****************

DO 10 IBRANCH = 0,2*IM-1

C Set initial values of iom2h and mu
IOM2H = CMPLX(0.1,0.1)
IOM2S = 0.0
IOMAS = 0.0
MU = 0.0
MUS = 0.0
po 113 =1,N

DO 12 IMODE = 1,2

write (9,*) 'Computing Eigenvalue ',j,' on branch ',ibranch,

1 ' imode = ',imode
print *, 'Computing Eigenvalue ',3j,' on branch ',ibranch,

1 ' imode = ',imode

c Set initial eigenvector guess.

DO 151 = 1,N
PHIG(I) = 1.0/1
15 CONTINUE

DO 20 IGUESS1 = 1,IMAX1

C Check if this is the second iteration for current value of mu --
C if so, use current value of ioma and skip right to computation of
C new mu.

IF(IMODE .EQ. 2) GOTO 3000
C Calculate IOMA = (i*omega)**alpha = ((i*omega)**2)**alpha/2
C = (iom2h-mu)**alpha/2
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(abs(iom2h-mu)*exp(i*ang))**alpha/2
((mag**(1/im))*exp(i*ang*(1/2*im))**iq = IMRIO ** igq

IOM2 = IOM2H - MU

Check each new value of IOM2 -- its magnitude should be greater
than the previous value of MU.

IF (ABS(IOM2) .LT. ABS(MUS)) THEN
MUS = MU
MU = MU + IOMZ2H

write (9,%) 'abs(iom2)',abs(iom2),'abs(mus)',abs(mus)
print *, 'mus lst chk',mus,'iom2h',iom2h

IOM2H = 0.0
Reset initial eigenvector gquess.

DO 171 = 1,N
PHIG(I) = 1.0/1
CONTINUE
GOTO 20
ENDIF

REIOM2 = REAL(IOM2)

AIMIOM2 = AIMAG(IOM2)

MAG SORT(REIOM2**2 + AIMIOM2**2)
ANG ATAN2 (AIMIOM2,REIOM2)

IF (ANG .LT. 0) ANG = ANG + 2*PI
ARG = (ANG + 2*IBRANCH*PI)/REAL(2*IM)
IMRIO = (MAG**(1/REAL(2*IM)))*CMPLX(COS(ARG),SIN(ARG))

IOMEGA

IMRIO**IM

IOMA = IMRIO**IQ

DIF = ABS((IOMA - IOMAS)/IOMA)

IF (DIF .LT. 2.*SQRT(EPS0)) THEN
IF(IOM2H .EQ. 0) GO TO 29
MUS = MU
MU = MU + IOM2H

print *, 'mus',mus,'iomzh',iom2h
write (9,%) 'mus',mus,'iom2h',iom2h

I0M2H =0.0
Reset initial eigenvector guess.
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29

31
30
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110

130

~N

DO 16 I = 1,N
PHIG(I) = 1.0/1
CONTINUE

GOTO 20
ENDIF

DIF = ABS{(IOMA - IOMAL)/IOMA)
write (9,*) 'dif',dif,'errnorm’',errnorm

IF (DIF .LT. EPSO .AND. ERRNORM .LT. EPS1) GO TO 5400
IOMAL = IOMA

Now compute K(omega).

DO 30 ICOL = 1,N
DO 31 IROW = 1,N
KOMEGA(IROW,ICOL) = KE(IROW,ICOL) +
(KO(IROW,ICOL) + IOMA*K1(IROW,ICOL))/(1 + B*IOMA)
- MU*M(IROW,ICOL)
CONTINUE
CONTINUE

Rk kAR Rk R R R A R AR AR AR A A Rk R R KRR R R AR AR KAk k&

* 4
* Compute dynamical matrix *
* b

LEE ARt R R e L I R R P Y Y R S R R A E

First compute inverse of K by using a Cholesky decomposition
KOMEGA = Utranspose * U

Compute U

U(l,1) = CSQRT(KOMEGA(1,1))

DO 110 1ICOL = 2,N
U(1,ICOL) = KOMEGA(1,ICOL)/U(1,1)
CONTINUE

DO 120 IROW = 2,N
SUM = 0.0
DO 130 ITER = 1,IROW-1
SUM = SUM + U{ITER,IROW)**2
CONTINUE
U(IROW,IROW) = CSQRT(KOMEGA(IROW,IROW)-SUM)

DO 140 ICOL = IROW+l,N
SUM = 0.0
DO 150 ITER =1,IROW-1
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150

140
120

220

210
200

250
240
230

700
600
500

3000

SUM = SUM + U(ITER,IROW)*U(ITER,ICOL)

CONTINUE
U(IROW,ICOL) = (KOMEGA(IROW,ICOL)-SUM)/U(IROW,IROW)
CONTINUE
CONTINUE
inverse of KOMEGA = (inverse of U)*(inverse of U,transposed)

First calculate inverse of U
DO 200 ICOL = 1,N
UINV(ICOL,ICOL) = 1.0/U(ICOL,ICOL)

DO 210 IROW = 1,ICOL-1
SUM = 0.0
DO 220 ITER = IROW, ICOL-1

SUM = SUM + UINV(IROW,ITER}*U(ITER,ICOL)

CONTINUE
UINV(IROW,ICOL) = -SUM/U(ICOL,ICOL)

CONTINUE
CONTINUE
Now for KOMEGA inverse
DO 230 IROW = 1,N
DO 240 1COL =1,N
KINV(IROW,ICOL) = 0.0
DO 250 ITER = 1,N
KINV(IROW,ICOL) = KINV(IROW,ICOL) +
UINV(IROW,ITER) * UINV(ICOL,ITER)
CONTINUE
CONTINUE
CONTINUE
Compute D = KINV * M
DO 500 IROW = 1,N
DO 600 ICOL = 1,N
D(IROW,ICOL) = 0.0
DO 790 ITER = 1,N
D(IROW,ICOL) = D(IROW,ICOL) +
KINV(IROW,ITER) * M(ITER,ICOL)
CONTINUE
CONTINUE
CONTINUE

If this is primary eigenvalue, do not compute a new d.

IF (IMODE .EQ. 1) GO TO 3900

Compute new dynamical matrix for computation of next higher mode.

Normalize eigenvectors such that (PHI transposed)(M)(PHI) = 1.

PROD = 0.0
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DO 2000 IROW = 1,N
SUM = 0.0
DO 2100 ICOL = 1,N
SUM = SUM + M(IROW,ICOL)*PHI (ICOL)
2100 CONTINUE
PROD = PROD + PHI(IROW)*SUM
2000 CONTINUE

PROD = CSQRT(PROD)
DO 2200 1 = 1,N
PHI(I} = PHI(I)/PROD
2200 CONTINUE

C D = D + (PHI)(PHI transposed)(M)/IOM2H
C First compute second term, then add it to D
DO 3100 IROW = 1,N
DO 3200 ICOL = 1,N
PPTM(IROW,ICOL} = 0.0
DO 3300 ITER = 1,N
PPTM(IROW,ICOL) = PPTM(IROW,ICOL) +

1 PHI(IROW) * PHI(ITER) * M(ITER,ICOL)

3300 CONTINUE
D(IROW,ICOL)= D(IROW,ICOL) +
1
PPTM(IROW,ICOL}/(IOM2S+MU)

3200 CONTINUE
3100 CONTINUE
C ARk kAR R Rk R kR R R AR A R AR AR AR A R AR AR AR AR R KX
C * Compute a new guess for OMEGA. *
C KRR Rk A kA A kAR AR A AR R AR R KRR AR AR AR AR AR AR AR Kk %

3900 DO 4000 IGUESS3 = 1,IMAX3

C
C Compute PHI = D*PHIG
C
DO 41001 = 1,N
PHI(I) = 0.0
DO 4200 ITER = 1,N
PHI(I) = PHI(I) + D(I,ITER)*PHIG(ITER)

4200 CONTINUE
4100 CONTINUE
C
o Normalize on first element. (This is valid for this probiem
c as we are using a simple rod; the first element will never
c be zero.) Store the first element of PHI as a "guess" of
C IOM2H. 1IOM2 = IOMEGA**2, where OMEGA is the frequancy of
C the system,

IOM2H = -1./PHI(1)
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DO 4300 I =2,N

PHI(I) PHI(I} / PHI(1)
4300 CONTINUE
PHI(1) = 1.0
C
c Check to see if the quess is within tolerance level.
C Get error vector and compute its norm.
DO 4310 I= 1,N
ERR(I) = PHIG(I) - PHI(I)
4310 CONTINUE
C Find norm of error vector -- this is the radius of the error
C sphere.
ERRNORM2 = 0.0
DO 4320 ITER = 1,N
ERRNORM2 = ERRNORMZ2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER})**2
4320 CONTINUE
ERRNORM = SQRT(ERRNORMZ)
write (9,*) 'errnorm for phi',errnorm
IF (ERRNORM .GT. EPS1) THEN
DO 43301 = 1,N
PHIG(I) = PHI(I)
4330 CONTINUE
ELSE
IF (IMODE .EQ. 2) THEN
MU = MU - IOM2H
c Make sure shift is in right direction -- abs(mu) should be
C greater than the magnitude of the last iom2, or mu, calculated.
C If it isn't, add iom2h rather than subtracting it.
IF (ABS(MU)} .LT. ABS(MUS)) MU = MU + 2*IOQOMZH
C Reset IOM2H:

IOM2H = 0.0

write (10,%) 'mu',mu
write (9,%) 'mu',mu

GOTO 11
ELSE

IF (IMODE .EQ. 1) GO TO 4400
ENDIF

ENDIF
4000 CONTINUE
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. C We did not converge on a new estimate. If IMODE = 2, keep
c trying. It this is the primary mode, reset mu.
o
WRITE (9,*) 'NEW ESTIMATE NOT FOUND'
IF (IMODE .EQ. 2} GO To 20
MU = MU - IOM2H
o
C Make sure shift is in right direction -- abs(mu) should be
C greater than the magnitude of the last mu calculated. If it
C isn't, add iom2h rather than subtracting it.
IF (ABS(MU) .LT. ABS(MUS)) MU = MU + 2*IOMZ2H
@ write (9,*) 'reset mu',mu,'iom2h =',iomzh
c Reset IOM2H:
IOM2H = 0.0
GO TO 20
o
c Need to check if the new guesses of omega and phi are within
C tolerance.
c Get error vector and compute its norm.
4400 DO 5310 I= 1,N
ERR(I} = PHILG(I) - PHI(I)
o ‘ 5310 CONTINUE
C Find norm of error vector -- this is the radius of the error
C sphere.
ERRNORM2 = 0.0
DO 5320 ITER = 1,N
ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +
o 1 AIMAG(ERR(ITER))**2

5320 CONTINUE
ERRNORM = SQRT(ERRNORM2)

DO 5330 I = 1,N
® PHILG(I) =
5330 CONTINUE
20  CONTINUE

PHI(I)

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.', IBRANCH,

@ 1 ' EIGENVECTOR NO. ',J
c No sense computing additional eigenvalues, since they
o depend on this one. Exit program.

write (10,*) 'TERMINATING PROGRAM'
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GO TO 9999

c Write eigenvalue and eigenvector to output file
5400 MUS = - IOM2

IOMAS = IOMA

IOM2S = IOM2

WRITE (10,*) 'Branch No.',IBRANCH,' (i*OMEGA)**2',J,
1 ' = ', I0M2

WRITE (10,%*) 'iomega', IOMEGA
WRITE (10,*) 'imrio ',imrio

PTAOP = 0.0
DO 6000 IROW = 1,N
SUM = 0.0
DO 6100 ICOL
SUM = SUM
6100 CONTINUE
PTAOP = PTAOP + PHI(IROW)*SUM
6000 CONTINUE

1,N
+ (KO(IROW,ICOL)+KE(IROW,ICOL))*PHI(ICOL)

PTAQP = 0.0
DO 6010 IROW = 1,N
SUM = 0.0
DO 6110 ICOL = 1,N
SUM = SUM + (K1(IROW,ICOL)+B*KE{IROW,1COL))*PRI(1COL)
6110 CONTINUE
PTAQP = PTAQP + PHI(IROW)*SUM
6010 CONTINUE

PTMP = 0.0
DO 6300 IROW = 1,N
SUM = 0.0
DO 6400 ICOL = 1,N
SUM = SUM + M(IROW,ICOL)*PHI(ICOL)
6400 CONTINUE
PTMP = PTMP + PHI(IROW)*SUM
6300 CONTINUE

Q = REAL(IQ)
TM = REAL(2*IM)
TMQ = TM + Q

TMM1 = TM - 1.
IMRIOC =(((TMQ-1)*B*(IMRIOX*(2*IM+IQ))+TMM1*(IMRIO**(2*XIM)))*PTMP

1 +(Q-1.)*(IMRIO**(IQ))*PTAQP-PTAOP)
1 /((TMQ*B*IMRIO** (2*IM+IQ-1)+TM* (IMRIO**(2*%IM-1)))*PTMP
1 +Q* (IMRIO**(IQ-1))*PTAQP)

WRITE (10,*) 'imrioc',IMRIOC
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5500

12
11
10
9999

DO 5500 I=1,N
WRITE (10,*)
CONTINUE

IF (J .EQ. N) GOTO 11
CONTINUE

CONTINUE

CONTINUE

STOP

END

PHI(I)
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Appendix D. FORTRAN Program for Modified Matriz Iteration Technique

This computer program computes .he first 2mn eigenvectors and eigenvalues for a viscoelas-
tically damped rod using the modified matrix iteration techniques presented in Chapter IV. A
flowchart for this program is presented in Appendix A. The program uses unformatted READ
and WRITE statements, which may produce output different from that shown in Appendix F on
computers other than a VAX/VMS. Some of the input parameters are the number of degrees

of freedom and the physical characteristics of the rod and pads, including the mass and stiffness

matrices.
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PROGRAM VDRMI

FORTRAN Code for viscoelastically damped rod using matrix
iteration.

Set up variables needed in program
Declaration statements for variables.

INTEGER FLAG,1Q,IM,IMAX1,IMAX2, IMAX3,N

REAL A,ALPHA,B,E0,El,EPS1,EPS2,EPS3,LE, MAG, RHOE

COMPLEX IOMA,IMRIOC,IOMAL,IMRIO,PROD,PTAOP,PTAQP,PTMP,

SUM, 10M2, IOMEGA,
KE(10,10),KV(10,10),M(10,10),
D(10,10),ERR(10),K0(10,10),K1(10,10),
KINV(10,10),KOMEGA(10,10),PHIG(10),PHILG(10),PPTM(10,10),
PSI(10),PSIG(10),U(10,10),UINV(10,10),
PHI (10)

N = Number of Degrees of Freedom

IMAX = Maximum number of times to run iteration loop

KV = Stiffness matrix for viscoelastic damping material

KE Stiffness matrix for elastic rod

M = Mass Matrix of total structure

LE = Length of one element

A = Cross-sectional area of rod

RHO = material density

E = Young's modulus for elastic material.

EOQ,El,B,ALPHA = Parameters of Young's modulus for viscoelastic
material.

IOMEGA = i * system frequency

IMRIO = Mth root of IOMEGA

IMRIOC = check value for IMRIO

IOMA = IOMEGA to the ALPHA

10M2 IOMEGA squared

PHI = eigenvector

PHIG = guess at an eigenvector

PHILG = last guess at an eigenvector

PSI = lower mode eigenvector

PSIG = quess at lower mode eigenvector

D = Dynamical matrix

EPS = Tolerance level

Open input and output data files.

OPEN (UNIT=5,FILE='INPUT',STATUS='0OLD')
OPEN (UNIT=9,FILE='DEBUG',STATUS='NEW')
OPEN (UNIT=10,FILE='OUTPUT',STATUS='NEW')
write (10,%) 'OUTPUT FOR VDRMI'

Set value of PI
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50
40

PI = 3.141592654
Read in EPS, RHO, A, LE, parameters for E

READ (5,*) EPS0,EPS1,EPS2,EPS3
READ (5,*) RHOE

READ (5,*) AE

READ (5,*%) LE

READ (5,*%) E

READ (5,*%) EO,E1,B

write (10,*) 'eps0',eps0O,' epsl',epsl
write (10,*) 'eps2',eps2,' eps3',eps3

write (10,%*) 'rhoe',rhoe

write (10,%) 'ae’',ae

write (10,*) 'le',le

write (10,*) 'e',e

write (10,*) 'e0',e0,' el',el,' Db',b
READ (5,*) N, IQ, IM

ALPHA = REAL(IQ)/REAL(IM)

READ (5,*) IMAX1,IMAX2,IMAX3

write (10,*) 'n',n,' iq',iq,’' im',im,' alpha',alpha
write (10,*) 'imaxl',imaxl,' 1imax2',6imax2,' imax3',6imax3

Read in stiffness and mass matrices for both elastic and
viscoelastic materials.

bo 40 ICOL = 1,N
DO 50 IROW = 1,N
READ (5,*) KE(IROW,ICOL)
write (10,*)'ke',irow,icol,ke(izrow,icol)
KE(IROW,ICOL) = KE(IROW,ICOL)*E*AE/LE

write (10,*)'ke',irow,icol,ke(izrow,icol)

CONTINUE
CONTINUE

DO 42 ICOL = 1,N
DO 52 IROW = 1,N
READ (5,*) KV(IROW,ICOL)
write (10,%*)'kv',irow,icol,kv(irow,icol)
Compute KO and K1 elements.
KO(IROW,ICOL) = EQ*KV(IROW,ICOL)
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53
43

K1(IROW,ICOL) = E1*KV(IROW,ICOL)

CONTINUE
CONTINUE

DO 43 ICOL = 1,N
DO 53 IROW = 1,N
READ (5,*) M(IROW,ICOL)
write (10,*)'m',irow,icol,m{irow,icol)

M(IROW,ICOL) = M(IROW,ICOL)*RHOE*AE*LE/6.
write (10,%*)'m',irow,icol,m(irow,icol)

CONTINUE
CONTINUE

(s e IR I PR R R R Y Y S 2R R R 2R R

C*

Calculate roots for branch = IBRANCH *

(e ER R Rt R R s R R R L R R R R I I R R R P S Y P SR 22 2

DO 10 IBRANCH = 0,2*IM-1
Set initial value of iom2
IOM2 = CMPLX(1.0,1.0)
Reset FLAG
FLAG = 0
DO 11 J = 1,N

WRITE(9,*) 'Computing Eigenvalue No.',3j,'on

branch',ibranch

Qoo

print *, 'Computing Eigenvalue No.',j,'on branch',ibranch
DO 20 IGUESS1 = 1,IMAX1

Check if this is the first iteration on same branch -- if so, use
current value of ioma and skip right to computation of new D.

IF(FLAG .EQ. 1) GOTO 900

Calculate IOMA = (i*omega)**alpha = ((i*omega)**2)**alpha/2

= (iom2)**alpha/2

(abs(iom2)*exp(i*ang))**alpha/2
((mag**(1/im))*exp(i*ang*(1/2%im))**iq = IMRIO ** iq

REIOM2 = REAL(IOM2)
AIMIOM2 = AIMAG(IOM2)
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MAG
ANG

SQRT(REIOM2**2 + AIMIOM2**2)
ATANZ2 (AIMIOM2,REIOM2)

i n

IF (ANG .LT. 0) ANG = ANG + 2*PI
ARG = (ANG + 2*IBRANCH*PI)/(2*IM)

IMRIO = (MAG**{1/REAL(2*IM)))*CMPLX(COS(ARG),SIN(ARG))

IOMEGA = (IMRIO**IM)
IOMA = IMRIO**IQ
c Now compute K(omega).

29 DO 30 ICOL = 1,N
DO 31 IROW = 1,N
KOMEGA(IROW,ICOL) = KE(IROW,ICOL) +
1 (KC(IROW,ICOL) + IOMA*K1(IROW,ICOL))/(1 + B*IOMA)
31 CONTINUE
30 CONTINUE

DIF = ABS(IOMA - IOMAL)
write (9,*%) 'dif',dif,'errnorm',errnorm

IF (DIF .LT. EPSO .AND. ERRNORM .LT. EPS1) GO TO 5400

IOMAL = IOQMA
C L2t R R R R R S 2 R Y E R R R R R 2R 2R
C % *
C * Compute dynamical matrix *
c * *
(o **************************'k**************t**************
C
C First compute inverse of K by using a Cholesky decomposition
C KOMEGA = Utranspose * U
C Compute U

U(1,1) = CSQRT(KOMEGA(1,1))

DO 110 I1COL = 2,N

U(1,ICOL) = KOMEGA(1,ICOL)/U(1,1)

110 CONTINUE

DO 120 IROW = 2,N
SUM = 0.0
DO 130 ITER = 1,IROW-1
SUM = SUM + U(ITER,IROW)**2
130 CONTINUE
U(IROW,IROW) = CSQRT(KOMEGA(IROW,IROW)-SUM)
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150

140
120

220

210
200

250
240
230

700
600
500

DO 140 ICOL = IROW+1,N
SUM = 0.0
DO 150 ITER =1,IROW-1
SUM = SUM + U(ITER,IROW)*U(ITER,ICOL)
CONTINUE
U(IROW,ICOL) = (KOMEGA(IROW, ICOL ) -SUM) /U(IROW, IROW)

CONTINUE
CONTINUE
inverse of KOMEGA = (inverse of U)*(inverse of U,transposed)
First calculate inverse of U
DO 200 ICOL = 1,N
UINV(ICOL,ICOL) = 1.0/U(1COL,1ICOL)

DO 210 IROW = 1,ICOL-1
SuM = 0.0
DO 220 ITER = IROW, ICOL-1
SUM = SUM + UINV(IROW,ITER)*U(ITER,ICOL)
CONTINUE
UINV(IROW,ICOL) = -SUM/U(ICOL,ICOL)

CONTINUE
CONTINUE
Now for KOMEGA inverse
DO 230 IROW = 1,N
Do 240 I1coL =1,N
KINV(IROW,ICcOL) = 0.0
bo 250 ITER = 1,N
KINV(IROW,ICOL) = KINV(IROW,ICOL) +
UINV(IROW,ITER) * UINV(ICOL,ITER)
CONTINUE
CONTINUE
CONTINUE
Compute D = KINV * M
DO 500 IROW = 1,N
po 600 ICOL = 1,N
D(IROW,ICOL) = 0.0
po 700 ITER = 1,N
D(IROW,ICOL) = D(IROW,ICOL) +
KINV(IROW,ITER) * M(ITER,ICOL)
CONTINUE
CONTINUE
CONTINUE

If J > 1, compute lower order modes and calculate a new
dynamical matrix, one with the lower modes subtracted off.

IF (J .EQ. 1) GO TO 3900

tttt‘lt*t*ttt*****l’***tt******t******t****t***‘k*t******t
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1320

* Compute lower modes %
1232282232222 3228282222828 822 33232233 323

DO 1000 IMODE =1, J-1

IF(FLAG .EQ. 1) THEN
FLAG = 0
GOTO 3000

ENDIF

Set initial eigenvector guess.
DO 1010 I = 1,N
PSIG(I) = 1.0/1
CONTINUE
DO 1050 IGUESS2 = 1,IMAX2

Compute PSI = D*PSIG

DO 1100 I = 1,N
PSI(I) = 0.0
DO 1200 ITER = 1,N
PSI(I) = PSI(I) + D{(I,ITER)*PSIG(ITER)
CONTINUE
CONTINUE

Normalize on first element. (This is valid for this problem
as we are using a simple rod; the first element will never
be zero.) Store the first element as a "gquess" of IOM2.
I0OM2 = (I*W)**2, where W is the frequency of the system.

IOM2 = -1./PSI(1)

DO 1300 I =2,N

pSI(i) = v8I(I) / PSI(1)
CONTINUE
PSI(1l) = 1.0

Check to see if the guess is within tolerance level.
Get error vector and compute its norm.
DO 1310 I= 1,N
ERR(I)} = PSIG(I) - PSI(I)
CONTINUE
Find norm of error vector -- this is the radius of the error
sphere.
ERRNORM2 = 0.0
PO 1320 ITER = 1,N
ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +
AIMAG(ERR(ITER))**2
CONTINUE
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ERRNORM = SQRT(ERRNORM2)

write(9,*%) 'errnorm for psi',errnorm

IF (ERRNORM .LT. EPS2) GO TO 3000
DO 1330 I = 1,N
PSIG(I) = PSI(I)
1330 CONTINUE
1050 CONTINUE
WRITE (10,%) 'DID NOT CONVERGE ON MODE', IMODE,
1 ' EIGENVECTOR NO.',J,'BRANCH NO.', IBRANCH
WRITE (10,*) 'TERMINATING PROGRAM'

GO TO 9999
C Compute new dynamical matrix for computation of next eigenvalue
C and eigenvector.
C Normalize eigenvectors such that (PSI transposed)(M)(PSI) = 1.

3000 PROD = 0.0
DO 2000 IROW = 1,N
SUM = 0.0
DO 2100 ICOL = 1,N
SUM = SUM + M(IROW,ICOL)*PSI(ICOL)

2100 CONTINUE ,

PROD = PROD + PSI(IROW)*SUM
2000 CONTINUE

PROD = CSQRT(PROD)
DO 2200 I = 1,N
PSI(I) = PSI(I)/PROD
2200 CONTINUE

C D=1D+ (1./10M2)(PSI1)(PSI transposed)(M)
c First compute second term, then subtract it from D
DO 3100 IROW = 1,N
DO 3200 ICOL = 1,N
PPTM{IROW,ICOL) = 0.0
DO 3300 ITER = 1,N
PPTM(IROW,ICOL) = PPTM(IROW,ICOL) +

1 PSI(IROW) * PSI(ITER) * M(ITER,ICOL)
3300 CONTINUE
D(IROW,ICOL) = D(IROW,ICOL) + 1./I0M2 *
1 PPTM( IROW, ICOL)
3200 CONTINUE
3100 CONTINUE

1000 CONTINUE

C 12222 2SS 2RSSR Rt s 22222202 2]
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c
C

Compute a new gquess for OMEGA. *

22222 R E R e R F R PR SR R L 2]

3900 DO 4000 IGUESS3 = 1,IMAX3

C

15

3950

4200
4100

f the

[eN-NeNeNeNeNe]

4300

4320

Check if this is the first iteration on this eigenvalue.
IF (IGUESSl .GT. 2 .OR. IGUESS3 .GT. 1) GOTO 3950
Set initial eigenvector guess.
DO 151 = 1,N
PHIG(I) = 1.0/1
CONTINUE

Compute PHI = D*PHIG

DO 4100 I = 1,N
PHI(I) = 0.0
DO 4200 ITER = 1,N
PHI(I) = PHI(I) + D(I,ITER)*PHIG(ITER)
CONTINUE
CONTINUE

Normalize on first element. (This is valid for this problem
as we are using a simple rod; the first element will never
be zero.) Store the first element as a "guess" of I('l.
I0OMZ = (IOMEGA**2), where IOMEGA is 1 times the frequency

system.
I0OM2 = -1./PHI(1)

DO 4300 I =2,N
PHI(I) = PHI(I) / PHI(1)
CONTINUE
PHI(1) = 1.0

Check to see if the guess is within tolerance level.
Get error vector and compute its norm.
DO 4310 I= 1,N
ERR(I) = PHIG(I) - PHI(I)
CONTINUE
Find norm of error vector -- this is the radius of the error
sphere.
ERRNORM2 = 0.0
DO 4320 ITER = 1,N
ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +
AIMAG(ERR(ITER))**2
CONTINUE
ERRNORM = SQRT(ERRNORM?)
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write (9,*) 'errnorm for phi',errnorm

IF (ERRNORM .LT. EPS3) GO TO 4400
DO 4330 I = 1,N
PHIG(I) = PHI(I)

4330 CONTINUE
4000 CONTINUE

400

5310

5320

5330
20

WRITE (10,%*) 'DID NOT CONVERGE ON BRANCH NOC.',6 IBRANCH,
' EIGENVECTOR NO. ',J

No sense computing additional eigenvalues, since they
depend on this one. Exit program.

write (10,*) 'TERMINATING PROGRAM'
GO TO 9999

Need to check if the new guesses of omega and phi are within
tolerance.
Get error vector and compute its norm.
DO 5310 I= 1,N
ERR(I) = PHILG(I) - PHI(I)
CONTINUE
Find norm of error vector -- this is the radius of the error
sphere.
ERRNCRMZ = 0.0
DO 5320 ITER = 1,N
ERRNORMZ2 = ERRNORM2 + REAL(ERR(ITER))**2 +
AIMAG(ERR(ITER))**2
CONTINUE
ERRNORM = SQRT(ERRNORM?2)

DO 5330 I = 1,N
PHILG(I) = PHI(I)

CONTINUE

CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',IBRANCH,
' EIGENVECTOR NO. ',J

No sense computing additional eigenvalues, since they
depend on this one. Exit program.

write (10,*) 'TERMINATING PROGRAM'
GO TO 9999
Write eigenvalue and eigenvector to output file
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5400 WRITE (10,*) 'Branch No.',6KIBRANCH,' Eigenvalue No.',J,
1 '= ', I0M2
WRITE (10,*) 'iomega',IOMEGA
WRITE (10,*) 'imrio ',imrio

PTAOP = 0.0
DO 6000 IROW = 1,N
SUM = 0.0
DO 6100 ICOL = 1,N
SUM = SUM + (KO(IROW,ICOL)+KE(IROW,ICOL))*PHI(ICOL)
6100 CONTINUE
PTAOP = PTAOP + PHI(IROW)*SUM
6000 CONTINUE

PTACP = 0.0
DO 6010 IROW = 1,N
SUM = 0.0
DO 6110 ICOL = 1,N
SUM = SUM + (K1(IROW,ICOL)+B*KE(IROW,ICOL))*PHI(ICOL)

6110 CONTINUE

PTAQP = PTAQP + PHI(IROW)*SUM
6010 CONTINUE

PTMP = 0.0
DO 6300 IROW = 1,N
SUM = 0.0
DO 6400 ICOL =
SUM = SUM

6400 CONTINUE

PTMP = PTMP + PHI(IROW)*SUM
6300 CONTINUE

1,N
+ M(IROW,ICOL)*PHI(ICOL)

Q = REAL(IQ)
TM = REAL(2*IM)
TMO = TM + Q

TMM1 = TM - 1.
IMRIOC =(((TMQ-1)*B*(IMRIO**(2*IM+IQ))+TMM1*(IMRIO**(2%IM)))*PTMP

1 +(Q-1.)*(IMRIO**(IQ))*PTAQP-PTACP)
1 /((TMQ*B*IMRIO** (2*IM+IQ-1)+TM* (IMRIO**(2*IM-1)))*PTMP
1 +Q* (IMRIO**(IQ-1))*PTAQP)

WRITE (10,*) 'imrioc',IMRIOC

DO 5500 I=1,N
WRITE (10,%*) PHI(I)

c Set PSI = PHI for first computation of new D.
PSI(I) = PHI(I)
5500 CONTINUE
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c Let the first guess of jomega be the last value. Set FLAG.
FLAG = 1

11 CONTINUE

10 CONTINUE

9999 SToOP
END
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Appendix E. FORTRAN Program for Eigenvalues Due to Nonzero B

This computer program computes the additional ng eigenvectors and eigenvalues for a vis-
coelastically damped rod that arise due to a nonzero b in the viscoelastic model (see Equation 28).
The techniques techniques presented in Chapter IV are used in this program. A flowchart for this
program is presented in Appendix A. The program uses unformatted READ and WRITE state-
ments, which may produce output different from that shown in Appendix F on computers other
than a VAX/VMS. Some of the input parameters are the number of degrees of freedom and the

physical characteristics of the rod and pads, including the mass and stiffness matrices.
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PROGRAM NONZEROB

FORTRAN Code to compute structural modes due to non-zero b
for viscoelastically damped rod using matrix iteration.

Set up variables needed in program
Declaration statements for variables.

INTEGER FLAG,IQ,IM,IMAX1,IMAX2, IMAX3,N

REAL A,ALPHA,B,E0,El,EPS1,EPS2,EPS3,LE, MAG, RHOE

COMPLEX BIOMAP2,IOMA,IMRIOC,IOMAL, IMRIO, IMRIOL,
PROD, PTAOP,PTAQP, PTMP,

SUM, 10M2, IOMEGA,

KE(10,10),KV(10,10),M(10,10),
D(10,10),ERR(10),K0{10,10),K1(10,10),
KINV(10,10),KOMEGA(10,10),PHIG(10),PHILG(10),PPTM(10,10),
PSI(10),PSIG(10),U(10,10),UINV(10,10),

PHI(10)

N = Number of Degrees of Freedom

IMAX = Maximum number of times to run iteration loop

KV = Stiffness matrix for viscoelastic damping material

KE = Stiffness matrix for elastic rod

M = Mass Matrix of total structure

LE = Length of one element

A = Cross-sectional area of rod

RHO = material density

E = Young's modulus for elastic material.

E0,El,B,ALPHA = Parameters of Young's modulus for viscoelastic
material.

IOMEGA = i * system frequency

IMRIO = Mth root of IOMEGA

IMRIOC = check value for IMRIO

IOMA = IOMEGA to the ALPHA

I0M2 IOMEGA squared

PHI = eigenvector

PHIG = guess at an eigenvector

PHILG = last guess at an eigenvector

PSI = pseudoeigenvector

PSIG = guess at psuedceigenvector

D = Dynamical matrix

EPS = Tolerance level

OO aoOaoOo0000n0n0co0a0ao0a0ao0anoanan

(@]

Open input and output data files.

OPEN (UNIT=5,FILE='INPUT',STATUS='0LD"')
OPEN (UNIT=9,FILE='DEBUG',STATUS='NEW')
OPEN (UNIT=10,FILE='OUTPUT',STATUS="'NEW')

write (10,%*) 'OUTPUT FOR NONZEROB'
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50
40

Set value of PI
PI = 3.141592654

Read in EPS, RHO, A, LE, parameters for E

READ (5,*) EPSO,EPS1,EPS2,EPS3
READ (5,%) RHOE

READ (5,*%) AE

READ (5,%) uE

READ (5,%) E

READ (5,%) EO,El1,B

write (10,*) 'eps0',eps0,' epsl',epsl
write (10,%*) 'eps2',eps2,' eps3',eps3

write (10,*) 'rhoe',rhoe

write (10,*) 'ae',ae

write (10,*) 'le',le

write (10,%*) 'e',e

write (10,*) 'e0',e0,' el',el,' b',b
READ (5,%) N, IQ, IM

ALPHA = REAL(IQ)/REAL(IM)

READ (5,*) IMAX1,IMAX2,IMAX3

write (10,%*) 'n',n,’' iq',iqg,' im',im,' alpha',alpha
write (10,%*) 'imaxl',imaxl,' imax2',imax2,' imax3',imax3

Read in stiffness and mass matrices for both elastic and
viscoelastic materials.

DO 40 ICOL = 1,N
DO 50 IROW = 1,N
READ (5,*) KE(IROW,ICOL)
write (10,%*)'ke',irc.,icol,ke(izow,icol)
KE(IROW,ICOL) = KE(IROW,ICOL)*E*AE/LE

write (10,*)'ke',irow,icol,ke(irow,icol)

CONTINUE
CONTINUE

DO 42 ICOL = 1,N
DO 52 IROW = 1,N
READ (5,*) KV(IROW,ICOL)

write (10,%)'kv',irow,icol,kv(irow,icol)

Compute KO and K1 elements.

59




KO (IROW, ICOL)
K1(IROW,ICOL)

EO*KV(IROW, ICOL)
E1*KV(IROW, ICOL)

52 CONTINUE
42 CONTINUE

DO 43 ICOL = 1,N
DO 53 IROW = 1,N
READ (5,%) M(IROW,ICOL)
write (10,*)'m',irow,icol,m(irow,icol)

M(IROW,ICOL) = M(IROW,ICOL)*RHOE*AE*LE/6.
write (10,*)}'m',irow,icol,m(irow,icol)

53 CONTINUE
43 CONTINUE

(RS2 EE RSS2SR RSt 2222222222822 32320

Cx Calculate roots for branch = IBRANCH *
C***************************************************************

DO 10 IBRANCH = 0,IQ-1
C Set initial value of iom?2
IMRIO = CMPLX(-1.0/B)
IOM2 = IMRIO**(2*IM)
BIOMAP2 = 0.0
o Reset FLAG
FLAG = 0
DO 11 J = 1,N h

WRITE(9,*) 'Computing Eigenvalue No.',Jj,'on branch',ibranch
print *, 'Computing Eigenvalue No.',j,'on branch',ibranch

DO 20 IGUESS1 = 1,IMAX1

C Check if this is the first iteration on same branch -- if so, use
c current value of ioma and skip right to computation of new D.

IF(FLAG .EQ. 1) GOTO 900

C Calculate IOMA = (i*omega)**alpha = IMRIO ** ig
C IMRIO = (Q - iom2)/(b*iom2*imrio**(g-1))
c Q = b*(i*omega)**(alpha+2) + iom2 = biomap2

IOMA = ((BIOMAPZ - IOM2)/(B*(IMRIO**(2*IM+IQ-1))))**IQ
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REIOMA = REAL(IOMA)

AIMIOMA = AIMAG(IOMA)

MAG = SQRT(REIOMA**2 + AIMIOMA**2)

ANG = ATAN2(AIMIOMA,REIOMA)

IF (ANG .LT. 0) ANG = ANG + 2*PI
ARG = (ANG + 2*IBRANCH*PI)/REAL(IQ)
IMRIO = (MAG**(1/REAL(IQ)))*CMPLX(COS(ARG),SIN(ARG))
TOMEGA = IMRIO**IM

TOMA
I10M2

IMRIO**IQ
IOMEGA**2

print *,'biomap2’',biomap2,'iomA',iomA
C Now compute K(omega).

29 DO 30 ICOL = 1,N
DO 31 IROW = 1,N
KOMEGA(IROW, ICOL) = (1+B*IOMA)*KE(IROW,ICOL) +
1 KO(IROW,ICOL)} + IOMA*K1(IROW,1COL)
31 CONTINUE
30 CONTINUE

DIF = ABS(IMRICQ - IMRIOQL)
write (9,*%) 'dif',dif,'errnorm',errnorm

IF (DIF .LT. EPSO .AND. ERRNORM .LT. EPS1) GO TO 5400
IMRIOL = IMRIO

C *******t******************t***************‘k*************
C *
c * Compute dynamical matrix *
C * *
o LA R R SRR R X R R R Y Y Y Y R R R AR R )
c
C First compute inverse of K by using a Cholesky decomposition
C KOMEGA = Utranspose * U
C Compute U

U(l,1) = CSQRT(KOMEGA(1,1))

DO 110 ICOL = 2,N

U(1,ICOL) = KOMEGA(1,ICOL)/U(1,1)

110 CONTINUE

DO 120 IROW = 2,N
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SUM = 0.0
‘ DO 130 ITER = 1,IROW-1
SUM = SUM + U(ITER,IROW)**2
® 130 CONTINUE

U(IROW,IROW) = CSQRT(KOMEGA(IROW,IROW)-SUM)

DO 140 ICOL = IROW+1l,N

SUM = 0.0
DO 150 ITER =1,IROW-1
® SUM = SUM + U(ITER,IROW)*U(ITER,ICOL)
150 CONTINUE
U(IROW,ICOL) = (KOMEGA(IROW,ICOL)-SUM)/U{IROW,IROW)
140 CONTINUE
120 CONTINUE
® C inverse of KOMEGA = (inverse of U)*(inverse of U,transposed)
C First calculate inverse of U

DO 200 ICOL = 1,N
UINV(ICOL,ICQL) = 1.0/U(ICOL,ICOL)

DO 210 IROW = 1,ICOL-1
® SUM = 0.0
DO 220 ITER = IROW, ICOL-1
SUM = SUM + UINV(IROW,ITER}*U(ITER,ICOL)

220 CONTINUE
UINV(IROW,ICOL) = -SUM/U(ICOL,ICOL)
° . 210 CONTINUE
200 CONTINUE
C Now for KOMEGA inverse

DO 230 IROW = 1,N
DO 240 ICOL =1,N
KINV(IROW,ICOL) = 0.0

° DO 250 ITER = 1,N
KINV(IROW,ICOL) = KINV(IROW,ICOL) +
1 UINV(IROW,ITER) * UINV(ICOL,ITER)
250 CONTINUE
240 CONTINUE
230 CONTINUE
PY c Compute D = KINV * N

DO 500 IROW = 1,N
DO 600 ICOL = 1,N
D(IROW,ICOL) = 0.0
DO 700 ITER = 1,N
D(IROW,ICOL) = D(IROW,ICOL) +

PY 1 KINV(IROW, ITER) * M(ITER,ICOL)
700 CONTINUE
600 CONTINUE
500 CONTINUE
C If J > 1, compute lower order modes and calculate a new
e
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- e loNeoNe@]

1010

oNeNe]

1300

e NeNe

1310

dynamical matrix, one with the lower modes subtracted off.

IF (J .EQ. 1) GO TO 3900

R R Rk Kk kR Ak R Rk A R KRR R AR AR A AR AR R R R AR KK KKK A AN R Ak &

* Compute lower modes %
L3 R R e R L R R R I R s R R R Y R Y R S RS R SRR R T

DO 1000 IMODE = 1, J-1

IF(FLAG .EQ. 1) THEN
FLAG = 0
GOTO 3000

ENDIF

Set initial eigenvector quess.
DO 1010 I = 1,N
PSIG(I) = 1.0/1
CONTINUE
DO 1050 IGUESS2 = 1,IMAXZ

Compute PSI = D*PSIG

DO 1100 1 =1,
PSI(I) =

DO 1200 I

PSI{

CONTINUE

N
0.0

TER = 1,N
1) = PSI(I) + D(I,ITER)*PSIG(ITER)

CONTINUE

Normalize on first element. (This is valid for this problem
as we are using a simple rod; the first element will never

be zero.) Store the first element as a "guess" of BIOMAP2.
BIOMAP2 = B*(I*W)**(ALPHA+2)+I0M2, where W is the frequency

of the system.
BIOMAP2 = -1./PSI(1)

DO 1300 I =2,N
PSI(I) =

CONTINUE

PSI(1) = 1.0

PSI(I) / PSI(1)

Check to see if the guess is within tolerance level.
Get error vector and compute its norm.
DO 1310 I= 1,N
ERR(I) = PSIG(I) - PSI(I)
CONTINUE

Find norm of error vector -- this is the radius of the error
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1320

1330
1050

3000

2100

2000

2200

3300

1

sphere.
ERRNORM2 = 0.0
DO 1320 ITER = 1,N
ERRNORMZ = ERRNORM2 + REAL(ERR(ITER))**2 +

1 AIMAG(ERR(ITER) ) **2

CONTINUE
ERRNORM = SQRT(ERRNORM2)

IF (ERRNORM .LT. EPS2) GO TO 3000
DO 1330 I = 1,N
PSIG(I) = PSI(I)
CONTINUE
CONTINUE
WRITE (10,*) 'DID NOT CONVERGE ON MODE', IMODE,
' EIGENVECTOR NO.',J, 'BRANCH NO.', IBRANCH
WRITE (10,*) 'TERMINATING PROGRAM'

GO TO 9999

Compute new dynamical matrix for computation of next eigenvaiue
and eigenvector.

Normalize eigenvectors such that (PSI transposed)(M)(PSI) = 1.

PROD = 0.0
DO 2000 IROW = 1,N
SUM = 0.0
DO 2100 ICOL = 1,N
SUM = SUM + M(IROW,ICOL)*PSI(ICOL)

CONTINUE
PROD = PROD + PSI(IROW)*SUM
CONTINUE

PROD = CSQRT(PROD)
DO 2200 I = 1,N

PSI(I) = PSI(I)/PROD
CONTINUE

= D + (1/BIOMAP2)(PSI}(PSI transposed) (M)
First compute second term, then subtract it from D
DO 3100 IROW = 1,N
DO 3200 ICOL = 1,N
PPTM(IROW,ICOL) = 0.0
DO 3300 ITER = 1,N
PPTM(IROW,ICOL) = PPTM(IROW,ICOL) +
PSI(IROW) * PSI(ITER) * M(ITER,ICOL)
CONTINUE
D(IROW,ICOL) = D(IROW,ICOL) + 1./BIOMAP2 *
PPTM(IROW,ICOL)

64




3200
3100
1000

15

3950

4200
4100

pNeNeNe Ny

g

4300

eRgNe]

4310

CONTINUE
CONTINUE
CONTINUE

L s e R R s R IS Y Y 2222222020

% Compute a new guess for BIOMAP2. *
s A A R R Y R R R 2223323322222

DO 4000 IGUESS3 = 1,IMAX3
Check if this is the first iteration on this eigenvalue.
IF (IGUESS1 .GT. 2 .OR. IGUESS3 .GT. 1) GOTO 3950
Set initial eigenvector guess.
DO 151 = 1,N
PHIG(I) = 1.0/1
CONTINUE

Compute PHI = D*PHIG

DO 4100 I = 1,N
PHI(I) = 0.0
DO 4200 ITER = 1,N
PHI(I) = PHI(I) + D(I,ITER)*PHIG(ITER)
CONTINUE
CONTINUE

Normalize on first element. (This is valid for this problem
as we are using a simple rod; the first element will never
be zero.) Store the first element as a "guess" of BIOMAP2.
BIOMAP? = B*(IOMEGA**2) + IOM2, where IOMEGA is i times the

frequency of the system.
BIOMAPZ = -1./PHI(1)

DO 4300 I =2,N

PHI(I) = PHI(I) / PHI(1)
CONTINUE
PHI(1) = 1.0

Check to see if the guess is within tolerance level.
Get error vector and compute its norm.
DO 4310 1= 1,N
ERR(I) = PHIG(I) - PHI(I)
CONTINUE
Find norm of error vector -- this is the radius of the error
sphere.
ERRNORM2 = 0.0

65




DO 4320 ITER = 1,N
ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER) ) *#2
4320 CONTINUE
ERRNORM = SQRT(ERRNORM2)

write (9,*) 'errnorm for phi',errnorm

IF (ERRNORM .LT. EPS3}) GO TO 4400
DO 4330 I = 1,N
PHIG(I) = PHI(I)
4330 CONTINUE
4000 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',IBRANCH,
1 ' EIGENVECTOR NO. ',J

«

No sense computing additional eigenvalues, since they

C depend on this one. Exit program.
write (10,*) 'TERMINATING PROGRAM'
GO TO 9999
C Need to check if the new guesses of omega and phi are within
C tolerance.
C Get error vector and compute its norm.
4400 DO 5310 I= 1,N
ERR(I) = PHILG(I} - PHI(I)
5310 CONTINUE
C Find norm of error vector -- this is the radius of the error
C sphere.
ERRNORM2 = 0.0
DO 5320 ITER = 1,N
ERRNORM2 = ERRNORM2 + REAL(ERR(ITER))**2 +
1 AIMAG(ERR(ITER) ) **2
5320 CONTINUE

ERRNORM = SQRT(ERRNORM2)

DO 5330 I = 1,N
PHILG(I) = PHI(I)
5330 CONTINUE
20 CONTINUE

WRITE (10,*) 'DID NOT CONVERGE ON BRANCH NO.',6 IBRANCH,

1 ' EIGENVECTOR NO. ',J
c No sense computing additional eigenvalues, since they
C depend on this one. Exit program.
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write (10,*) 'TERMINATING PROGRAM'

GO TO 9999
c Write eigenvalue and eigenvector to output file
5400 WRITE (10,*) 'Branch No.',IBRANCH,' Eigenvalue No.',J,
1 Y= ', I0M2

WRITE (10,*) 'iomega',IOMEGA
WRITE (10,*) 'imrio',imrio

PTAOP = 0.0
DO 6000 IROW = 1,N
SUM = 0.0
DO 6100 ICOL = 1,N
SUM = SUM + (KO(IROW,ICOL)+KE(IROW,ICOL))*PHI(ICOL)
6100 CONTINUE
PTAOP = PTAOP + PHI{IROW)*SUM
6000 CONTINUE

PTAQP = 0.0
DO 6010 IROW = 1,N
SUM = 0.0
DO 6110 ICOL = I,N
SUM = SUM + (K1(IROW,ICOL)+B*KE(IROW,ICOL))*PHI (ICOL)

6110 CONTINUE

PTAQP = PTAQP + PHI(IROW)*SUM
6010 CONTINUE

PTMP = 0.0
DO 6300 IROW = 1,N
SUM = 0.0
DO 6400 ICOL = 1,N
SUM = SUM + M(IROW,ICOL)*PHI(ICOL)

6400 CONTINUE

PTMD = PTMP + PHI(IROW)*SUM
6300 CONTINUE

Q = REAL(IQ)
TM = REAL(2*IM)
TMQ = THM + Q

TMM1 = TM - 1.
IMRIOC =(((TMQ-1)*B*(IMRIO**(2*IM+IQ))+TMM1*(IMRIO**(2*IM)))*PTLP

1 +(Q-1.)*(IMRIO**(IQ))*PTAQP-PTAOP)
1 /((TMQ*BX¥IMRIO** (2*IM+I1Q-1)+TM*(IMRIO**(2*IM-1)))*PTMP
1 +Q* (IMRIO**(IQ-1))*PTAQP)

WRITE (10,%*) 'imrioc',IMRIOC

DO 5500 I=1,N
WRITE (10,*) PHI(I)
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5500

11
10
9999

Set PS! = PHI for first computation of new D.

PSI(I) = PHI(I)
CONTINUE

Let the first guess of iomega be the last value.
FLAG = 1
CONTINUE
CONTINUE

STOP
END
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Appendix F. Sample Eigenstructure for Ten-by-Ten Systcm

The eigenstructure for the sample problem discussed in Chapter VI is included here for
completeness. The output is in the form that the programs printed it out, and all n(2m + ¢q)

eigenvalues are listed.
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OUTPUT FOR VDRSS!
rhoe 2710.000

ae 6.2500000E-02
le 0.9090000

e 5.5160001E+10

el 4750000.

n 10 igq
imaxl 40
eps0 1.0000000E-07
Branch No. 0 (i*OMEGA)**2
iomega (-106.7766,1546.550)
imrio (26.86498,28.78374)
imrioc (26.86460,28.78333)
“1.000000,0.0000000E+00)
{1.918981,-4.6963174E-07)
(2.682489,-1.8393910E-06)
(3.228670,-3.8353260E-06)
(3.513276,-6.1834844E-06)
(3.513254,-8.3750992E-06)
(3.228611,-9.6274507E-06)
(2.682413,-9.3926346E-06)
(1.918911,-7.5336757E-06)
(0.9999585,-4.1679818E-06)
mu (8630993.,344225.4)
Branch No. 0 (i*OMEGA)**2
romega (-76.92407,2962.288)
imrio (37.98923,38.98853)
imrioc (37.98922,38.98852)
(1.000000,0.0000000E+00)
({1.682507,1.0944797E-07)
(1.830830,1.0944797E-07)
{1.397877,3.2834393E-07)
(0.5211071,5.7460187E-07)
{-0.5211105,7.3877385E-07)
(-1.397880,8.7558379E-07)
(-1.830833,1.0397558E-06)
(-1.682509,7.6613583E-07)
(-1.000001,3.8306791E-07)
mu (1.4748486E+07,250720.7)
Branch No. 0 (i*OMEGA)**?2
iomega (-65.54370,4459.315)
imrio (46.87352,47.56753)
imrioc (46.87298,47.56708)
(1.000000,0.0000000E+00)
(1.309692,2.1120691E-06)
(0.7152848,6.6443340E-06)
(-0.3729208,1.0633175E-05)
(-1.203747,1.0431492E-05)
(-1.203667,4.1905241E-06)
(-0.3727068,-6.0308817E-06)
(0.7155645,-1.5249475E-05)

el
1l im
imax?2

1843750.

140

1

2

b 1.0000000E-03

imax3
epsl 9.9999993E-04
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(1.309949,-1.7960991E-05)
(1.000152,-1.2022547E-05)
mu (2.0617300E+07,-44966.94)
Branch No. 0 (i*OMEGA)**2
iomega (-60.69946,6051.806)
imrio (54.73304,55.28476)
imrioc (54.73180,55.28397)
(1.000000,0.0000000E+00)
(0.8307522,1.6252874E-05)
{-0.3098879,3.5149289E-05)
(-1.088272,2.4561141E-05)
{-0.5942521,-2.0840604E-05)
(0.5946429,-6.1570696E-05)
(1.088393,-5.0773399E-05)
(0.3096554,1.3819139E-05)
{-0.8311772,7.3235838E-05)
(-1.000324,6.8564186E-05)
mu (4.2753184E+07,-1.9644188E-07)
Branch No. 0 (i1*OMEGA)**2 5
iomega (-59.57861,7762.316)

imrio (62.06032,62.53848)

imrioc (62.05998,62.53775)
(1.000000,0.0000000E+00)
(0.2845821,-1.7432709E-05)
(-0.9190395,-1.9537525E-05)
(-0.5461531,1.7321930E-05)
(0.7636402,4.3647233E-05)
(0.7635363,5.6598396E-06)
{-0.5463436,-5.2509618E-05)
(-0.9190938,-3.9639021E-05)
{0.2847274,3.5791942E-05)
{1.000175,6.4373125E-05)

mu (6.5554212E+07,-5932777.)

Branch No. 0 (1*OMEGA)**2 6
iomega (-61.13672,9605.546)
imrio (69.08185,69.52293)
imrioc (69.08194,69.52074)
{1.000000,0.00000C0E+00)
(-0.2847293,-1.0817482E-04)
(-0.9189860,7.0201601E-08)
(0.5463914,2.0737553E-04)
(0.7635213,-4.6801066E-08)
(-0.7637883,-2.8993262E-04)
(-0.5462006,3.5100800E-08)
10.9193074,3.4864456E-04)
(0.2846298,-5.2651203E-08)
{-1.000350,-3.7939285E-04)

mu (1.0224027E+08,-5.3946252E+07)
Branch No. 0 (i*OMEGA)*x2
iomega (-63.98242,11566.46)
imrio (75.83751,76.25818)

4 =

-~
i
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®* e e

imrioc (75.83728,76.25863)
(1.000000,0.0000000E+00)
{-0.8308192,3.1516585E-05)
(-0.3097337,-3.5127923E-05)
{1.088145,-3.1303196E-05)
(-0.5943240,7.8435820E-05)
{-0.5943553,-9.8959827E-06)
{1.088124,-9.4306735E-05)
(-0.3096964,7.1078292E-05)
(-0.8308083,6.4218679E-05)
{0.9999602,-1.1546796E-04)

mu (1.4529238E+08,51596.13)
Branch No. 0 (i*OMEGA)**2 8
iomega (-68.80859,13567.23)
imrio (82.15410,82.57182)
imrioc (82.15426,82.57207)
t1.000000,0.0000000E+00)
(-1.309705,4.0994073E-06)
{0.7153350,-9.3700746E-06)
(0.3728082,9.1626634E-06)
(-1.203591,-4.8802468E-07)
(1.203552,-1.0199717E-05)
(-0.3727369,1.2444630E-05)
{-0.7153528,-3.6601853E-06)
{1.309645,-7.3203705E-06)
(-0.9999297,8.7844446E-u6)
mu (2.2543661E+08,-1.0230355E+07)
Branch No. 0 (i*OMECA)**2
iomega (-74.11768,15414.79)
imrio (87.58098,88.00310)
imrioc (87.58107,88.00335)
(1.000000,0.0000000E+00)
(-1.682495,5.6159638E-06)
(1.830793,-1.7751610E-05)
(-1.397818,2.7757062E-05)
(0.5210506,-2.6982447E-05)
(0.5211318,1.0650966E-05)
(-1.397843,1.6589685%E-05)
(1.830745,-4.0538220E-05)
(-1.682407,4.7638863E-05)
{0.9999328,-3.1791518E-05)
mu (2.66€6758E+08, 2.2426160E+07)
Branch No. 0 (i*OMEGA)**2 10 =
iomega (-78.61523,16772.14)

imrio (91.38028,91.80943)

imrioc (91.38062,91.80936)
{1.000000,0.0000000E+00)
(-1.918977,-1.2857653E-05)
(2.682472,4.5136654E-05)
(-3.228632,-9.6926924E-05)
(3.513214,1.5842787E-04)

w0
1"

12

{-1.8406491E+08,-1867021.)

{-2.3761042E+08,-2284970.)

(-2.8153338E+08,-2638136.)




(-3.513170,-2.1399450E-04)
3.228516,2.4510463E-04)
(-2.682320,-2.3890058E-04)
(1.918837,1.9G61695E-04)
{-0.9999172,-1.0587333E-G4)
Branch No. 1 (i*OMEGA)**2
iomega (118.8868,-1319.875)
imrio (-26.87104,24.55943)
imrioc (-26.87065,24.55910)
{1.000000,0.0000000E+00)
{1.918982,-5.8519146E-07)
(2.682493,-2.1735682E~06)
{3.228678,-4.6815317E-06)
{3.513289,-7.5238904E-06)
(3.513272,-1.0115453E-05)
{3.228634,-1.1620231E-05)
(2.682436,-1.1411234E-05)
(1.918929,-9.0704680E~06)
(0.9999686,-5.0368267E-06)
mu (7951729.,327181.6)
Branch No. 1 (i*OMEGA)**2
iomega (89.53687,-2796.353)
imrio (-37.99554,36.79843)
imrioc (-37.99553,36.79842)
(1.000000,0.0000000E+00)
(1.682507,8.6335419E-08)
(1.830829,8.6335419E-08)
(1.397876,5.1801248E-07)
0.5211055,1.0791928E-06)
.5211135,1.7698760E-06)
.397884,2.3742239E-06)
.830836,2.5037270E-06)
.682512,2.0720499E-06)
.000003,1.2518635E-06)
mu (1.4309340E+07,173221.7)
Branch No. 1 (i*OMEGA)t*2
jomega (79.00098,-4315.595,
imrio (-46.87920,46.02889)
imrioc (-46.87971,46.02890)
(1.000000,0.0000000E+00)
(1.309736,1.4812716E-05)
(0.7154124,4.4238837E-05)
{-0.3727181,7.0220878E-05)
(-1.203550,6.8387228E-05)
(-1.203589,2.7074264E-05)
(-0.3728245,-4.0890427E-05)
(0.7152732,-1.0104217E-04)
(1.309607,-1.1878873E-04)
(0.9999237,-7.9444944E-05)
mu (2.0918084E+07,-291307.8)
Branch No. 1 (i*OMEGA)**2

e = O

{

(_
(_
(-
(_
(_

1

2
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(-1727935.,-313830.9)

(-7811573.,-500747.8)

(-1.8618120E+07,-681858.1)

(-3.5003448E+07,-895241.5)




iomega (75.65332,-5916.855)
imrio (-54.74026,54.04482)
imrioc (-54.73922,54.04443)
(1.000000,0.0000000E+00)
(0.8307768,-2.4223091E-05)
(~0.3098356,-5.1601903E~-05)
(-1.088236,-3.5794073E-05)
(-0.5942835,3.0739073E-05)
(0.5945513,9.0317939E-05)
{1.088319,7.3224444E-05)
(0.3096766,-2.0351486E-05)
(-0.8310684,-1.0741143E-04)
(-1.000223,-1.0039872E-04)
mu {3.7189392E+07,-7475835.)
Branch No. 1 (1*OMEGA)**2
iomega (76.25464,-7628.323)
imrio (-62.06834,61.45099)
imrioc (-62.06834,61.45099)
(1.000000,0.0000000E+00)
(0.2846289,5.6180619E-07)
(-0.9189868,5.7375951E-07)
(-0.5461997,-5.7375951E-07)
(0.7635232,-1.3865855E-06)
{0.7635217,-1.6734653E-07)
(-0.5462028,1.6854185E-06)
(-0.9189%881,1.2431456E-06)
(0.2846313,-1.1355658E-06)
{1.000003,-2.0320649E-06)
mu (8.2082576E+07,1550685.)
Branch No. 1 (i*OMEGA)**2
iomega (80.09766,-9466.916)
imrio (-69.09180,68.50970)
imrioc (-69.09160,68.50941)
(1.000000,0.0000000E+00)
(-0.2846528,4.2039628E-06)
(-0.9189866,9.3892947E-09)
(0.5462448,-8.0543250E-06)
(0.7635218,-1.5398443E-08)
(-0.7635833,1.1241990E-05)
(-0.5462007,1.4083942E-08)
(0.9190604,-1.3511946E-05)
(0.2846300,-9.2015089E-09)
(-1.000081,1.4693870E-05)
mu (1.0609301E+08, 736016.)
Branch No. 1 (i*OMEuA)*%*2
iomega (86.69287,-11419.08)
imrio (-75.84887,75.27522)
imrioc (-75.84859,75.27493)
(1.000000,0.0000000E+00)
(-0.8308573,2.5904540E-06)
(-0.3096915,-2.8543868E-06)
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(-5.8185504E+07,-1163387.)

(-8.9616080E+07,-1516512.)

(~1.3038785E+08,-1979836.)




{1.088182,-2.5619736E-06)
(-0.5944169,6.3123384E-06)
(-0.5943430,-7.6C89776E-07)
(1.088234,-7.5307648E-06)
(-0.3097799,5.6130239E-06)
(-0.8308829,5.1012153E-06)
{1.000095,-9.1055272E-06)
mu (1.5576734E+08,2273627.)
Branch No. 1 (i*OMEGA)*x?2
iomega (95.47070,-13407.44)
imrio (-82.16828,81.58527)
imrioc (-82.16757,81.58463)
(1.000000,0.0000000E+00)
(-1.308778,-1.6930754E-06)
(0.7154927,3.6269312E-06)
(0.3727002,-2.5296204E-06)
(-1.203688,-2.1632156E-06)
{1.203830,6.3649736E-06)
(-0.3729604,-5.1696379E-06)
(-0.7154179,-1.4370679E-06)
(1.309977,7.5793437E-06)
(-1.000239,-7.0787491E-06)
mu (1.8128869E+08,2374305.)
Branch No. 1 (i*OMEGA)*%2
iomega (105.0234,-15240.89)
imrio (-87.59644,86.99490)
imrioc (-87.59653,86.99477)
(1.000000,0.0000000E+00)
(-1.682509,1.0381686E~-05)
(1.830836,-2.9456172E-05)
(-1.397889,4.5897981E-05)
(0.5211259,-4.4134587E-05)
{0.5210884,1.7547038E-05)
(-1.397858,2.4339839E-05)
(1.830815,-6.1097962E-05)
(-1.682497,7.1529321E-05)
(G.9999952,-4.7711052E-05)
mu (2.7546778E+08,3563502.)
Branch No. 1 (i*OMEGA)**2
iomega (112.5785,-16593.77)
imrio (-91.39783,90.77767)
imrioc (-91.39783,90.77767)
{1.000000,0.0000000E+00)
(-1.918984,0.0000000E+00)
(2.682505,-1.7627285E-07)
(-3.228705,3.5254570E-07)
(3.513334,-1.7627285E-07)
(-3.513334,1.7627285E-07)
{3.228705,-3.5254570E-07)
(-2.682505,-8.8136424E-08)
(1.918984,-8.8136424E-08)

8 = (-1.7975037E+08,-2559928.)

9 = (-2.3227365E+08,-3201124.)

10 = (-2.7534032.

75

3749408.)




(-0.9999995,8.8136424E-08)

Branch No. 2 (i*OMEGA)**2 1=
iomega (118.8856,1319.875)

imrio (-26.87102,-24.55944)

imrioc (-26.87064,-24.55910)
{1.000000,0.0000000E+00)
(1.918982,4.8069217E-07)
{2.682494,1.7973708E-06)
(3.228679,4.1799321E-06)
(3.513290,6.7714300E-06)
(3.513273,9.1122520E-06)
(3.228635,1.0533428E-05)
(2.682437,1.0115436E-05)
(1.918930,8.1090684E-06)
{0.7999689,4.5143265E-06)

mu (7951728.,-327181.5)

Branch No. 2 (i*OMEGA)**2 2 =
iomega (89.53564,2796.353)
imrio (-27.99554,-36.79844)
imrioc {(-37.99553,-36.79843)
(1.000000,0.0000000E+00)
(1.682507,-8.6335611E-08)
(1.830830,-1.7267122E-07)
(1.397876,-4.7484585E-07)
(0.5211055,-1.1439469E-06)
-0.5211133,-1.7698800E-06)
-1.397884,-2.2015581E-06)
-1.830836,-2.5037327-06)
-1.682512,-1.9857191E-06)
-1.000003,-1.2086986E-06)
mu (1.4309341E+07,-173222.6)
Branch No. 2 (i*OMEGA)**2
iomega (78.99731,4315.595)
imrio (-46.87918,-46.02891)
imrioc (-46.87973,-46.02890)
{1.000000,0.0000000E+00)
(1.309736,-1.4541678E-05)
(0.7154123,-4.4214990E-05)
(-0.3727185,-7.0240931E-05)
(-1.203551,-6.8690293E-05)
(-1.203590,-2.7265645E-05)
(-0.3728243,4.0643350E-05)
(0.7152737,1.0113801E-04)
(1.309608,1.1902810E-04)
(0.9999242,7.9644386E-05)

mu (2.0918078E+07,291304.7)
Branch No. 2 (i*OMEGA)**2 4
iomega (75.64917,5916.854)

imrio (-54.74024,-54.04484)

imrioc (-54.73922,-54.04443)
{1.000000,0.0000000E+00)
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(-1727934.,313829.3)

(-7811571.,500747.9)

(-1.8618124E+07,681858.1)

(-3.5003444E+07,895240.0)




(0.8307768,2.4077115E-05)
(-0.3098354,5.1543728E-05)
(-1.088235,3.6144895E-05)
(-0.5942833,-3.0388594E-05)
{06.5945511,-9.0522946E-05)
(1.088319,-7.3604679E-05)
(0.3096764,2.0453861E-05)
(-0.8310683,1.0761653E-04)
(-1.000223,1.0048690E-04)

mu (3.7189316E+07,7475811.)
Branch No. 2 (i*OMEGA)**2
iomega (76.25220,7628.323)
imrio (-62.06833,-61.45100)
imrioc (-62.06834,-61.45098)
{1.000000,0.0000000E+00)
(0.2846288,-5.6155409E-07)
(-0.9189869,-5.9739796E-07)
(-0.5461996,5.2571016E-07)
{0.7635231,1.4098591E-06)
{0.7635214,1.6727142E-07)
(-0.5462027,-1.6488183E-06)
(-0.9189876,-1.2425877E-06)
(0.2846313,1.1350561E-06)
{1.000003,2.0789448E-06)

mu (8.2082536E+07,-1550466.)
Branch No. 2 (i*OMEGA)**2
iomega (80.09375,9466.916)
imrio (-69.09178,-68.50971)
imrioc (-69.09158,-68.50941)
(1.000000,0.0000000E+00)
(-0.2846528,-4.1972467E-06)
{-0.9189857,-5.6336358E-09)
{0.5462447,8.0410764E-06)
(0.7635210,1.0516120E-08)
(-0.7635829,-1.1221076E-05)
(-0.5462001,-1.2206211E-08)
{0.9190602,1.3489178E-05)
(0.284629¢,7.9809839E-09)
(-1.000081,-1.4666983E-05)
mu (1.0609292E+08,-1785577.)
dranch No. 2 (i OMEGA)**?
iomega (86.68945,11419.08)
imrio (-75.84885,-75.27522;
imrioc (-75.84859,-75.27491)
(1.0060000,0.0000000E+00)
(-0.8308578,-2.5664494E-06)
(-0.3096915,2.8234983E-06)
(1.088183,2.5298611E-06)
(-0.5944177,-6.2406507E-06)
(-0.5943429,7.4710334E-07)
{1.088235,7.4499058E-06)

5

6
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11

(-5.8185508E+07,1163387.)

(-8.9616080E+07,1516513.)

(-1.3038786E+08,1979838.)




(-0.3097804,-5.5536079E-06)
{-0.8308839,-5.0377544E-06)
(1.000096,9.0010326E-06)

mu (1.5576696E+08,-2271861.)

Branch No. 2 (i*OMEGA)**2 8 =
iomega (95.44336,13407.01)

imrio (-82.16689,-81.58404)

imrioc (-82.16759,-81.58463)
(1.000000,0.0000000E+00)
(-1.309667,-2.9475502E-06)
(0.7152544,6.2877903E-06)
(0.372866€,-4.3809155E-06)
{-1.203547,-3.7253233E-06)
(1.203413,1.1025740E-05)
(-0.3726203,-8.9557989E-06)
(~0.7153248,-2.4854505E-06)
(1.309479,1.3128959E-05)
(-0.9997736,-1.2258956E-05)

mu (1.8128790E+08,-2370810.)

Branch No. 2 (i*OMEGA)**x2 9
iomega (105.0605,15240.87)

imrio (-87.59650,-86.99475)

imrioc (-87.59652,-86.99474)
{1.000000,0.0000000E+00)
(-1.682505,4.0948004E-07)
(1.830825,-1.0237001E-06)
(-1.397870,2.2521401E-06)
(0.5211027,-2.9175453E-06)
{0.5211092,3.0838964E-06)
(-1.397870,-2.6616203E-06)
(1.830817,2.0474901E-06)
(-1.682492,-1.0237001E-06)
(0.9999904,3.3270254E-07)

mu (2.7546762E+08,-3569768.)

Branch No. 2 (i*OMEGA)**2 10 =
iomega (112.9727,16593.77)
imrio (-91.39782,-90.77769)
imrioc (-91.39783,-90.77768)
(1.000000,0.0000000E+00)
(-1.918986,1.6818530E-07)
(2.682508,-3.3637059E-07)
(-3.228708,0.0000000E+00)
{3.513338,-5.0455589E-07)
(-3.513337,5.0455589E-07)
(3.228707,-3.3637059E-07)
(-2.682507,-8.4092648E-08)
{1.918986,-1.6818530E-07)
{-1.000000,4.2046324E-08)
Branch No. 3 (i*OMEGA)*%*?2
iomega (-106.7770,-1546.549)
imrio (26.86497,-28.78374)

—
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(-1.7973891E+08,2559314.)

(-2.3227318E408,3202567.)

{-2.7534032E+08,3749409.)

(-2380412.,330272.2)




imrioc (26.86459,-28.78333)
(1.000000,0.0000000E+00)
(1.918982,5.0876679E-07)
(2.682489,2.0742032E-06)
(3.228670,4.3049499E-06)
(3.513276,7.0835990E-06)
{3.513254,9.5491614E-06)
(3.228611,1.0958054E-05)
(2.682414,1.0762375E-05)
(1.918912,8.5316278E-06)
(0.9999588,4.7354447E-06)
mu (8630993.,-344225.3)
Branch No. 3 (i*OMEGA)**2
iomega (-76.92480,-2962.289)
imrio (37.98%922,-38.98854)
imrioc (37.98923,-38.98853)
(1.000000,0.0000000E+00)
(1.682507,-5.4724012E-08)
(1.830830,-1.6417204E-07)
(1.397877,-3.2834407E-07)
(0.5211071,-5.4724012E-07)
(-0.5211105,-7.9349820E-07)
(-1.397880,-8.7558419E-07)
(-1.830833,-1.0397563E-~06)
{-1.682509,-8.2086018E-07)
(-1.000001,-6.0196413E-07)
mu (1,4748488E+07,-250720.2)
Branch No. 3 (i*OMEGA)**2
iomega (-65.54541,-4459.316)
imrio (46.87351,-47.56755)
imrioc (46.87297,-47.56709)
(1.000000,0.0000000E+00)
{1.309693,-2.0784639E-06)
(0.7152843,-6.6387597E-06)
(-0.3729225,-1.0470752E-05)
(-1.203749,-1.0173829E-05)
(-1.203668,-3.9776533E-06)
(-0.3727070,6.1933742E-06)
{0.7155666,1.5095475E-05)
(1.309952,1.7776189E-05)
(1.000154,1.1893744E-05)

mu (2,0617300E+07,44967.56)
Branch No. 3 (i*OMEGA)**2
iomega (-60.69604,-6051.807)
imrio (54.73306,-55.28475)
imrioc (54.73180,-55.23297)
(1.000000,0.0000000E+00)
(0.8307523,-1.62809415~05)
(-0.3098881,-3.5177462E-05)
(-1.088272,-2.4729126E-05)
(-0.5942523,2.0533007E-0%)
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(-8769234.,455740.9)

(-1.9881206E+07,584559.2)

(-3.6620688E+07,734676.0)




(0.5946431,6.1738894E-05)
(1.088393,5.0521270E-05)
10.3096555,-1.3707321E-05)
(-0.8311775,-7.3683848E-05)
(-1.000325,-6.8900270E-05)
mu (4.2753092E+07,1.9644208E+07)
Branch No. 3 (i*OMEGA)**2
iomega (-59.58057,-7762.318)
imrio (62.06032,-62.53850)
imrioc (62.05998,-62.53775)
(1.000000,0.0000000E+00)
(0.2845813,1.7937400E-05)
(-0.9190400,2.0275309E-05)
(-0.5461520,-1.7735856E-05)
{0.7636414,-4.4682267E-05)
(0.7635363,-5.7439988E-06)
(-0.5463451,5.3832355E-05)
(-0.9190950,4.0550618E-05)
(0.2847284,-3.6650745E-05)
(1.000177,-6.5904831E-05)
mu (6.5548396E+07,5934552.)
Branch No. 3 (i*OMEGA)*<2
iomega (-61.15039,-9605.560)
imrio (69.08185,-69.52303)
imrioc (69.08195,-69.52075)
(1.000000,0.0000000E+00)
(-0.2847335,1.1281406E-04)
(-0.9189858,-4.6849692E-08)
{0.5463995,-2.1665639E-04)
(0.7635210,-4.6849692E-08)
(-0.7637995,3.0271927E-04)
(-0.5462003,-5.8562115E-08)
(0.9193211,-3.6411581E-04)
(0.2846296,-5.8562115E-09)
(-1.000365,3.9641865E-04)
mu (1.0219393E+08,5.3960408E+07)
Branch No. 3 (i*OMEGA)**2
iomega (-63.98242,-11566.57)
imrio (75.83788,-76.25855)
imrioc (75.83728,-76.25863)
{1.000000,0.0000000E+00)
(-0.8308539,-3.0083331E-05)
(-0.3096941,3.3471013E-05)
(1.088179,2.9818808E-05)
(-0.5944111,-7.4787495E-05)
(-0.5943434,9.1861166E-06)
(1.088228,9.0141773E-05)
(-0.3097761,-6.7681482E-05)
(-0.8308793,-6.1308914E-05)
(1.000089,1.1015525E-04)

mu (1.4517026E+08,1099228.)
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(-6.0250036E+07,924952.8)

(-9.2263024E+07,1174750.)

(-1.3378158E+08,1480224.)




Branch No. 3 (i*OMEGA)*%2 8 =
iomega (-68.87793,-13567.29)
imrio (82.15410,-82.57224)
imrioc (82.15426,-82.57206)
(1.000000,0.0000000E+00)
(-1.309723,1.5334019E-05)
{0.7153719,-3.2981487E-05)
(0.3727844,2.4261562E-05)
(~1.203616,1.6757680E-05)
(1.203618,-5.4484706E-05)
(-0.5727874,4.6046545E-05)
(-0.7153703,9.4020970E-06)
(1.309723,-6.2225867E-05)
{-1.000001,5.8844667E-05)

mu (2.2444466E+08,1.9398466E+07)
Branch No. 3 (i*OMEGA)**2 9 =
iomega (-74.21582,-15414.98)
imrio (87.58124,-88.00391)
imrioc (87.58106,-88.00334)
{1.000000,0.0000000E+00)
(-1.682535,1.6905027E-05)
(1.830914,-5.0646915E-05)
(-1.398011,7.9685386E-05)
(0.5212390,-7.7606339E-05)
(0.5210567,3.0418823E-05)
(-1.397954,4.6352492E-05)
{1.831022,-1.1479059E~04)
(-1.682733,1.3503572E-04)
(1.000151,-9.0148780E-05)

mu (2.6468098E+08,4.0762000E+07)
Branch No. 3 (1*OMEGA)*x2 10
iomega (-78.41504,-16779.15)
imrio (91.38085,-91.80891)
imrioc (91.38062,-91.80937)
(1.000000,0.0000000E+00)
(-1.918978,-2.3632456E-05)
(2.682482,8.4262319E-05)
(-3.228652,-~1.8137335E-04)
(3.513247,2.9666763E-04)
(-3.513715,-4.0003093E-04)
(3.228567,4.5876790E-04)
(-2.682370,-4.4752529E-04)
{1.918876,3.5741221E-04)
(-0.9999390,-1.9849541E-04)
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(-1.8406677E+08,1869110.)

(-2.3761622E+08,2288260.)

(-2.8153389E+08,2631452.)




OUTPUT FOR NONZEROB

eps0 9.9999997E-05 epsl 0.1000000

eps2 0.1000000 eps3 0.1000000

rhoe 2710.000 rhov 1.000000

ae 6.2500000E-02

le 0.9090000

e 5.5160001E+10

e 4750000. el 1843750. b 1.0000000E-03

n 1vu iq 1l im 2 alpha 0.5000000

imax1l 40 imax? 140 imax3 200

Branch No. 0 iomega**2 No. 1 = (9.9995052E+11,349673.8)

iomega (999975.3,0.1748412)

imrio (-999.9876,-8.7421693E-05)
imrioc (-999.9875,-4.7891485E-10)
(1.000000,0.0000000E+00)
{1.828169,1.4601265E-07)
(2.368327,4.8209864E-07)
(2.587787,9.2231738E-07)
(2.527601,1.3094324E-06)
(2.267370,1.5085000E-06)
(1.887427,1.4690710E-06)
(1.446003,1.2263185E-06)
(0.9755177,8.5809245E-07)
(0.4909331,4.3601196E-07)

Branch No. 0 iomega**2 No. 2
iomega (999974.0,0.1748410)

imrio (-999.9870,-8.7421642E-05)
imrioc (-999.9870,-1.0777969E-10)
(1.000000,0.0000000E+00)
(1.515036,2.8566211E-07)
(1.236279,7.9574676E-07)
{0.6139306,1.1520580E-06)
.2827702,1.0117719E-06)
.9943206,3.6644997E-07)
.328689,-4.6404875E-07)
.282883,-1.0658343E-06)
.9670860,-1.1677936E-06)
(-0.5094714,-7.4615866E-07)
Branch No. 0 iomega**2 No.

iomega (999972.4,0.1748407)

imrio (-999.9862,-8.7421569E-05)
imrioc (-999.9865,5.7382971E-10)
(1.000000,0.0000000E+00)
(1.107533,4.2891546E-07)
(0.2390907,9.4432420E-07)
(-0.8652738,8.4621962E-07)
(-1.340219,3.7002444E-08)
(-0.6690234,-8.2836880E-07)
(0.1927339,-1.0929781E-06)
(1.165972,-7.2575108E-07)
(1.494040,-1.9971225E-07)

O+ oo

(_
(_
(_
(_
(_

w
]
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(9.9994803E+11,349672.9)

(9.9994488E+11,349671.8)




(1.015863,5.2901523E-08)

Branch No. 0 iomega**2 No.
iomega (999969.1,0.1748402)
imrio (-999.9846,-8.7421424E-05)
imrioc (-959.9847,0.0000000E+00)
(1.000000,0.0000000E+00)
(0.6183243,3.4310446E-07)
(-0.5682581,3.5707581E-07)
(-0.9656028,-2.8586317E-07)
(-0.1499314,-7.0491149E-07)
(0.7980464,-2.4417554E-07)
(0.8046404,4.7162501E-07)
(-4.2990297E-02,5.3824533E-07)
(-0.8137011,3.2590012E-08)
(-0.7720997,-2.5448307E-07)
Branch No. 0 iomega**2 No.
iomega (999965.8,0.1748396)
imrio (-999.9829,-8.7421286E-05)
imrioc (-999.9831,3.4177686E-10)
{1.800000,0.0000000E+00)
(5.6983080E-02,3.7243248E-07)
(-1.029749,1.0823873E-07)
(-0.2105127,-5.8872979E-07)
{1.038220,-3.2288793E-07)
(0.5065960,5.2806308E-07)
{-0.9208584,5.3225568E-07)
(-0.8921357,-1.5920646E-07)
(0.5672449,-4.5800851E-07)
(1.183969,-2.4459450E-07)

Branch No. 0 iomega**2 No.
iomega (999960.1,0.1748386)
imrio (-999.9800,-8.7421031E-05)
imrioc (-999.9807,4.6639959E-10)
(1.000000,0.0000000E+00)
(-0.4683411,2.5848396E-07)
(-0.7823696,-2.2529204E-07)
(0.7759746,-2.9482896E-07)
(0.4966423,4.0715923E-07)
(-0.9131734,1.8424829E-07)
(-0.2615826,-4.0477300E-07)
(0.9499763,-6.2990537E-08)
(0.1055817,2.4263247E-07)
{-0.9506435,-8.7379393E-09)
Branch No. 0 iomega**2 No.
iomega (999953.8,0.1748375)
imrio (-999.9769,-8.7420754E-05)
imrioc (-999.9769,5.2259147E-10)
(1.000000,0.0000000E+00)
(-1.011854,2.3266050E-07)
(-2.2162143E-02,-3.9487853E-07)
(1.064521,8.2989544E-08)

(9.9993826E+11,349669.5)

(9.9993164E+11,349667.2)

(9.9992011E+11,349663.2)

(9.9990752E+11, 349658.8)




(-0.9396884,4.2366506E-07)
(-0.3040805,-4.1149025E-07)
(1.222867,-1.4429263E-07)
(-0.6190788,4.1436226E-07)
(-0.8099154,-2.5513055E-08)
(1.200566,-2.9474484E-07)

Branch No. 0 iomega**2 No. 8 = (9.9989186E+11,349653.3)
iomega {999945.9,0.1748361)

imrio (-999.9730,-8.7420412E-05)
imrioc (-999.9731,-8.9928703E-11)
(1.000000,0.0000000E+00)
(-1.435261,1.3215839E-07)
(1.029387,-3.4303750E-07)
(1.7084423E-02,4.1054108E-07)
(-1.067521,-1.8328214E-97)
(1.398843,-1.9795C71E-07)
(-0.7235447,3.9354970E-07)
(-0.5042318,-2.3244714E-07)
(1.350638,-7.5574029E-08)
(-1.129440,1.7850256E-07)

Branch Ng. 0 iomega**2 No. 9 = (9.9987548E+11,349647.6)
iomega (999937.8,0.1748347)

imrio (-999.9689,-8.7420056E-05)
imrioc (-999.9688,2.0144153E-10)
(1.000000,0.0000000E+00)
(-1.795254,1.1206640E-07)
(2.182214,-3.5237954E-07)
(-2.000948,6.0828222E-07)
(1.220707,-7.0113902E-07)
(-1.8065292E-02,5.1479378E-07)
(-1.225691,-9.9155407E-08)
(2.045312,-3.3606389E-07)
(-2.091733,5.4383224E-07)
(1.311292,-4.0101364E-07)

Branch No. 0 iomega**2 No. 10 = (9.9986250E+11,349643.0)
iomega {999931.3,0.1748335)

imrio (-999.9656,-8.7419772E-05)
imrioc {-999.9655,1.2488019E-10)
(1.000000,0.0000000E+00)
(-2.007572,6.4654699E-08)
(3.005106,-2.3995383E-07)
(-3.928426,5.3225557E-07)
(4.667979,-8.9773010E-07)
(-5.087037,1.2520931E-06)
(5.053510,-1.4845094E-06)
(-4.481068,1.4920497E-06)
(3.366284,-1.2198240E-06)
(-1.808235,6.8745641E-07)
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