AD-A213 842

PRER

Technical Report 1310
August 1989

Periodic Phase
Adjustment Distributed

Clock Synchronization in
the Hard Realtime
Environment

D. R. Wilcox

[A e
I '

£

E:E r 1989

B
V4

Approved for public release; distribution is uniimited

VPN §
fed 3

*

NAVAL OCEAN SYSTEMS CENTER
San Dlego, California 92152-5000
E. G. SCHWEIZER, CAPT, USN R. M. HILLYER
Commander Technical Director

ADMINISTRATIVE INFORMATION

This report was carried out by the Embedded Computer Systems Branch, Code
412, of the Naval Ocean Systems Center, San Diego, CA, under program element
number 0602234N.

Released by Under authority of

L. J. Core, Head A. G. Justice, Head

Embedded Computer Systems Information Processing and

Branch Displaying Division
ACKNOWLEDGMENT

The author wishes to thank the members of the IEEE 896 Fu.urebus+ Com-
mittee, and especially Dr. Lui Sha of the Advanced Real-Time Technology (ART) Project
of the Software Engineering Institute at Carnegie Mellon University and Dr. Richard
Volz of the Department of Computer Science at Texas A & M University for their tech-
nical guidance and support. The ART project is the primary source of development for the
rate-monotonic hard—deadline scheduling technology summarized in Section 3.

FS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSKFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

NOSC TR 1310

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBO
(¥ sppicable)

Code 412

Naval Ocean Systems Center

7a. NAME OF MONITORING ORGANIZATION

6¢. ADDRESS (Ciy, State ad 2P Code)

San Diego, California 92152-5000

7b. ADDRESS (Cdy. Stale and 2P Code)

8b. OFFICE SYMBO\

{1 appixcable)

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

Naval Ocean Systems Center

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (Cly. Stale and 2P Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO.] PROJECT NO. | TASK NO. AGENCY
ACCESSION NO.
San Diego, California $2152-5000 0602234N ECB1 DN306 243

11. TITLE (inciude Securily Classéicabon)

PERIODIC PHASE ADJUSTMENT DISTRIBUTED CLOCK SYNCHRONIZATION N THE HARD REALTIME ENVIRONMENT

12. PERSONAL AUTHOR(S)

simultaneous clock

D. R. Wilcox
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yoo, Month, Dey) 15, PAGE COUNT
Final FROM TO August 1989 27
16. SUPPLEMENTARY NOTATION
17. COSATI CORES 18. SUBJECT TERMS (Contvus on reverse 1 necessary and identaliy by block murnber)
FIELD GROUP SuB-GROULP

distributed processing system

sampling

19. A3STRACT (Contrum on reverse necessary and dentily by biock number)

This report describes the operation and rationale underlying an approach to synchronizing a set of time-of-day realtime clocks located
on the respective processors of a distributed processing system. The approach is called periodic phase adjustment. The report also shows
how to integrate this approach into rate monotonic hard-deadline reaitime scheduling technology.

20. DISTRIBUTION/AVAKABIITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION

[UNCLASSFIED /UNLIMITED SAME As RPT [] OTIC USERS UNCLASSIFIED
223. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inciuds Awe Code) 22c. OFFICE SYMBOL
D. R. Wilcox (619) 553-5467 Code 412
DD FORM 1473' 84 JAN 83 APR EDITION MAY BE USED UNTHI EXHAUSTED UNCLASSIFIED

ALL OTHER EDITIONS ARE OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

»

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE {When Data Enternd)

DD FORM 1473, 84 JAN UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When ala Entersd)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Ll A A i o o

TABLE OF CONTENTS

INTRODUCTION ... e e e e
1.1 Centralized Versus Distributed Clock

LOCAL CLOCK ADJUSTMENT et
2.1 ClockValueVersusClockRate
2.2 Adjustable Rate Clock Implementation

RATE-MONOTONIC HARD-DEADLINE SCHEDULING
31 TaskScheduling i i e
3.2 Task Coordinationt

CLOCK SYNCHRONIZATION i e i

4.1 Synchronization Algorithm Execution Frequency
4.2 Simultaneous SamplingofClocks
4.3 Rate Adjustment Algorithms

CONCLUSIONS ... i e e e e e
REFERENCES i i i e

BIBLIOGRAPHY i i e e et e
7.1 Synchronization and Use of Distributed Realtime Clocks
7.2 Rate Monotonic Hard-Deadline Realtime Scheduling Technology

TABLE OF FIGURES

Frequency divider applicationexample
Local clock basiccomponents
Phase state insertion
Rate adjustment period
Adjustable rate clock block diagram L.
Divide-by-three phase counter implementation example
Priority inversionexample
Periodic task period computation

P

13
13
14
16

18

19

[o < B BN = P BN~ BN £
e}

EY ‘On/
e |

_ﬁﬁvailability Coces
IAvail and/or

i ok

Special

. 1.0 INTRODUCTION

Many multiprocessing and distributed-processing system applications require
the various components of the system to have access to the same knowledge of the current
time of day. Uses for time-of-day data include the generation of timestamps for the
coordination of transactions in a database system, the detection of process faults without
thelimitations of timeouts in distributed fault-tolerant systems (Lamport, 1984], and the
recording and predicting of physical world events in a realtime system. There are various
alternative methods of coordinating database transactions which avoid time-of-day
timestamps, such as traditional locking mechanisms and timestamps employing virtual
time [Jefferson, 1985]. There is no alternative for time-of-day facilities in a system
designed to act upon real-world, time-oriented events.

This paper describes the operation and rationale underlying an approach to
synchronizing a set of time-of-day realtime clocks located on the respective processors of
a distributed processing system. The approach is called periodic phase adjustment.
[1). The paper also shows how to integrate this approach into rate monotonic
hard-deadline realtime scheduling technology.

1.1 CENTRALIZED VERSUS DISTRIBUTED CLOCK

A system with a centralized clock which requires less hardware overall may seem
better than replicating the clock locally at each module. A centralized clock also avoids
the problem of synchronizing the collection of local clocks. However, there are three
reasons why a distributed set of local clocks may be a better approach.

First, access by a processor to a centralized clock is generally slower than access
to a local clock connected more directly to the processor. The degradation in speed is due
to the physically longer access path to the centralized clock and the many potential
software and hardware interfaces between the processor and the centralized clock.

Second, time values obtainable from a centralized clock are usually less accurate
than those obtainable from a local clock. The centralized clock, by definition, is a shared
resource. Contention may arise between users of the centralized clock or some
component of the access path to the centralized clock. Since cumpeting traffic may be
neither interruptible nor of known duration, it is often impossible to determine when the
request for time data actually reached the centralized clock. This calls into question the
accuracy of the time data obtained.

The objection may be raised that systems requiring accurate time data employ a
centralized time standard, such as a cesium clock, which is considerably more accurate
than a collection of local clocks driven by relatively low-cost crystal oscillators. The issue
of contention at the centralized clock, or on the access path to it, degrading the
obtainable accuracy (regardless of the internal accuracy of the centralized clock itself) is
still valid. These systems can employ the external time standard for accuracy, yet still
gain the benefits of distributed local clocks, provided that they implement tight
synchronization between the local clocks and the external time standard.

[1) The *phase® concept originated from an analogy of the analog *phase lock loop” circuit for the clock synchronization
approach described below.

Third, a centralized clock is less fault tolerant than a collection of local clocks.
The centralized clock represents a single point of failure. A distributed collection of local
clocks not only provides a backup source of time data should the primary source fail, but
also provides a means of validating time data by comparing clocks.

Distributed local clocks avoid the three problems described above, but introduce a
new problem, the need to keep the local clocks synchronized with one another or with an
external time standard. The remaining sections of this paper assume the distributed
clock approach.

2.0 LOCAL CLOCK ADJUSTMENT

The synchronization of a system’s clocks, whether it be with each other or withan
external time standard, implies that the clocks be adjustable. This section concentrates
on the local clock itself and describes the nature of local clock adjustment and how it can
be implemented.

2.1 CLOCK VALUE VERSUS CLOCK RATE

There are two methods for adjusting a clock in order to bring it into synchroniza-
tion. These methods can be illustrated by analogy to adjusting a mechanical clock
powered by a spring. The first method is to move the hands on the clock face. This is
equivalent to modifying the value displayed by the clock. The second method is to adjust.
the tension on the spring powering the clock (usually by a screw adjustment on the back).
This is equivalent to modifying the rate at which the time displayed advances. One can
also use a combination of the two methods [2].

Once a clock value has been initialized, adjusting the clock rate is usually
superior to adjusting clock value for several reasons.

First, adjusting clock rate avoids backward adjustments in time value. When the
clock runstoo fast, it displays a time beyond the time desired. Adjusting the clock value to
the proper time implies moving the time value backward for an instant. This destroys the
utility of the clock in applications that depend on timestamps to order a sequence of
events or transactions. Adjusting clock rate, on the other hand, never causes the clock
value to move backward. When the clock has been running too fast, the rate is adjusted so
that the value advances more slowly. The time value gradually converges toward the
proper value. As the time value approaches the proper value, future rate adjustments
converge on the proper rate to maintain the proper value.

Second, adjusting clock rate avoids abrupt discontinuities in the otherwise steady
advance of clock value. The problem with abrupt discontinuities can be illustrated by a
simple example. Consider computing the average speed of an object moving in a straight
line between two points. The average speed is the distance between the two points
divided by the difference in the time values sampled when the object was at each point. If
the clock value is dramatically adjusted just after the object leaves the first point but just
before the object arrives at the second point, the computed speed could be in error. Even
worse, a backward adjustment in time value could cause the computed speed to be
negative. If the time values sampled at the two points are the same, which happens if the
elapsed time between the two points is canceled by a backward time adjustment, then the
speed computation requires division by zero. Adjusting clock rate, rather than clock
value, still introduces the possibility of error. The error, however, is minimal since a
small difference between the clock rate and the proper rate does not allow much error to
accumulate during a short period of time.

[2]) There is at least one historical instance in which both techniques were used. Pope Gregory XIII was concerned that
the Julian calendar, which had a leap year every four years, was not keeping pace with the Spring equinox needed to
compute the date for Easter. In 325, the year of the Council of Nicea, the Spring equinox was on 21 March. By 1582, it had
slipped to 11 March. The pope effectively “moved the hands” of the clock (the calendar) by declaring that the day after 4
October 1582 would be designated 15 October 1582. He effectively “adjusted the spring” of the clock by declaring that
years divisible by 100 but not by 400 would no longer be leap years. See Appendix A to the translation of Ptolemy's “The
Almagest” in Great Books of the West =~ Warld Encyclopedia Britannica, Chicago, 1952, v. 16 p. 467,

Finally, adjusting clock rate, when properly implemented, minimizes the need to
continually readjust the clock in the future. When the clock is running too fast or too
slow, any adjustment of the clock value is only temporary. Since the clock is running at
the wrong rate, the clock value, although initially correct, drifts from the proper value as
time progresses. The clock continually needs readjustment. Only by correcting the clock
rate itself can this drift be minimized.

2.2 ADJUSTABLE RATE CLOCK IMPLEMENTATION

Processors generally use crystal oscillators to drive their local realtime clocks.
Crystal oscillator frequency is determined by factors such as manufacturing tolerance,
temperature [3], and age. From the circuit design point of view, crystal frequency is
considered fixed at a value within some tolerance of the desired value. The rest of the
circuitry cannot directly adjust the crystal frequency. The problem is to implement a
variable-rate local clock given that the frequency of the oscillator employed is not
adjustable.

The solution to this problem can be understood by first considering a simpler one.
Sometimes circuit designers need to implement a circuit that converts a signal
oscillating at a high frequency into one oscillating at a lower frequency. For example, the
designer of a processor board may want to use the same crystal, since crystals are
expensive, to drive both a 30-MHz microprocessor integrated circuit and a 10-MHz local
clock circuit. When one of the desired frequencies is a simple multiple of the other, the
problem is easily solved using a frequency divider circuit. In this case, a
divide-by-three frequency divider is needed since 10 MHz is one-third of 30 MHz. This
frequency divider consists of nothing more than a counter circuit that outputs a pulse for
every third pulse it receives as input. As shown in figure 1, the crystal is connected to the
microprocessor integrated circuit &ud to the input of the frequency divider. The output of
the frequency divider is connected to the local clock circuit. The 10-MHz input appears
on the right side of the local clock block to emphasize the position of the local clock
least-significant bit.

MICRO-
PROCESSOR
LOCAL FREQUENCY CRYSTAL
CLOCK 10 MHz | DIVIDER 30 MHz | OSCILLATOR

Figure 1. Frequency divider application example.

In the frequency divider example above, the frequency divider counter sequences
through three states. By enumerating the states as 0, 1, and 2, the state sequence can be
defined as a cycle of the form 0-1-2-0-1-2-... Whenever the counter reaches a particular
state, for example state 0, it outputs a pulse to increment the local clock circuit. Thus the
frequency divider counter increments at a rate three times faster than the local clock
circuit.

{3} For a discussion of quartz crystal temperature coefficient of frequency, see Radio Society of Great Britain; The Radio
Communication Handbook; 1968, p. 6.2.

The local clock oscillator input, obtained from the output of the frequency divider
counter, cycles at the same rate that the frequency divider counter sequences once
through all three states. Therefore, the states of the frequency divider counter represent
the phase of the local clock oscillator cycle. For this reason, the frequency divider counter
is called, hereafter, the phase counter. The local clock circuit, as defined by this
example, is also a counter. Since the scope of the term “local clock circuit” is rather
vague, this latter counter is called, hereafter, the time counter. As shown in figure 2,
the crystal oscillator drives the phase counter, and the phase counter, in turn, drives the
time counter. The time counter is the source of the time value seen by the application
programmer.

TIME PHASE CRYSTAL

COUNTER 10 MHz COUNTER 30 MHz OSCILLATOR

Figure 2. Local clock basic components.

Two components determine the frequency at which the time counter increments,
the frequency of the oscillator and the number of sequential states in a single cycle of the
phase counter. It is assumed that the frequency of the oscillator cannot be adjusted.
Adjusting the rate at which the time counter increments, therefore, requires adjusting
the number of sequential states in a single cycle of the phase counter.

Clock synchronization requires small changes in the frequency at which the time
counter increments. This can be accomplished using the following two rules.

e If the time counter is too slow, periodically delete one of the states from the
sequence of states executed by one of the cycles of the phase counter.

e If the time counter is too fast, periodically insert an additional state into the
sequence of states executed by one of the cycles of the phase counter.

Deleting a phase counter state causes thc respective phase cycle to complete more
quickly. This, in turn, causes the time counter to increment faster for that cycle.
Likewise, inserting a phase counter state causes the respective phase cycle to complete
more slowly. This, in turn, causes the time clock to increment slower for that cycle.

Figure 3 shows an example of inserting a phase state in one cycle of a phase
counter to slow the clock rate. Note that the vast majority of phase counter cycles are not
modified. In the example, they have the cycle state sequence 0-1-2. Only occasionaliy is a
cycle executed which is either shorter or longer than normal. The shorter and longer
cycles have the cycle state sequences of 0-1 and 0-1-2-3, respectively.

The rate adjustment is controlled by controlling the frequency at which these
modified phase cycles are introduced. The period between initiation of modified phase
cycles is called the rate adjustment period. Figure 4 graphically illustrates how the
inclusion of 2 modified phase state every rate adjustment period corrects the clock rate.

PHASE STATE

INSERTION OF PHASE STATE
SLOWS CLOCK

112|101

TIME COUNTER INPUT

J I R

[] S R S

CLOCK TIME

Figure 3. Phase state insertion.

RATE ADJUSTMENT

PERIOD
\ _— " PERFECT RATE
f—— /) «———— CORRECTED RATE
,+ *=——— UNCORRECTED RATE
Az (TOO SLOW)
2.
L
7 SINGLE PHASE
.’ STATE DELETIONS
WA (EXAGGERATED)
/
z
REAL TIME

Figure 4. Rate adjustment period.

The periodic introduction of modified cycles can be facilitated in hardware by
inclusion of a third counter called the rate adjustment counter. The rate adjustment
counter is loaded with an initial value selected by the software responsible for
determining the magnitude of the local clock rate adjustment. This software is presented
in section 4.3. The rate adjustment counter counts down, and upon reaching zero, s:nds a
signal to the phase counter directing it to execute a single modified phase cycle rather
than a normal phase cycle. The software also selects whether modified phase cycles are
longer or shorter than normal. The rate adjustment counter then reloads the initial value
and repeats the cycle. The reload maintains the current clock rate while awaiting the
next adjustment from software.

Figure 5 is a block diagram showing how the three counters comprising the
adjustable rate clock are interconnected to each other and to the internal data path to the
processor. The module internal data bus provides the link between software and the local
clock. The long select signal indicates that a long, rather than a short, phase sequence
should be executed when a modified sequence is requested by the modify select signal.

Figure 6 shows a logic implementation for a divide-by-three phase counter
employing these signals. The upper and lower flip-flops in the figure implement the
most-significant and least-significant bits of the phase state respectively. The time
counter clock signal is held high, and is thus inhibited, for all phase states except state 0.

MODULE INTERNAL DATA BUS

MODIFY LONG
CYCLE SELECT

RATE ADJUSTMENT

l COUNTER
TIME PHASE CRYSTAL
COUNTER COUNTZ=R OSCILLATOR

Figure 5. Adjustabie rate clock block diagram.

MODIFY LONG
CYCLE SELECT

ol
m|
0
O

o1

-4C Q
TIME
OSCILLATOR -{)——> COUNTER
CLOCK CLOCK

Figure 6. Divide-by-three phase counter implementation example.

3.0 RATE-MONOTONIC HARD-DEADLINE SCHEDULING

This section summarizes some of the fundamentals of the rate-monotonic hard-
deadline realtime scheduling technology. The presentation is only intended as a quick
introduction for those unfamiliar with the technology. For a more detailed discussion,
including the derivations for the various equations, please see the papers referenced in
the bibliography.

Rate monotonic scheduling is a means of scheduling the time allocated to
periodic hard-deadline realtime users of a resource. The users are assigned priorities
such that a shorter fixed period between deadlines is associated with a higher priority.
Rate monotonic scheduling provides a low-overhead reasonably resource-efficient means
of guaranteeing that all users will meet their deadlines provided that certain analytical
equations are satisfied during the system designed. It avoids the design complexity of
time-line scheduling and the overhead of dynamic approaches such as earliest-deadline
scheduliing.

3.1 TASK SCHEDULING

Rate monotonic scheduling was first conceived in the context of scheduling
periodic hard-deadline realtime tasks on a processor. The seminal paper by Liu and
Layland [1973] constrained the tasks as follows:

e Task requests are periodic, with a constant interval between requests.

e Each task must be completed before its next request occurs.

e Task requests are independent; no task request depends on another task state.
e Uninterrupted execution time of each task does not exceed a known constant.

The processor utilization factor is defined as the “fraction of processor time spent in
executing the task set.” Letting T and C represent the period between task requests and
the task uninterrupted execution time, respectively, the utilization factor U for a
processor executing N tasks is computed by the equation

i=1

O

i

l

4

If the tasks are assigned priorities such that for each pair of tasks the one with the
shorter period has a higher priority, then all tasks are guaranteed to meet their deadlines
provided that the following equation is true:

Us NRYN-1)

In the worst case, the right side of this equation, called the schedulability bound,
approaches [n 2 (69.3 percent) as N approaches infinity. Typical applications are around
90 percent.

It has been shown [Lehoczky, Sha, and Ding, 1987] that the Liu and Layland
utilization bound can be exceeded provided that the following equation is satisfied:

ViilsisN
i
1 I Ty
min Cj——ceill —]]|s 1
(k.heR; [/:ZI /’Tk (T!)]
Ri={jkllsk=<i I=1,..., floor (Ti/Tv)}

Often applications have periodic tasks whose uninterrupted execution time is not
a constant. When the variation in execution time is slight, one can use the maximum
execution time without much loss. But when the maximum execution time is large
compared to the average and occurs relatively infrequently, it may be beneficial to allow
some tasks to potentially miss their deadlines in order to maintain high processor
utilization. The tasks missing their deadlines are the ones with the longest periods since
they are assigned the lowest priority. Unfortunately, they may be the most critical to the
application. The problem can be solved by partitioning each critical task with a long
period into several tasks with shorter periods. This technique is called period
transformation [Sha, Lehoczky, and Rajkumar, 1986). Elimination of a long period in
the task set may also improve the schedulability bound.

Rate monotonic scheduling has been extended to include aperiodic tasks.
Aperiodic tasks are characterized by response-time deadlines rather than periodic
deadlines. They preempt periodic tasks as long as so doing does not cause a periodic task
to miss its deadline. This is accomplished by implementing a server task to execute
aperiodic tasks. The server task executes whenever there are both aperiodic tasks
pending and the server has not exhausted its designed maximum execution time within
its designed period. It has been shown [Lehoczky, Sha, and Strosnider, 1987] that all
periodic deadlines are guaranteed to be met provided that both the total system
utilization factor satisfies the equation

2 + Ug

U< U;+ n———
a n2U¢+1

U Ca _ server maximum execution time
a== p
Ta server period

and the period of the server is less than the period of the next-highest priority task minus
the maximum execution time of the server.

10

3.2 TASK COORDINATION

The rate monotonic scheduling technology has also been extended to account for
tasks that are dependent due to requirements for exclusive access to shared resources.
Traditional semaphores are inadequate because of priority inversion. Priority
inversion occurs whenever a high-priority task is prevented from entering a critical
region because a low-priority task gained access to the critical region first. The
high-priority task must wait not only for the low-priority task to execute the critical
region, but also for any additional time that the low-priority task is delayed because it is
preempted by other tasks having medium priority as illustrated in figure 7. The locked
critical region has effectively dragged the priority of the high-priority task down to a
level below that of the low-priority task, violating the task priority requirements needed
to guarantee that deadlines are met.

The priority inversion problem is reduced by minimizing the uninterrupted
execution time of critical regions and by implementing priority inheritance. Priority
inheritance means that when a task blocks higher-priority tasks from entering a critical
region, the task inherits the priority of the highest-priority task it is blocking long
enough to exit the critical region. Temporarily armed with this higher priority, the task

BLOCKED LOCK
HIGH l l)
PRIORITY
TASK .
fe——— PRIORITY INVERSION ——*{
MEDIUM
PRIORITY
TASK >
LOCK UNLOCK
LOW l
PRIORITY
TASK s -

NON-CRITICAL
REGION EXECUTION

CRITICAL REGION
EXECUTION

Figure 7. Priority inversion example.

11

avoids preemption by medium-priority tasks whose priority is lower than the inherited
priority. Priority inversion is still present while the task is blocking the higher-priority
tasks, but it is now no greater than the uninterrupted execution time of the critical
region.

Deadlocks are avoided by combining the priority inheritance concept with the
priority ceiling concept [Goodenough and Sha, 1988). The priority ceiling of a
semaphore is the priority of the highest-priority task that could ever lock the semaphore.
A task is permitted to lock a semaphore only if the priority of the task is greater than the
priority ceilings of all the semaphores already locked by other tasks. When a task is not
permitted to lock the semaphore, the task is suspended. Thus semaphores are only locked
in the sequence of increasing priority ceiling. Since they cannot be locked in a loop
sequence, there is no deadlock.

Letting B represent the worst-case delay due to blocking experienced by a task,
the utilization factor of a system implementing priority inheritance and priority ceiling
is given the by the equation

N
. N .
U= z—c‘—‘— + max ﬂ
i=]Ti i=1 Ti

The utilization bound can be exceeded provided that the following equation is satisfied:

Vi,l<is N
L IT C B
. . k i i
mi Ci ceil + + <1
(k.l)gki[]; 1T (T,-) ITy zn]
Ri={jk|lsks<il=1,..., floor (Ti/Te)}

12

4.0 CLOCK SYNCHRONIZATION

The basic approach to clock synchronization can be summarized as follows.
Periodically, the clock synchronization algorithm is executed. It is executed fre-
quently enough that the clocks never drift beyond a margin of synchronization error
selected by the system designer. For each iteration of the algorithm, one of the modules
simultaneously broadcasts to all modules, including itself, a command requesting that
each module immediately sample and locally store the value of its respective clock. When
a module detects that a sample has been taken, the module is responsible for providing
whatever adjustment is necessary to bring its own clock into synchronization. The
method by which it synchronizes its own clock is called the adjustment algorithm.
There are many variations of adjustment algorithms. All of them, however, make their
adjustment based on comparison of their own clock sample against clocks on other
modules.

This section describes the operational details and motivation behind this clock
synchronization approach. It also shows how the approach can be incorporated within
the rate-monotonic hard-deadline realtime scheduling technology.

4.1 SYNCHRONIZATION ALGORITHM EXECUTION FREQUENCY

The maximum permissible elapsed time between consecutive invocations of
the synchronization algorithm is easily determined from the maximum permissible
synchronization error and the accuracy of the clock oscillator. For example, if the
maximum permissible synchronization error is 500 ns and the accuracy of the oscillator
is £0.01 percent, the maximum permissible time between invocations is 500 ns / 0.0001
= 5 ms. The system designer can lengthen the maximum permissible elapsed time
between invocations by either relaxing the permissible synchronization error or by
improving the accuracy of the clock oscillator [4].

The synchronization algorithm can be executed as a periodic task within the
context of the rate monctonic scheduling technology. During each iteration, the task is
blocked until a new set of simultaneous clock samples are available. This blocking does
not create a priority inversion problem since the clock value remains available to other
tasks.

The maximum permissible elapsed time between consecutive invocations of the
synchronization algorithm should not be confused with the period of the periodic task
implementing it. Rate monotonic scheduling (with a suitable utilization factor) guar-
antees that the periodic task will always meet its deadline. It does not, however, force a
particular proximity between the time the task supplies a new clock adjustment and the
deadline for such an adjustment. Depending upon the priorities of the other ready tasks,
it may be executed far in advance of the deadline or just in time for the deadline. It is
possible for the task to adjust the clock very early in one period and very late in the next
period and still meet both respective deadlines. Thus, the worst case elapsed time

[4] It is also possible 10 lengthen the maximum permissible elapse time given knowledge of the maximum rate of
oscillator frequency change, that is, the maximum acceleration in clock value.

13

between adjustments is twice the period [5] between deadlines minus the unblocked
adjustment execution time. This is illustrated by figure 8. Usually the latter execution
time is negligible by comparison to the period. In the example above, the maximum
permissible elapsed time between adjustments was 5 ms. In order to guarantee this limit,
the periodic task under rate monotonic scheduling needs a period of half that figure, or
2.5 ms.

i 5 1 1

ADJUSTMENT
EXECUTION
PERIOD TIME
e—— BETWEEN —]
DEADLINES MAXIMUM
ELAPSED

TIME

Figure 8. Periodic task period computation.

4.2 SIMULTANEOUS SAMPLING OF CLOCKS

The simultaneous sampling of the clocks to be synchronized, the ability to obtain
an instantaneous snapshot of their values, is a key component to the periodic phase
adjustment approach. It is not important precisely when the local clocks are sampled as
long as the maximum permissible elapsed time between samples is not exceeded. It is
important that they be sampled simultaneously.

Many alternative clock synchronization approaches require that their associated
tasks and messages execute at the highest priority. This is not the case with the phase
adjustment approach presented here. Since there is no requirement that a sample be
taken at a precise time, only that it be taken frequently enough and simultaneously, there
is no problem creaied by delays due to contention at the processor or on the acccss path to
the various clocks.

Simultaneous sampling usually requires some hardware support. Three applica-
tions are considered below. The first is synchronization over a high-performance parallel
backplane bus supporting broadcast where bus prupagation delay is not considered an
issue. The second is synchronization through an interface, bus repeater, or gateway
through which instantaneous broadcast is not always possible. The third is synchroniza-
tion over a token-passing local area network where bus propagation delay is significant
in comparison to the synchronization accuracy desired.

[S) The two-to-one relationship suggests affinity to the Nyquist sampling principle. The Nyquist sampling
principle specifies the minimum frequency at which one must sample 1o avoid losing signal information. Since the
Nyquist rate is a constant for a given signal, the maximum period between samples is also constant. The problem
of variations in task execution time, described above, is also one of limiting the maximum period between
samples. In the latter case, the information contained in the signal is the frequency of the uncorrected clock
synchronization phase error.

14

When the local clocks are located on separate processor modules (boards)
interconnected through one or more high-performance pcrallel backplane buses, the
clocks can Lc sampled simultaneously by having one of the processors broadcast a
sample command over one of the backplane buses. Since the command is a broadcast
and bus propagation delay is not considered an issue, all the processor modules see the
sample command simultaneously.

As mentioned previously, all sample commands are normally generated by the
same module. To avoid creating a potential single point of failure, modules are equipped
with both the ability to generate sample commands and to monitor whether sample
commands are, in fact, being generated. Each such module has a watchdog timer whose
interval is uniquely determined by the module geographical address. A module initializes
its watchdog timer when it generates a sample command. It also initializes its watchdog
timer when it detects that a sample command has been generated by another module. A
module generates a sample command when its watchdog timer interval expires.
Normally, the module with the shortest watchdog timer interval generates all sample
commands. This is because all watchdog timers are initialized at the same time and the
ones on the other modules, whose initialized intervals are longer, do not have the
opportunity to expire before being reinitialized. In the everni that! the uicdule expected to
generate sample commands fails, the module with the next successively-longer watchdog
timer interval automatically takes responsibility for continuing to generate sample
commands.

Sample commands access a bus address dedicated to the clock sample function.
The access only touches the address; no time data is read or written [6]. When the
hardware on each processor board detects access to that address, it generates a signal to
atomicly load the current value of its local clock into a sample register. The same signal
can also generate an interrupt to the processor to indicate that new clock samples are
available. This signal permits the adjustment algorithm to proceed.

When clock synchronization is required across an interface, it is often the case
that a broadcast sample command on one side of the interface cannot be instantaneously
presented by the interface to the other side. The problem is further complicated when the
other side connects to a shared resource where variable delays due to contention are
present, such as connections to a multiplexed-peripheral or a bus gateway. The problem
can be solved by providing the interface with an internal timer that measures the elapsed
time the sample command uses in crossing the interface. The elapsed time is then used as
a correction factor for interpreting time values obtained across the interface.

When the local clocks are situated on separate nodes interconnected through a
token-passing local area network, the sample command can be efficiently distributed by
dedicating the highest-priority token for that purpose [7]. The token has the property
that all nodes “see” the token as it passes, yet none of them “claim” the token except the
node that created it (so the node can remove it after all nodes have seen it). Upon seeing
the token, each processor samples its local clock and generates an interrupt to its
processor as was the case for the backplane bus.

{6] Sample commands merely signify, at the rather arbitrary moment of their broadcast, a time at which all
clocks must be simultaneously sampled. They provide a coordination function, not a data function. They can be
implemented on the 1EEE 896 Futurebus as an “address beat.”

[7] This approach is the inspiration of Dan Green of the Naval Surface Weapons Center.

15

Since the token has the highest priority and no node claims the token for network
traffic, the token passes quickly around the local area network. The token thus
approximates a broadcast. The approximation is not perfect, however, due to propaga-
tion delays in the network. The error in each time sample is the propagation delay
between the node that generated the time sample Loken and the node that took the
particular sample in question. Since the token passes from node to node without ever
being claimed or preempted by a token of higher priority, the propagation delay for the
token to pass from any node to any other node is a constant for the respective pair of
nodes. The time samples are corrected by subtracting the appropriate propagation delay
constants from the time sample values.

The use of the highest-priority token may appear to contradict the statement that
messages employed by the phase adjustment approach do not require the highest
priority. The statement is still correct when one realizes that the highest-priority token
is used solely to preserve the broadcast character of a single message during transit. The
initial release of the token may be at any appropriate priority. But once it is released, it
must circulate unimpeded so that transit delay times between nodes are known
constants.

4.3 RATE ADJUSTMENT ALGORITHMS

The rate adjustment algorithm is implemented as an independent task on each
module participating in clock synchronization. It is responsible for estimating the
synchronization phase error of the local clock based upon sample values from other
clocks, and for making adjustments to the local clock rate in order to gradually eliminate
this synchronization phase error.

On some systems, all the local clocks are of equal quality. In other words, the
sample value obtained from one clock is considered no more accurate or reliable than that
obtained from another. For these systems, the synchronization phase error can be
estimated by taking the simple average of the synchronization phase differences between
the clock on the module performing the algorithm and each of the respective clocks on the
other modules.

On other systems, a module containing an interface to a highly-accurate external
clock, such as a cesium standard, is considered the standard of true time to which all
other clocks must be synchronized. For these systems the synchronization phase error of
the local clock is simply the difference between its sample value and the sample value at
the external clock interface module.

Finally, between these two extremes, there are systems in which no single clock is
considered as perfect and in which some clocks are better than others. For these systems,
the synchronization phase error is estimated using a weighted average where the
coefficients reflect the quality attributed to the sample from each clock.

A weighted average can be used to describe the computation for all three types of
systems. In the case where all the clocks were of equal quality, the coefficients of the
average are identical. In the case where only one clock was considered the source of true
time, all but one of the coefficients are zero.

16

Before actually performing the average, it is beneficial to check the various
sample values for any that appear wildly out of range. Wide variations can indicate clocks
or access paths that have failed in some way. They can also indicate clocks that were
improperly initialized. Sample values from these clocks should be either excluded
completely, or possibly included at greatly reduced weight.

Once the local clock synchronization phase error has been estimated, all that
remains is to adjust the local clock rate. How quickly one causes the elimination of the
synchronization phase error over time is largely left to the system designer. It is
important, however, not to cause such a drastic change in rate that the gradual
correction in synchronization phase error overshoots and becomes unstable. This can be
avoided by selecting an adjustment that corrects the error no faster than half the
maximum permissible elapsed time between samples.

17

5.0 CONCLUSIONS

A distributed set of local clocks associated with the respective processors of a
distributed processing system generally has the advantages of faster access, greater
accuracy, and greater fault tolerance than obtainable from a centralized clock.

Local clock adjustment implemented by modifying the rate, rather than the value,
of the clock has the advantages of preventing backward adjustment in time value,
avoiding abrupt discontinuities in the steady advance of time value, and minimizing the
need for future adjustments. A variable-rate clock derived from a fixed-rate oscillator can
be implemented by inserting a programmable frequency-divider circuit, called a phase
counter, between the oscillator and the time counter maintaining the user-accessible
time value.

The periodic phase adjustment approach to clock synchronization adjusts a local
clock based upon an average of simultaneously-sampled time values collected from
various clocks. Use of the broadcast simultaneous-sample command, rather than
synchronized transmission of time value, has the advantage that clock synchronization
processing and message traffic do not require the highest priority in order to ensure
accuracy. The approach is compatible with rate monotonic scheduling. The approach
supports both systems with and without external time standards. The approach can be
extended to handle non-broadcast interfaces and local area networks where propagation
delay is a factor.

18

6.0 REFERENCES

Goodenough, J. B. and L. Sha. 1988. “The Priority Ceiling Protocol: A Method of
Minimizing the Blocking of High Priority Ada Tasks,” Ada Letters, vol. 8, no. 7,
pp. 20-31.

Jefferson, D. R. July 1985. “Virtual TIme,” ACM Trans. Prog. Languages, vol. 7, no. 3,
pp. 404-425.

Lamport, L. April 1984. “Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems,” ACM Trans. Prog. Languages, vol. 6, no. 2, pp. 254-280.

Lehoczky, J. P., L. Sha, and Y. Ding. 1987. The Rate Monotonic Scheduling Algorithm —
Exact Characterization and Average Case Behavior. Tech. Rep., Dept. Statistics,
Carnegie-Mellon University.

Lehoczky, J. P., L. Sha, and J. K. Strosnider. 1987. “Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments,” Proceedings Real-Time Systems Symposium,
IEEE, pp. 261-270.

Liu, C. L. and J. W. Layland. January 1973. “Scheduling Algorithms for Multipro-
gramming a Hard Real-Time Environment,” Journal ACM, vol. 20, no. 1, pp.
46-61.

Sha, L., J. P. Lehoczky, and R. Rajkumar. 1986. “Solutions for Some Practical Problems
in Prioritized Preemptive Scheduling,” Proceedings Real-Time Systems
Symposium, IEEE, pp. 181-191.

19

- ey,

7.0 BIBLIOGRAPHY

7.1 SYNCHRONIZATION AND USE OF DISTRIBUTED REALTIME
CLOCKS

Cole, R. and C. Forcroft. December 1988. “An Experiment in Clock Synchronization”;
Computer Journal, vol. 31, no. 6, pp. 496-502.

Dolev, D, J. Y. Halpern, and R. H. Strong. April 1986. “On the Possibility and
Impossibility of Achieving Clock Synchronization”; Journal of Computer and
System Science, vol. 32, no. 2, pp. 230-250.

Halpern, J. Y., B. Simons, R. H. Strong, and D. Dolev. August 1984. “Fault-Tolerant
Clock Synchronization”; Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing, ACM, Vancouver, B.C., Canada, pp. 83-102.

Jefferson, D. R. July 1985. “Virtual Time”; ACM Trans. Prog. Languages, vol. 7, no. 3,
pp. 404-425.

Kopetz, H. and W. Ochsenreiter. August 1987. “Clock Synchronization in Distributed
Real-Time Systems”; IEEE Trans. Computers, vol. C-36, no. 8, pp. 933-940.

Kopetz, H., A. Damm, C. Koza, M. Mulazzani, W. Sck wabl, C. Senft, and R. Zainlinger.
February 1989. “Distributed Fault-Tolerant Real-Time Systems: The Mars
Approach”; IEEE Micro, vol. 9, no. 1, pp. 25-40 (clock sync. pp. 31-32).

Lamport, L. and P. M. Melliar-Smith. August 1984. “Byzantine Clock Synchronization”;
Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, ACM, Vancouver, B.C., Canada, pp. 68-74.

Lamport, L. and P. M. Melliar-Smith. January 1985. “Synchronizing Clocks in the
Presence of Faults™; Journal ACM, vol. 32, no. 1, pp. 52-78.

Lamport, L. April 1984. “Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems”; ACM Trans. Prog. Languages, vol. 6, no. 2, pp. 254-280.

Lundelius, J. and N. Lynch. August 1984. “A New Fault-Tolerant Algorithm for Clock
Synchronization”; Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing, ACM, Vancouver, B.C., Canada, pp. 75-88.

Molle, M. L. and L. Kleinrock. September 1985. “Virtual Time CSMA: Why Two Clocks
Are Better than One”;, IEEE Trans. Communications, vol. COM-33, no. 9, pp.
919-933.

Srikanth, T. K. and S. Toueg. July 1987. “Optimal Clock Synchronization”; Journal
ACM, vol. 34, no. 3, pp. 626-645.

Volz, R. and T. N. Mudge. August 1987. “Instruction Level Timing Mechanisms for
Accurate Real-Time Task Scheduling”; IEEE Trans. Computers, vol. C-36, no. 8,
pp. 988-993.

Volz, R. A.; and T. N. Mudge. April 1987. “Timing Issues in the Distributed Execution of
Ada Programs”; IEEE Trans. Computers, vol. C-36, no. 4, pp. 449-459.

20

7.0 BIBLIOGRAPHY (Cont’'d)

7.2 RATE MONOTONIC HARD-DEADLINE REALTIME SCHEDULING
TECHNOLOGY

Cornhill, D. L. and L. Sha. November-December 1987. “Priority Inversion in Ada or
What Should Be the Priority of an Ada Server Task?”; Ada Letters, vol. 7, no. 7,
pp. 30-32.

Goodenough, J. B. and L. Sha. Fall 1988. “The Priority Ceiling Protocol: A Method of
Minimizing the Blocking of High Priority Ada Tasks”; Proceedings 2nd ACM
International Workshop on Real-Time Ada Issues, Ada Letters, vol. 8, no. 7, pp.
20-31.

Lehoczky, J. P., L. Sha, and Y. Ding. 1987. The Rate Monotonic Scheduling Algorithm —
Exact Characterization and Average Case Behavior, Tech. Rep., Dept. Statistics,
Carnegie-Mellon University.

Lehoczky,J. P., L. Sha, and J. K. Strosnider. 1987. “Enhanced Aperiodic Responsiveness
in Hard Real-Time Environments”; Proceedings Real-Time System Symposium,
IEEE, pp. 261-270.

Levine, G. Fall 1988. “The Control of Priority Inversion in Ada”; Proceedings 2nd ACM
International Workshop on Real-Time Ada Issues, Ada Letters, vol. 8, no. 7, pp.
53-56.

Liu, C. L. and J. W. Layland. January 1973. “Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment”; Journal ACM, vol. 20, no. 1, pp.
46-61.

Sha, L., dJ. P. Lehoczky, and R. Rajkumar. December 1986. “Solutions for Some Practical
Problems in Prioritized Preemptive Scheduling”; Proceedings Real-Time System
Symposium, IEEE, New Orleans, Louisiana, pp. 181-191.

Sha, L., R. Rajkumar and J. P. Lehoczky. 1987. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization, Tech. Rep., Dept. Computer Science,
Carnegie-Mellon University, to appear in IEEE Trans. on Computers.

Sprunt, B, D. Kirk, and L. Sha. June 1988. “Priority-Driven Preemptive I/O Controllers
for Real-Time Systems”; Proceedings 15th Annual International Symposium on
Computer Architecture, IEEE.

Strosnider, J. K., T. Marchok, and J. Lehoczky. 1988. “Advanced Real-Time Scheduling
Using the IEEE 802.5 Token Ring”; Proceedings Real-Time System Symposium,
1IEEE, pp. 42-52.

21

