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Hagit Attiya™

Avstract

In [A88], Abrahamson presented a solution to the
randomized consensus problem of Chor, Israeli
and Li [CIL87], without assuming the existence of
an atcmic coin flip operation. This elegant algo-
rithm uses unbounded memory, and has expected
exponential running time. In [AH89], Aspens and
Herlihy provide a breakthrough polynomial-time
algorithm. However, it too is based on the use
of unbounded memory. In this paper, we present
a solution to the randomized consens us problem,
that is bounded in space and runs in polynomial
expected time.

1 Introduction

The Consensus Problem in shared memory en-
vironment is that of providing an algorithm, by
which n processes, running asynchronously and
communicating via shared memory, can agree on
a value. Loosely speaking, the algorithm should
have the following properties:
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1. Consistency: No two processes decide on dif-
ferent values;

2. Validity: If all processes have the same ini-
tial value, then processes decide on that
value.

3. Wail-freeness: Each process is guaranteed
to decide after a finite number of steps, in-
dependently of other processes.

In a shared memory in which only atomic read
and write operations are allowed there is no de-
terministic solution to the problem. This result
was directly proved by [AG88, CIL87, LA87] and
implicitly can be deduced from [DDS87. FLP85).
Herlihy [H88] presents a comprehensive study of
the problem, and of its implications on the con-
struction of many synchronization primitives.

A randvmized solution to the consensus prob-
lem is one in which, rather than being guaranteed,
it is only ezpected that the number of steps until
a process decides is finite, that is, property (3)
above is replaced by:

3. Finite erpected waiting: The expected num-
ber of steps until a process decides is finite.

Such an algorithm, provides a basis for construct-
ing novel universal synchronization primitives.
such as the fetch and cons of [H88], or the sticky
bits of [P89].

Chor, Israeli, and Li [CIL87} were the first to
provide a time-efficient randomized solution to
the problem, using bounded size memory. Their
soluticn wa. based on the availability of a pow-
erful alomic coin flip operation. In [A88]. Abra-
hamson presented a first solution not assuming
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the existence of such an operation. However,
this elegant algorithm uses unbounded memory,
and has exponential expected running time. The
question was thus raised:

Does there crist un algortthm that s
polynonual in running tume and bounded
in memory size?

An exponential time algorithm can be derived
from that of [A88] (see [ADSR&Y]) using a transfor-
mation based on the concurrent time stamp sys-
tem techniques of [DS89]. Aspens and Herlihy
(in [AH&8]) provide a breakthrough algorithm
that runs in polynomial expected time. Unfor-
tunately. it is based on the use of unboundea size
memory in a “stronger” way than in [A88]. Since
for reasons presented in the sequel. there seeins to
be no transformation of [A H88] to a bounded pro-
tocol using concurrent time stamping techniques,
the above question remained unanswered.

In this paper. we present a solution to the
randomized consensus problem that both runs
in polynomial expected time and s bounded in
memory size.

The main reason for the siinplicity in providing
an exponential time randomized consensus algo-
rithm using bounded space, is that all one need
provide are actually the properties of consistency
and non-triviality. The wail-freeness, i.e. expo-
nential expected .unning time, is (though hard
to analyze) just the result of the exponentially
small probability that processes flipping indepen-
dent coins, will come up with the same value. To
provide the former two properties, one need only
create a locking mechanism that will provide ex-
clusion, before allowing processes to decide on
a value. Surh unbounded locking mechanisms
are based on tiine stamping concurreut lock set-
ting events. a process that has been shown to be
modularly replaceable using bounded concurrent
tnne stamp systems.

In order to obtain an algorithm thai ruus in
expected polynomial time, as [AH88]. one must
limit the ability of the adversary to create non-
decision scenarios while processes try to lock for
values. A way of Toing ihie de b bnsine ooy
cess’ decision to attempt to lock for a value, on a
function of more than just one independent local

coin toss, preferably on many coin tosses by all

processes. ‘s exact wlea 15 abstracted into the
notion of creating a shared ylobal cotn [CMS85].
Since attempts to lock for a value based on the
shared coin could still fail (because as shown in
[AH88), one cannot create a perfect coin) re-
peated global coin tosses are needed. When im-
plementing multiple coin tosses, one must re-
member that processes run at different paces, so
one should take care to a. prevent mixups be-
tween locations in memory used for new and old
coins, and b. provide independence among shared
coin flips (this means preventing processes in old
coin toss phases, from causing atteinpts of pro-
cesses in later coin tosses to fail). The alg rithm
uses an unbounded strip of ¢coius, where for each
toss a separate set of mermory locations is al-
located; this allows to distingui<h between coin
tosses, and thus to raeet the above requirements.

Summing the above. in achieving polynomial
expected time, unboundedpess is used, net to or-
der any two specthe coin flipping events by the
relative times wm which they oceurred (a prop
erty provided by concurrent tinie stamping), but
by how many coin flipping events is one process
tratling behind the other.

In [AH88], in addition to the above use of un-
bounded memory, the weak shared coin flip con-
struction requires that each coin location in the
unbourded strip be in itself unbounded. Finally,
t. v .ze of a random walk to create the shared
cce - . ased on a snapshot view of memory. The
impi.  2ntation of this snapshot operation also
uses unbounded counters.

The main cortribution of our paper is an im-
plementation that achieves the properties of the
coin strip using bounded memory. It is based on
a technique for maintaining a “shrunken” version
of the strip, effectively pulling together processes
that opened a gap between one another. In addi-
tion, it is shown how to perforim the random walk
using only bounded coin locations. Finally, our
algorithm is based on the availability of a mem-
ory piiitiv., da .. hich a enanshot scan can be
performed. We show how to implement such a
primitive boundedly.

Thc weot of the paper 1s orgamized as follows.
In Section 2 a scannable memory primitive is de-
fined and constructed. In Scction 3 a bounded
memory implementation of a weak shared coin




is presented. In Section 4 the implementation of
tiie woin strip 1s presented. We introduce a to-
ken game capturing the properties of the strip.
A shrunken version of the game is shown to pro-
vide the same properties, and is then translated
into a game on a weighted graph. Finally, a con-
current implementation of the game on the graph
is presented. Section 5 shows how bounded size
strips of coins can be manipulated based on the
concurrent graph game. All the unbounded con-
structs of the [AH88] type a2lgorithm presented in
Section 5, are then replaced by the bounded ones,
providing the desired solution. In Section 6, an
outline of the correctness proof of the algorithm
1s presented. Due to lack of space, some of the
proofs are omitted.

2 Snapshot Scanning
2.1 Definitions

A Scannable Memory V is an abstract data type
shared among n concurrent and completely asyn-
chronous processes. There are two operations
that any process can execute on V, a write oper-
ation and a scan operation. As discussed below,
1t 1s not assumed that these operations are nec-
essarily wartfree [H88, AG8S).

Assume that each process’ program consists,
among other, of the above two operations, whose
execution generates a sequence of elementary op-
eration erecutions, totally ordered by the pre-
cedes relation (of [L86a, L86¢c] denoted “ — 7).
The following

[.Vi[ll —_— S,v[ll — VVi[zl — VV,-[S]

— B gl

is an example of such a sequence by process 1,

r{k]

where W} denotes process 1's k** execution of a

write operation, and S*! the k'* execution of a
scan operation (the superscript [] is used for no-
tation, and is not visible to the processes). One
should bear in mind that the asynchronous na-
ture of the uperations allawe <citnntione where
a scan oveclaps many consecutive write opera-
tions of other processes. Also, several consecutive
scans could ;.0ssibly be overlapped by a single
write operation.

Let --+ be the can affect relation of [L86a,
[.86c]. A global time model® of operation exe-
cutions is assumed (see {I.86a, B88]). The follow-
ing definition attempts to capture the notion that
a possible effect of one operation on the shared
memory (such as the writing of a value), existed
at a point in global time where the other was
being executed.

Definition 2.1.
W‘[Q] potentially coexists with another operation

A write operation execution

execution OJ-M (O stands for either a scan or
write) if Wl -~ Oj[b] and there does not erist
o« Wl such that Wi — wilT — o1,

With each write operation execution W,[H, a

& . . .o .
value v‘[ ] written into V is associated. A scan
operation returns a view, a set of values ¥ =

{vgk‘] . vﬁ,""]}?.

The following requirement is made to assure that
the snapshot view v returned by Sj[b] is a mean-
ingful one, namely, returning the values of write
events immediately before or concurrent with the
scan, and not just any possible set of values.

P1 regularity: For any value v‘-[a] in 7 of Sj[b].
W,-[G] potentially coexisted with Sj[b].

The above eliminates uninteresting trivial so-
lutions and introduces a measure of liveness into
the system. More importantly, it implies that
the behavior of the scannable memory is as if
it consists of disjoint registers, one per process,
which the designated process can write, and all
can read. This is very different from the behav-
ior of multi reader multi writer atomic registers,
where the latest write of any process erases the
values written by others.

Though a scan as above is sufficient for many
applications, one is interested in a scan that re-
turns an “instantaneous” view of memory. that
iz, having the following stronger propeiiy.

Implying that for any two operation executions,
a—>borb--"a.

2Initialization and safety are similar to Arioms B0-9
for single-writer atomic registers [L86b]




{a]

P2 snapshot: For any two values ] !

and rj{b
in # of S,‘[C], H'i[“] potentially coexisted with
”-J[b]‘ or H')[b] potentially coexisted with
H'x[“]. or both.

Though 1-2 return values that could have been
returned by an instantaneous scan. they do not
imply that scan operations of all processcs are
serializable. Moreover. they do not nuply that
later scans will obtain later snapshot views. The
following property is therefore added. to formal-
ize. together with P/-2 the idea that all scans
are serializable.

P3 scan serializability: Let Sj[b] and Sgbf} be any

pair of scans. Let vi[a'] and v,-[a']. i€ {l.n},
denote the corresponding values returned by
the two scans. Then either for every 7 €
{i.n}. a; <a orforevery i € {l.n}. a; <
a; .

For the purposes of the applications in this pa-
per, it is not required that both scan and write
operations be waitfree [H88, AGR8]. Since every
process’ execution sequence will be an alternating
sequence of scan followed by write, it will actu-
ally suffice that in any infinite system execution,
there exists a new write operation wfinitely of-
ten. In the full paper. a formal treatment of this
property 1s provided.

2.2 Bounded Implementation of
Scannable Memory

The nnplementation is based on the use of
single-writer-multi-reader and  two-writer-two-
reader atomic registers. The scannable mem-
ory V" will consist of n single-writer-multi-reader
atomuc registers Vi, i € {1..n}. each V; written
by process i and read by all. In addition, for ev-
ery pair of processes 1 and j, a pair of two-writer-
two-readeratomic registers A;; and A;; are main-
tained ?. Bounded constructiuns of such registers
from weaker primitives are shown in {BI87, L86b,
[L88. BP87, N87, SAGR7, LV88, DSB9]. Register
Ai; 15 used by i to inform j that it has updated
Vi, and by j to mark that it has read V;. To

?To save in the complexity of constructing multi writer
registers, the arrows technique of [D(3588] can Le used.

simplify the proofs (and only for this purpose),
an alternating bit field 1s assumed to be added
to each register V;. such that two values written
in consecutive writes by the same process, always

differ.

The main idea behind the implementation of
the scan and write operations is as follows. A
value of 1 iun register Aj; denotes an “arrow”
pointing from j to i, a value of 0 denotes an arrow
from i to j. To scan the memory. a process i will
direct all arrows 4, towards other processes, per-
form a collecting of values followed by a collecting
of arrows, and repeat these two collections agaiun.
If the values have not changed and nc arrow has
been redirected towards it. process 1 has collected
a snapshot in its second read of every register. *
To write a value, a process j directs the arrows
Aji towards any possibly-scanning process, noti-
fying that it has started a write. then writes the
value. The following are the wrile and scan pro-
cedures of a process 1, where we use the notation
J € {l.n} = {{} to denote that indexing is per-
formed in some arbitrary order.

procedure wrile (valuc);
begin
for j € {1 .n} — {i} do A;; := 1 od;
Vi = value;
end write;

Assume that a process. during the execution of
the scan operation. has secn no arrows redirected.
and both values being the same. It can thus de-
duce that no process whose corresponding value it
returns, could have perforimed its following write,
completely before any of the other writes whose
values it returns. The reason is that if that were
the case, the writing process would have turned
the arrow and the scan would have gone through
another round.

function scan
begin
L: forje{l.n} - {i}do 4 :=0 od:
for j € {l.n} — {i} do V1[j} := V; od;
for j € {1.n} ~ {i} do V2[j]:= V} od:
for j € {1.n} - {i} do A[j] := 4;; od;

*The two phases of valur-collecting are also used to
simplify the proofs.




if (3)(AD] = Dv VLT # V20]
then goto L fi;
return 1°2;
end scan:

Though the wrife operation is waitfree, the scan
operation 1s of course not, because scans may re-
peatedly be forced to return to line L. However,
scans do not wait for other scans, and the above
can only happen on account of repeated execution
of new write operations by some process. Thu,, it
can be proven that the implementation provides
the type of progress described in the previous sec-
tion.

The following is the main core of the proofs of
properties PI-3. The notation rl,Eb](V.-j) for ex-
ample. will denote the first read in scan operation
execution S of regi Vi
eXec S gister Vyj.

Lemma 2.1. For any value vi[aJ m v of Sj[b].
W',[a] potentially coeristed with Sj["]'

Proof Assume by way of contradiction that the
claim does not hold, There must thus exist some
value v‘{a} inT of Sjm, such that —( iV,»[aJ - Sj[bJ)

or AWEH — 51—~ 5P By the

assumption of global time, ~(W* -~ S im-

]

plies Sj[b — ”/i[al‘ which by atomic register ax-

iom Bj of [L86¢], it cannot be that vl-[al was re-
turned. Thus, the second condition must hold,
which by the scan algorithm implies

w1 — wlt ) — r2fl(v)

(a] (6]

where v was returned in r2,7(V;), a contradic-
tion to atomic register axiom B4 of [L86¢]. [ ]

This implies P1, the following proves P2is met.

[8]

and v an
v of Sk[c], PV,-M potentially coezisted with VVj[b] or
Wj[b] potentially coezisted with W{[G] or both.

Lemma 2.2. For any two values v®

Proof Assume by way of contradiction that the
claim does not hold. There must thus exist two
values vi["] and z:j[b] in 7 of Sk"l, such that neither

H'jm, nor Wi["], potentially coexisted with the

other. W l.o.g, it must be that
(3‘,pr,_[°’])(wi[a] —— Wi[a,] - ‘V}_[b]).

By the scan algorithm, w,Ec](Ajk) —_— T,EC]("})-

Since vi[a] and not vi["] was returned in r,EC](V,-),

rf(vi) — wl*)(V). Because T — w

it must be that

wl ](V,- —_— ¥ Aig) — wl(V). Also. be-
: ) J J 1 J

cause vj[b‘ was returned in r,EC](Vj), it is must be

the case that wj[b](Vj) — r,Ec](Vj). Again by the
scan algorithm, r,ECI(Vj) — r,EC](Ajk). From the
above, by the transitivity of — | it follows that

wf( ) — wfl(450) — 450,

Since in wj[b](Ajk) a value of 0 was written, this

value must have been read in r,EC](/‘xj,,), a contia-
diction to the termination condition of the scan
algorithm. n

Using similar arguments the next two lemmas
prove P3. The following lemma establishes that
in the two reads of any scan operation execution,
the value written in the exact same write is re-
turned.

Lemma 2.3. In any scan operation execulion

S,SC], for any value v,-[“] v,.[a]

both rl,EC] and r2,£°].

n 'ﬁM, was read in

Proof Assume by way of contradiction that the

above does not hold. Since the values read in

r1;? and r2,£C] must be the same, and two con-

secutive writes have different{t;)ggle bit values, i%
{a"] a

must be that for v/” * and v,

and r2,£°} respectively, there must exist a write

returned in rl,£c

operation execution I/V‘-[a’] such that
W_[“"] — VV»[G’] — pylal
t t t )

In a manner similar to that of the former proof,
by the ordering of reads of A;; and V;, it must be
that

wl(Ag) — r1l(1)

_— u’,'[a’](vi) - w.'[n](Ail:)




— u.i[“]("‘) I ,.QIEC](L".) —_— rk[:c](A,-k).

This implies that the value of 0 written in
11‘,[‘)](.4,-;.) must have been read in r,EC](A,-k), acon-
tradiction to the scans termination condition. W

Lemma 2.4. Let S and Sy[CI] be any pair of

scans. et l:,-[d‘] and 1'i[a:], i € {l.n}. denote the
corresponding values returned by the two scans.
Then either for every i € {l..n}, a; < af, or for
every i € {1.n}, a} < a;.

Proof Assume by way of contradiction that the
claim does not hold. There must thus exist values
a | v in il d v° d L I |
v; - and v in 7% and v, ' and v in v
such that a < a’ and 6 > V.

Lemma 2.3 implies that the value returned in
both reads of a scan operation execution is of the
same write operation. In the scan operation exe-

(2]

cution of y, Since in I‘IQEC‘](‘/;'), v} was returned,
By — (V). Since in r2l(v;), o0

uy ;
was not returned, T“Zy[(I}(Vj) — wj[b](Vj). By the

order of reads in a scan it thus follows that
w W) — 1)

: S
— 2l i (V) — w(v;).
By similar arguments, regarding the scan opera-
tion execution of z,

wllvy) — r1ld(y;)
— r?r[’](V.') —_— u:i[all(\',-).

By transitivity. the combination of these two se-
quences of operation executions contradicts the
antisymmetry property of the partial order — .
n

3 A Bounded Implementation of a
Shared Coin

The implementation of the weak shared coin is
based on the random walk technique of [AH88].
For lack of space we explain only the modification
allowing to bound the size of the counters used to
implement the coin. The main idea of the modi-
fication used is rather straightforward. The coin
implemented by the random walk is weak, that

is, Involves a simall probability that processes will
disagree on the coin’s outcome. Thus, one can al-
low a process to always decide heads in case its
counter overflows, as long as the probability of
this event can be absorbed into the probability
of processes disagreeing on the outcome.

Let ¢ =< ¢y,...,¢, > be an array of coun-
ters implementing a shared coin. Each counter
¢; has values in the range {—(m + 1)..(m + 1)},
written by its corresponding process 1. Let
walk_value () = 127 ¢;. The following are thus
the functions of process i, for determining if the
random walk has led to a coin value, and for per-
forming a step in the random walk by process 1.

function coin_value (¢);
begin
l: if ¢; ¢ {—m..m} then
return heads fi;
o if walk_value(é) > & - n then
return heads
3. elseif walk.value(é) < —6 -n then
return fails
4: else return undecided fi fi;
end conovalue;

[\"]

procedure walk_step:
begin
if flip= heads then ¢; := ¢; + 1
else ¢; = ¢; — 1 fi;
end walk_step.

Lemma 3.1 (Aspnes and Herlihy). The
probability that two processes will disagree on the
coins outcome 1s (6 — 1)/(28).

Lemma 3.2 (Aspnes and Herlihy). The
expected number of sleps until the coin is decided
is (6 + 1)2n2.

Look at a random walk starting from 0 with
barriers at b and —b, consisting of the steps:
61,62‘... 5,6{—1.+l}f0ral|z

The following is a bound on the probabslity that
after m steps, none of the barriers was crossed.

Define
DIXARS b}

i=1

S;m = Prob

Clearly, the desired probability is bounded from
above by S,n. Thus,




Lemma 3.3. Letm = (f(b)b)",. for some func-
fion f. then there erists a constant C, such that
S & 7%-) (proof ommited).

Based on the above, one can prove that by
choosing m to be large enough, the probability
that the adversary can force processes to disagree
because of the deterministic choice of heads in
case of counter overflow, is negligible, as formal-
ized by the following lemma:

Lemma 3.4. There erists a constant C such thal
the probability that in the random walk generated
by a sequence of erecutions of the algorithm on a
queen comn ¢,
C-é6-n
Prob [je;] > m] < ———.

T
4 The Rounds Strip

In this section a method is shown for replacing
the unbounded strip of round locations required
by the algorithm of [AH88], by a bounded con-
struct. The important observation is that this
algorithm utilizes the rounds strip in a very re-
stricted way. Informally

Observation 1. There erists a constant K such
that at any point in the computation:

1. The actions performed by any process are
not affected by values of processes that are
strictly more than K rounds behind it.

395}

If a process performs round r, and cannot
decide, then there 1s a disagreement about
the value of the shared coin of round r — K.
This implies that when this process proceeds
to round r + 1, ol can withdraw its contri-
bution to the comn of round r ~ K, without
affecting the performance of the algorithm.

Thus. a complete picture of the rounds in which
processors are located is not necessary; rather, it
siffices 1o maintain a “compressed™ description of
the distances between these round numbers, and
to save processes’ contributions to the K latest
coins that were flipped. The following subsec-
tions present the data structure used to maintain
these distances concurrently.

In the .. xt cubsection, a simple game is pre-
sented in order to make precise the notion of
“compression” tnentioned above. Then, in Sec-
tion 4.2, we show how to store and play this game
using a directed weighted graph. In order to sim-
plify the presentation this game is sequential. In
Section 4.3, a data structure that implements the
game on the graph is defined, as well as the pro-
cedures for playing the game on this graph con-
currently.

The main problem is how to maintain the rele-
vant values using bounded space. given that pro-
cesses are asynchronous. For example, it could
be that process will start flipping a coin in a
round r when round r is maximal, and during its
coin flipping other processes will move to higher
rounds, that are an unbounded number of coin
flips ahead.

4.1 The Game

Imagine the changes to the processes’ round num-
bers as a game played on the natural numbers
(viewed as an infinite ordered set of points):

Each processor controls a token, placed at a
specific point, initially 0. Denote by r; the loca-
tion of ’s token. Each processor can perform the
step move_token; that places its token at place
r; + 1. The game is a (possibly infinite) sequence
of the form move_token;,, move_token;,

At any stage of the game, the collection of
tokens’ positions forms a multi-set of integers,
S ={ry,....7n}. Let 7 be the ordering permuta-
tion of S, i.e., S = {rp1) < ra2) <o € Ta(my}-
Let K be some fixed constant. We now intro-
duce two transformations, that, when applied to
the set S, produce a “compressed” representation
of it, without losing important information.

Shrinking. One is interested in the exact dis-
tance between two token if and only if, the dis-
tance between them is less than K. The goal
of the first transformation is to “shrink”™ gaps of
length strictly larger than K. to be of size .
Informally, shrinkg (S) is a new set S’. in which
Tr(n) femains in its current position. whitk any
two consecutive tokens (rn;y and rr4q)) that
are more than K apart, become K apart. while




the distance between tokens that are less than A
aparl. remain unchanged.

Formally, let S = {ry1, € ... < rpmy}. Let
gap; = eii) — Pepe1). for 1. <0 < n, and define
shrinkg(S) = {r;, < ... <, ) (for some
parameter A') inductively as follows:

(1) rfril) = Tril)-

(2) Assume we have defined r:rm, then

L mwek wgan > K
Ti4 1 7‘:'(” + gap; otherwise

Intuitively. any “gap” i the sequence, whose
length i1s strictly larger than A, is “shrunk” to be
of length exactly A"

The shrunken token game is conducted by ex-
ecuting a shrinkg on the set of token places
after each move_token;, step. before the next
move _token;,,, step.

Normalizing. [t is easy to see that after apply-
ing shrirnkg to any set S, the distance between
the maximal element and the minimal element is
at most A'-n. To compress the values even further
they are normalized, so that all values remain in
a bounded range.

The ordering permutation of S’ = shrinkg(S)
is still 7. The transformation normalizeg(S’)
maps each element rj € 5" to (r; — regn)) + K n.
That is. the maximal token(s) is positioned at
K -n. and the rest of the tokens are move be-
hind it while maintaining the distances between
tokens. Notice that for any -et S, all the val-
ues in normalizeg (shrinkg(S)) are in the range
[0..K n].

The normalized shrunken game. is conducted
by applying shrinkg and then normalizeg to
the set of token places after each move_token;,
step. before the next move_token;,,, step.

An important property preserved by the nor-
malized shrunken game is:

Non-Passive Shrinking. For any two token
positions r; and r; in a state of the game,
st. 0 < ry —r; < K, if for later token posi-
tions. r; and »;. we have ri—r; = (r;—r;)—1.
then there is a move_token; hetween the two

states.

4.2 Representation as a Finite Graph

Given a state S of the above gamie, we define
its distance graph G(5). as follows: G is a di-
rected weighted graph with nodes V' = {1.n},
corresponding to tokens. one per process, edges
E = {(:,j)|r; <r;} indicating relative order of
token locations, and weights w(i, ), defined for
any (1,J) € E as

Wr —r, <K

T I
w(i.j) = { K otherwise.

The following properties of the distance graph (7.
are implied from the definition of the normalized
shrunken token game:

1. For any i and j in V', at lrast one of (¢, ) or
(7,1)1sin E; both edges are in F if and only
if the weight of both 1s 0.

2. There is no positive cycle, that is. a cycle

including an edge (7, j) with wv(i,j) > 0.

3. Let P(i,5) be the set of all directed simple
paths fromito j. Forevery path ¢ € P(i.j},
let W(p) =37, e, wlu.v). It follows from
the above properties that 0 < W(p) < K n.

4. For any two directed paths p; and ¢, €
P(i,7), either W (g1) = W(p2). or there ex-
ists an edge (u.v) € o such that w(u.v) =
K.

5. For any 7 and j, such that P(i. j) # 0, define

dist(i, j) = max (W(e")},
S'€PI1 )

and defire maz_paths(i, j) io he
{p € P(i,j) | W(p) = dist(i, j}}

Then W(p) = r; —
maz_paths(i. j).

ri for every ¢ €

Let tnc(i,G) be defined as the following trans-
formation of graph G for a given &

for all j #iin V do
if (j,i) € G and
(3k)((4,7) € maz_paths(k,7)) then
w(j,1) = w(j,i) -1 K
if (,j) € G and




) <ufi.j) < K then

wt. j) = w(i.j)+ 1 fi.
if wj.i) <0 then
E=F-{n)ultnh
w(i.j)y = —w(y.i) fi:

()(ll

Claim 4.1. For a state S reached from state S

by a token_move of v in token game A, G(S")
me (1, G(S)).

4.3 TLinplementation of the Graph

Property (1) of the distance graph implies that
the weights of all (undirected) edges s ffice to
induce the directed graph structure. The weights
are maintained in a collection of e;{1..n] of edge
ccunters. one per each (undirected) edge (e;f7] is
not used). Each pair «(j] and ¢;{i] of counters
i the range {0..3- A —1}. represents two pointers
tof i and j. respectively) to a cycle of size 3- K.
By incrementing the counter, a process moves its
pointer a 1n clockwise direction (all arithmetics
in this subsection is modulo 3. K).

Assume ¢;[j]—e;{i] < ¢;{i] - ;7] then the edge
is (1. )). and w(i. j) = e;{j]—e;{i], and vice versa.
Thus. given two edge counters e;[j] and e;{i], the
existence of a given directed edge is determined
by the rule

(1) € G if (] = €[i]) < ey i) = eils])
and the weight w(i. j) of the edge (i, j) is (e;[j] -
¢,11]). Note that if e;[;] = ¢;[i], then we have
both edges. (1.) and (j,7) with both weights
equal to 0. To keep the weight w(i. j) in the range
{0.R'}. a process i does not ‘ncrement e;{j] un-
less it is the trailing pointer. or it leads by less
than KA.

Let make_graph be the procedure that, given
the collection of all edge counters, creates a graph
representation, as described above. The following
procedure is thus the {possibly concurrent) imple-
mentation of one increment move on the graph G.

function c_graph(e,{1..n]..ca[1..n]);
begin
G = make_graph(e,[1..n]..e,[1..n]);
for j:=1to nskipi do
if ((J.7) € G and

(3k)((j. 1) € maz_paths(k.i))) or
((1,7) € ¢ and w(7,j) < K) then
ei[j] ;= aiJ] + 1 mod 3K
fi;
od;
end.

5 The Algorithm

Based on Observation 1 (Section 4), if a pro-
cess advanced K rounds ahead of another. it can
erase its contribution to the trailing process’ coin.
A trailing process performing nert_comn_value us-
ing that location will possibly see that process’
counter as U, but this can only cause it to perform
an additional expected O(n?) steps (by Lemma
3.2), before advancing to the next round®.

The round field of any value w; consists of two
fields: coin and edge_counters. The coin tield
is an array of coin counters c,[a],a € {0..N},
with an added current_coin pointer in the range
{0..K}5. These counters are used to maintain
the local parts of coins corresponding to the lat-
:st K rounds executed by process 1. The counter
to be used for the next coin of process i is de-
termined by the function nert(current_coin,). re-
turning current_coin; mod (K + 1). The edge
counters field is an array of n edge counters as de-
scribed in Subsection 4.3. Initially all the above
are 0. The following is thus the bounded imple-
mentation of the coin flipping and round incre-
menting operations for process 1.

function neri_coin_value(round);

begin
G = make_graph(e[1..n]..e,[1..n]):
¢[i) := coin[next(current_cow)};

for j:= 1 to n skip 1 do
if (j,7) € G and w(j,7) < K then
¢lj) == coinj[(current_coin; —
w(j, i)+ 1) mod (K + 1)]
else é[j] := 0 fi od:
return coin_uvalue (¢),
end;

5Several modifications that will improve the expected
running time here and elsewhere in the algorithm are pos.
sible, but are not introduced for the sake of simplicity.

¢In the procedures below, all fields are first written
to a local variable, on which the write operation of the
scannable memory is then performed.




procedure flip_neri_comn(round):
begin
walk_step (comny[next (current.coin;)]);
end:

tunction nc(round);
begin
current_cotn; 1= nert(curreal_coin;);
cotngine-t(current_coin;)y := 0;
me_graph(ei[1..n], e [l..n]);
end:

In the above procedure, note that a process
prepares. when advancing to a new round the
coin counter for flipping the coin in the uext
round.

We assume that processors start with binary
initial values; however, the protocol can be ex-
tended to handle arbitrary initial values. "et K
be 2. the following ts thus the consensus algo-
rithm for processor i, with initial value v;. Pro-
cess i is a leaderiffor ail j # ¢, (¢,7) is in G, that
1= having r, ¢qual to or dominating all other r;.
Process 1 agrees with process j, if both prefer the
same value v # L.

write ([pref: vy, round: inc(round)])
repeat forever
l: scan:
2:1f all who disagree
tratl by K and I'm a lead:
then 7 ‘de(pref);

3: elseif leaders agree then
4:  write([pref. v, round: inc(round)])
J:elseif pref# L then
6:  wrde([pref: L, round: round])
elseif nert_comn_value(round) =
undecided then
T wrile([pref: L,
round: flip_nert_coin(round)])
else
8. wride([pref: nert_coin_value (round),
round: inc(round)])
fi fi i fi;
end:

6 Proof of Correctness

The following section outlines the proofs that the
algorithm has the properties of consistency, va-

hdity, and that it terminates in polynom:al er-
pected time. To sumplify the proofs, the notion
of a wvirtual global round is introduced. support-
ing the illusion that a process has an unbounded
and monotonically non-decreasing round num-
ber, and that a unique shared coin is associated
with each round.

6.1 Virtual Global Rounds

The serializability property ( P3) of scan opera-
tion executions, implies that there is some linear
ordering on the scan operation executions per-
formed by all processes. Througnout the proof,
let ${2} denote the a'® scan in this ordering. if
the a'? scan is performed by process j. denote it
by S'j{a}. OUne scan operation execution is satd
to be later than another. if it is greater in this
ordering. In the consensus protocol proce_ses al-
ternate between performing write and scan oper-
ations. This implies that between any two scans,
Siat and S19+1} there is at most one write by
any process. Denote by var {2} the value of any
variable var that was read by S{e}.

With each process i, in the a'® scan, a

virtual global round is associated, denoted by
round(i, S1°}). The definition is by induction on
the ordering :.mong scan operation executions.

Basc case. For all i, round(i, S11}) = 0.

Inductive step. Given round(i, S[4=11), let

mar = MaX;e() n} round(i, S{e=1hy,

old_leaders(Sit-11) =
{j | round(i, S1e=1Y) = maz}.
and
new_leaders(S {7}y =
{j|Jj€ oldleaders(S {21}y and
e;[L.n} (o3 () # e, 1 m]te-13(j)}.

Based on the above definitions. define
round(i, S 19} as follows. [f new_leaders(S {2} *
0, let j* € new_leaders(S19}) and define

round(i, S{¢}) =
maz+1 i€new leaders(S1eh
maz+1 — dist(i,j*) otheswise.




In case the set new_leaders(S19}) = 0. let j= €
ald _leaders (S1°1) and define

round(i,b'{“}) = mar — dist(i, j").

The above definition is simply that if one of the
leaders in the former scan operation execution
moved, all new processes are ordered relative to
it. and otherwise they are ordered reiative to the
old leaders. Note that though the virtual global
round of a process might change even without
its performing an inc operation, it can only in-
crease. that is. the virtual global round is a non-
decreasing function.

In the following subsections, a round means a
virtual global round unless otherwise stated. A
process p is said to be in round r, starting from
the first scan operation execution in which 1t was
returned as being in r (determined by applying
the above definition), and in all later scan oper-
ation executions until it is returned as being in a
round r’ > r. A round is said to be among the K
largest {for some constant K') starting from the
earliest scan operation execution in which some
process is in this round and no other process 1s
in a round greater by K. and until the first later
scan operation execution for which there is a pro-
cess in a round greater by K.

6.2 Consistency and Validity

Though we have attempted to maintain the gen-
eral structure of the correctness and complex-
ity pro f¢ for the unbounded implementation of
[A{88]. by introd...ing virtual global rounds, the
differences het+ een our r unds strip implementa-
tion and the 1+ . ite rounds strip used in [AH88],
force us t. - t:y some of the statcments, and
to charge '.. st of the proofs.

For simplicit_ . assumed that there are only
two poss. sle inp.. values, where 4 denotes the
value different fom v, for v € {0,1}. A process
p prefers v in round 7, if for some scan S19} it is
the case that round{p.S1%}) — r, and prefpa} =
v. We have

Lemma §.1. If process p prefers v tn round r
and prefers © in round r’ > r, then some process
q # p preferred v in round v’ > r.

Proof (Sketch) By the algorithm, a process
changes its preference only by executing inc. Let
Sp{a} be the scan performed by p before exe-
cuting this inc. This can occur only if some
other process, say g, had pref,!® = #, and
that in the graph returned in Sp{a}, ¢ has non-
negative distance from p. Since rounds are
monotonically non-decreasing, it is the case that
round(q,Spa}) > round(p,Sp{a}) and the claim
follows. [

The above lemma and the code of the algo-
rithm implies the following two lemmas.

Lemma 6.2. If no process prefers v at round r
when round r is among the 2 largest rounds, then
no process prefers v at any round r' > r.

Lemma 6.3. If no process prefers v at round »r
when round r is among the 2 largest rounds, then
no process ts busy in any round r’ > r.

Lemma 6.4. If every process that completed
round r, when round r was among the 2 largest
rounds, preferred v in round r, then every non-
faulty process decides v by round r + 1.

Lemma 6.4 implies validity, since if all pro-
cesses start with the same input value they all
prefer this value in round 1. Hence all processes
will halt at round 2.

Lemma 6.5. [f any process decides in round r,
then no process will ever be in a round larger than

r+ 2.

The above lemma implies that all processes will
execute round r when it is among the 2 largest
rounds. We use this fact to prove that the algo-
rithm has the consistency property.

Lemma 6.6. If some process decides in round r
then all processes will decide on the same ralue
by round r + 1.

6.3 Expected Running Time

A process Is said to have selected its preference
for round r deterministically, if it executed the




corresponding ene in hne 6. Souilarly, a proces-
sor s said to have selected its preference for round
r randomly. if it executed the corresponding inc
i line 10 The following lemma assures that all
nrocessars that select their preference determin-
istically. select the same value.

Lemma 6.7. [f processes poand ¢ determn-
wstically selected voand 1"
preferences for round roowhen rowas among the 2

respectively. as themr
largest rounds, then v =1

Hence. one may ralk about che deterministic
value preferred in a ecrtain ronnd  The next
lemma shows that the ~scheduler is foreed to de-
cide on the deterministic value of a round before
any process starts flipping a coin for that round.
Lemma 6.8,  If process p s determuustic
round r. and process q ts randviwezcd in round
r. then p urote ils preference for round r before
q started to perform flip_nert_coin.

This lemma implies that decisions in different
rounds are independent events. Thus, the prob-
ability of deciding in any round is that of a se-
quence of independent Bernoulli trials, with suc-
ress probability €. for some constant € > 0 (this
follows from Lemmas 3.1 and 3.4). Henc. the
expected number of rounds executed before the
algorithm terminates is constant. As each shared
coin is flipped in polynomial expected number of
stens (Lemma 3.2). the algorithm terminates in
a polynomial expected number of steps.
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