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Summary

s

i

In this report, two problems are stucied. The first is concerned with evaluat-
ing the performance of a class of bandwidth efficient modulation schemes in a fre-
quency reuse mobile radio channel. Thiswork is presented in chapter 1 and 2.
The second problem is concerned with formulating and evaluating the perfor-
mance of a class of known delay multipath diversity receivers for indoor wireless
communication... This work is presented in chapter 3 and 4.

In chapter -1, several partial response (PRCPM) schemes such as TFM,
GMSK and 3RC are compared with regard to their performance in the presence of
Adjacent Channel Interference (ACI) and CoChannel Interference (CCI). The per-
formance criteria chosen were average probability of bit error and mean-square
cross talk ratio. A comparison of three receiver filters with regard to their ability
to reject ACI is also provided. Results indicate that receiver filter length is very
important parameter for good performance.

In chapter 2, the performance of PRCPM schemes is analyzed by considering
the combined effects of ACI, CCI and Rayleigh fading. The analysis is extended
to the case when space diversity is employed. Results indicate that by using space
diversity and Maximal Ratio Combining significant performance gains can be
achieved. — o -7

Indoor wireless communication receivers must contend with a severe mul-
tipath problem. By using Direct Sequence Spread Spectrum (DSSS) signaling
multipath diversity receivers can be used to mitigate the effects of frequency selec-
tive fading. In chapter 3, a class of such adaptive multipath diversity receivers
are developed and their performance evaluated for uniform and non-uniform delay
power profiles. The performance evaluation considers the effects of delay power
profile shape, RMS delay spread, sigualing alphabet size, diversity order and
source modulation.

In chapter 4, the three receivers derived in chapter 3 are compared with
regard to their performance in an illustrative asynchronous CDMA system. The
intended application is for indoor wireless communication network. Theoretical
performance analysis is presented based on a set of simplifying assumptions.
These assumptions are later justified through a simulation study.
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CHAPTER 1

PERFORMANCE COMPARISON OF PRCPM SCHEMES

WITH INTERFERING SIGNALS
1.1 Introduction

Partial Response Continuous Phase Modulation (PRCPM)
schemes have recently attracted attention because of their improved
performance capabilities over traditionally used digital modulation
schemes. These capabilities occur from observing the signal over more
than one symbol interval, thereby utilizing the memory inherent in the
continuous phase transitions.

The ultimate measure in a digital communication system is the
probability of error. However, formulation in terms of the error proba-
bility is feasible only in simple cases. Often an intermediate measure is
required to be considered and the error probability has to be evaluated
under certain simplifying assumptions. In the adjacent channel
interference problem the intermediate measures usually considered are
the mean-square crosstalk and the worst-case crosstalk [1,7]. The
worst-case crosstalk and usually requires extensive simulation to com-
pute, while mean-square crosstalk is much more amenable to
mathematical formulation and also has the meaning of noise variance.

This chapter presents the signal to mean-square crosstalk as a
performance measure among a selected set of receiver filters for various
CPM schemes. Also, it simulates and compares the error performance
in the presence of ACI (with a different number of interferers) for vari-
ous CPM schemes and among the AOF receiver with observation inter-
vals of three and four bits. In the next section we will introduce the
various modulation schemes that have been used throughout our work
and emphasize an easy way to calculate the power spectra.

1.2 Modulation Schemes

The bandwidth efficiency of a modulation scheme is defined as the
ratio of the bit rate transmitted to the bandwidtl, used. This is
equivalent to the number of transmitted bits per cycle of channel
bandwidth. We have shown in Equation 1.1 and have repeated here
for convenience

logoM

Bandwidth Effici r= ,
andwi ciency BT

bits/sec/Hz (1.1)

that signals with small BT products are the most bandwidth eflicient.
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while no single universal definition is available for bandwidth.
Amoroso [15] has shown that power spectral density is a key parame-
ter in the definition of bandwidth efficiency. We will usc *his approach
to evaluate numerically the spectrum of various modulation schemes
as a measure of the bandwidth efficiency.

The modulation schemes and the corresponding pulse shapes con-
sidered in this work are Raised Cosine (RC)

—(1 —cos(==)) ; o<t<LT

o) ; otherwise

The frequency pulse g(t) is a raised cosine over L symbol intervals and
the scheme is defined as LRC.

Tamed Frequency Modulation (TFM)

8(t) = = [st=T) + 26,(0) + £.(1+T) (1.9
where
1 Sin(;lrt_) LS
Bolt) =7 (- Y
)
2sin(24) — 2('—)005(——71%—) - (%)‘-’ sin(Z%)
3 (1.4)
(=)
T

Gaussian MSK (GMSK)

T T
n?2

t —

where Q(x) is the Gaussian erroi fu~ction.
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1.3 Error Probability Measure in Interfering Environment
The desired transmitted signal is given by:

S(t, @) = \/ % cos(wnt + (t, @) (1.6)

where a =0y, " oy_|, o, *-- is an infinitely long sequence of
independent binary data symbols, taking values £ 1. E is the symbol
energy and T is the symbol time. f_ is the carrier frequency and the
information carrying phase is given by:

$(t,a) =27h 3 o qt —iT) (1.7)

l=—0C

h is the modulaticn index. The phase response q(t) is defined by:
a) = [ er)dr

where g(7) is the frequency pulse function.

The adjacent channels are distributed two on each side of the cesired
channel. Due to the symmetry between both sides, one side is intro-
duced and the other is similar.

The interfering signals on one side of the desired channel are

Zsl(t B,) for 1<k<2. 1 for 1<k<2 are the amplitude of the
k=1

interfering signals and are assumed to be unity among the k interfer-
ers. The center frequency of the first interferer w; is Aw rad/sec away
from w, and the second interferer w,=2w, is 2Aw red/sec away from
W,. There is a delay of 7 and 27 secs between the first and second
interfering signals and s(t,q) respectively. Also ¢, for 1 <k <2 are the
random phase offests. This implies that the interfering signals are
independent of one another and of the desired signal. The interfering
signals can be represented as

2 29E 2
3 s(ub) =N/ F Seos [ +venb+a | 08)

k=1

7, and ¢ are uniformly distributed in the range [0, T] and [0, 27]
respectively. The simulated probability of error for the whole model is
given by

N, 1
(P4 /s ,=\%2[ LETEP >tk |
S =1 m n
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1 T
T (+ x4+ m xz+nxpy) | W, (1.9)

where k, |, m, and n take values £ 1 with equal probability. xj for
1<k <4 are the outputs due to the interfering signals and are com-
puted numerically. W, is the weight of the pdf of the noise and is
used to reduce the computational time (Modified Monte-Carlo
method).

The error performance of various scheines has been investigated
with and without the effect of ACI over an AOF receiver with observa-
tion length of 3 bits. Figure 1.1 shows the theoretical probability of
error and it shows that the MSK scheme performs better than 3RC or
TFM5 or GMSKS5. The excellent correlation between the theoretical
results and the simulated results in the absence of ACI is shown in the
same figure. This gives us confidence about the accuracy of the esti-
mates.

The simulated error probability with the effect of ACI at different
channel spacings (Af) is illustrated in Figure 1.2 and 1.3 for Af=0.8
and 1.2 respectively. It can be seen in Figure 1.2 that MSK and
GMSK5 with ST=0.2 are severely degraded at Af=0.8 till the point
that error probability of 107> was unattainable at SNR=14 dB, while
3RC and TFM5 schemes both have a better ACI rejection at the same
channel spacing. At larger channel spacing (Af=1.2) shown in Figure
1.3, MSK has the best error performance due to less effect of ACI at
larger channel spacing, 3RC and TFM5 both have better ACI rejec-
tion, but GMSKS5 still degrades badly and error probability of 107>
was unattainable at SNR=12 dB.

In Figure 1.4, we looked at the theoretical error probability for
CPM schemes at a larger receiver observation length (four bits). Both
TFM and GMSIK schemes with (8T=0.25) were truncated over four bit
periods. It was found that for AOF(4T), GMSIK4 outperforms TFN4
while the 3RC scheme performs the best among all of them. The error
probability with two interferers (k=2) at lower carrier to interference
ratio (C/1=-10) is shown in Figure 1.5 and 1.6 for Af=0.8 and 1.2
respectively. One could note that the degradation in SNR increases at
specific error probability as the carrier to interference ratio decreases.

1.4 Signal to Mean-Square Crosstalk Measure

In this section, we will present a numerical evaluation of the sig-
nal to mean-square crosstalk as a performance measure for various
modulation schemes and among different MSIK-type receiver filters.
The derivation of the mean-square crosstalk has been based on the fol-
lowing assumptions:
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[y

. The carricr vo inverference ratio is unity.

o

No intersymbol interference other than the one caused by the
modulation scheme.

3. The interfering signal is stationary.

4. No special processing, such as filtering or data windowing, is
applied.

The mean-square crosstalk [8] is defined as
X = Er,ﬁ.f I:XQI (T, ﬁ, g)] (1.10)

Where E is the expected value. The signal to incan-square crosstalk
can be evaluated numerically by

x%,/(d,2/2 ;
SCTR=—/(\~Q=—I§: (1.11)
where
Uf_,E T kT [ ] !
o= E cos |B a(t+7)d
X= 0 ﬁ{ _{T (t) Ja(t+7)du
kT :
+ | [ sin [B(t,)]a(t+r)dt dr (1.12)
—kT
and
B(t) = [Am,+z/)(t,ﬁ)] (1.13)

By using (1.11), we were able to compute the signal to mean-square
crosstalk ratio numerically as a function of channel spacing. The
numerical results among a selected set of receiver filters for 3RC,
TFM(5T), and GMSK(5T) schemes [11] are illustrated in tables 1.1
through 1.3 respectively.
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Table 1.1. Signal to mean-square crosstalk ratio in a
CPM system employing a 3RC scheme.

Filter Filter Channel Spacing
Kind Length
0.4 0.8 1.2 1.6 2.0
MSK 4.76 | 18.10 | 28.90 | 35.72 | 39.27
AQOF 5T 5.21 21.81 | 35.81 43.10 | 46.50
MSEOF 5T 5.24 | 22.90 | 4045 | 55.45 [ 62.91
AMF 4T 5.31 | 24.09 | 45.82 | 66.91 | 76.27
Table 1.2. Signal to mean-square crosstalk ratio in a
CPM system employing a TFMS5 scheme.
Filter Filter Channel Spacing
Kind Length 7
0.4 0.8 1.2 1.6 2.0
AOF 4T 5.26 | 22.37 | 29.95 | 32.56 | 34.55
MSEOF 4T 5.34 | 24.63 | 35.49 | 47.21 53.86
AMF 4T 5.43 | 25.92 | 41.08 | 58.37 | 67.13
Table 1.3. Signal to mean-square crosstalk ratio in a
CPM system employing a GMSIK4 scheme.
Filter Filter Channel Spacing
Kind Length
0.4 0.8 1.2 1.6 2.0
AOF 5T 5.30 | 24.52 | 39.02 | 44.23 | 47.46
MSEOF 5T 542 | 25.62 | 42.08 | 57.67 | 65.24
AMF 4T 5.76 | 26.41 47.62 | 68.27 | 78.13

The signal to mean-square crosstalk has also been evaluated by com-
puter simulation of Equation 1.10. Both the numerical and the simu-

lated results are well correlated and are shown in Figures 1.7 to 1.9 for
3RC, TFM(5T), and GMSK(4T) schemes respectively.

The three figures show the signal to mean-square crosstalk ratio
(SCTR) against channel spacing among a selected set of MSK-type
receiver filters for three partial response CPM schemes. It was found
that AMF(4T) and MSEOF(5T) receivers have a substantial improve-
ment in SCrR with respect to AOF(4T) and MSK receivers at all
channel spacings. Figure 1.7 shows that the MSK receiver performs
the worst in the SCTR measure and it was shown in the previous sec-
tion that the same receiver filter degrades the most in the error
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probability measure with interfering signals. While the AOF receiver
does not have as good signal to crosstalk performance as the AMF
receiver, it has the best error performance among all other receiver
filters in the interfering environment. One last observation is that
although the MSEOF receiver is inferior in error performance with
interfering signals to the AOF receiver, it has a much better rejection
of crosstalk than the AOF receiver at all channel spacings. This has
been analyzed for three modulation schemes as seen in the last three
figures.

1.5 Discussion and Conclusions

In this chapter, the interferences have been modeled as adjacent
channel interference and co-channel interference. The first model was
considered with the effect of two and four interferers (k=2,4) on the
probability of error. It was found that the MSK scheme nas optimum
performance in the absence of ACI and degrades the most in the pres-
ence of ACI. It was also observed that some PRCPM schemes like
GMSKS5 degrade as badly as MSK at closer channel spacing (Af=0.8),
while 3BRC and TFM5 both have a very good rejection of ACI at all
channel spacings for AOF(3T). One more important observation; it is
not always true that the error performance improves at a larger
receiver observation length. This result can be seen in Figures 1.1 and
1.4. So, one may conclude that large improvements can be obtained if
the detector filter length is selected appropriately. It was also shown
that PRCPM schemes have much lower sidelobes in relation to full
response scheme (MSK). These results have made PRCPM schemes
popular in bandlimited frequency reuse mobile radio systems, espe-
cially when large system capacity is desired.

It was found that the AMF and MSEOF receivers perform sub-
stantially better than the AOF and MSK receivers for 3RC and per-
form better than AOF for TFM5 and GMSK4 schemes. This means
that the AMF and MSEOF receivers have a better rejection of ACI at
all channel spacings in comparison to the AOF receiver emp vying
PRCPM schemes. One concludes that in order to choose the suitable
receiver filter for a specific application, one must compromise between
the error performance and the crosstalk performance.
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CHAPTER 2
SPACE DIVERSITY OF CPM OVER RAYLEIGH

FADING CHANNELS WITH INTERFERING SIGNALS
2.1 Introduction

In a mobile radio environment, the signal transmitted between a
fixed base station and a moving radio unit signal suffers from fading
and interference. Fading is caused due to multipath transmission.
There are also two sources of interferences in this environment. The
first source of interference is the ACI and the second source of interfer-
ence is the CCL These interferences and fading represent a major
source of degradation. Diversity combining is one of the techniques
that can be applied successfully to combat fading and reduce interfer-
ence.

In the next section, we will consider how different envelopes of
fading signals can describe the transmitted channel.

2.2 CPM over Rayleigh Fading Channel

In this section an independent slow Rayleigh fading channel is
assumed. The error probability for large signal-to-noise ratios is
derived for CPM over Gaussian and Rayleigh fading channels. Also,
the error probability is shown for Rayleigh fading channels with
interfering signals.

2.2.1 Error Probability on Rayleigh Fading Channels

The fading signal s(t) is assumed to follow the Rayleigh density
function [2] given by

f(s) = (—2]- se=s/0 (2.1)

where {1 is the instantaneous signal and is given by

1= <52> . (2.2)
The instantaneous SNR can be written as
V= S (2'3)
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where N is the spectral height of the one-sided Gaussian noise. By
substltutmg (2.3) and (2.2) into (2.1), one can get the pdf of v as

f(u)=—11-,—e“”/r . 120 (2.4)

where I' is the average SNR and is defined by

F=_—=(). (2.5)

The average error probability of the modulation scheme with
coherent detection can be written as:

PW) = 5@ (VaTT) 2

=1

where Q(-) is the error function associated with the normal distribu-
tion d;2 is the squared Euclidean distance associated with a signal
corresponding to data sequence number i received in the fixed filter,
and c; is the probability of that specific signal. m is the total number
of sequences. Assuming independent data symbols with equal probabil-
ity, then

1

¢ = m . (27)
The average bit-error probability in the fading case is
P = [ Pv)f(v)dv (2.8)
0

where P(v) and f(v) are given by (2.6) and (2.4) respectively. Using
(2.6) and (2.4) in (2.7) one can obtain

1
P=—— . 2.9
2m j-l v l+d2F/2 (29)

From (2.9) one can evaluate the bit-error probability over a Rayleigh
fading channel for CPM schemes. Figure 2.1 shows the error probabil-
ity for 3RC, TFM4, and GMSK4 schemes employing an AOF(4T)




Prob. of Error

10° .
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- Without Diversity
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1 ™
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]
4
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10°2-
) GMSK4 on Fad.
) 3RC on Fad. _
10? T T T T T |
-10 -6 0 6 10 16 20
Average SNR in dB
Figure 2.1 Error probability P vs. average SNR T for various selected binary

CPM schemes, h=1/2, employing an AOF(4T) receiver.
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receiver on Gaussian and Rayleigh fading channels.

2.2.2 An Easy Way to Evaluate the Error Performance With
Interfering Signals

In this section, we develop an easy method to evaluate the error
probability in the interfering environment. This method might not be
as accurate as the simulation technique used previously but it is much
faster from the computational point of view. The analysis here is

based on stationary white Gaussian noise with power spectral density
N

o

The algorithm is mainly an evaluation of the normalized squared
Euclidean distance of the desired and interfering signals. For the
desired signal, the normalized squared Euclidean distance is calculated
from:

For the interfering case, the normalized squared Euclidean distance is
computed numerically. It is also computed by computer simulation of
the filter output due to each interfering channel. The filter output due
to the jth interfering channel is

xl,(Tj 8:6;) =V§Uj [a(t) * cos (w)(t—7;) + YUt—7;,3,) + gj)] (2.11)

The normalized squared Euclidean distance of the jth interferer is
defined as (d;°) and is given by

d° = % [XIj(Tj’ﬁj’gj)]: : (2.12)

The overall normalized squared Euclidean distance for the jth sequence

is (djov2) and is given by

k
d ?=d?-3 4d° (2.13)
i=1

J ov
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k

where Y7 d;? represents the normalized squared Euclidean distance due
=1

to k interferers. The error probability for the interfering case is

P =+ 3 o[V ] (2.14)

=1

where Q is the Gaussian error function and m is the total number of
sequences.

It was found that the resulting error probability using this algo-
rithm is the same as the one obtained by the simulation technique
used previously with an error rate of less than 5%. This is seen in Fig-
ure 2.2 and 2.3 respectively. One could notice in both figures that at
lower C/I, i.e., when the desired signal power is weak compared to the
interfering signal power, the performance degradation is the highest.
Figure 2.4 shows the error performance of a 3RC scheme employing an
AOF(4T) receiver with one and multiple CCI at various C/I. It is
recognized that the difference in performance degradation due to the
interferers is the most at low C/I and it reduces at higher values of
C/I. One last observation is that the effect of one CCI and two CCI is
almost the same at higher values of C/I, i.e., when the signal power is
strong enough the number of co-channel interfering signals will not
have much effect on the system performance.

2.2.3 Error Performance over Fading Channels with Interfer-
ing Signals

In this section, we will evaluate the error probability when the

signal is combined with fading and interference. It is assumed that

fading due to the interfering channels is negligible compared to fading

due only to the desired channel. The average bit error probability in

this case is obtained by substituting (2.4) and (2.12) in (2.8). The

result is
m d. .“1/2
P=;1——2 1—'\/—&~2/— . (2.15)

Figure 2.5 shows the error probability for the 3RC scheme on fading
and both ACI and CCI with various C/I. One may notice, that the
signal affected by CCI and fading has larger C/I than that affected by
ACI and fading even at closer channel spacings. This is predictable
because CCI has more influence on performance degradation than ACI
due to it is existence within the same signal bandwidth. Figure 2.6
illustrates the same result for various CPM schemes under the
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influence of ACI and channel spacing of 0.8 the bit rate.
2.3 Diversity Approach for CPM with Interfering Signals

Space diversity is an effective weapon against the cochannel
interference encountered in cellular mobile radio systems. High order
diversity and strong interference suppression can be uchieved with
modest hardware complexity by using diversity combining techniques.

In the next section, we will consider ideal maximal ratio coinbin-
ing as an alternative technique to combat fading and reduce interfer-
ence.

2.3.1 Error Performance of CPM for Ideal MRC With
Independent Diversity Branches
For independent diversity branches, there is an independent Ray-
leigh fading in each branch, while for ideal maximal ratio combining
the receiver must know each path magnitude and phase to perform
perfect combining. It must also have the property that the output
SNR is the sum of the instantaneous branch SNRs, i.e.,

MM

V= E vy (216)
k=1

where M is the number of diversity branches, vy is the instantaneous
SNR at the kth branch. The fading signal s(t) at the kth branch is
assumed to follow the Rayleigh density function, i.e.,

f(s) = 2 e/ (2.17)

where
0 = {52 . (2.18)

The instantaneous SNR at the kth branch is given by

2

Si”
N,

o)

Hence, the p.d.f. of 1y is
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f(u) = _FL /T (2.20)

where I', is the average SNR per the kth branch and is considered
equally among all branches. i.e.,

=T (2.21)

In this case, the p.d.f. of v is obtained by substituting (2.21) and
(2.16) into 5.16, hence

M |v M- 1
= -v/T 92.99
) =7 [T] = (2:22)

for M-branch MRC. assuming indepcndent Rayleigh fading in each
branch. The average receiver output SNR is

E(v) = MT. (2.23)

The bit error probability for the MRC diversity case, for PRCPM
with coherent MSK-t}pe reception [3], is obtained by substituting
(2.22) and (2.7) in (2.8) and is given by

L I+ (1+ d'gr)"1
2m 1 +d ~]‘/‘) 12 2

p=-L% [
2!22 (1+ 5 ) . +
0 o
1.3.5.....(2M—=3) dl.'F —(M-1)
{{ (Mo1): 28T (14 5 ) : (2.24)

Numerical calculations of (2.24) for various modulation schemes over
an AOF(4T) receiver are shown for 2 and 4 branches in Figure 2.7.
One may notice the improvement in error probability versus the aver-
age per branch signal-to-noise ratio (I') for various modulation schemes
by using more diversitv branches.

The case of diversity against both fading and interference can be
evaluated numerically by replacing the normalized squared Euclidean
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distance (d,*) in (2.24) by the overall normalized squared Euclidean
distance (d; ?) in (2.13). Figure 2.8 shows the numerical evaluation of
space diversity with maximal ratio combining (MRC) technique for the
same class of modulation schemes under both fading and interference
for 2 and 4 diversity branches. A little performance degradation can be
seen compared to Figure 2.7 due to the consideration of the interfer-
ence. Figure 2.9 illustrates the performance improvement by using the
MRC technique with 2 and 4 diversity branches, over that of Figure
2.5.

2.3.2 Error Performance of CPM for Ideal SRC with
Independent Diversity Branches

For the ideal selection ratio combining technique the combiner
selects the diversity branch which has the largest SNR for bit deci-
sions. The same branch is used for all symbols over one time interval
for the receiver filter under the assumption of slow fading. For Ray-
leigh fading, the instantaneous SNR in the kth branch () has the
p. d.f. shown in (2.20). The output SNR (v) is equal to

= maxX. (U], Vay « vy Yy v+ y Upq) (2.25)

where M is the total number of branches. The probability density
funetion for v (2] is

(V) = “—F{ ev/T (1 —emv/T -1 (2.26)

where I is the average SNR per branch. The average receiver output
SNR in this case is

1

E(v)=T%] T

k=1

(2.27)

which of course increases more slowly with increasing M than the
corresponding average for MRC (2.23). Sundberg [2] derived the aver-
age bit error probability for BPSIK, M branch diversity with selection
combining. For CPM the derivation is similar. The derivation is con-
sidered under the assumption of coherent detection of MSIK-type
receivers. The average bit error probability in this case is given by

[
J

M

> .

1=0 142-0T
d?

=]

1

p = _1 (2.28)
2m 1

I
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where d;2, i=1, ....., m is defined by the modulation scheme and by the
receiver filter. Numerical evaluation of (2.28) for the same set of
modulation schemes over an AOF(4T) receiver is illustrated for 2 and
4 diversity branches in Figure 2.10. The case of the SRC diversity
technique against both fading and interference is evaluated numerically
by replacing the normalized squared Euclidean distance (de) in (2.28)
by (djWQ) in Equation 2.13. Figure 2.11 shows the error probability in
the interfering environment using different diversity branches with the
selection ratio combining technique.

In the preceding section the analysis has been based on the
assumption that the fading signals in the various branches are
uncorrelated. It is important to examine the possible deterioration of

performance of a diversity system when the branch signals are corre-
lated.

2.3.3 Error Performance of CPM Using MRC with Corre-
lated Branches (M=2)

In the derivation of this part, the average SNR’s are assumed the
same in both branches. Accordingly, the fading envelope will take the
form {52];

—~
2]
N’
il
—_
e
|
©
N’
—_
=
N’
&)
wn
[¢’]
t]
=’
I
e
=
—_
ol K7/}
I
o
N
e’

(2.29)

Nfoo=pe 17 (Ve
2Vp V2 001-p)

where p is the power correlation coefficient between branches such that
0<p<l. Ij(.) is the 1/2 order modified Bessel function of the first
kind.

By making the substitution of v=s/N, in (2.29), one gets

VT T T v 2 Ve
f(l/) = _T_ e I(1-p) [W]‘ Il/’..’ [F(—l_—p—)- I/] . (230)

The bit error probability is given by;

1

1 a1 (1+Vp)
2m 1§1 T 2
4,2 T(1+V)p)

P =
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(1—-Vo) . (2.31)
\/ MFE —\/‘ %)

It is obvious that the last expression is valid for all permissible values
of p except at p=0.

Limiting Case (p=0)

By using the ascending series of the modified spherical Bessel
function [14] for small argument in the form

1 I = z
EW/Z n+1/2(2) = 1.3.5....(2n+1)

: 2°/2 (z%/2)°
{1 + 1!(2n+3) + 2!(2n+3)(2n+5) Ho } (2.32)

the bit error probability can be developed. One may notice that the
argument of I(.) is zero in our case, so the above expression suits our
situation perfectly. The average bit error probability in this case is
given by

_a=p | 23/ |
P lg [1 2(1+1/'7i)3/2 ] (2.33)

where
d?I(1—p)

h)
5 (2.34)

b=

Figure 2.12 shows the effect of correlation, among diversity
branches with maximal ratio combining technique, on the error proba-
bility for the 3RC scheme. Figures 2.13 and 2.14 illustrate the same
effect of the correlation while taking into consideration the influence of
the adjacent channel intcrference and co-channel interference on the
error performance respectively.

2.4 Conclusions

In this chapter, the problem of the interfering channels in Ray-
leigh fading environment with diversity reception for partial response
continuous phase modulation (PRCPM) schemes was addressed.
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PRCPM schemes with various kinds of interfering signals on
Rayleigh fading channels perform very poorly and a bit error probabil-
ity of 1073 was unattainable at SNR of 20 dB. By introducing the
diversity combining approach with the maximal ratio combining tech-
nique, even with only two diversity branches, the error performance
tremendously improved. By using diversity with the selection com-
bining technique the error probability could be improved in the same
manner but with less improvement than the one accomplished by
using the maximal ratio combining technique. This means that the
results obtained from this chapter reduce to the classical results for the
case of no interference.
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CHAPTER 3

ADAPTIVE MULTIPATH DIVERSITY RECEIVERS

3.1 Introduction

The number of terminals for indoor use has grown considerably
over the years. An emerging concept is to provide wireless communi-
cation between these terminals. Indoor wireless communication is
hampered by a severe multipath problem. This multipath propagation
manifests as Intersymbol Interference (ISI) and frequency selective fad-
ing. For indoor channel applications where the symbol duration is
much larger than the multipath spread, frequency selective fading is
the major error causing mechanism. Since the errors in symbol detec-
tion occurs due to envelope fading diversity can be used to mitigate
the effect. By using Direct Sequence Spread Spectrum (DSSS) signal-
ing multipath diversity can be used to combat fading. The DSSS sig-
nal resolves the multipath to provide uncorrelated replicas of the
transmitted signal at the receiver. The receiver is designed to demodu-
late each replica independently to attain diversity gain. This chapter
is concerned with the formal development of a class of known delay
adaptive multipath diversity receivers and the evaluation of their
p;erformance. The receiver is adaptive in the sense that it periodically
measures channel characterizing parameters (path gains and phase
shifts) and uses these estimates for signal detection.

The receiver structure is derived as a generalization of [4] and [5]
for a frequency selective fading quasi-static channel. This formulation
is appropriate only for channels with multipath spread less than the
signaling symbol duration, such as an indoor wireless communication
link. No restriction is placed on the shape of the multipath delay
power profile of the channel. Orthogonal and phase coded signaling
are considered. Finally, an attempt is made to obtain closed form
expressions for bit error probability.

3.2 Receiver Structure for Binary Orthogonal Signaling

The received signal, in the symbol interval (L—1)T <t < LT,

under the two hypotheses (H;, i = 0, 1) can be expressed as in [13]:
N,
H(L) =H, : r(t) = Y5 Cy(L) A pt; —kT,) + z(t) (3.1)
k=1

where t, =t — (L—1)T. p,(t) is the DSSS code. A is the signal
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amplitude. z(t) is an additive zero mean complex Gaussian noise pro-
cess with autocorrelation function @,(t, 7) = N, §(t — 7). The noise is
assumed uncorrelated with the message sequence and the C's.

(i)  Vector Characterization of Received Signal

The first step in the receiver formulation is to obtain a vector
characterization of the received signal over each signaling interval.
This is done by defining the following set of orthonormal basis func-
tions:

1
e py(t — KT,) k=1,2 .., N,
P
1 1 — . .
by(t) = po(t — k—N, T}) k = N+1, ..., 2N, (3.2)
VE,
bl(t) k > 2N,

where {bi(t), k > 2N} is an arbitrary orthonormal set of basis func-
tions that are chosen to make the orthonormal set
{be(t), k =1,2, -- -} complete. The notation k—N, implies (k—N,).

The definition of the basis function is based on the ideal assump-
tion that:

T Ep 5(k—m) i=j
{ pi(t — kTp) p](t‘ - mTp) dt = 0 1] (3.3)
Define
LT
R = [ r(t) bty a (3.4
(L—1)T

where r (L) is a projection of r(t) along by(t) in the time interval
(L—1)T <t <LT. r (L) is a linear functional of the received signal
r(t).

Assuming T,, < T, ISI can be neglected. Substituting (3.1) and
(3.2) in (3.4) and using (3.3), it can be readily shown that under each
hypothesis, (H,, i = 0,1), r (L) is given by:
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H(L) = H,
i AVE, Ci(L) + za, k=1,2 .., N,
n(l) = {(i-1) AVE, Cem(L) + 2. k=Ne+1, ---, 2N, (3.5)
Zf‘L k > QNC
where
LT .
= [ 2t = py(ty —kTp) dt
(L-1)T P
LT
! k—~. T.) d
KL = f 2(t) E Po(ts — K=\ p) t
(L-1)T p
LT
2= [ 2t)bl(t) dt
(L-1)T

Now, {z).k=1,2,..NJ}, {z&L.k=N,+1,..,2N} and
{zl1, k > 2N_} are noise terms, which are uncorrelated for all k, L and
are identically distributed zero mean complex Gaussian random vari-
ables with variance N,.

Due to the independence of noise terms, z}, z3 and zi;. and
since the noise terms are uncorrelated with the C, it is seen from (3.5)
that {r (L), k=1,2, .. 2N} form a set of sufficient statistics. This
set ~ of  sufficient  statistics is  defined  vectorially as
R(L) = [ry(L) ra(L) - - - ron (L))"

(ii) Definition of Memory Information

It is proposed to use a memory to store the received signal over
M, past symbol durations. This means that at time t = LT all the
information available to the receiver, on the complex path gains Cy, is
contained in r(t) received over (L — My)T <t < (L—1)T. As an alter-
native, it is possible to store a linear functional of r(t) such as r(L).
ry(L) preserves the Gaussian nature of the memory information and all
the information on Cy. From (3.5) it is clear that one needs to store
only the set of suflicient statisties {r.(j). k =1.2,... 2N} over
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(L —M,) <j <(L-1). It is further observed that each ry(j) contains
an unknown modulation component, viz., which hypothesis H, or H, is
true. This unknown component is removed from the memory informa-
tion, by redefining the basic memory variable as:

rk(§) + rigw ()

5 (3.6)

G Vi) &

(i) V() 2d, () + (1 — d)) rg () (3.7)

where d; =1 when hypothesis H; i=0,1, is true in the j* signaling
interval. This is a decision feedback scheme, where d; corresponds to
past bit decisions. In (4.5) the division by 2 is done so that the V(j)
under both schemes has the same noise variance of N_.

Now, the set of variables {Vi(j), k =1, 2, ..., N.} collected over
the interval (L — M,) < j < (L—1) constitutes the memory information
that will be stored. V\(j) are complex Gaussian random variables.

Since the ri(j) are uncorrelated, the corresponding V(j) are also

uncorrelated. Hence, the memory information can be partitioned into
N, independent blocks, each of length My. The k* block of memory

C
information is designated vectorially as:

myy, = [Vi(L =M, +1) -+ Vi(L=1)]" (3.8)

The total memory information is designated as I where
I[P = (my, my, -0 myy)-

Now all the information on the complex channel coeflicients,
represented vectorially as C(L) = [Cy(L) Cy(L) - - - Cn (L)), is con-
tained in I/". Thus, the information C(L) given I{" can be expressed
by the conditional density:

N,
P(C(L) 1) = I AC(L) lm,,;) (3.9)

This expression follows from the uncorrelated scattering assumption
for the C, and the independence of memory blocks. Since, myy, is a
complex Gaussian random vector and it can be shown, [1], [24], that:
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1 |CiL) = CUL) |
P(Cy(L) |my,) = — exp(— — ) (3.10)
270 207,
where,
Cy(L) = E[Cy(L) [myy] (3.11)

C,p, is the MMSE estimate of Cy(L) given the information vector my;
and

20fy = E[|C(L) = C(L) I* | my) (2.12)

is the mean squared error in estimation, conditioned upon my;. Ci(L)
is a zero mean complex Gaussian random variable with variance
207 =T, $(kT,LT); where ®(r;t) is the delay power profile of the
channel. The estimate C, (L) is also a zero mean complex Gaussian
random variable with variance denoted by 2X\?.. The error in estima-
tion is given by:

ex(L) = Cy(L) — C(L) (3.13)

ex(L) can be easily shown to be a zero mean complex Gaussian random
variable with variance given by:
o o 9
207 = 2ar — 2N} (3.14)
(i) Likelihood Ratio Test (LRT)

In formulating the LRT a Bayes strategy is considered and the
performance criterion used is minimum probability of error. That is,
if €, denotes the event of a decision error in the L' symbol interval, it
is required to minimize:

P(er) = EqpPleg [117)] (3.15)

Minimizing (3.14) is equivalent to minimizing P(e [1™).  The
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corresponding LRT is obtained as a simple extension from (23], [4] and
can be written as:

A (L [I{™) HL)=H,
(L L) =0 (3.16)

ALy = 222
(L 1) Ao(L |I) HL)= Ho

- P(C(L) |[H(L) = H, I™) dC(L), i =0,1 (3.17)

1. C(L) is independent of the hypothesis. Further, from (3.6)-(3.9),
it is clear that, P(C(L) [H(L) = H; I®) = P(C(L) |I/™).

The hypotheses are independent of the memory information.
This follows from (3.6) and (3.9).

3.  R(L) is independent of If". This is easily seen from (3.5). For
R(L) given C(L) and the hypothesis H(L), the only uncertainty
in R(L) corresponds to the noise terms of each ry(L). These noise
terms are zklj and zlf.)], which are uncorrelated for all k and j.
Hence, R(L) is independent of I™.

o

Using these observations (3.16) can be expressed as:

AL 1Y) = | P(R(L) |H(L) = H; , C(L))

-P(C(L) | I®)dC(L), i=0,1 (3.18)

Now from (3.4) and the definition of R(L) it is easily seen that:

P(R(L) | H(L) =H, C(L)) =

( 1 )QNC II\I]C ex [__ Irk(L) — i AV Ep Ck(L) IQ] .
TN, k=l *P N,
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2N l7(L) — (1=0) A VE, Cex(L) |
IT  exp|— ]
k=Net1 N,

(3.19)

where i = 0, 1. By using a binary symmetric hypothesis formulation
for the problem it was not necessary to divide numerator and depnmi-
nator of the LRT by the hypothesis under which only noise is received,
as in [4].

Substituting (3.18) and (3.19) in (3.16) the LRT can be simplified
to yield the following receiver structure:

—

Z

[2)

o

—

A’E. 203 N .
Pk L)) 2 oRe{rl(L) Cx*(L)}
NO + A'Ep 20[:1\' No + A'Ep QGLR
H(L)>== H,
H(L> H,
A%E 202 N .
P Kl |? 2 9Re{ro(L) C,*(L)}

N, + A’E, 207y

where (L) = ri(L) and ro(L) = rm(L)

Each side of the LRT, described by (3.20), is illustrated in Figure
3.1. On each diversity branch there is a dual combination of coherent
and non-coherent processing, the choice of one or the other is deter-
mined by the factor AQEPNO’1 2073, which is determined by the aver-
age SNR on each branch. This receiver is considered to be partially
coherent.

Case 2 Coherent Multipath Diversity Receiver

If the estimation process yields perfect estimates then 207 =0 and
Cy(L) = Cy(L). The corresponding receiver structure can be deduced
from (3.19) to be:




I 12 An

o
o)
Z

Re{-}

T 17 B,
1 S: — J
0
X F—Re{-}r*
T, él.
r(t) Pit)
Figure 3.1 Adaptive estimator-correlator structure for orthogonal signaling.
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N, H(L)=H, N,
> Re{rg(L) C*(L } z Re{rg(L) Cy*(L)} (3.21)
k=1 H(L)=H,

This is similar to the ideal coherent RAKE correlator [16], [18].
Case 3 Non-Coherent Multipath Diversity Receiver

Consider the case when the estimation process yields very poox esti-
mates. Since 207 = 20f — 2\, the maximum value of 20 occurs
when 2\% = 0. This implies no estimation or Cy(L) = 0. Substituting
Cy(L) = 0 in (3.20) yields:

N R H(L)=H, N )
3 By |1'13(L)|' z By IrgL) |2 (3.22)
k=1 H(L)=Ho x4
where
5, = A’Ep Ty @(kTHLT)  N(LT)

AE, T, - &(kT,LT) +N, MLT)+N,

and from (3.3),

M\ (LT) is simply the eigenvalue of the k' path in the L' signaling
interval.

Since DSSS codes are used, the receiver structure of (3.20), (3.21)
and (3.22) can be modified for easier implementation. That is, in Fig-
ure 3.1 the branch multipliers can be replaced by switches and the
integrators replaced by summers. The summer-square combination
may also be realized using an envelope detector, [12].

3.3 Estimation Schemes

From the receiver structure of (3.20) it is clear that for coherent
processing on each branch it is necessary to estimate Cy. In this sec-
tion decision directed estimation (DDE) and non-decision directed esti-
mation (NDDE) are considered. The estimator is formulated based on
the discrete Wiener-Hopf filter. Since the memory information, used
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to estimate the channel coefficients C,, can be partitioned into
independent blocks, one for each channel coefficient, the estimator need
be formulated only for a single path. All other branches of the
receiver will employ identical estimators.

From (3.5)-(3.7) it is clear that the estimation problem comprises
estimating a Gaussian parameter in AWGN. The memory information
from which the estimate is derived is also Gaussian. For this Gaussian
estimation problem the optimal MMSE estimator is linear and of the
form, [1]:

Cy(L) = ‘ Lil Wy V(i) (3.23)
j=L—-M,

where Vy(j) is determined from (3.6) and (3.7).
The weights {Wy; , j = (L —My), ---,(L—1)} are chosen to make
Cy(L) 2a MMSE estimate. The optimal weights can be shown, from the

orthogonality principle, to be a solution of My discrete Wiener-Hopf
equations, [1], given by:

boll~i)= S W AVE, do(i—i) + hN, &i=i)]

y=L—My
i=(L-M), -, (L~-2),([L-1) (3.24a)
where,
$6, (i) 2 E[C() C*(1)] = Tp ®(kTpii~iT) (3.24D)

and h=1 for DDE and h=2 for NDDE.

The mean square error in estimation can be determined, as in [14], to
be:

L-1
20f = é¢,(0) — AVE, | LEM Wy ¢ (L—i) (3.25)
J=L—Mp

For a quasi-static channel the solution to (3.24a) can be obtained, for
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any My, using the Sherman Morrison Inverse matrix identity, [11].
The solution for the optimal weights can be shown to be:

A\/E—p éc,(0)

Wkl = Wk2 = **~*** = WkM = \Vk == (3.26)
’ A’E 6c,(0) My, + hN,
From (3.25) and (3.26) the mean square error is:
¢c,(0) hN
208, : ° (3.27)

 A%E, ¢ (0) M + hN,

When AQEp ¢ (0) My > hN,, which occurs when M, is large and the
average SNR per path is high, then (3.26) and (3.27) reduce to:

1
W, = — e 3.28
= ANVE M (3.28)
and
9 1 hN,
200, = . 3.29
Lk AT, M (3.29)

Hence, when the average SNR per path is high (weak fade or large M)
(3.28) can be used in (3.23) to give:

-

1 L-1
Cl) = —7=—— 3. Vi) (3.30)
AVE, My oM,

Thus, from (3.30) it is seen that the estimate is derived by averaging
the memory information over M, symbol intervals. This process is
equivalent to filtering the memory information using a band-pass filter
with bandwidth greater than the fade rate.

With DDE if a bit decision is incorrect it will propagate
throughout the memory length causing a string of estimation errors
and hence further bit decision errors. The eflect may lead to a run-
away condition, [17], and can be ameliorated by using a short memory
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or exponential weights.

The function of exponential weights, in the sample mean estima-
tor, is to emphasize the recent bit decisions with respect to the past bit
decisions. One form of these weights is:

Mp—1 [
_"-—_T Wy (3.31)

The use of exponential weights given by (3.31) is suggested for a prac-
tical sample mean estimator using DDE. It can be shown that by
using these exponential weights, there will be a small reduction in the
amplitude of the estimated path coefficient C; and hence a small
reduction in the estimated SNR per path.

3.4 Performance of Partially Coherent Receiver
3.4.1 Uniform Delay Power Profile
The receiver structure of (3.20) can be modified by adding

NZ(AZE, (20(4)% + No2of)™! |G (L) |5, k=1, 2, ..., N to both sides
of the LRT. The resulting structure can be rewritten as:

N, | - | H(L);H1
X (L) 12— [y (L) P 0 3.32
1§1 B [1Xi(L) | k(L) ]H(L§_Ho (3.32a)
where
N N
By = — ° = 2] (3.32b)
A’E, 201 + N, A’E, 207}
A%E_ 207 .
X (L) = — 21K LUy 4+ 6 (L) (3.32c)
(o)
A%E_ 20 .
Y, (L) = —%—ﬂ ro(L) + Gy (L) (3.32d)

(o)
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For a uniform delay power profile all channels are identical and
2044 =N-}, k=1,2,..,N. Further, from (3.27) or (3.29),
20 = 207. Recalling that the order of diversity Ny is usually less
than equal to N, (3.32a) can be rewritten as:

DA S XML = [ViL PH(L;:HI 0 3.33
O RO - Mok 2 (339

The probability of error is given by:

P(e) = P(D(L) < 0 | H(L) = H,) P(H(L) = H,)

+ P(D(L) > 0 | H(L) = Hy) P(H(L) = Hy) (3.34)

For a binary symmetric hypothesis problem with equally likely
hypothesis, (3.34) reduces to:

P(e) =P(D(L) < 0 | H(L) =H,) (3.35)

To determine P(e), first the conditional error probability P(e [I[®) is
determined. This is of the form:

P(e [I*) =P(D(L) < 0 | H(L) = H,, I®) (3.36)

To evaluate (3.37) one needs to know the statistics of
X (L) | HL) = H;, I} and {Y,(L) | H(L) =H;, I}. From (3.5),
(3.32¢) and (3.32d) it can be shown that {Xy(L) | H(L) =H,, I"},
k=1,2,.. N, are i.i.d. complex Gaussian random variables with
mean py, and variance ox, where:

px, = (1 + AVE ) C(L) (3.37a)
of = 1AE, 207 + N,) (3.37b)

where
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2 2

= N

Similarly, {Y,(L) | HL) =H,, I*}, k =1, 2, ..., Ny, are i.i.d. complex
Gaussian random variables with mean Ky, and variance U\%, given by:

ty, = C(L) (3.37¢)
og = N, (3.37d)

Also, the covariance, between the two conditional variables, can Le
shown to be:

,kayk =0, k = 1, 2, eeny Nd (3376)

The general quadratic form of a decision variable is given by:

N
D=3 [AIX P +B|Y|* + C XY * + C*X,*¥Y,] (3.38)
k=1

where A, B, C are constants, {Xy, Y} are a pair of correlated complex
Gaussian random variables and the N pairs {Xj, Y} are mutually sta-
tistically independent and identically distributed.

For the general quadratic form of (3.38) a probability of error
expression has been derived in Appendix 4B of [18]. From (3.33) and
(3.38) it is clear that {D(L)|H(L) =H,, I} is a quadratic form in
complex Gaussian random variables with A =1,B =—1 and C =0.
Applying the results of Appendix 4B of [17], the conditional probabil-
ity of error for (3.36) can be expressed as:

P(eg, [1*) = Q[Vkaxp, Vk,x(]

[y}

+ [A(Ng) — 1] I(B x1) exp [— Kotk XL]




Ng—-1
ANY = 3 (
k=0

BaN)= > ( )

Ny o
+ > B(n, Ng) In(3 x1) exp [— Baths XL] (3.39)

2Nd_1 (1 +,7L)k
(247,

)QNd ~1

Nazn=1 ZNg=1 (1 4 4 JF (14+AVE, 1)
2Na—1

k=0 (2 + ’7L)

(1 + ) +AVE )
(2 + )N

Further, I () is the n'® order modified Bessel function of the first kind
and Q(a,b) is the Q-function as defined in [22].

The probability of error can be determined by averaging (3.39)
with respect to the p.d.f of x;. Given the memory information I®, x;.
is known. Hence, the probability of error is given by:

P(e) = { P(e |I™) P(xy) dxp, (3.40)

For a uniform delay power profile Cy(L) are a set of i.i.d. zero mean
complex Gaussian random variables with variance




0 T
A5 =22 k=12, ..., N.

Therefore, x;, has a gamma p.d.f. given by:

N,-1
1 XL XL

Using (3.39) and (3.41) in (3.40) and performing the integration yields:

P(e) =

1 d
Noo1)l (2 I(Ng) + [A(Ng) — 1] [X TN ]\

Ng—1 Nd+n—1 ,B
+ 3 BN (| )[*—I

n=1 2X

ol 5 1+ 5 ; n+1;

r =4

n-+l1 _Nd H—Nd Hl
z

where oF(a; b; ¢; z) is the Gauss Hypergeometric function and

I(Ng) = f Q(Vkaxp, Vkgxy) Xri\ld—l exp [— %”2—] dxy, (3.43)
0

L

It is difficult to obtain a closed form expression for (3.43) except in the
form of an infinite series. The infinite series form is given by

o ks ) g](Nd+j—1)![_ﬁ]?"N"
() =2 [L’] [‘07 7 T




(3.44)

Using Parl’s algorithm, [15], to compute Q(a,b), (3.54) can be con-
veniently evaluated by numerical integration using the NAG (Numeri-
cal Algorithm Group) routine DO1AMF.

3.4.2 Non-Uniform Delay Power Profile

For a non-uniform delay power profile the average SNR on each
path is different. In this section, a probability of error expression is
developed for a quasi-static channel. For a quasi-static channel and
the estimator of (3.30) the estimation error variance is given by, (3.29):

) ) hN'O
pv'b

Following the procedure outlined for a uniform delay power profile,
the conditional error probability P(e | I®) is once again given by
(3.39). However, for a non-uniform delay power profile the p.d.f of x|,
given by:

P(xy) = % WL}: exp |— L ] x, 20 (3.40)
k=1 2Nk 2

where

Substituting (3.39) and (3.46) in (3.40) and solving the integral, yields:

P(e) = L(N
mEwe YT VeTE
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L B(n.N) A"
= V=B [+ VR @

(3.46)

where, x = (kg + k4)/2 + %)% ks kg, A(Ng), B(n,Ny), B are as
defined in (3.39) and

I,(Ng) = [ Q(Vkzx, Vkgxp) exp [ ]de (3.47)
0 Lk

A useful computational form of (3.47) can be obtained by expressing it
in an infinite series form given by:

o) 1\3 /2 IBj
3.48
hila) = §[u] Vi P+ V7 (348)

This is a convergent series which can be evaluated accurately and
rapidly, using the NAG library routine COGBAF, using a 50 term
approximation.

All the probability of error expressions derived in this section hold
only for 208} > 2X\7.. This is reasonable since if the reverse were true
it would imply that the error variance were negative.

3.5 Approximations and Bounds

This section discusses upper and lower bounds on the probability
of error, as a function of the knowledge of channel states. This
knowledge of channel states is expressed in the definition:

E[Cy(L) Cx*(L)]
[Var{C(L)} Var{C,(L)}]'/?

Px = (3.49)

where k =1, 2, ..., Ny4. p expresses the degree of correlation between
Cy(L) and C(L). Further, (3.49) can be simplified and expressed as:




Q(V kax, Vkgxy)

Pk (3.50)

3.5.1 Lower Bound

When p =1, it follows from (3.14) and (3.50) that 207y = 0.
This implies that C,(L) = C,(L), indicating perfect estimation. When
this condition is satisfied for all k branckes, then as in (3.21) perfectly
coherent detection is possible arnd the corresponding error probability
will be a lower bound.

From the estimator structure of (4.40), 207 — 0 for all k
branches when the average SNR per path is high (M, fixed, N,<1).
Under this high SNR condition the following approximations, with
regard to (3.42) hold:

High SNR A ISR

Ny

As 203, — 0, v —0, B(n,Nj)—0, x> 1, (i—) — 0, and

20? — 2af.
Using these approximations, (3.42) can be reduced to:

P(e) ~

> _ X
1 [ Q(Vkaxp, Vkyxp) XII:I" ! exp [— 5 Lo ]de (3.51)

(Nd—l)‘ QQE 0 ar;

Now as 4, — 0, k3 > 1, k; > 1 and k; — k;. Also, k; > k;—ks.
Under these conditions the following approximation is valid, [22]:

12
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Substituting (3.52) in (3.51) and integrating by parts, yields:

1 Ne=1 2k |1 —pf ’
k=0
where
_W/2 , .
= _fyc ’_7=AEp2a];
e +2 ro N,

Similarly, for a non-uniform delay power profile the lower bound on
the probability of error can be obtained by making the same high SNR
approximations. These approximations allow (3.46) to be expressed as:

Ne omy |71 A%Exy |7 XL,
Ple) >~ 3, — |[ = erfe |[—2=| exp|— — | dxp, (3.54)
k=1 2Agk fo 2 2N, 2Nk

Integrating (3.54) by parts and simplifying yields:

. \ 1/2
A Ep QQ’Lk

2] o
A’E, 207, + 2N,

P(e) =~ (3.55)

Lo | -

Ny
> Tk |1 —
k=1

Equations (3.52) and (3.55) only hold tor high SNR and are similar to
the probability of error expressions obtained for a perfectly coherent
RAIKE receiver, (18].

3.5.2 Upper Bound

When p, — 0, the estimate Ck(L) is totally decorrelated from
Ci (L) and no useful estimate can be obtained. This condition typi-
cally occurs when the channel fades rapidly, as in a mobile radio chan-
nel. This implies that the estimator cannot track the channel
coefficients. With regard to the estimator of (3.40), this means that
the fade rate is much higher than the estir .ator filter bandwidth and
hence no sample mean estimate can be obtained. Under this condition,
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non-coherent detection is done. Although p, — 0 can occur for low
and high SNR our interest is in the high SNR case as this represents
the worst case and hence the corresponding error probability will be
upper bound on performance.

Equation (3.42) can be rewritten, using (3.4-1), as:

P(e)=[ 1 T [[A(Nd)—u F\ [If,N“,l—Nd;l;ﬁ?]

X 2 2 27
Nd—l Nd +n—1 ﬂ k3 /2
+ —1 |B(n, Ny) + |—
S0 | peNa+ |
n+l1 — N n—N 2
oF ) |———5 1+ — ‘*;n+1,5f,]
Z - X"
o Ng+n-—1 B]'[kSII/-
+ 3 ) o= |+
n=Ng n 2x ky
n+1 — Ny n — Ny 32
oF) 5 ! 50+ . (3.56)

For high SNR, corresponding to P(e) > 1072 if p — 0 for
k=1, 2, .., Ny, then 2\% —0 and 20 =203 for k=1,2,.N,.
Further, x > 1, x > fand k; < k,.

Applying these high SNR approximations to (3.56) yields:

1
1 I g
P(e) ~ [x2>\f ] [1 -5 [A(Nd) - 1] [EYI
Ng—1 Nd +n-—1 ,8 k3 /2
+ 3 ( 0 ) [ T B(n,Ny) + E—I (3.57)

2x
Equation (3.57) is found to be an excellent approximation to the error
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probability of a Square-Law receiver. This is an upper bound which
also holds for a non-uniform profile due to the following reason. As
px — 0, 227 — 0 and hence 20} = 207 = hN,(A’E M), for all k
branches. Hence, this case reduces to that of a uniform delay power
profile, since all paths now exhibit equal average SNR.

This result provides an interesting interpretation. When the esti-
mate is completely decorrelated from the actual channel coefficient
there is no knowledge of the path gain. Therefore, the receiver
assumes identical paths, even though the profile may be non-uniform,
and performs Square-Law detection. Since the Square-Law receiver
provides an upper bound on performance, this action of the receiver
may be viewed as a minimaxz operation.

3.6 Performance Evaluation for Orthogonal Signaling

The performance of the partially coherent receiver is evaluated for
an illustrative indoor channel exhibiting an RMS multipath spread of
250 ns. A data rate of 32 kbps and a code length of 255 chips were
assumed. Figures 3.2 and 3.3 illustrate the improvement in perfor-
mance with higher orders of diversity. Figures 3.2 and 3.3 also indi-
cate the superiority of DDE over NDDE. The improvement for DDE
is due to 3 dB lower noise power in its phase estimation process. It
has been assumed that the DDE scheme is ideal. However, in practice,
DDE cannot be used at low SNR due to decision errors. NDDE can be
used at low SNR and the receiver can switch to DDE at a higher SNR
or when there is a low error rate. The switch can be done by monitor-
ing the error rate from pilot information placed in message headers.

It is also observed from Figure 3.2 that the improvement for DDE
over NDDE increases with diversity order. This is because as the
number of diversity branches increase, so does the excess noise due to

NDDE.

Figure 3.4 compares the use of the sub-optimal sample mean esti-
mator versus the Wiener-Hopf estimator of Section 3.3.1. The com-
parison was for a uniform delay power profile, DDE and M, = 10. It
is seen that over the range of practical error rates (P(e)<107%) the
more practical sub-optimal estimator performs as well as the Wiener-
Hopf estimator. At low SNR the improvement obtained from the
Wiener-Hopf estimator is only observed for higher orders of diversity.
At low values of SNR, to achieve the same performance as the optimal
Wiener-Hopf estimator, the sample mean estimator must use a larger
memory length.

Figure 3.5 illustrates the effect of increasing the memory length of
the estimator. It is observed that for a channel with uniform delay
power profile as M, — oo the probability of error approaches the
lower bound, due to perfectly coherent reception. It is observed that
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for My = 10 the degradation in performance, for P(e) < 1073, is less
than 0.5 dB. Short memory lengths are preferred to present run-away
errors.

Figure 3.5 and Figure 3.7 illustrate that although an increase in
order of diversity improves performance, it is necessary to increase the
memory length simultaneously. A wuseful interpretation relating
increasing memory length and diversity order is obtained as follows.
It is desirable to choose the memory length of the sample mean estima-
tor so that it has the same error variance as the Wiener-Hopf estima-
tor.

Equating (3.27) and (3.29) gives:

[o}

A%E, T, ®,(kT,) My + hN,  A%E, M{

T, ®,(kT,) hN, hN

(3.58)

where My is the memory length of the sample mean estimator that is
required to obtain the same error variance as the optimal Wiener-Hopf
estimator, with memory length M. Now (3.58) can be rewritten as:

hN,
T, $(kT,)

Hence, for a fixed error rate (fixed N,) and fixed code rate (T,), My
depends inversely on the average path strength, ®(kT,). For large
orders of diversity, the inclusion of weak paths cause Mg to get very
large. This increase in memory length should not exceed the channel
coherence time (T), since if MyT > T, then the estimator filter will
have a bandwidth smaller than the fade rate and decorrelated esti-
mates will be obtained followed by performance degradation. This
consideration may then dictate lower orders of diversity, so as to avoid
including weak paths. Figure 3.7 also illustrates the tightness of the
approximation given by (3.46) and (3.48), and hence its utility in
evaluating the error probability of a partial coherent receiver for a
non-uniform profile.

Ml =M, + (3.59)

Figure 3.8 compares the upper bound using the high SNR approx-
imation and decorrelated estimates, for p = 107% (~0), with the
non-coherent receiver performance. The agreement between the two
curves indicate that when the channel conditions preclude estimation,
it is not possible to do better than non-coherent detection.

3.7 Receiver Structures for Polyphase Signaling
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The received signal, in the symbol interval (L—1)T <t < LT,
under the two hypotheses (H;, i = 0,1) is given by:

N .
rt) = 30 Cy(L) A &) p(t — kT,) + Z(t) (3.60)
k=1

D)

where 6,(L) = :1%- (i=1),i=0, 1. p(t)is the DSSS code and Z(t) is the
AWGN process with psd of N,.

The receiver structure is derived as in Section 3.2. The receiver struc-
ture that decides between the two hypotheses (H;, Hy) in the signaling
interval (L—1)T <t < LT can be shown to be:

3 Rl (@) G S
elr;. 0 3.61
k=1 AQEP 20’8}( + No k( K H(L)<= H, ( )

where

LT
1

r.(L) = .
k(L) (L_fl)T k(t) VE,

p(t —kTy)dt ; t;,=t—(L—-1)T (3.62)

Cy(L) and 207} are defined by (3.11) and (3.12). As in Section 3.2 the
estimate Cy(L) is based on the memory information
my; = [Vi(L—M,) - « - Vi(L—1)]T, where V,(j) is given by:

Vi (i) = d; r(3) (3.63)

d;, is the bit decision in the j*h signaling interval. d;=1 when H, is true
and d;=0 when H, is true. As before, the total memory information is
given by:

IP = [my, my, - -+ myy] (3.64)

where m;;, my - * - myy, are independent blocks of Gaussian memory
information, each block being used to estimate one path coeflicient.
From (3.72) and (3.73) the receiver structure can be interpreted as

an adaptive estimator-correlator that provides diversity through Maxi-
mal Ratio Combining, (MRC). The structure of the receiver is shown
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in Figure 3.9 and Figure 3.10.
Maximal Ratio Combiner (MBC)

Assuming that the sample mean estimator is used, substituting (3.29)
and (3.30) in (3.61) yields:

Sre| 5 dn@ew| 2 (3.60)
€ i Tk Ik j z 0 3.66
k=1 j=L—M, : H(L)=H,

where Ny < N, is the order of diversity employed. In practice Ny is
usually chosen to be less than the total number of rescived paths, for
implementation reasons.

5. Diff ial Detect]
A differential detector can be obtained from (3.66) by using a one
bit memory. For My=1 (3.66) reduces to:

Ny H(L)>=Hl
. X(L—1 .
El Re|r(L) ry*(L—1)] O, 0 (3.67)

This differential detector is used when Differential Phase Shift Keying
(DPSK) is the source modulation.

3. Meary Detecti

For binary phase coded signaling the receiver structure, shown in
Figure 3.9, can be considered to be obtained by replacing the conven-
tional matched filter/correlator in the narrowband system with struec-
ture of (3.62). Similarly, for M-ary phase coded signaling, the receiver
structure can be obtained from its narrowband analog by replacing the
matched filters by the structure given in Figure 3.10. The structure of
this M-phase detector is illustrated in Figure 3.11.

3.8 Performance of Coherent Receiver

Proakis, [19], has obtained probability of error expressions for
adaptive reception of M-phase signals considering diversity. The
derivation, therein, is fairly complex. Further, the case of a non-
uniform delay power profile has not been considered.

3.8.1 Uniform Delay Power Profile
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In this case all paths are similar and T, + ®,(kT;0) = N.7! for

=1,2, .. N. Hence, all paths have the same average SNR.

Polyphase signaling is used and the receiver structure of Figure 3.11 is
used to demodulate the received signal.

The basic decision variables u;(L), and v,(L), from Figure 3.11
and (3.66), can be written as:

(L) z Re[{AVE e C (L) + 2, (L)} € *(L)] (3.68a)
Nq oL+ I ,
i) = 3 Rel{AVEge  * ClL) + Z(L)} L) (3.68b)
where

LT
1
Z.(L) = Z(t) p(t; —kT.)dt 5 t, =t — (L—=1)T
: (L—fl)T VE, : P !

{Z,(L), k =1, 2, ..., Ny} are a set of i.i.d. zero mean complex Gaussian
noise random variable with variance N, and
6(L) =2n(i—1)/M,i=1, 2, ..., M.
The probability of error is derived by first determining P(e [I).

If the memory nformatxon I®, is given, it is equivalent to knowmg
{Ce(L), k =1,2, - -+ Ng} In order to determine P(e |I™), the statis-
tics of the decision variables u;(L) and v,(L) conditioned on I|™ need to
be known. It can be shown, using (3.68a) and (3.68b), that the random
variables u;(L) and v,(L), conditioned on the signaling phase 6,(L) and
If", are Gaussian with the following statistics:

Efu,) | IP,0,(L)] = AVEcosf(L Z |C(L) I?
Ne .

E[v,(L) | IP0(L)] = AVEsing(L) 35 |Cy(L) |*
k=1

Ny .o
Var[u (L) | I0(L)] = Z [A%E,0f + -] iCk(L) P
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- m Ny 2 2 NO ~ 2
Var[v,(L) [ If,6(L)] = ¥ [A’Epofk + - 1C(L)

k=1

The problem is to detect one of M equiprobable, equal energy
polyphase signals, and is similar to that described in Section 4-5 of
[10]. Hence, the conditional probability P(e |I/®) can be obtained from
the derivation of Section 4-5 replacing the corresponding decision vari-

ables by {u,(L) JIf*, (L)} and {v,(L) |1/, 6,(L)}. The result is:

where

2
A’E,

Ny .
> (L) 7|2
k=1

fY = Nd
kZ [A’E, 207 + N,] [Cy(L) |2
-1

Now using (3.29) in (3.70) vields

A%E Na . . XL
V= pl > Icu) |F = Py
No[l + ml k=1 ¢
where
N N, 1
X[, = C(L and 202 = ———[1 +
L kZ_Zl |C(L) | e [ M,

(3.69)

(3.71)

Now, from (3.69) and (3.71) the average probability of error can be

written as:




- 49 -

Ple | 1) P(xy) dxy,

T

S

i
o~ 8

Ple | x;) P(xp) dxp, (3.72)

i
o— §

For a uniform delay power profile P(xy) is given by (3.61). Substitut-
ing (3.61) and (3.69) in (3.72) and integrating yields:

_ Ik, o, M 73
-\/; o O k' ( /J’l ) (31 )

where

I(K, 1y, M) = [ ¥ exp [— Sy P [y cot(i)]dy
0 My M

and

From (3.73) it is observed that for M=2 (BPSK) a closed form expres-
sion is obtained and is given by:
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where

ATE, 2N}

= 1

AE, 20 + Ny[1 + M,

For M > 2 the probability of error evaluation requires one numerical
integration due to I(k, y¢,, M).

3.8.2 Non-Uniform Delay Power Profile

This case corresponds to dissimilar paths and hence the average
SNR on each path differs. The probability of error is expressed as in
(3.72), where P(xp) is given in (3.46). Hence, using (3.46) and (3.69) in
(3.72) and solving the integral yields:

tan( u )
M—1 Ne 1 M
Ple) = ——— — o M |1 — —tan™}|——22 3.75
(e) M = Lk Mk p ™ (3.75)
where
T o 1
sin”— 2Nk 2
Hg = - :
0 [} 0
sin®— 2\, + 20-
n I\,I L]\ e
and
N
A My,

Now, from (3.75) for M=2 (BPSK) the probability of error is given
by:

N ATE L 2N E

P(e) = /

L | =
-
l
™
=

b A, O+ N+ ]
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3.8.3 Approximations and Bounds

For M > 2 it is necessary to perform a numerical integration in
order to evaluate the error probability over a channel with a uniform
delay power profile. It was determined that by approximating
P(e | I®) a very good approximation to the error probability, in
closed form, can Le obtained.

From [10], (3.69) can be approximated as:

P(e | I/) ~ erfc [\/—q_/ sin—;—/rf] (3.77)

Using (3.77) in (3.72) and performing the appropriate integrations, for
uniform and non-uniform profiles, the following expressions for proba-
bility of bit error are obtained:

Uniform Delay Power Profile

where p; is defined as in (3.73)

Non-Uniform Delav Power Profile

Ny
k=1

where g, is defined in (3.75) and 7, is defined in (3.46).

For QPSK (M=4) and Gray encoding of source bits, it is known
that the probability of error is given in [10] as:

Pogle) = Ple)

-~ 3.80
log,M (3-80)

Sube<tituting (3.78) for P(e) in (3.80) yields (3.74), indicating that
QPSK with Gray encoding of source bits gives the same crror

(
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probability as BPSK. QPSK, however, has twice the throughput for
the same error rate.

3.8.4 Differential Detection

The probability of error expressions for DPSK and differential
detection can be obtained from (3.75) and (3.77) using M, = 1.

It is to be noted that all the probability of error expressions in
this section hold only for 2a7 > 20, k=1, 2, ..., Ng. This is rea-
sonable since if the reverse were true it would imply that the estimated
SNR is negative.

3.9 Performance Evaluation for Polyphase Signaling

The performance is evaluated with regard to observing the effects
of delay power profile, diversity order, estimator memory size, R.M.S
delay spread and signaling alphabet size on probability of error. The
performance of the coherent receiver is also compared with that of a
differential, square-law and a partially coherent receiver.

The performance evaluations are conducted for a quasi-static
slowly fading Rayleigh channel. An Uniform, an Exponential and an
Irregular delay power profile were used in evaluating the error perfor-
mance. The non-uniform profiles were assumed to have a 250 ns delay
spread with a 40 dB dynamic range in signal levels. The Uniform
profile was assumed to have a total delay spread of 250 ns. A signal-
ing rate of 32 kbps and a code length of 255 chips was chosen. It is
assumed, as before, that perfect bit and chip synchronization exists.
The results of the performance are illustrated in Figures 3.12 - 3.19

The following conclusions were drawn from the performance evalua-
tions:

1. The partially coherent receiver has a BER that is bounded on
the lower end by the BER of the coherent Rake receiver and on
the upper end by the BER of a Square-Law Rake receiver.

2.  When the fade rate is larger than the bandwidth of the estimator
filter, decorrelated estimates occur and the BER performance of
the partially coherent receiver approaches the upper bound.

3. DDE produces a lower BER than NDDE due to a 3 dB gain in
phase estimation SNR, under the ideal assumption that no bit
decision errors are made. To prevent propagation of bit errors in
memory, it is suggested that short memory lengths (M, < 10) or
exponential weights be employed.

4. The sample mean estimator performs as well as the Wiener-Hopf
estimator when its memory length is chosen by (3.59).
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Large orders of diversity result in inclusion of weak paths and
hence large memory lengths (3.59). This results in decorrelated
estimates and an increase in BER. Hence, lower orders of diver-
sity are recommended.

For a quasi-static channel coherent reception using MRC and
DDE is feasible.

The coherent receiver like the ONMD receiver is sensitive to the
shape of the delay power profile. This emphasizes the need for
measuring indoor channel profiles to determine the appropriate
transmission power.

The coherent receiver is sensitive to R.M.S delay spread variation
and exhibits a greater degradation with increasing orders of
diversity. This also suggests lower order of diversity. The
receiver is more sensitive to delay spread than the shape of the
delay power profile.

Considerable diversity gain is achieved in using higher orders of
diversitv. This is offset by the sensitivity to R.M.S delay spread
and increase in memory length. An encouraging alternative to
achieve higher orders of diversity is to use a low order of mul-
tipath diversity and employ multiple antennas.

The use of a higher signaling alphabet results in a severe perfor-
mance degradation for M > 4. BPSK and QPSK with Gray
encoding or source bit perform equally well. QPSI, however,
offers twice the data rate within the same bandwidth.

For a quasi-static channel the use of phase coded signaling
(BPSK) and MRC results in 3 dB improved performance over
differential detection using DPSK signaling.

Orthogonal Signaling using partially coherent reception performs
as well s DPSK using differential detection. However, the sim-
plicity of the differential detector favors its use in practice.
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CHAPTER 4

COMPARISON OF MULTIPATH DIVERSITY

RECEIVERS IN A CDMA SYSTEM

4.1 Introduction

It is the purpose of this chapter to study the performance of three
multipath diversity receivers in a multiple-user environment (CDMA)
taking into account ISI, interuser interference and non-ideal code corre-
lation effects. In evaluating the probability of error for the different
receiver structures, the following CDMA system is considered. The
channel is an indoor wireless communication channel. Each user can
transmit speech at a rate of 32 kbps. Data will be transmitted in
packets. It is assumed that the user terminals communicate with the
base station in a star network architecture, [7], [8]. The users com-
municate to the base station using asynchronous CDMA.

The central station is assumed to have a bank of receivers, one
for each unique user code. These receivers are multipath diversity
receivers. Each user terminal has a similar receiver structure. To
avoid the near-far problem average power control is assumed.

4.2 Performance Analysis

4.2.1 Coherent Multipath Diversity Receiver

Considering BPSK the band-pass transmitted signal for the kP
user in the CDMA sysiem is represented as:

si(t) = Re[A uy(t) /2™ (4.1)

where f_ is the carrier frequency, A is the signal amplitude and

ug(t) = b(t) pk(t) (4.2)

where by(t) is the data bit stream of the k' user and py(t) is the
corresponding DSSS code.

b(t) = 33 bXert —iT) 5 {bS} =1 (4.3)

1=—00
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pi(t) = i‘ pili] gr,(t —iTy) 5 {pilil} = £1 (4.4)

j=co

where g,(t) =1 0 <t <7 and zero otherwise. It is assumed that the
DSSS codes are periodic with period N, and that T =Ty N,. The
energy ... each period of the code sequence is denoted by Ep.

Consider K asynchronous users of the communication channel.
Assuming the channel model of [12] the received signal in the interval,
(L—1)T <t < LT, can be written as:

N.
r(t) = kil 21 A CE(L) uy(t — t) — mTp) + n(t) (4.5)

where 7(t) is an additive white zero mean complex Gaussian noise pro-
cess, at the receiver input, with autocorrelation function
Gu(t, ) =N, 8t —7). t, is a uniform random variable, in
[0, T — T, representing the time of transmission for each user. It is
assumed that k=1 corresponds to the reference user and that t, = 0.
CX(L) is the m*® channel coefficient for the k' user in the interval
(L—1)T <t <LT. The CX(L) are uncorrelated, zero mean complex
Gaussian random variables with variance

E[|CaL) ] = 205,(L) = T, $X(mT;;0) (4.)

where, @Ck(r;t) is the channel delay power profile for the k! user.

The receiver stricture is given by (3.66) and can be rewritten for
the reference user (k=1) as:

Ny Ly ey yy B H
Re[r(L) C, (L 0 4.7
1’%31 [ i ( ) J ( )] H(L)<-= H, ( )

pi(t; —m T,)dt ; ¢, =t—(L-1)T (4.8)

and C(L) is the MMSE estimate obtained as follows:
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L-1

2 1 ~ 1 .
ClL)= — = b, r} 4.9
m(L) AVE, M jg;{)Mb i rm(i) (4.9)

where Bj is the bit decision in the j* signaling interval for the refer-
ence user.
Substituting (4.5) in (4.8) and recalling that the codes are

periodic, the output of the correlator on j*! branch of the receiver can
be written as:

Ny T
A d .
r(L) = ClL t — Tp) byt — 7, t—j T,)dt
} ( ) \/E—p mgl _!). m( ) pl( ml) 1( ml) pl( p)
A8 S ML) pils — ) bt — ) il T, d
+ Pilt — Tmic) Pi(b — Tmi) Prlt — ) t
Ep k=2 m=1 0 " ” " P
1 LT
T = Ja(t) py(ty —3 Tp) dt (4.10)
Ep (L-1)T P
where 7, =ty + mT, which *s a uniform random variable in the

interval [0,T]. Recall 7y; =mT,. Substituting (4.3) in (4.10) and
using the method outlined in [20], [6] (4.10) can be expressed as:

r'(L) = A VE, b! CL) + X,(L) + Y(L) + (L) (4.11)
where

A N .
Xj(L) = \/_E— Zl Cr%)(L)[bI} Ru("x%u‘) + bi_, Rn(Tr}xj)]
p m=

M|

A Ne k 1 1 k 1 k
Y,(L) = Y, Cu(L)br Ryy(ryy) + bi—t Riy(7mj)]

V Ep ma=]1
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RkI(T) = f I)l(tf) pk(t—T) dt k=1,2, ---K
0

k=1,2 ---K; t;=0

i =t +mT, —j T, ;

where R, ;(7) and Ry,(7) are continuous partial correlation functions.

Let Z(L' = X{(L) + Y;(L) + #1, represent the total interference on the
j*® branch of the reference user. X;(L) represents the interpath
interference arising due to the non-ideal autocorrelation of the DSSS
codes. Yj(L) represents the interuser interference arising due to the

non-ideal cross-correlation of the DSSS codes.
Substituting (4.11) in (4.7) the basic decision variable becomes:

Ng . e
wyl)=Y Re{ [A VE, b} C}L) + z,-(L)] (oh (L)} (4.12)

=1

The following assumptions are now made

(i)  The delay power profile is uniform.

(i) Xj(L) is small in comparison to Y,(L). This is particularly true
for low orders of diversity and a large number of active users.

(ili) ZL)=V,L)+ n}, is a Gaussian random variable. This is a
logical assumption based on the central limit theorem. It can

also be shown that Z(L) is zero mean and has a variance o,
which is computed below.

(iv) E[Z;(i) Z;*(k)] = O when ixk.
(v) E[Z(i) Z,*(i)] = 0 when j # m.

Under these assumptions the decision variable given by (4.12) is
similar to that given by (3.68a). Hence, the corresponding probability
of error will be the same, except that N, is replaced by o2 which is the
variance of the new noise variable Z;(L).

Assuming that the interpath interference is much smaller than the
interuser interferene, it can be shown that:

) 9 K Na R

P k=2 m=1
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where E, = A?T is the transmitted energy per symbol period. For a
° 1

uniform profile, 202, (L) = N m=1,2, .., N, and
C
E 9
2o 2 _2 N(K-1)+N 4.14
JO NC 3Np d( ) + (o] ( )

Hence, for a non-uniform delay power profile, the probability of error
is given by (3.77) with N, replaced by o2, which is defined in (4.13).
For a uniform delay power profile the probability of error is given by
(3.75) with N, replaced by o2, which is defined in (4.14). For M > 2,
the probability of error expressions given by (3.73) and (3.7 an be
used, appropriately, with N, replaced by o3.

4.2.2 Differential Multipath Diversity Receiver

The receiver structure for the k' user may be expressed as:

Nq ) ) H(L)>-= H,
Re[r (L *L—-1 0 4.15
33 Rl @) 2 (415)

This receiver structure can be obtained from (4.7) and (4.9) using
M, = 1. Hence, the probability of error for the differential receiver can
be obtained from the probability of error expressions of the coherent
receiver by using M =2 and M, = 1.

4.2.3 Non-Coherent Multipath Diversity Receiver

Each user employs a pair of orthogonal codes to transmit binary
information. Let py(t) and pyy(t) denote the pair of codes used by the
k' user. The received signal can be represented as:

K Ng

() =3 3 ACKL)| 3 a¥ gr(t — Tk — iT) Praft = 7ani)

k=1 m=1 j=—00

+ (1 —a%) gp(t = 7k — iT) Piolt — i) + 7(t)

(4.16)




where

o0
> ekl en(t =i Tp) 5 pwlil} =%1 5 1=0,1 (4.17)

j=—00

g{t)=1 0<t <7 and zero otherwise. A is the signal amplitude.
a.,-k indicates which hypothesis is true in the i*" signaling interval.
aX*=0 when H(i)=H, and a*=1 when H(i)=H;. t is a uniform random
variable, in [0,T—T], representing the random tiiae of transmission of
each of the I{ asynchronous users. 7(t) is a zero mean complex Gaus-
sian random process with autocorrelation function N, §t—7).

Assuming a uniform delay power profile, the receiver structure for
the k' user is expressed as:

Ny | . | H{L)=H, Ny I |2
(B R ' ron (L 4.18)
SR E 2 S ) (
where
LT
remL) = [ r(t) prilt ~ mTyydt 5 i=0,1 (4.19)
(L-1)T

and t’l =t — (L"'I)T

Assume that in the L' signaling interval, the reference user
transmits p;,(t). Now, substituting (4.16) in (4.19) it can be shown
that the output of the j' branch correlator of the reference user's
receiver is:

ri(L) = AVE, C}( (L) + Y, (L) + (L) (4.20)
) — 0O | . |
r,j(L) =A Lp 5 C.‘I (L) + ROJ(L) + (_,J(L) + 7/01(.L) (1.21)
o
where, fori = 0. |
A o 1
XU(L) = ——;}-"-" E (',‘ “) [111 “1]11("}”) + (1 - lv ) I) ( ]”)
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+al g Ry(7ay) + (1 — 2t ) Re,(7m;)

A K Ng _ . Ak
Yij(L) = '\/E—p g}g m¥l Cjk(L) [aff leil (Trl:a )+ (1 — aﬁ‘) Ro:l(Tr;:))

+af Rx‘ﬁ‘(ﬁ‘fn) + (1 —af_) RX! (Tr]r(lj)

T
Rlli(l(f) = f Pi(t=7) pyi(t) dt 5 1=0,1

RE!(1) = J pu(t—=7) pyy(t) dt 5 1=0,1
0

Tlll’(lf=tk+mTp_ij ’ 1\=19~, K ; tl'—o
) LT
1
nij(L) = [ n@t) pu(t, —jT,) dt
) VE, w21 l P

N,-1
0io(0) = 3 puili] piol]
=0

615(0) is the periodic cross-correlation of the DSSS codes. Also, ak =1
if piy(t) is sent in the i*" signaling interval and a¥ = 0 if p,t) is sent
in the i*" signaling interval; the choice determined as a Bernoulli event.
R () and R¥\(7) are continuous-time partial correlation functions

n,,l(L), i=0,1 represent two zero mean complex Gozussian random
variables with variance N,. The correlation between these noise vari-
ables can be shown to be:
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66(0)
N

E[n;3(L) nt*(L)] = N,
P

For each receiver the total interference in the two arms (i =0, 1) are
defined as:

Zi(L) = X;(L) + Y;L) + »jL) , i=0,1 (4.23)

where Xj(L) is the interpath interference, Yj(L) is the interuser
interference and nij-l(L) is the AWGN interference.

Now, as in Section 4.2.1 the following assumptions are made:
(i)  The delay power profile is uniform.

(ii) The interpath interference is negligible in comparison to the
interuser interference.

(iti) Z(L) = X;(L) + n,}(L) is modeled as zero mean complex Gaus-
sian noise, with variance oiz, from the central limit theorem.

(iv) E[Z;(L) Z;*(k)] =0 when Lzk
(v) E[Zu(k) Z,*(k)] =0 when ms##n

01(0)

b

<1

(vi)

Using the above assumptions it can be shown that rj(L) and
rloj(L) are zero mean correlated complex Gaussian random variables
. . 4 ] . .
with variances oy and o;. The variance of each of these random vari-
ables can be shown to be:

02=I—EE1+N(K—1)-—2— + N (4.24)
1 NC d 3Np o] b
E, | {850)}
0'02 = b Q(—,,l}— + Nd(I\: - 1) % + L\TO (425)
c Ep 3 p
where £, = A®T is the transmitted energy per symbol period.
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Further, it can be shown that the correlation between the vari-
ables rf,(L) and r2,(L) is given by:

tio = Efrgn(L) ron*(L)]

(4.26)

To compute the probability of error, the decision variable from (4.18)
is expressed as:

Ny
r= 3w k= I 1] (127
j=1
and the probability of error is given by:
P(e) = P(I"' < 0) (4.28)

Using equation (4.21) of (18] and making appropriate changes based on
the statisties of rpy(L) and rgy(L) it can be shown that:

1 Ne=1 2 Ng—1 (v,
Ple) = v, N1 >0 5 ) v, (4.29)
1+_2 m=0
\/
1
where,
u=of U(;") - l“llo |2

Vl — (\VQ + _1_)1/2 - W

o 1 ,
V, = (W? + F)1/- +W
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4.3 Receiver Performance Comparison

In this section a comparison is made of the BER performance of
three receivers, under the following conditions: uniform delay power
profiie with T, =400 ns, R4 = 32 kbps, N, = 255, E,/N, = —10 dB,
K =15, N, = 4 and M, = 10.

Figure 4.1 illustrates the effect of a non-ideal cross-correlation for
Gold codes used in binary orthogonal signaling. It is seen that the
code cross-correlation raises the irreducible BER due to a correlation
between the diversity branches. Figure 4.2 illustrates that for IKasami
codes the degradation from ideal performance is small. This is because
these Kasami codes are optimal [18], as they satisfy Welch's lower
bound for the peak cross-correlation value.

Figure 4.3-4.5 illustrate a comparison of three modulation and
detection schemes. It is observed that interuser interference produces
an irreducible BER or error floor. From the error floors it can be seen
that BPSI-coherent detection offers almost a 3dB advantage over
DPSK-differential detection. DPSIK-differential detection offers almost
a 4 dB advantage over orthogonal signaling (0O.S.)- non-coherent detec-
tion. It is also seen that for higher orders of diversity, Ny = 8, there is
a significant performance improvement. Since N, =4, this order of
diversity can be achieved through antenna diversity by employing two
antennas. Figure 4.5 illustrates an interesting result, where it is seen
that DPSI(-differential detection produces a lower irreducible BER
than QPSIS-coherent detection, indicating that DPSIK-differential
detection performs better when the interuser interference becomes the
limiting noise source.

Non-coherent detection, although simple to implement, offers very
poor performance. To obtain better performance, for a given order of
diversity, there are two alternatives. The first is to use a longer DSSS
code, results for which are shown in Figure 4.6. It is seen that in order
to obtain a performance on the order of BPSIX-coherent detection, it is
necessary to use a code that is four times as long. However, if this
performance improvement is to be achieved for the same order of
diversity the data rate must be divided by 4. In other words, for a
given bandwidth and delay spread, a performance gain can be achieved
using a longer code but the data rate must be appropriately reduced.

4.4 Simulation Study

In evaluating the performance of the receivers for a multi-user
system a number of assumptions were made for tractable analysis.
These assumptions could result in highly biased results.

In practice, the interpath interference and the interuser interfer-
ence produce some correlation between the diversity branches which
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negates the effect of diversity combining, [2], [9]. Further, the eflfect of
the total interference may be such that the simple sample mean esti-
mator may not be adequate for coherent detection.

In order to obse~ve the severity of these effects and verify the ear-
lier assumptions a small CDMA system was simulated. The simula-
tion study was conducted for a 15 user system using 255 chip long
Kasami sequences. For this system the following parameters were
assumed:

(i) A uniform delay power profile with a multipath spread of 400
ns. This allows a maximum diversity order of Ny=4 for
Kasami codes of length 255 chips and a data rate of 32 kbps.

(ii) Average power control is assumed.

(iii) Each user employs BPSK signaling at 32 kbps and coherent
detection using MRC.

(iv) The sample mean estimator of (4.40) with My = 10 was used in
all receivers. Since the probability of error of interest is around
104 the effect of bit decision errors on DDE werc neglected.

(v) The Kasami sequences used are Auto-Optimal Least Side Lobe
Energy (AO/LSE) sequences, {21]. AO/LSE codes produce very
low-interference when used in CDMA applications. These codes
were generated using the initial loadings given in {21].

The Monte Carlo technique was used to simulate the system. A
sample size of 10%*t? was used to estimate error probabilities of the
order 107F. From [3], it can be shown that this sample size produces a
99% confidence interval of [1.29 P(e), 0.77 P(e)]; where P(e) denotes
the estimated error probability.

The results of the simulation are presented in Figures 4.7-4.11.
The simulation runs resulted in a normalized error of less than 11%.
The normalized error variance was computed to be less than 0.03%.
Based on the limited simulation results the following conclusions are
made:

(i)  Tre interuser interf rence can be modeled as additive Gaussian
noise when the product of the number of active users and
resolved paths is large.

(ii) The interpath interference is small in comparison to the interuser
interference for small delay spreads. Hence, it can be neglected
in order to simplify the analysis.

(iii) The sample mean estimator performs adequately in the presence
of interuser interference.
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4.5 Conclusions

Three multipath diversity receivers using coherent, differential
and non-coherent detection, respectively, were analyzed based on the
assumptions that there is average power control aid interuser interfer-
ence is Gaussian. The performance results indicated that BPSIK using
coherent detection performs the best, followed by DPSK using
differential detection. The use of orthogonal signaling and non-coherent
detection requires the use of long codes, which in turn stipulates lower
data rates for a given bandwidth and delay spread. It is seen that
antenna diversity in conjunction with low orders of multipath diversity
produce significant BER performance gain. The simplifying assumptions
involved in the performance analysis were verified through simulation.
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