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1. Statement of Problem

The completed research to be described in this report is concerned with the
propagation of waves in geological materials. Since such materials are made up from
sands, clays and rocks, they contain granular and porous microstructures. These local
microstructures or fabric (as it is sometimes referred to) are a tunction of the geometry
of the material distribution, and produce non-continuous fields of mass density, stress,
strain, displacement, etc. These types of materials are therefore difficult to model using
classical continuum mechanics such as elasticity, plasticity or viscoelasticity theories.
One of the key features of this research was to investigate the effect of this
microstructure on the propagation of waves produced by explosive loadings of short
duration.

In many cases, geological materials will be composed of sands, gravel and/or
crushed rock, and can therefore be categorized as a granulai .* ‘uum. Such a medium
can be characterized, for modeling purposes, as a collection of distinct particles which
can displace independently from one another and interact only through contact
mechanisms. This type of media transmits mechanical loadings through discrete paths
as determined by the geometry of the granular packing. For the clase of porous media
containing various distributions of open pores, a similar direction-oriented behavioral
response will also occur.

In regard to wave propagation, our interest was involved with the transient

dynamic bchavior of such a structured medium when it is subjected to explosive




loadings of 50-100us duration. Specific variables of interest included:

» wave speed

« inter-granular contact forces (local wave amplitude)

» wave spreading geometry
The goal of the research was to relate how the specific microstructure of the medium
effects these wave propagational variables.

In order to conduct the investigation, both theoretical and experimental methods
of study were employed. The theoretical work focused on two general methods which
included the use of a new microstructural continuum theory for modeling, and a
computational study using the so-called distinct element method to model the dynamic
behavior of granular assemblies. The microstructural continuum theory which was used
was the distributed body theory originally developed by Goodman and Cowin (see
reference 29 in paper A in the Appendix). This particular theory assumes that the
medium is distributed in space by an independent kinematical function called the
volume distribution function, and thus this theory allows the medium to contain voids
and other microstructures. In regard to the numerical modeling, the distinct element
method was used to determine the motion of each granule in particular model
assemblies. This computational scheme assumes that each granule may be modeled by
rigid bedy dynamics with particle interactions having stiffness and damping properties.
The prcdicted movements of the various granules are then the result of the propagation
through the medium of disturbances which originated at the boundary loading points.

The experimental efforts employed the principles of dynamic photoelasticity along




with high speed photography to get the complete stress field information due to
explosive loading in various granular assemblies. This technique gave complete details
about the wave velocities, dynamic contact stresses and wave spreading during the
particle contact interaction period. Assemblies containing particles of different size and
arrangements were used in the experiments. A detailed investigation was conducted to
study the influence of local microstructure on the wave propagation phenomenon. The
experimental study also made use of electrical resistance strain gages to study wave
propagation in real earth materials. A preliminary investigation was conducted to study

dynamic load transfer in granular rock media.




2. Summary of Results

This section briefly describes the major results of the research program.
References will be made to the reprints of our major papers which appear in the
Appendix. Details of the particular résults can be found in each of the papers.

Wave Propagation in Distributed Bodies Wave propagation studies have been

conducted based upon a distributed body model of geological media. The

distributed body model employs an independent kinematical volume distribution
function which describes the way the material is distributed in space, and thus
allows the theory to generate porous and granular microstructures. The theory
uricouples the mass density of the granules from the mass density of the entire
material, and allows compressibility due to both granule compressibility and void
compaction. A one-dimensional theory of propagating singular surface

acceleration waves has been developed for particular volume distribution

functions which have application to geological materials. Three different volume
distribution functions were developed producing periodic, exponential and a
periodic-exponential material microstructures. A general computer code was
developed to calculate the results predicted from the model for a variety of
constitutive and microstructural model parameters. Results for the wave speed
and amplitude behavior as a function of these model parameters are given in
Figures 2-8 in Paper A in the Appendix.. Specific relationships between the
microstructure and the wave speed and attenuation have been determined, and

these theoretical results are in general agreement with measured results.




Distinct Element Modeling of Wave Propagation in Granular Materials The
distinct element model is a numerical scheme whizh uses Newtonian rigid-body
mechanics to model the translational and rotational motion of each disk in a
granular assembly. The method incorporates prescribed stiffness and damping
at the contacts between each of the granules, and these model parameters were
determined from calibration tests in the experimental segment of the research
program. Ultimately the distinct element method establishes an explicit time-
stepping scheme that enables the calculation of the inter-granule contact force
between all granules at each of the selected time ste;)s. The method is
numerically efficient so that large numbers of granules may be analyzed in a
given problem. The basic method is outlined in Paper B in the Appendix.
Comparisons of the numerical results with those from dynamic photoelasticity are
shown in Figures 4 and 5 in Paper B. These comparisons indicate reasoriably
good agreement between theoretical and experimental results for the assemblies
which were studied. Inter-granular contact force distributions indicated the
dependence of microstructure on the wave propagational characteristics, and it
was discovered that the microstructural measure of the branch angle between
local granules is an effective variable to use in establishing the connection
between microstructure and wave propagation.

The Effect of Voids and Inclusions on Wave Propagation in Granular
Materials Theoretical and experimental studies have been conducted on wave

propagation in granular materials containing local discontinuities of voids and




inclusions. The granular medium was simulated by specific assemblies of
circular disks, and the voids were created by removing particular disks from the
assembly while inclusions were created by replacing certain disks with ones of
a higher impedance material. The theoretical modeling employed the distinct
element method, and the experimental study used the technique of dynamic
photoelasticity. ~ Comparisons were made between the computational and
experimental data on the inter-granular contact forces around each void or
inclusion, and these comparisons are shown in Figures 7-11 in Paper C in the
Appendix. Both voids and inclusions produce local wave scattering through
various reflection mcchanisms, and the results seem to indicate that the inclusions
produce higher local wave attenuation.

Experimental-Numerical Hybrid Technique of Load Transfer Coefficients for
Wave Propagation Predictions in Granular Media Experimental studies on
dynamic load transfer in granular media have been conducted through the use
of dynamic photoelasticity. The experimental data collected allows the
determination of the time dependent inter-granular contact loadings between the
granules. This leads to the calculation of load transfer coefficients, i.e. the ratio
of the maximum output contact load to the maximum input contact load, for
various packing geometries. These coefficients were then used along with the
principle of superposition to predict the peak inter-granular contact loads in
several model granular assemblies. Results of the numerical hybrid scheme were

then compared with experimental data for the assemblies investigated, see Figures




12-15 in Paper D in the Appendix.

Influence of Local Microstructure on Wave Propagation Phenomenon A
detailed experimental study was conducted to evaluate the effect of different
microstructures or fabric of granular media on the wave propagation phenomenon.
The granular media was simulated by circular disks made of photoelastic
materials. Attention was focussed on the load transfer paths, wave velocities,
wave attenuation and the dynamic stresses which are generated at the contacts
due to the passage of stress waves. The details of the results are included in
Paper E in the Appendix. Figures 2 through 7 contain photographs showing the
full field description of the wave propagation process in different assemblies.
The paper discusses the primary and secondary load transfer paths in different
assemblies and clearly demonstrates the influence of the microstructure on the
load transfer process.

Angular Dependence of Dynamic Load flransfer Process An experimental
investigation was conducted to evaluate the dependance of packing geometry on
the dynamic load transfer in two dimensional granular chains. The results from
these experiments are shown in Paper F in the Appendix. It was shown, that
in two dimensional chains, rapid attenuation of load transfer occurs as the branch
angle increases from 0 to 90 degrees. It was also observed that the wavelength
of the loading pulse increases with the branch angle. These results are illustrated

in the Figures 11 and 12 of Paper F.




Wave Propagation in Porous Media As a Function of Fluid Saturation
Dynamic photoelasticity was used to study wave propagation in a porous media
as a function of fluid saturation. The porous media was modeled as a
continuous solid containing particular arrays of holes or voids. The study
investigated the wave propagation pkenomenon from a microscopic point of view
by going into the detaiis of the « cometric nature of the porous structure. The
details of this study are given in Paper G in the Appendix. The results show
the dependence of wave velocity and attenuation on the porosity as well as the
microstructural arrangement of the pores.

Wave Propagation and Energy Transfer Across Contacts Between Large Bodies
This study experimentally investigated the formation of dynamic contacts between
two bodies which are much larger than the wave length of the loading pulse.
Results from this study are given in Paper H in the Appendix. Dynamic
photographs provided full field information of diffraction, reflection and
transmission process as a function of time. The results show that the individual
wave types interact with the contact region in <pecific ways as determined by
the reflection and refraction laws. It must be mentioned here that only
qualitative treatment of the data was possible in this study. Initial attempts to
quantitatively evaluate fringe pattern data were not successful.

. Dynamic Load Transfer in Virgin and Damaged Rock Media Electrical
resistance strain gages were used to study dynamic load transfer in a single chain

assembly of disks fabricated from four different grades of white Vermont Marble.




The study was preliminary in nature and the results are given in Paper I in the
Appendix.  The results show the dependence of wave velocity on the
microstructure of the ~ock. The effect of prior damage in rock grains on wave

propagation phenomenon was also investigated.
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WAVE PROPAGATION IN DISTRIBUTED BODIES WITH
APPLICATIONS TO DYNAMIC SOIL BEHAVIOR

MARTIN H. SADD and MOHAMMAD HOSSAIN
Mechanical Engineering and Applied Mechanics
University of Rhode Island

Kingston, RI ¢/ 233i-230%

ABSTRACT

A study is presented which models wave propagation through materials with microstructure. The
specific microstructure of interest is that found in geological materials such as granular and rock media, and
the modeling is carried out using the distributed body theory of Goodman and Cowin. Wave propagation is
studied through the use of singular surface wave theory, and specific results for the wave speed and amplitude
behavior are presented. Three different types of microstructure are modeled by using different volume
distribution functions. Results of wave speed and amplitude attenuation are presented for various
microstructural model parameters.

1. INTRODUCTION

Geological materials such as sands, clays and/or rocks are complex materials and have proven to be
difficult to model using classical continuum mechanics. These types of materials may be classified as
materials with microstructure since at the micro-level the mass density along with other important field
variables are not continuous in the mathematical sense. Modeling of these materials using classical
continuum mechanics (e.g. elasticity, plasticity, viscoelasticity, etc.) has progressed to a point where
fundamentally new information will probably have to come from a theory incorporating microstructure in its
basic framework. The work herein reported is concerned with the modeling of the dynamic response of such
media. Of particular interest is the propagation of mechanical signals (i.e. wave propagation) through
materials composed of granular, rock, porous and other discontinuous structures.

Studies of geological materials with microstructure started many years ago with research on granular
materials modeled as aggregate assemblies of discs or spheres. The concept of modeling granular media as an
array of elastic particles (e.g. spheres or discs) led to the initial - ‘empts at predicting wave propagation
through such media. Early work [1-6] employed a normal granular contact force concept. This initial work
investigated the propagation velocity as a function of confining pressure, particle size and aggregate
geometry. It was discovered, however, that the classical theory of contact due only to normal forces, does
not in general accurately model real materials, and thus Duffy and Mindlin [7] proposed a theory for granular
media which included both normal and tangential contact forces. This theory produced a non-linear and
inelastic stress-strain relation.

More recent theories of granular media behavior have included statistical-stochastic approaches [8-13].
Cundall and Strack [14) proposed a numerical method called the distinct element technique for granular and
rock assemblies, and this approach has been used for rubble screens [15]. Morland [16] considered a
rock/granular media as a regularly jointed media and used an anisotropic elasticity approach. Particulate
media has also been studied by Hill and Harr based upon a diffusion equation derived from probabilistic
models (17]. Endochronic theories have been applied to granular soils {18-20], and mixture theories {21] also
show some promise of modeling such media. Pore-collapse models originally developed by Carrol and Holt
[22] have been used to study the dynamic response of porous and granular media.

With regard to experimental work, the method of photoelasticity has been employed to study load
transfer in granular assemblies. Photoelasticity has been used to study static behavior [23-25]). Dynamic
photomechanics studies of granular media have been performed [26-27]. Their technique employed the use of
high speed photography to record w@e propagation through an assembly of birefringent discs.

Journal of Wave-Material Interaction, Vol. 3, No. 4, October 1988
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Sadd and Hossain Wave Propagation in Distributed Bodies ...

Some very interesting microstructural modeling has been done with the so-called "fabric tensor” theories
for example {28]. This research has been investigating the construction of constitutive relations dependent
upon fabric tensors which describe the important microstructural features of the particular material, e. g.,
distributions of contact normal vectors. At the present time, wave propagation theories using fabric tensors
have not been developed.

Finally, granular and porous materials have been modeled by the so-called "distributed body™ theory (29].
This parUcufar theory assumes that the medium is distributed in space by an independent kinematical
function called the volume distribution function. This theory has been applied to wave propagation studies
and some success has been achieved in modeling particular situations. Based upon this success, the present
work is concemed with applying distributed body theory to wave propagation in geological soil media with
particular microstructures.

The purpose of the present work is to extend the preliminary developments of the distributed body theory
for applications to geological materials. The paper starts with the basic ideas previously developed for
one-dimensional acceleration waves propagating in a distributed body. Next, specific volume distribution
functions are selected which show promise of modeling granular geological materials. Finally, a general
computer code is developed which can calculate wave speed and amplitude behavior as a function of distance
for all of the various distribution functions selected. Results from the code are shown to demonstrate the
effects of the selected volume distribution function, the constitutive parameters, and the initial wave
amplitude.

2. DISTRIBUTED BODY THEORY

The distributed body theory originally developed by Goodman and Cowin [29] was constructed to allow a
continuum theory to be applied to materials with non-continuous fields of mass density, stress, body force,
eic. Thus, the model could be used to describe the behavior of a wide variety of materials having granular
and/or porous structures. Fundamental to the theory is the assumption that, at any point in the matenal, the
overall mass density may be written as

p=vy 1

where v is the density of the granules (or matrix material) and v = v(X,t) is referred to as the volume
distribution function. This function describes the way themedium is distributed in space allowing for voids
or other particular granular structures. Thus, this th uncouples the mass density of the granules from the
mass density of the entire material, and allow. compressibility due to both granule compressibility and
void compaction. In general 0 < v < 1, and v is related to the porosity n and void @rauo e by the
expressions

! @

v=1-n=

Within a one-dimensional framework, the classical balance law of conservation of linear momentum
reads

. dT
X==—+p b 3

pO aX po ®)
where T is the stress, b is the body force, x is the particle position, X is the reference position coordinate,
and ( ), indicate values in the reference state. In addition to this classical balance law, the distributed body
theory also requires an independent balance equation governing the volume distribution. In one dimension
this second equation governing void change is given by

. ¢oh
k v=ee+t @
where k is called the equilibrated inertia, h the equilibrated stress, and g the intrinsic body force. Physical
interpretation of the micro-structural variables k, h and g is somewhat difficult to make. In general, these

variables are related to the local contact mechanics at the granular level and can be related to particular
self-equilibrated singular stress states from classical elasticity (e. g. double force sysiems, centers of

Journal of Wave-Material [nteraction, Vol. 3, No. 4, October 1988
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Sadd and Hossain o S0 Fes Wave Propagation in Distributed Bodies ...

dilatation). It has been pr / sed [31] that k is related to the void mean surface area and to the number of
voids present, h is a result of the interaction forces between neighboring voids and will vanish when the
voids are sufficiently sepe'md, and g is related to the coupling between the total deformation of the medium
and the changes in void volume.,

For granular geological materials, we assume that the media is composed of compressible granules at
relatively high confining pressures so as to prevent material flow. For this case an appropriate constitutive
formulation would read

av
vy € y ¢ 5
and hence the stress depends upon the reference and current volume distributions, the gradient of the volume
distribution, and the strain €. An explicit form of relation (5) which has been proposed [32] uses an even
quadratic form in the gradient of v, i.e.

T=T(v,v
o]

2
av
T= —_— . 6
v A(vo,v,e)+1/2a(v°,v,s)( ax) (6)

The constitutive dependence on the gradient of the volume distribution dv/dX is significant and allows
an equilibrium stress to depend on this gradient. Since equation (6) involves the square of the gradient, it
will be an isotropic form in that variable (required by material frame indifference) and, hence, the stress
response will be independent of the sign of the gradient. Also, the presence of the gradient term allows the
theory to predict a generalized Mohr-Coulomb failure criterion.

First and second order moduli defind by

v M

. A
= A€£+l/2aee(ax) #

will be needed for subsequent wave analysis. Normally E>0 but the second order modulus E, may be
positive or negative.

3. WAVE ANALYSIS

The basic premise of this particular wave theory lies in modeling the wave as a propagating singular
surface across which there exists a jump discontinuity in a particular variable. Dynamic loadings will
commaaly produce either second-order acceleration waves, having a discontinuity in the particle acceleration
at the wave front, or first-order shock wav%’ having a jump in the particle velocity at the wave front.
Acceleration waves will be considered here.

As mentioned, a wave is modeled as a propagating singular surface of zero thickness moving with speed
U. The jump of a quantity ¢ across this surface is defined by [¢] = ¢~ - ¢* where ¢+ and ¢~ are the limiting
values of ¢ immediately ahead of and behind the wave, respectively. An acceleration wave is therefore defined
as a wave across which the particle velocity, strain, and volume distribution are continuous but their spatial
and temporal derivatives are not. Thus,/this type of motion carries propagating discontinuities in the particle
acceleration ‘various other %;?k{ts of the strain and volume distribution. The jump in the particle
acceleration @s called the wavegamplitude, and will be denoted by a(t). Note that for compressive waves,
a(t) > 0, while Tor expansive waves, a(t) < 0.

Following singular surface analysis procedures which have now become somewhat standardized, specific
relations for the wave speed and amplitude behavior can be determined. Specifically, Nunziato and Walsh
[30] showed that for distributed body theory, the wave speeds are given by the roots of a quartic equation thus

Journal of Wave-Material Interaction, Vol. 3, No. 4, October 1988
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Sadd and Hossain Wave Propagation in Distributed Bodies ...

implying the existence of two types of waves with speeds given by /

1/2[c2+c +‘/(C ¢’ +4B]

£ ) 8
U§=1fz[cf+c§-ﬁf-ci)2 +4BJ o
where
C2 (VT ) (hvx) y: (h€)+ (T Vx)
= b=y ——— ©)
povo pok o po k

with subscripts €, v and X meaning partial differentiation with respect to the indicated variable, and ( )*
meaning immediately ahead of the wave. The speed U denotes the "fast™ wave speed which is associated
predominantly with the elasticity of the granules, and will disappear if the granules are incompressible. The
quantity Ug is the "slow” wave speed which is connected to the compressibility of the material due to
consolidation, and will vanish if there are no voids (v = 1),

With regard to the wave amplitude behavior, Nunziato and Walsh [30] have found that the amplitude for
one-dimensional wave propagation satisfies the following nonlinear Bemoulli equation

da

X =K (X) a p(X)a (10)
where u(X) and x(X) are material coefficients given in general by rather lengthy expressions. The coefficient
n(X) is related to dispersive effects, while x(X) reflects both the elastic response of the granules and
dispersive effects. Depending on the nature of x and j, the theory can predict growth or decay of wave
amplitude. Using the specific constitutive form given by Eq. (6), for the case of a "fast” wave propagating
into material at rest in its reference condition, the coefficients become

2
1 UF(_O‘E)&az_V. (av)

pX=— [ 7] (|3x
2t |V, 2, K \9K]
(11)
| E,
k(X)= " (A ) +l/2(a ) (ax) = y
2‘{°UF 2v7°UF

where the fast wave speed is given by

v Ue=yENY (12)

with E, and'l\'-:'o being the reference values of the first and second order moduli.
In order to have real wave speeds, E,, 2 0 and therefore Eq. (7) implies that

ﬂ_ 2
(Ae)o +172 ((IE)o (ax) 20 (13)

(4]

which can be regarded as an equation restricting certain constitutive and microstructural parameters.

Journal of Wave-Material Interaction, Vol. 3, No. 4, October 1988
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Sadd and Hossain Wave Propagation in Distributed Bodies ...
4. VOLUME DISTRIBUTION FUNCTIONS

In order to apply the distributed body theory and develop a wave propagation analysis, it is necessary to
have explicit constitutive forms, see for example Eq. (6), and the initial volume distribution v4(X) must also
be specified. Any proposed volume distribution function should reflect the density variations and other
microstructural features within the material. It is difficult to construct such a function which characterizes
these variations precisely and yet has the smoothness requirements to be compatible with the theory. We
will follow the approach that v,(X) should be a continuous function in order to perform certain required
differentiations and integrations and that it yield the correct average density.

As discussed previously, in constructing a wave propagation analysis, Nunziato, et al. developed a
specific volume distribution function {32]. Their work was for a granular material, PBX-9404, an explosive
powder/binder system. They proposed a periodic structure of the form

2nX
VO(X) =V, + (1- v.) cos - 14)
where v, and [ are material constants.

The quantity v, would be given by the overall average density of the material divided by the granule
density and is thus related to the average value of the volume distribution. The second material constant / is
referred to as a characteristic length associated with this periodic structure. Clearly ! specifies the length of
the repeating units of the microstructure. For granular materials, / would be related, but not necessarily
equal, to the average grain size. In regard to this characteristic length, the work cf Shahinpoor [33] is
appropriate to consider. Shahinpoor did experiments of randomly packed spherical granules on a flat surface.
His work demonstrated the concept of distinct packing geometries referred to as "Voronoi cells.” It is evident
that for some packing geometries, if a periodic structure is assumed, the characteristic length { would be equal
to the Voronoi cell size, and thus could be several grain diameters.

Since the mechanical response of most geological materials like sand or gravel is affected by in situ
conditions such as overburden, the microstructure will be globally nonhomogeneous, i.e., be depth
dependent. With this in mind, another volume distribution function which can predict such a structure may
be written as

-BX
VO(X)=1—(1—Vb)e (15)

where v}, and B are material constants. Clearly for this case, the material becomes more dense with depth X
into the medium. The constant v}, is the volume distribution at the free surface X = 0, and the constant B
determines the rate of consolidation with depth. It should be pointed out that this exponential form does not
contain any periodic structure; hence, it should produce monotonic results for the wave propagation
characteristics.

A final volume distribution function which is proposed involves the combination of the periodic form
(14) and the exponential form (15). The combined form employs sim}y the product of these two relations, ———

i.e., f’

2nX :
v (x)=|:va+(l—va)cosnT][l-(l—vb)e Bx] (16)

and again v,, vy, [ and B are material constants. It is evident that this form will thus produce a combined
periodic-exponential depth dependent microstructure. The three volume distribution functions @ given by —_—
Eqgs. (14), (15) and (16) Gad are shown in Fig. 1.

4. WAVE MOTION RESULTS

Based upon the wave motion theory, a computer code was developed to handle any of the three volume
distribution functions given in Eqs. (14), (15) and (16). The constitutive form employs Eq. (6), with —_
specific values for the two material functions o and A and their needed derivatives. With regard to the wave
speed calculations, since the variation of speed within individual grains is normally not measurable, the
developed code calculates the average wave speed. This is done through an integration process over spatial
distance employing a numerical Gauss quadrature scheme. In order to calculate the amplitude behavior, the
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non-linear differential equation (10) was numerically iniegrated using a fourth-order Runge-Kutta procedure.

Specific wave motion results for each of the three proposed volume distribution functions will now be
presented. Results include wave speed and amplitude attenuation. Depending upon which volume
distnbution function is used in the modeling, a wide variety of predicted output can result by varying
particular constitutive, microstructural, and other input parameters. The constitutive parameters in the theory
are O, O, Ag and Age, while the microstructural parameters are v, vy, VXX, Vas Vb, |, and B, and the input
[ rameter would be the initial wave amplitude a;. In principle, the constitutive parameters would be a
function of the microstructural parameters as demonstrated in Eq. (6). However, explicit refationships for
these parameters have not yet been determined. Therefore, only constant values will be used for these various
parameters. 10 “ 107 _re®

For the periodic distribution model, the microstructural parameters are the average porgsity v, and the
characteristic length /. Specific constitutive parameters which /seem to give reasongble results for
geomechanics materials are o, = -~ 450 Ib, o = b, Ag = Ix ((i;lb/in2 and Age = -Q08 Ib/in.

Figure 2 1illustrates the effect of porosity on the wave speed versus propagation depth. Three different
values of v, are shown using a characteristic length of / = 0.1 in. As expected, the average wave speed
decreases with increasing porosity. Figure 3 shows the effect of the charactenstic length on the wave speed,
and 1t 1s seen that the wave speed will increase with /. This result is apparently related 1o the fact that, with
an increase in /, the wave will sec fewer microstructural changes per unit length of travel and will thus suffer
fewer scatterings. For the periodic microstructural model, the average wave speed will oscillate duning the
first few grains and will then be essentially constant thereafter.

Amplitude behavior is illustrated in Fig. 4 for various cases of microstructure and initial input
acceleration amplitude. Figure 4a shows the amplitude behavior for three different initial amplitudes,
a, = 5x 103, 1x 104 and 5 x 104 in/s2. Clearly, the expected result can be seen in that higher initial
amplitudes decay faster than the lower amplitude waves. Comparing Figs. 4a and 4b indicates the effect of
porosity on the amplitude attenuation. It is observed that the attenuation rate is dependent upon v, and as v,
decreases (i.e., increasing porosity) the rate of attenuation increases. This result is also consistent with the
variation in wave speed with v, shown in Fig. 2. Comparing Figs. 4b and 4c demonstrates the effect of [ on
amplitude attenuation. These figures indicate that larger values of [ result in less attenuation, which is
consistent with the previous observiion regarding the variation of wave speed with /. /d_"‘

For the exponental volume distribution model the constitutive parameiers were chosen as o, = -8 x@ )
Ib, ogg = 4.8 x 108 b, Ag = 3 x 105 1b/in? and Agg = -1.0 Ib/inZ, This model contains the microstructural
parameters of the free surface porosity v, and the depth rate of consolidation B. As before, the input
parameter is the initial amplitude a,. Figures 5 and 6 show typical results concerning the effects of these
parameters on the wave propagation variables. Figure 5 shows the effect of vy, on the average wave speed.
For this case, the wave speed increases with depth due to the overall decrease in porosity with depth. Figure
6 shows the effect of vy, and the initial amplitude on wave attenuation. These results give trends similar to
the previous observations for the periodic distribution function:) JPBeb-is, higher initial amplitude waves
attenuate faster and the attenuation rate increases with porosity. ¢.c-

For the combined periodic-exponential distribution model, the chosen constitutive parameters that were
used are atg = 53 X 107 Ib, ctge = 5 x 108 Ib, Ag = 3 x 10 Ib/in? and Ag = ~750 Ib/inZ. This model
contains ur microstructural parameters v,, vy, [, and B. These, along with the initial amplitude a,,
provide§™€onsiderable parameter variations. Only a portion of the possible parametric variations will be
presented, and these are shown in Figs. 7 and 8. Figure 7 shows the effect of vy, on the average wave speed
illustrating again a slower propagational speed for more porous media. Figure 8 shows the effect of the
initial amplitude and porosity on wave attenuation. These results indicate the same trends as observed for the
preceding cases, namely an increase in attenuation with initial acceleration and porosity.

5. SUMMARY AND CONCLUSIONS

This paper has presented a wave propagation study based upon a distributed body model of geological
media. A one-dimensional theory has been developed for explosive transient loadings using singular surface
wave theory. General formulas for the wave speed and amplitude attenuation were taken from the previous
work of Nunziato et al {30-32]. Specific forms for the volume distribution were constructed to model
geological materials, and these were incorporated into the general wave theory. A general computer code was
written to calculate specific results from the model for a variety of constitutive and microstructural model
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parameters. Three specific forms of the volume distribution function included a periodic model giving a
repeatable microstructure with distance, an exponential form with a depth dependent effect corresponding to
—_ ir)&itu over-burden, and a combined periodic-exponential form yielding both repeatable and depth dependent
microstructure.

In regard to wave speed, since the local speed through each granule is difficult to observe, the average
wave speed was computed by the code. It should be pointed out that the actual wave speed will vary in an
oscillatory manner for volume distributions which have a periodic nature. It is observed that for the periodic
and periodic-exponential distribution cases, the avcrage wave speed will oscillate through the first couple of
periodic lengths (barely discenable from Figs. 2, 3, and 7) and then will gradually approach an asymptotic

—— value. As expected,results indicate that porosity generally decreases the wave speed. However, it is more

interesting to note that other microstructural parameters also have a major effect. For example, results for
the periodic volume distribution indicate that the periodic length /, plays the role of decreasing the wave
speed as I gets smaller.

Although the theory is capable of predicting both growth or decay of wave amplitude, for the cases
considered here the wave amplitude was found to decrease with propagational distance. The attenuation rate
was found to be higher in more porous media, and initially higher amplitude waves decayed faster than waves
with a lower initial amplitude.

The work described here deals solely with deterministic analyses. Probabilistic studies [34] have been
conducted within the framework of the distributed body theory. Such work investigated the effects of
allowing the characteristic length /, and the average porosity v,, for the periodic model, to be random
variables, i.e. to have an average value and a standard deviation. Qutput probabilistic results were given for
the expected value and for plus or minus one standard deviation bounds.

The theoretical results of this work appear to generally maich both qualitatively and quantitatively data
on wave propagation in soils. Unfortunately, experimental data on wave propagation through structured
geological media with precisely known microstructure was not available to the authors. Consequently,
comparisons with data could not be made at the present time. Current work is under way at the University of
Rhode Island to collect such data, and future comparisons will be made.
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ABSTRACT

A computational and experimental study has been conducted on the
propagation of mechanical waves in granular materials. The computational
study employed the use of the distinct element method whereby the motion
of each granule in the material is modeled by rigid-body dynamics
assuming each particle interaction has a particular stiffness and damping.
The experimental investigation has used the method of dynamic
photoelasticity to collect photographic data which provide information on
the wave speeds, inter-granular contact loadings, and wave spreading
characteristics. The experimental results provide special dynamic material
constants necessary for the computational modeling, and they also provide
data for comparison purposes. Results from both the computational and
experimental studies indicate that local microstructure plays an important
role in the wave propagation through such materials.

INTRODUCTION

A granular medium can be characterized as a collection of distinct
particles which can displace independently from one another and interact
only through contact mechanisms. Because of this discrete character, the
mechanical behavior of such materials under static and dynamic loading
conditions is very difficult to model. It is now generally accepted that the
local microstructure or fabric, i.e. the local geometrical arrangement of
particles, plays a dominant role in the transmission of mechanical loadings
through these materials.  Porosity, which provides only an average
estimate of microstructure, is by itself not sufficient to accurately predict
the behavior of granular materials. Our aim here is to understand the
dynamic behavior of this type of material when it is subjected to
explosive loadings of short duration which produce propagating stress
waves. The discrete medium will act as a structured wave guide,
providing selective paths for the waves to propagate. Amplitude
attenuation will then depend strongly upon the selected path of
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propagaton, and thus the wave propagation is linked to the medium
microstructure.

A large volume of reported research on the mechanical behavior of
granular materials exists in the literature. Constitutive models have
employed for example: elastic/piasiic contact theories [1-3], fabric tensors
[4], distributed body models [5,6], endochronic theories [7], pore collapse
mechanisms [8], and probabilistic approaches [9,10]. . In addition, a
numerical scheme developed by Cundall and Strack [11], called the
distinct element method has also been used to simulate granular media by
modeling the behavior of large assemblies of circular disks. In this
method, the contact forces and displacements of an assembly of disks are
determined through a series of calculations tracing the movements of each
of the individual disks. The method is based on the use of an explicit
numerical scheme in which the interaction of the granules is modeled
using rigid-body dynamics assuming each particle interaction has a
particular stiffness and damping. Several successful applications of this
method have been reported [12,13], and based upon these, this method has
been developed and applied to the wave propagation problems to be
reported here.

For applications to wave propagation, the movements of each of the
disks is a result of the propagation through the medium of disturbances
originating at the loading points. Consequently, the wave speed and
amplitude attenuation will be a function of the physical properties of the
discrete medium, i.e. the microstructure. Through the use of base line
experimental data from dynamic photomechanics studies on a simple
straight chain of disks, the required dynamic stiffness and damping
parameters were determined. These values were then used to predict the
wave motion in other more complex geometries.

DISTINCT ELEMENT MODELING

The distinct element approach uses Newtonian rigid-body mechanics to
model the translational and rotational motion of each disk in a model
assembly. In the numerical routine, time steps are taken over which
velocities and accelerations are assumed to be constant. In addition, it is
also assumed that during this time step, disturbances cannot propagate
from any disk further than its immediate neighbors. This then makes the
method explicit, and therefore at all times the resultant forces on any disk
are determined solely by its interactions with the disks it is in contact.

Consider the case of two disks in contact as shown in Figure 1. The
position, velocity, acceleration, angular velocity, angular acceleration,
radius, and mass of disk 1 are labeled as: r, v, a,, ®, «, R, and m,,
with like notation for disk 2. The unit normal vector m and unit
tangential vector t are defined as shown.
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Figure 1. Schematic of Disk Interaction

The normal component of relative contact velocity between the two
disks is given by

v, = (v, - v,)°n (1
while the tangential relative velocity is
v, = (v, - v))-t - (R, + ®,R)) . (2)

Using a finite difference scheme with constant properties over the
time interval, the relative velocities may be integrated with respect to time
to yield the incremental relative normal and tangential displacements, i.e.

Ax, = VAt = [(v, - v,)-n]At

) (3)
Ax, = vAt = [(v, - vyt - (@R, + @R,)]AL .
In a similar way, the absolute velocity may be computed from the
acceleration using the relation

Av = a At . 4

These relative displacement increments are to be used with a
particular contact force-displacement law in order to calculate the forces
on each disk in the assembly. Through allowable deformations, the disks
in contact are permitted to overlap with one another such that the distance
between their centers will become less than (K, + R). While the general
technique could include a complex nonlinear contact law, the present study
incorporates a simple linear relation of the form

AF, = KAx,

AF, = KAx, ,

&)
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where K, and K, are the normal and tangential contact stiffnesses. At
each time step, the force increments AF, and AF, are added to the sum of
the total forces F, and F, on each disk from previous time steps, i.e.

(Fn)N = (Fn)N-l + A'Fn
(Fox = (Fox, + AF,,

(6)

where the indices N and N-1 refer to times ty and ty,, and At = ty-ty,. A
Coulomb-type friction law is incorporated to deal with the tangential
loading. This law is defined by

(Flow = F, + ¢, Q)

where | is the coefficient of friction and c is the cohesion between the
two disks. If the absolute value of (F), found from equation (6), is
larger than (F),,,, than (F)y is set equal to (F)pu-

The motion of each disk is calculated using Newton’s second law of
motion.  Since the behavior of real granular media involves energy
dissipation, forms of damping should be incorporated into the model.
Two forms of such damping are therefore introduced. A local damping
proportional to the relative disk velocities, and a global damping
proportional to the absolute disk velocities will be included in the force
balance laws. Applying Newton’s law to disk 1, therefore yields

F, - Cv,n - Cy,t - Cv, = ma,
(8)
M, - Cuvqu - C'O), =la,,

where F and M are the resultant force and moment on the disk, C, and
C, are the local damping coefficients for the normal and tangential
directions, C, is the global damping coefficient, and I, is the moment of
inertia of the disk. Equations (8) can thus be solved for the accelerations
a, and «, over each time increment. With the accelerations known, the
velocities follow from application of equation (4) and the relative
displacements can then be computed from equation (3). This leads to new
values of the forces through (5) for the next time increment, and the cycle
is repeated again for each disk. In this manner, large assemblies of disks
can be analyzed in a reasonable amount of computer time. Values of the
stiffness and damping parameters appropriate for a given material are
difficult to measure. For the static case, the stiffness properties may be
computed from Hertz theory or from other elasticity analyses. However,
for the dynamic case involving loadings of short duration, estimates of the
model parameters are exwemely difficult to make. It is here that
experimental dynamic photoelasticity can be used.
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EXPERIMENTAL TECHNIQUE

The optical technique of dynamic photoelasticity along with high speed
photography is very well suited to study wave propagation in different
assemblies of granular media. Details on the wave speed, inter-granular
contact forces, and wave spreading phenomena may all be determined
through this experimental method. The granular medium was simulated
by assemblies of one inch diameter discs which were fabricated from a
brittle polyester material, Homalite 100. The dynamic loading was
achieved by exploding a small charge of PETN in a specially designed
charge holder directly on top of one of the grains. Experimental granular
assemblies were placed in the optical bench of a high speed multiple spark
gap camera. The details of this camera are given in [14]. This high
speed photographic system operates as a series of high intensity, extremely
short duration pulses of light and provides 20 photoelastic images at
discrete times during the dynamic event. Framing rates of up to 10°
frames per second are attainable using this photographic stem. Typical
photographs obtained during the experiments are shown in Figures 2 and
3. These photographs show the isochromatic fringes at different tmes as
the stress wave passes through the granular assemblies.  Figure 2
illustrates the propagation of a stress wave down a single straight chain of
disks, while Figure 3 shows the dynamic fringe patterns associated with
waves moving through three different two-dimensional assemblies.

rRamg » FRAME 10 PRAVE 11 FRAME 12 FRAME 13 FRAME 14 FRang 13 FRAME 18
1o 130 ae 1o 198 ae te 179 ue 12193 40 1+ 208 pe 1o 228 po 1o 243 ps 1* 2683 as

Figure 2. Photoelastic Fringe Patterns of the Single Disk Chain
for a Sequence of Times
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FRAME 19, t=184.5us

(a) Body-Centered Cubic Geometry

FRAME 12, t = 125us

(b) Hexagonal Close Packing

FRAME 18, t :159.5us

(c) Random Packing

Figure 3. Photoelastic Fringe Patterns

B6




The isochromatic fringes obtained during the experiments are lines of
constant maximum shear stress. These fringes are related to the stress
field by the stress optic law

o, - 0, = Nf,/h , (9)

where, 0, and o, are the principal stresses, N is the fringe order, f, is the
material fringe value, and h is the thickness of the model.

Shukla and Nigam [15] have shown that equation (9) when
combined with the Hertz contact stress equations can be used to analyze
the stress field in the vicinity of the contacts shown in the Figures 2 and
3. This analysis yields both the normal and the tangential contact forces
as a function of time. Some particular values of the peak contact forces
obtained in these gcometries are shown in Figures 4 and 5, and these are
to be used in conjunction with the numerical study.

RESULTS AND CONCLUSIONS

In order to apply the distinct element method to various granular
assemblies, values for the model parameters (stiffness and damping
coefficients) must be determined. For the dynamic case, we expect that
the contact stiffnesses K, and K,, will be difficult to calculate from simple
static Hertz contact theory. In addition, values for the damping would
also be difficult to calculate from say elastodynamic theory. Hence, the
dynamic photoelastic experiments were used to provide this information.
Experiments were performed on a single straight chain of disks (see
Figure 2), and these experiments were considered to be our calibration
tests. Appropriate values for these stiffness and damping coefficients were
thus determined to match the data from the calibration experiments.
These values were then retained in the model to predict the wave motion
in other more complicated geometries. For the cases to be reported here
the contact stiffnesses were taken as K, = K, = 6.4 x 10° N/m, and the
local normal damping coefficient was C,, = 32 N-s/m. Global damping
was not included, and tangential contact loading was set to zero. The
input loading was chosen to be a triangular profile of 60us duration, and
the time step was taken as At = 2ys.

Results from the distinct element modeling are shown in Figures 4
and 5 for four different assemblies, i.e. the single straight chain, body-
centered cubic, hexagonal close packing, and a random packing.
Numerical predictions of the maximum inter-granular contact loadings
(normalized with respect to the input loading) are shown at various
contacts in the assemblies. For comparison, the corresponding
experimental values are also given in parentheses. As ment .ned, the
straight chain experiment was actually used to determine the model
parameters. For the body centered cubic geometry shown in Figure 4,
experiments indicate that for input excitation directed along a column
chain, the resulting wave motion will occur only along that chain.
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Single Disk Chain Body-Centered Cubic Geometry

Figure 4. Distinct Element Predictions and Comparisons

This was also predicted numerically as seen from Figure 4. On the other
hand, the hexagonal close packing geometry allows wave motion in many
different chains and paths (this can be seen from the experiments shown
in Figure 3). Some of the numerical predictions are compared with
experiments for this geometry for two principal chains as shown in Figure
5. The random model material offers the most complex wave
transmission phenomena. This model contains some grains with noticeable
tangential inter-granular contact loadings. However, as seen in Figure 5,
our frictionless numerical simulation provides contact values which are
generally comparable to the expenmental data.

Results of this study illustrate the dependence of microstructure on
the wave propagation. In order to describe local microstructure or fabric,
it is convenient to define the term branch vectors which are drawn from
the mass centers of adjacent disks. The angle between neighboring branch
vectors may be denoted as a branch angle. Tt is therefore clear from
Figures 4 and 5 that the inter-granular contact force, which is a measure
of the wave amplitude, behaves quite differentdy when the wave
propagates through media with large changes in the branch vector
distribution.  Further numerical and experimental studies are underway in
an attempt to model additional dynamic phenomena in granular media.
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Abstract

Theoretical and experimental studies have been conducted on the dynamic response
of granular materials containing local discontinuities of voids and inhomogeneous
inclusions. The granular medium was simulated by a specific assembly of circular disks
which were subjected to explosive loadings of short duration. Voids were created by
removing particular disks from the assembly, while inclusions were constructed by
replacing certain disks with ones of a higher impedance material. The computational
simulation was accomplished through the use of the distinct element method in which the
intergranular contact forces and displacements of the assembly disks are determined through
a series of calculations tracing the movements of each of the individual disks. The
experimental study employed the use of photoelasticity in conjunction with high speed
photography to collect photographic data of the propagation of waves in transparent
assemblies of model granular media. Comparisons were made between the computational
results and the experimental data for the local intergranular contact forces around each void
or inclusion. Both voids and inclusions produce local wave scattering through various
reflection mechanisms, and the results seem to indicate that the inclusions produced higher
local wave attenuation.

1. Introduction

Granular media can be described as a collection of distinct particles which can
displace independently from one another and which interact only through contact
mechanisms. This type of media transmits loadings through discrete paths, and therefore
the mechanical behavior of such materials under static and dynamic loading conditions is
very complex and difficult to model. It is now generally accepted that the local
microstructure or fabric, i.e. the local geometrical arrangement of particles, plays a
dominant role in the transmission of mechanical loadings through these materials. The
material porosity provides only an average estimate of microstructure, and by itself it is not
sufficient to accurately predict the behavior of granular materials. Our general aim here is
to understand the dynamic behavior of this type of material when it is subjected to

Cl




explosive loadings of short duration which produce propagating stress waves. The discrete
medium will act as a structured wave guide,. providing selective paths for the waves to
propagate. Amplitude attenuation will then depend strongly upon the selected path of
propagation, and thus the wave propagation is strongly linked to the medium
microstructure.

A considerable amount of research on the mechanical behavior of granular materials
has been reported in the literature. Constitutive models have employed for example:
elasticiplastic contact theories (Deresiewicz, 1959, Walton, 1987, and Petrakis and Dobry,
1986), fabric tensors (Nemat-Nasser, 1983), distributed body models (Goodman and Cowin,
1972), endochronic theories (Bazant, 1983), pore collapse mechanisms (Carroll and Holt,
1972), and probabilistic approaches (Endley and Peyrot, 1977, and Fu, 1977). The concept
of modeling granular media as an array of elastic disks or spheres lead to the initial
attempts at predicting wave propagation phenomena. Early wave propagation studies
include Iida (1939), Takahashi and Sato (1949), Hughes and Cross (1951), Hughes and
Kelly (1952), Gassman (1951), Brandt (1955), and Duffy and Mindlin (1957). This initial
work investigated the propagation velocity as a function of confining pressure, particle size
and geometrical packing. This particular modeling concept lead to work in determining the
elastic constants of particular granular assemblies, see for example, Hendron (1963),
Petrakis and Dobry (1986), and Walton (1987). In addition, wave propagation studies for
granular and porous media by Nunziato et.al. (1978) and Sadd and Hossain (1989) have
employed the distributed body theory. Experimental studies of this problem employing
the method of dynamic photoelasticity have been reported by Shukla etal
(1985,1987,1988). In this method, high speed photography was used to collect
photographic data of wave propagation in transparent model materials composed of
assemblies of birefringent disks.

A numerical scheme developed by Cundall and Strack (1979), called the distinct
element method has also been used to simulate granular media by modeling the behavior of
large assemblies of circular disks. In this method, the contact forces and displacements of
an assembly of disks are determined through a series of calculations tracing the movements
of each of the individual disks. The meth)d is based on the use of an explicit numerical
scheme in which the interaction of the granules is modeled using rigid-body dynamics
assuming each particle interaction has a particular stiffness and damping. For applications
to wave propagation, the movements of each of the disks is a result of the propagation
through the medium of disturbances originating at the loading points. Consequently, the
wave speed and amplitude attenuation (intergranular contact force) will be a function of the
physical properties of the discrete medium, i.e. the microstructure. Several successful
applications of this method have been reported (Thorton and Barnes, 1986, Bathurst and
Rothenburg, 1988, and Sadd et.al., 1989), and based upon these, this method has been
developed and applied to the wave propagation problems to be reported here.

The present study focuses on a specific aspect of wave propagation in granular
materials, namely the effects of voids and inclusions. It is well known that actual granular
media contains both voids and heterogeneous inclusions.  These quantities further
complicate an already complex microstructural material. Most past studies on wave
propagation in these materials have been limited to looking at aggregate assemblies with
uniform packing geometries. Qur focus here is to investigate the local effects produced by
voids and inclusions in rcgular arrays of circular disks, and of primary concern, is the
wave scattering in the vicinity of the microstructural defect. The wave propagation




phenomena is to be studied through the determination of the intergranular contact force
distribution in the neighborhood of a particular void or inclusion. This problem has been
studied using the computational method of distinct elements, and using the experimental
technique of dynamic photoelasticity.

2. Distinct Element Method

The distinct element method is a simplified modeling concept which uses Newtonian
rigid-body mechanics io model the translational and rotational motion of each disk in a
model assembly. The technique establishes a discretized time stepping numerical routine,
in which granule velocities and accelerations are assumed to be constant over each time
interval. It is also assumed that during each time step, disturbances cannot propagate from
any disk further than its immediate neighbors. Under these assumptions, the method
becomes explicit, and therefore at any time increment the resultant forces on any disk are
determined solely by its interactions with the disks it is in contact.

In order to describe the method, consider the case of two disks in contact as shown
in Figure 1. The position, velocity, acceleration, angular velocity, angular acceleration,
radius, and mass of disk 1 are labeled as: r, v, a,, ®,, o, R,, and m,, with like notation
for disk 2. The unit normal vector n and unit tangential vector t are defined as shown.

The normal component of relative contact velocity between the two disks is given
by

V, = (Vi - V) 2.1)
while the tangential relative velocity is
v, = (v, - V)t - (OR, + @R, . 2.2)
Using a finite difference scheme with constant properties over the time interval, the

relative velocities may be integrated with respect to time to yield the incremental relative
normal and tangential displacements, i.e.

Ax, = v, At = [(v, - v,)-n]At
Ax, = vAt = [(v, - V) t - (OR, + O,R,)]At . (2.3)

In a similar way, the absolute velocity may be computed from the acceleration using the
relation

Av = a At ., 2.4)

These relative displacement increments are to be used with a particular contact
force-displacement law in order to calculate the forces on each disk in the assembly.
Through allowable deformations, the disks in contact are permitted to overlap with one
another such that the distance between their centers will become less than (R, + R,).
While the general technique could include a complex nonlinear contact law, the present
study incorporates a simple linear relation of the form
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AF, = K,Ax,
AF, = KAx, , 2.5)

where K, and K, are the normal and tangential contact stiffnesses. At each time step, the
force increments AF, and AF, are added to the sum of the total forces F, and F, on each
disk from previous time steps, i.e.

(Fn)N = (Fn)N-l + AFn
(Fon = (Fon, + AF,, (2.6)

where the indices N and N-1 refer to times t, and ty,, and At = ty-ty,. A Coulomb-type
friction law is incorporated to deal with the tangential loading. This law is defined by

(Flow =R F, + ¢, 2.7

where W is the coefficient of friction and c is the cohesion between the two disks. If the
absolute value of (F)y found from equation (2.6), is larger than (F),,,, then (F)y is set
equal t0 (F)uu

Using Newton’s second law of motion, the acceleration of each disk at each time
interval can be determined. Now since the behavior of real granular media involves energy
dissipation, the modeling introduces damping mechanisms. Two forms of such damping
are therefore introduced. A local damping proportional to the relative disk velocities, and a
global damping proportional to the absolute disk velocities will be included in the force
balance laws. Applying Newton’s law to disk 1, therefore yields

F, - C,v,n - Cy,t - C,v, = mja,
Ml - Cllvthl = C‘O.)l = Il(ll Py (2.8)

where F and M are the resultant force and moment on the disk, C, and C, are the local
damping coefficients for the normal and tangential directions, C, is the global damping
coefficient, and I, is the moment of inertia of the disk. Equations (2.8) can thus be solved
for the accelerations a, and o, over each time increment. With the accelerations known,
the velocities follow from application of equation (2.4) and the relative displacements can
then be computed from equation (2.3). This leads to new values of the forces through
(2.5) for the next time increment, and the cycle is repeated again for each disk. In this
manner, large assemblies of disks can be analyzed in a reasonable amount of computer
time. Values of the stiffness and damping parameters appropriate for a given material are
difficult to measure. For the static case, the stiffness properties may be computed from
Hertz theory or from other elasticity analyses. However, for the dynamic case involving
loadings of short duration, estimates of the model parameters are difficult to make. In
order to determine estimates of these model parameters, experimental results from dynamic
photoelasticity were employed. Data from simple calibration tests on a single chain of
disks were used to determine values for the contact stiffness and damping for the disk
assemblies under study. For the stiffness parameter, the dynamic stiffness was written as

K, = a K®, (2.9)
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where K is the static contact stiffness from Hertz theory given by

» _ _ThEE,
K= 3®+E)

and o is a dynamic stiffness coefficient which is to be determined by the experiments, h is
the disk thickness, and E, and E, are the elastic modulli of the two disks in contact. The
o coefficient may be thought of as an adjustment parameter, less than unity, which
accounts for the fact that the entire disk will not deform during the dynamic event.

(2.10)

3. Photomechanics Studies

A series of dynamic photoelastic experiments were conducted to provide
experimental information on the effect of voids and inclusions on the wave propagation
phenomena. For the experimental study, the granular medium was simulated with
assemblies of polymeric birefringent disks of Homalite 100, 25.4mm in diameter and
6.25mm thick. In all the experiments reported here, the disks were assembled in an
hexagonal close packing geometry as shown in Figure 2. Voids in the assembly were
created by removing disks from different locations, while inclusions were created by
replacing particular disks with ones of a different material (steel). Dynamic loading was
achieved by detonating a small charge of PETN in a specially designed charge holder,
which was mounted at the top-centerline of the model assemblies. The experimental
models were placed in the optical bench of a high speed photographic system. This high
speed photographic system operated as a series of high intensity, extremely short duration
pulses of light and provided 20 photoelastic images at discrete times during the dynamic
event. Framing rates of up to 10° frames per second are achievable, and this allows studies
of wave propagation to be made, see Riley and Dally (1969).

A typical sequence of four images from each experiment are shown in Figures 2
through 6. The photographic data shows the isochromatic fringe patterns at different times
as the stress wave propagates through the model assemblies. The wave propagation history
can thus be clearly seen from a sequence of such photographs. Figure 2 illustrates the
wave patterns for the assembly with no voids or inclusions. Figures 3 and 4 show the
wave motion for the cases of single and multiple voids, while Figures 5 and 6 illustrate the
cases with inclusions of higher density and stiffness. Inspection of the photographs reveals
that the wave length A, of the loading pulse is much larger than the disc diameter D; in
fact A=4D.  Furthermore, in most cases the fringe pattern around the contact points are
symmetric on either side of the contact points and are similar to the fringes obtained under
static compression. Both these features indicated that around the contact zone, quasi static
loading was present during the wave propagation event. Thus Hertz theory can be used to
estimate the stress field in the vicinity of the contacts.

The isochromatic fringes photographed during the experiments are lines of constant
maximum shear stress, and are related to the stress field by the stress optic law

G, - 6, = Nf /h (3.1
where O, and o, are the principal stresses, N is the fringe order, f, is the material fringe

value, and h is the model thickness.  Using relation (3.1) along with the Hertz contact
stress equations, Shukla and Nigam (1985) have developed a scheme to compute the quasi-
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static stress field in the vicinity of the contacts between each grain. These contact stresses
may then be integrated along the contact length to determine the normal and tangential
contact forces transmitted between the disks at various times during the dynamic process.
Thus the intergranular contact loading, which is related to the wave amplitude, can be
experimentally computed. These experimental results can then be compared with the
theory, and they can also be used to determine necessary material model parameters (e.g.
the contact stiffness and damping) in order to use the distinct element method.

4. Results and Comparisons

Specific results of the distinct element modeling along with comparisons to the
experimental data will now be given for particular granular assemblies containing voids and
inclusions. The basic assembly geometry is a hexagonal close packing arrangement shown
in Figure 7. The theoretical model used an input loading of triangular time dependence
with a 60us duration to model the explosive loading from the experiments. The local
stiffness and damping parameters K, K,, C,, and C, needed in the distinct element model
were determined from experimental tests conducted on straight single chains of disks.
Ihese calibration experiments provided specific values for the wave speed and amplitude
attenuation for a very simple geometry. The model parameters were thus chosen to
produce the best match to the calibration data, and these values were then retained in the
model to be used for calculations of more complicated geometry. The contact stiffnesses
for Homalite-to-Homalite contacts were taken as K, = K, = 6.4 x 10° N/m (o = 0.27), and
the local normal damping coefficient was C, = 32 Ns/m. Global damping was not
included , and tangential contact loading was set to zero. The time stepping increment was
taken to be 2us for all cases studied, and this was felt to be appropriate to calculate the
essential features of the dynamic event.

Results from the distinct element technique are shown in Figure 7 for the basic
granular media with no voids or inclusions. Numerical predictions of the maximum inter-
granular contact loadings (normalized with respect to the input loading) are shown at
various contacts in the assembly. The corresponding experimental values are also given in
parentheses. The contact loading values are symmetric about the assemblies’ vertical
centerline, and the results indicate the rapid attenuation which occurs along various chains
or paths in the assembly. Comparison of theoretical with experimental contact loadings
indicate that they differ by an average amount of 25%. Experimental determination of the
wave speed was accomplished from the known position of the fringe patterns in the
photographs.  These results indicated that the leading wave front in the Homalite
assemblies, propagates at approximately 995 m/s, which is about 50% of the P-wave speed
in the virgin disk material. Wave speed predictions from the distinct element model
matched well (within 10%) to these measured values.

Figures 8 and 9 illustrate the case of a granular media with voids present. Figure 8
contains a single void, while Figure 9 contains a series of voids down the vertical
centerline of the assembly. The presence of a void produces significant local wave
scattering and attenuation, especially along the main vertical chain down the centerline of
the assembly. Local inter-granular contact forces become elevated near the void; however,
at contacts remote from the void, the loading values are similar in magnitude (with the
exception of points on the vertical centerline) to those in Figure 7. Computational and
experimental contact loads compare to within an average difference of 15% for the

Cé




assemblies with voids.

The cases of granular media with inclusions of different material are shown in
Figures 10 and 11. This situation is attempting to model the local effects of heterogeneity
in a granular medium. Figure 10 illustrates the case of a single inclusion, and Figure 11
contains the case of several inclusions down the vertical centerline of the assembly. As
mentioned the inclusion is simply a disk of a different material, and in this case the
inclusion material was steel, which in comparison to the granular material (Homalite 100)
has a much higher stiffness and density. The contact stiffness between the Homalite and
steel disks was calculated using relations (2.9) and (2.10) retaining the same value of a.
The local damping parameter C,, was kept the same for this case, since there was only a
small number of inclusions present.

There will be an impedance mismatch at the contacts of the Homalite and steel, and
thus there will be a sizeable difference between the reflection and transmission phenomena
at these contacts in comparison to those of the rest of the medium. For example, at point
C in Figure 10, the wave is attempting to propagate from a relatively soft material into a
stff material. Consequently, a sizeable reflection occurs at this contact producing an
upward traveling wave and a large contact force. Very little wave motion is transmitted
into the inclusion, and thus the inclusion acts to block the wave motion along the vertical
disk chain. For the inclusion cases, the average difference between theoretical predictions
and experimental data was 20-30%.

5. Conclusions

The methods of distinct elements and dynamic photomechanics have been used to
study the effects of voids and heterogeneous inclusions on the wave propagation in
granular materials. The granular medium was simulated by a specific assembly of circular
disks arranged in an hexagonal close packing geometry. The voids were created by
removing particular disks, while inclusions were constructed by replacing particular disks
with ones of a higher modulus material.  Comparisons were made between the
computational results and the experimental data for the local intergranular contact forces
around each void or inclusion. Although comparisons produced some differences as high
as 30%, it is felt that since the experimental data itself contains scatter of approximately
10%, the computational scheme does provide reasonable predictions. Improvements of the
modeling procedures could be accomplished by incorporating a more sophisticated dynamic
contact law.

Comparing the results, it is apparent that both the voids and inclusions cause local
wave scattering. In comparison to the case with no voids or inclusions, elevated contact
forces occur near the discontinuity, and along particular paths dictated by the local
microstructure, rapid wave amplitude attenuation occurs. A void produces wave scattering
through free-surface reflection from the empty volume, whereas the inclusion causes
sizeable reflections from the material of higher impedance. Comparing the path. AB in
Figures 8 and 10, it appears that the inclusion produces higher attenuation than the void.
Current work continues on these studies, and investigations are underway on wave
propagation in granular materials with additional and more complex microstructural
features.
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Figure 8. Normalized Maximum Contact Loading Comparisons: Single Void.
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ABSTRACT

An  experimental-numerical hybrid technique has been
developed to predict the intergranular contact load tansfer in
granuiar media subjected to explosive loading. The granular media
was simulated by assemblies of circular discs in contact. The peak
contact load transfer coefficients, i.e. the ratio of the maximum
output contact load to the input contact load as a function of the
contact angle, of a given particie were obtained through controlled
expenmental studies. These coefficients along with the principle
of superposition were then used to predict the peak contact loads
in several deterministic as well as random assemblies of discs.
Although the numerical scheme was rather simple, the predicted
resuits compared favorably with the experimental data for several
different assemblies.

NOMENCLATURE

C Peak contact load transfer coefficient
D Diameter of a disc

f, Material fringe value

h Thickness of a disc

N Fringe order

P, Input peak contact load
P, Output peak contact load
8 Contact angle

A Wave length

G, O, Principal stresses
INTRODUCTION

Knowledge of wave propagation in granular materials is of
importance in many branches of engincering. These include
powder metallurgy, wansducer design, earthquake engineering, soil
mechanics etc. Granular powders are of great importance to the
forming of many solid materials. These matenals for one reason
or another can not be extruded, rolled or drawn, molded and fired,
grown as crystals or cast from a melt, and so are frequenty
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sintered by either static or dynamic compression of powders. Such
sintering processes are characterized by load transfer and flow of
particles in a granular media. In addidon, granular materials arc
excellent shock wave attenuators and as such have applicanons as
diverse as transport packing materials and shock isolation materials
for explosive chambers. A granular medium is composed of a
large number of distinct particles as well as some voids. ‘The

particles can displace independendy from one another. The voids
may be filled with gas, as in a sample of dry sand. or they may
be filled with liquids. as in a sample of wet sand. The discrete
character of the granular media results in a quite complex behavior
under conditions of dynamic loading.

The study of granular media from a microstructure poiint of
view started many years ago with rescarch modelling grasular
media as aggregate assemblies of discs or spheres. Early work by
lida {1}, Takahashi and Sato {2}, Hughes and Cross {3], Gassman
{4] and Brandt [5] employed a normal granular contact force
concept, while Duffy and Mindlin [6] included tangential forces
as well. This initdal work investigated wave propagation velocity
as a function of confining pressure, particle size and aggregate
geometry. Important new work has been done by Oda (7], Nemat-
Nasser and Mchrabadi (8], et al. in the development of so-—called
fabric tensor theories for granular materials. The development of
distributed body theory by Goodman and Cowin [9]) has also
proved useful in modeiling such materials. Computational work in
modeling large aggregate assemblies of particles has been carried
out by using the distinct element method of Cundall and Strack
[10], see also Sadd et al. [11].

With regard to experimental techniques, the method of
photoelasticity provides whole field data during an experiment and
makes it possible to determine the comact load berween
neighboring granular particles. Dantu {12] and Wakabayashi {13],
Drescher and de Josselin de Jong [14), and Durelli and Wu (15]
have employed photoelasticity to study the granular media behavior
under static loading. Shukla et al. {16) [17] [18] have used
photoelasticity combined with high speed photography to
investigate the wave propagation phenomena due to explosive
loading of an assembly of discs. Experimental methods provide
sufficient information to determine wave speeds, dynamic contact
loads, etc. in different kinds of granular packings under vanious
loading conditions.



An expenmental-numerical hybrid technique for analyzing the
dynamic load ransfer in a granular medium 1s discussed in this
paper. In the expenments, dynamic loading was achieved by
detonaung a small cnarge of PETN in a specially designed charge
holder, which was mounted at the top of the experimental model.
High speed photography and dynamic photoelasticity were used
to expenimentally determine the peak contact loads between all
the particles. The granular medium was simulated by assemblies
of circular discs in various packing geomerries as shown in Fig.1.
The microstructure of the granular medium can be characterized
by branch vectors drawn from the mass centers of adjacent discs
as shown in Fig. 2. The angle 8, as shown in Fig. 2, is drawn
between any two neighboring branch vectors and is denoted as
the contact angle. Initially a series of calibration experiments of
conrrolled microstructure were conducted in which the contact
angles between the granules were systematically varied. The data
obtained from each experiment was analyzed to get a load transfer
coeffi~‘ent, i.e a ratio of the maximum output contact load to the
input contact load for a given disc. This load wansfer coefficient
was obtained for several contact angles and number of contacts
per disc. With various load wansfer coefficients determined, a
numerical scheme was developed using the experimental data and
based on the principle of superposition. Predictions were made of
the intergranular contact loadings for several model assemblies
with different microstructure as shown in Fig. 1. Numerical
predictions were compared with experimental data for these
models. Although the numerical scheme is very simple, the
predicted results compared fairly well with the photoelastic
experimental data.

DETERMINATION OF THE
TRANSFER COEFFICIENTS

Granular media transmit mechanical loadings primarily through
contact mechanisms between adjacent particles. This phenomenon
is quite a complex process and strongly depends on the contact
angle between the particles. For simplicity the granular materials
were simulated by assemblies of one inch diameter, 1/4 inch thick
discs of Homalite 100. The maximum number of the contact
points for a disc in this study is 6 as shown in the hexagonal
packing in Fig. 3a. It was shown in our previous work [19] that
a mechanical signal can transfer through a contact point only when
the contact angle is less than 90°. With respect to the input
loading point of a particle, only three contact points namely 1, 2
and 3 as shown in Fig. 3a will have contact angles less than 90°.
So if the mechanical signal enters a disc through a contact point,
only three contact points will be able to transmit the response. In
this study, all the particle interactions in the granular assembly
were represented by a general four contact point model as shown
in Fig. 3b. For the case of 8, 2 90° and 8, 2 90° only two
contact points may transfer dynamic signals, as shown in Fig. 3c,
whereas for the case of 0, < 90° and 0, 2 90°, dynamic signals
can be transmitted through three contact points as shown in Fig.
3d

In order to get the peak contact load transfer coefficients,
experiments were conducted on the three groups of models, that
is, the two, three and four contact point models shown in Fig 3b,
3c and 3d. In experiments of the two contact point model, contact
angles 6, and 6, were kept at 90°. Only contact angle 8, was
systematically varied from 0° to 90°. In experiments of the three
contact point model, contact angle 0, was kept at 90°, and both
contact angles O, and 6, were systematically varied. In

experiments of the four contact point model, all three contact
angles 8,, 6, and 0, were systematically varied. The cxpcnmcptal
models were placed in the optical bench of a high speed multiple
spark gap camera. The camera was triggered at some prescribed

D2

delay tme after igniting the explosive.  The high speco
photographic system operated as a series of high intensity
exwemely short duradon pulses of light and provided 2t
isochromatic fringe images at discrete times during the dynamic
event.

A careful inspection of the photographs obtained from the
experiments revealed that the wave length, A, of the loading pulse
was much larger than the disc diameter D, in fact A=4D.
Furthermore, in most cases the fringe patterns around the contact
points are symmetric on either side of the contact points and
similar to the fringes obtained under static compression. Both
these features indicate that around the contact zone, quasi-static
loading was present during the wave propagation event. Thus
Hertz contact stress theory can be used to estimate the stress field
in the vicinity of the contact.

The isochromatic fringes photographed during the experiments
are lines of constant maximum shear swess, and are related to the
stress field by the swess optic law

O, -6, =Nf /h (1
where G, and ©, are the principal stresses, N is the fringe orde:
f, is the material fringe value, and h is the model thickness

In equation (1), o, and o, are substituted from Hertz contact
stress field equations, involving unknowns of contact length b and
friction factor . This equation was solved using an
overdeterministic method developed by Shukla and Nigam {20) to
accurately determine the contact length and friction factor from
the full field photoelastic fringe patterns. These obtained values
were substituted in the Henz stress field equations and the contaci
stresses were numericaily integrated along the contact length 1
obtain the normal and tangential contact loads.

The peak contact load transfer coefficient C, at contact poini
j is a function of the contact angles 0,, 8, and 0, and is defined
as the ratio of the output peak contact load P, to the input peak
contact load P, , i.e.

C=C6,6,,6)=P,/P =1, 2,3 (Z;
For a two contact point model, as shown in Fig. 3¢, C, and C,
are identically equal to zero since contact angles 8, and 0, arc
90°, while for three contact point model, as shown in Fig. 3d, C,
is identically zero.
The transfer coefficients C, thus obtained from the three groups
of experiments were plotted as a function of the contact angles 8,
6, and 6,, as shown in Figs. 4 to 6. In Fig. 4, curve 1 represents
the ratio of P,/P, vs. contact angle 6, when both the contact angles
6, and 9, are equal 10 90°. Since both P,, and P are zero, it
actually represents the transfer coefficient C, of the two contact
point modei. The remaining curves in Fig. 4 represent the transfer
coefficients C, vs. contact angle 8, of the three contact point
model when contact angle 8, is 90° and 8, is also a coastant but
less than 90° (it is equal to 30°, 45° 60° and 75° respectively).
Fig.5 shows the transfer coef .. ents C, vs. contact angle 6, for the
four contact point mode! wuen the contact angles 6,=0° with
various values of 8,, while Fig. 6 shows the transfer coefficient C,
vs. contact angle 9, for the same four contact point model. The
transfer coefficient C, for the four contact point model can be
obtained easily using Figs. 4 and 6 and the property that
C,(8,.6,,90°) = C(6,,6,,90°) and C,(8,,0°.6,) = C,(6,,0°.8,).

NUMERICAL METHOD

The experimentally determined peak contact load transfer
coefficients were used to construct a numencal scheme capable of
predicting dynamic load transfer in granular aggregate assemblies




M dre Liken o be ndependen
wading amplitude v wmple superposition of loading, a3
shown an Fig Tods wed when more than one input contact foad
axours on a given disc.

Figs. 4 10 6 combined wuth 3 Lagrangian interpolanon method
have been used to obtain il the necessary transter c.xfficients to
oredict the peak conwet loads in granular media. As an example
consider the transfer coettficients for a four contact poiat model
8 =60°, 9.=0° and 6.=65%) as shown in Fig. 3b. Since 8 and
B, are equal to the tao contact angles of curve 4 in Fig. 5. the
ranster coefficient C, can be obtuined directly and is equal to
.273. In conuast. the wansfer coefficient C, can not be obtained
directly by using Fig. 5. However it can be obtained by using the
curves in Fig. 5 combined with the Lagrangian interpolation
method  and  the syvmmetrical property  C(60°0°.65°) =
C.65°.0°.60°. Using the wvalues C,(60°.0°60°) = 0.8,
C.(70°0°.60°) = 0.294, C,(80°,0°.60°) = 0.32 and our Lagrangian
interpolation method, we get C.(60°,0°.65%) = C,(65°.0°.60°) =
0.286. The mansfer coefficients C; can be obtained directly from
curve 3 in Fig. 6. C, = C,(60°,0°,65%) = 0.775.

After the three manster coefficients have been obtained. the
relevant output peak contact loads for the four contact point model
can be computed easily. According to the definition of the peak
contact load transfer coefficient, the three output peak contact loads
P,, P, and P, at contact points I, 2 and 3 are calculated as
follows,

PaA = CP
P, =CP 3
P, =CP

RESULTS AND DISCUSSION

The experimental-numerical hybrid method was used to
predict peak contact loads at every contact point in various models
of granular media.  Four difterent microstructural - packings
illustrated in Fig. 1 were used in this study. Experimenml_ fnnge
patierns obtained for each of the microstructures are shown in Figs.
% to 11. The comparison of the numerical and experimental
results are shown in Figs. 12 10 15.

Fig. 8 shows a sequence of eight photographs obtained as
the wave travels in a single chain granular medium for the
geometry of Fig. ta. [In this geometry each pzmiple has two
contact points, hence only one ransfer coefficient is pcedcd 10
model this geometry. This transfer coefficient 15 obtained from
Fig. 4. C, = Cy(90°,0°.90°) = 0.97. The peak contact loads at
each contact point can be determined as follows,

P, = GP,
P, = C.P, = CP, 4)
p, = C'P,

The comparison of numerical and expenimental peak contact
loads in the single chain is shown in Fig. 12. The average peak
contact load error for this model 1s computed to be 5%. The
results are in very good agreement because most of the
assumptions made in our numencal model are satisfied.

Fig. 9 shows a sequence of four photographs obtained as the
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Adve trusens Lnou menazonal Josed packing HCPy granuiar
medium for tne Zzomer of B b

In this geometry each
PArticie RS S Conact points

The major load in this assemoiy
s transferred by two prununy chains, 1 oand 2, shown an Fig. ib
Expenmental data showed that the tangennal contact loads were
very close to zero for the pnmary chains. hence they behaved
simtlar to the single chain assemblies. In the HCP mode! there are
only two independent contact angles, 8. = 8, = 60° and 6, = 0°.
with respect to the input load. Thus only two transfer coefficients
were needed for the HCP model. From Figs. 5 and 6, we obtain
the two transfer coefficients, C,(60°,0°,60%) = C,(60°,0°,60%;= 0.28.
C.160°,0°,60°) = 0.75. These coefficients were used to determine
the peak contact loads throughout the assembly. The compansorn
of numencal and experimental results of the peak contact loads for
the HCP mode! is shown in Fig. 13. The average error of the
peak contact loads for this model is 13%, with the average error
along the center line of the primary chain being only 6%.

Fig. 10 shows a sequence of four photographs obtained as
the wave travels in the geometry of Fig. lc, which will be referred
to as a half hexagonal closed packing (HHCP) granular medium.
In this geometry a particle has either four or five contact point:.
It is observed that most of the energy was transferred throvgh a
vertical column consisting of the HHCP cells under the explosive
and several horizontal chains as shown in Figs. 10 and 14. The
peak contact loads were obtained by the same method discussed
previously. The comparison of numerical and experimental peak
contact loads is shown in Fig. 14. It was found that the average
error for this model is 12%. However the average error along the
center line of the horizontal chains is only 7.5%.

Fig. 11 shows a sequence of four photographs as the wave
travels in a random packing granular medium for the geometry ¢!
Fig. 1d. In this geometry particles have contact points ranging
from two to six. The fringes in Fig. 11 reveal a complex nature
of load transfer phenomenon. The energy transfer showed nc
preferendal direction in this model. In the former three models.
the tangential contact loads, especially along the main path of th:
energy transfer, were quite small. However in this random model.
at the contacts near the explosive point, the fringes appeared
unsymmetrical with respect to the contact points. So it appears
that sizable tangential loadings existed in this case. Away from
the explosive point, the fringes showed the tendency to become
symmetric with respect t the contact points. Again from Figs. 4
10 6 all the transfer coefficients necessary for the determination of
the peak comtact loads in the random packing granular medium
were obtained. The comparison of numerical and experimental
peak contact loads is shown in Fig. 15. The tangential contact
loads tend to increase the average error in the peak contact loads.
This error was computed to be 19.0% for this model.

SUMMARY

A hybrid experimental-numerical technique has been
developed to predict dynamic contact loadings due to explosive
loading in different assemblies of circular discs. For a -known
geometrical arrangement of the discs the technique can predict
contact loads at any point in the assembly for a given input
loading. The method utilizes experimentally generated load

transfer coefficients along with simple linear superposiuon in
space. The results from this scheme are compared with those
obtained experimentally using the method of dynamic
photoelasticity. [n general, the results arc in good agreement for
regular packings of the discs. However for a random packing the
agreement is marginal, and this is primarily due to the fact that the
numerical scheme currendy does not take into account tangential
contact loads which were quite large in random arrangement.
Further, the superposition method does not account for any angular




dependence of wave length of the loading pulse. It was shown in
our previous work {19] that the duration of contact loads is
dependent on the contact angles. Thus to obtain berter predictions,
superposiions must be used both in space as well as time.
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Paper E

INFLUENCE OF THE MICROSTRUCTURE OF GRANULAR
MEDIA ON WAVE PROPAGATION AND DYNAMIC LOAD
TRANSFER

A. SHUKLA AND C. Y. ZHU
Dynamic Photomechanics Laboratory
Department of Mechanical Engineering & Applied Mechanics
University of Rhode Island
Kingston, RI 02881

ABSTRACT

Dynamic load transfer in granular material occurs essentially through contact mechanisms between each
grain. This phenomenon is quite a complex process and depends inherently on the microstructural packing
arrangement of the media. An experimental investigation is conducted to study wave propagation in
systematic aggregates of disc assemblies. Attention is focused on load transfer path, wave velocities, wave
attenuation and the stresses which are generated at the contacts due to the passage of stress waves. The
optical technique of photoelasticity along with high speed photography is utilized to get the whole field
stress distribution in the granular media which is subjected to explosive loading. The granular media is
simulated by circular discs made of photoelastic materials. Several systematic arrangements of these discs are
used in different experiments. The results show that the load transfer phenomenon depends strongly on the
microstructure of the media. Experiments are performed with initially unstressed media as well as media
with prestress.

1. INTRODUCTION

It is commonly observed that the microstructural packing or the fabric of the granular media strongly
affects its mechanical behavior. Considerable effort has been spent both experimentally and theoretically to
look at the influence of microstructure on ¢ .formation and strength of granular media. Oda [1, 2] was among
the first to observe the microstructure or fabric of sand in unloaded and deformed specimens. These
specimens were tested in the triaxial and direct shear apparatus by using thin sections and a polarized
microscope. Borowicka and Arthur (3, 4] observed and measured the microstructural change of sand loading
by means of either microscopy or radiography. Konishi [5] conducted biaxial compression and simple shear
tests on two dimensional granular media, fabricated from epoxy resin cylinders, and examined the
microstructure change and the state of stress in the granules using photoelasticity. All this experimental
work and that of several others [6, 7] suggest that the concept of the fabric of the granular media can be very
useful in understanding their mechanical properties. Based on these experimental findings, several theoretical
{8, 91 models have developed constitutive equations for the granular media taking into account the
microstructural characteristics. However, most of this work has been done for static loading conditions.
Recently, Shukla and Damania (10] have conducted dynamic experiments using photoelasticity to study wave
propagation in granular media. Their experiments show that the dynamic load transfer depends on the angle
made by the normals at the contact points of two adjacent granules.

The purpose of this study is to evaluate the effect of different microstructure or fabric of granular media
on the wave propagation phenomenon. A total of five different regular microstructural arrangements as
shown in Fig. 1 are considered for the experiments. The choice of these microstructural arrangements is
based on the work of Shahinpoor [11] who has demonstrated that the randomly oriented granules follow
certain distinct packing geometries reffered to as Vornoi cells. High speed photography was used to record
dynamic isochromatic fringes in the birefringen: granules as a function of time due to the passage of stress
waves. Dynamic contact stresses at each conta  »int and average wave velocitics were calculated from the
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expenimental data. The effect of microstructure on these quantities was evaluated. An experiment was also
conducted to look at the effect of prestress on the wave propagation phenomenon in the body centered cubic
geometry.

2. EXPERIMENTAL PROCEDURE

The geometries of the models used in this study are shown in Fig. 1. Five different microstructural
‘ packings or cells based on the work of Shahinpoor [11] were investigated. The granular media was simulated
with one inch diameter 1/4 inch thick Homalite 100 discs. Homalite 100 is a brittle polyester material
which becomes temporarily birefringent under the application of load. Dynamic loading was achieved by
detonating a small charge of PETN in a specially designed charge holder, which was mounted either at the
top or at the center of the model assemblies as also shown in Fig. 1. The experimental models were placed
in the optical bench of a high speed multiple spark gap camera. The camera was triggered at some prescribed
delay ume after igniting the explosive. This high speed photographic system operated as a series of high
intensity, extremely short duration pulses of light and pr-vided 20 photoelastic images at discrete times
during the dynamic event. A typical sequence of four images from each experiment are shown in Figs. 2-7.

3. ANALYSIS PROCEDURE

A careful inspection of the photographs obtained from the experiments revealed that the wave length A
of the loading pulse was much larger than the disc diameter D(A = 4D). Furthermore, the fringe pattern
around the contact points were symmetric on either side of the contact points and were similar to the fringes
obtained under static diametral compression. Both these features indicated that around the contact zone, quasi
static loading was present during the wave propagation event. Thus Hertz equations were used to obtain the
contact stresses, strains and loads.

From the Hertz contact stress theory, the stress field equations around the contact region of two bodies,
as shown in Fig. 8, are represented as

b 2
0, =-— [z(bd —x¢,)+Pz" ¢ (D)
— L2000, -x0) + B 0]
2 2 2
b b +2z" +2x 2
e 0 - e
2
+ 5[(2x2-2b2-3z2)¢2+—’;l+2(b2-x2-z2) %4’1]} )
b 2 2 2 2, 2 z
0= {20, +B[00" + 2x° + 22 =0, -2n 3'3"4’2]} 3)
where ¢1 and ¢, are
M+ N)
0, =
MNy 2MN+ 2¢ + 222 + 27
(M- N)
o, =
MNy 2MN+ 2x° + 227 + 2

M=1/(b+x)2+z2 , N=‘/ (b—x)2+z2 and
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» X
Figure 8. Coordinate system for two discs in contact.
1 (I—VT l-Vz)
= +
A+B E1 E.2
A=%(—I-+L+—1-+L_)+
R, R R R
1 1 1 1 9 111 :
t7 [(—- =)+ (=-—)] -4(—- =) (—- =)sin’a
R, R R R R, R R R
Beg( =+ — + =+ )-
R R R R2

1 1 2 1 ] 1
—Z\/[(__L')J'(L__]'-)] —4(———--.-)(——-1.-)sin2a

R RZ RZ R 1 Rl RZ RZ

Subscripts 1 and 2 refer to the bodies making the contact as shown in Fig. 8. Rq, Ry', R and Ry’ are the
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principal radii of curvature at the point of contact and ¢ is the angle between the corresponding planes of the
principal curvatures. E is the modulus of elasticity and v is Poisson's ratio.
The stress field equations are coupled with the stress optic law

Nf
6, -G, = —lh (4)

where a1, 07 are the principal stresses, N is the fringe order, fy is the material fringe value, and h is the
model thickness.

In order o accurately determine the contact length and friction factor from the full field photoelastic data,
Eq. (4) is solved using an overdeterministic method developed by Shukla and Nigam [12]. These values were
substituted in the Hertz stress field Eqs. (1 - 3) and the contact stresses were numerically integrated along the
contact length to obtain the contact loads.

4. RESULTS AND DISCUSSION

The dynamic isochromatic photographs obtained from all the expe.iments showed the full field
development of the load transfer process in the bulk of the granular media. These photographs clearly reveal
the effect of microstructure on the load transfer process and provided the data necessary to obtain the wave
velocity in every direction and also the normal and tangential load at every contact point.

Fig. 2 shows a sequence of four photographs obtained during wave propagation in a single chain of discs
(geometry 1a). The wavelength of the pulse is seen to be around four discs diameters. Also the fringes are
normal to the contact and there are no fringes due to the side supports of the loading frame. This clearly
illustrates that there 1s no energy transfer occurring at the side supports and that all the energy is channelled
down the chain. From the photographs the wave front position was plotted as a function of time. The
gradient of this graph gave the instantaneous wave velocity. It was observed that the wave velocity drops
from 1240 m/s to 1000 m/s in the initial four inches of travel. After this the wave travels with a constant
velocity of 1000 m/s. The reason for the initial high velocity may be that the first few discs are compressed
stronger against each other and the ratio of the incremental strains to incremental stresses might be very
large. This will lead to larger effective modulus and thus higher velocity.

The contact loads obtained from photoelastic fringes were plotted for different contacts as a function of
time as shown in Fig. 9. Ata given contact the load increased from zero to a peak value and then gradually
decreased to zero. A typical duration of the pulse at the contact was 110 us. The wavelength of the pulse
was calculated by taking the product of average wave speed and the pulse duration at the contact. The
wavelength thus obtained was 120 mm (i. e., around four disc diameters). This value compared well with the
visual observation from the photographs. Due to internal losses within the granule, energy spent in closing
the contact and some frictional and reflection effects, the peak contact loads dropped as the distance from the
explosive loading increased. Using the values of peak loads, it was found that there was a 20% decrease in
load as the wave travelled 5 disc diameters starting from the second disc. This is much higher when
compared with the drop in peak load for a uniform bar which is 2% for the same distance of travel.

Fig. 3 shows a sequence of four photographs obtained due to wave propagation in geometry 1b. This
geometry has a coordination number of three, i.e., each grain is in contact with three other grains. The
wavelength of the loading pulse is about 5 disc diameters. Again, no fringes appear at the contacts with the
supporting loading frame indicating that all the energy is channelled along the cell structure. The average
wave velocity in the vertical direction was found to be 8060 m/s. This is about 20 percent lower than the
average velocity in the single chain disc assembly. This decrease in the average velocity is largely due to the
fact that the wave velocity is largest in the direction normal to the contact points. When contact points
between two adjacent granules deviate from 180° this velocity drops. Thus the wave velocity in this
assembly is higher when the transfer occurs from a granule which is vertically on top of the other, whereas
the velocity drops when the granules are at an angle to each other.

Besides the wave velocity, the photoelastic fringes were also analyzed to get the contact loads as a
function of time as shown in Fig. 10. The peak contact load at the contact point 1 was found to be 1300N.
As the wave entered the following two contacting granules the peak load dropped by 40% at contact points 2
and 3. 7he loading wave then enters the next granule through contact points 4 and 5. Since these points are
not normal to points 2 and 3 the peak loads further drop by 35 percent. The contact load at point 4 builds up
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as energy which is channelled in through two contact points has only one exit point. The peak load at point
6 was found 10 be 700N. Thus in going from point 1 to 6, a vertical distance equal to 2.73 times the
diameter of the disc, there is an attenuation of about 46 percent in the peak load. This is considerably larger
than the drop seen in the single chain assembly and clearly indicates the effect of microstructure on thc wave
propagation phenomenon,

The wave propagation phenomenon in a Body Centered Cubic (BCC) arrangement, geometry Ic, is
~ shown in the four frames of Fig. 4. The wave propagated only in a single chain in this arrangement. No
energy was transferred to other chains in the assembly. Comparison of Fig. 4 and Fig. 2 shows that the
wave propagation phenomenon is identical for the single chain and the BCC packing, when the explosive
loading is on the top of a disc in the assembly.

The photoelastic fringes for the hexagonal closed-packing arrangement, geometry 1d, are shown in
Fig. 5. The wave propagation in this experiment does occur in two dimensions. The load transfer in this
experiment can be categorized by two distinct chains: the primary chains (such as chains a and b as shown in
Fig, 1d) which emanate from the disc on which the explosive loading takes place and the secondary chains
which emanate due t- contact of other discs with the discs in the primary chain.

The normal and tangential loads were computed from the photoelastic data at each point as a function of
time. It was observed that the tangential loads were very close to zero for the primary chains. Thus, the
contacts of the primary chains were frictionless, indicating that they behaved similar to the single chain
assemblies but with inclined orientation with respect to the explosive loading. The contact loads versus time
for different contacts were plotted for the primary chains as shown in Fig. 11. The drop in the peak loads
from one contact to another was large as compared to single chain or BCC packing experiments, since energy
transfer occurs to the secondary chains as the wave propagates in the primary chain. The wave attenuation
for 5 disc diameters of travel in the primary chain was 70% as compared to 20% for the single chain and the
BCC packing. Also, the average velocity in the vertical direction was 950 m/s which was about the same as
in a single chain experiment.

The peak normal contact load at different contact points and the load transfer paths are shown in Fig. 12.
The peak loads in the triangular region enclosed by the main chains are considerably higher than the contact
loads outside this area. This indicates that the region of intense loading due to explosion is in the envelope
enclosed by the two primary chains.

From the BCC and HCP experiments, it was observed that the load transfer path and the magnitude of
load transfer from one contact to another was related to the angle made by the normals to the contacting discs
at the contact point. If the input loading is normal and the angle made by the normals between the two discs
as shown in Fig. 13 is acute (a;; < (7/2)), no load transfer would occur; however, if the angle made by the
normals is obtuse (o > (1:/2){. mechanical signals would propagate through the contact. To further
illustrate this point consider the load transfer into and from disc A in the HCP geometry. The normal
contact loads at every contact point made by disc A with the neighbouring discs are shown in Fig. 14. Wave
energy entering at point 1 shows maximum transfer across point 2 which is directly ahead of point 1.
Although contact points 3 and 4 make the same angles with the main chain, the contact loads are higher at
point 4 than point 3 due to the superposition of loads from the other discs. No load transfer occurs across
points 5 and 6 as ajj < (r/2) for these contact points. A detailed study of the angular dependence of load
transfer in a granular media has been conducted by the authors and is presented elsewhere (13].

Fig. 6 shows a sequence of four photographs as the wave travels in geometry le. This geometry has
coordination numbers of both 4 and 5. The isochromatic fringes show a compliex nature of load transfcr
phenomenon. The peak normal contact loads at different contact points are shown in the left part of Fig. 15,
while the main load transfer paths are shown in the right. In the vertical direction the bulk of the energy is
channelled through a column consisting of the primary cell structure. In the horizontal direction there are
two chains of load transfer. The first horizontal chain making contact with the primary cell carries most of
the load and is shown in Fig. 15 as the high load chain. The first horizontal chain making contact with the
second cell carries a lesser amount of load and is shown in Fig. 15 as the low load chain. It appears that this
sequence is repeated as one goes down the column of the cells. The photograph from this experiment also
shows that the energy entered each cell within the column through four contact points, i} 10 i4 as shown in
Fig. 15 and exits mostly through six contact points 0 to Og. During wave propagation in this geometry,
position of the maximum vertical contact load alternated from one cell to the other in the column between
the point along the centerline (point A) and points on the side of the centerline (points B and C). When the
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maximum vertical contact load was at the point along the center line, high load transfer occurred through the
horizontal chain in the adjacent cells. However, when the maximum vertical contact load was on the side of
the centerline a lesser load was transferred through the horizontal chains in the adjacent cells. The average
wave velocity along the vertical direction in this geometry was 850 m/s whereas the horizontal chains
showed a velocity of 1000 m/s. It shouid be pointed out here that when the input load to a disc had a large
tangential component, some energy transfer did occur across to discs which were at right angles.
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Figure 12. Peak normal contact loads zi different contact points and the load transfer paths in the HCP
geometry.

Figure 13. Contact angle made by normals drawn from the center of granules to the contact point.
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Finally, an experiment was conducted to study wave propagation in a BCC geometry with a prestress on
it. The reason for conducting this experiment was to verify the results of Fig. 4. It was felt that maybe
wave propagation in Fig. 4 was seen only in the vertical direction due to gravitational loading. Thus a
biaxial prestress of 250N was applied to the BCC arrangement of discs using a specially designed loading
fixture as shown in Fig. 16. The dynamic explosive loading was applied in the center. A series of four
photographs obtained from this experiment are shown in Fig. 7. They verifiy that wave propagation only
occurs along the two normal chains with no energy transfer across contacts which are at right angles. The

only difference in this experiment was that the velocity was about 25% higher in comparison to the
experiment without any prestress.
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Figure 16. Biaxial loading frame.

5. SUMMARY

Dynamic photoelasticity was employed to study the effect of microstructure on wave propagation and
dynamic load transfer in a granular media. The granular media was modeled as one and two dimensional
arrays of circular discs fabricated from photoelastic material domolite-100. The experimental data were
analyzed to determine the wave velocities, identify characteristic dynamic load transfer paths and
quantitatively calculate the dynamic contact forces at each contact point.
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Paper F

ANGULAR DEPENDENCE OF
DYNAMIC LOAD TRANSFER DUE TO
EXPLOSIVE LOADING IN GRANULAR
AGGREGATE CHAINS

A. SHUKLA Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island.

C. Y. ZHU Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island.

M. SADD Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island.

An experimental investigation was conducted to study the dependence of packing geometry on the dynamic load
transfer in two dimensional granular aggregate chains. The granular media was simulated by circular discs made of
photoelastic material. The experimental method utilizes the combination of high speed photography and photoelas.i-
city to visualize the dynamic load transfer phenomenon in two dimensional model chains subjected to explosive
loading. The photographs thus obtained were analysed to get the normal and tangential loads at the contact points as
a function of time. The resuits indicate that the load transfer is strongly dependent on the angle between the vectors
drawn from the mass centres of the contacting granules.

1 INTRODUCTION

Granular media transmit mechanical loadings primarily
through contact mechanisms between each grain. This
phenomenon is quite a complex process and depends
inherently on the microstructural packing arrangements
of the media. Porosity alone is not a sufficient measure to
characterize such a load transfer process. Recently,
several theoretical and experimental investigations
(1X2)t have been conducted to relate microstructure to
macroscopic behaviour. A general finding of some of this
work is that local microstructure or fabric is significant
and that particular fabric vectors and tensors can be
used to develop theories to predict the mechanical
behaviour of such materials. In particular, branch
vectors between the mass centres of typical grains and
normal vectors in the direction of the contact normals
have been proposed (see Fig. 1). Specifically, Nemat-
Nasser er al. (1) have suggested mechanical constitutive
relations based upon writing the stress as a function of a
second order fabric tensor, F,;, where

i}

1
Fu=7

Mz

[!n)l}n) (1)

1

with M being the number of n-contacts per unit volume.
This study addresses this issue for the case of dynamic
load transfer by investigating the effects of the angle
between branch vectors on the wave propagation
through granular aggregate assembly chains.

The term ‘contact angle’ is defined as the angle
between any two branch vectors connecting the mass

The MS of this papt.r was received at the [nsutution on 1) Aprid 1987 and accepted
for publication on 18 Januarv 1984
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centres of a pair of granules. as shown in Fig. 1. This
angle plays an important part in determining the
dynamic load transfer in such a medium. Examples of
this fact have been shown in the work of Shukla and
Damania (3) and are shown in Figs 2 and 3. These
dynamic photoelastic figures illustrate how waves from
an explosive charge, located at the top of each photogra-
ph, move through two different granular packing
arrangements.

Studies of the load transfer in granular media have
been previously conducted. Drescher and De Josselin De

Branch vector

Contact
normal

vector
Comtact angle

Fig. 1. Branch vectors connecting the mass centres of 4 pair of
granules
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Frame 14,1 = 133 us

Frame 19. ¢ = 164.5 us

Fig. 2. Isochromatic fringes due to explosive loading in a body—centred cubic arrangement

Jong (4) have simulated granular media by using
assemblies of circular discs, and then studied the static
load transfer through the assembly by means of photo-
mechanics. Rossmanith and Shukla (5) extended this idea
to the dynamic case through the u-e of high speed pho-
tography. Additional dynamic work was also carried out
by Shukla and Damania (3), and Shukla and Rossmanith
{6). Most of this previous work focussed on wav= propa-
gation phenomenon in general without going into details
of relating specific microstructure to the associated wave
motion.

The purpose of this investigation was to study the
relation between the dynamic load transfer and the
contact angle in single disc chains of circular granules.
This specific relation will prove to be useful 1n character-
izing how local microstructure affects the wave propaga-
tional phenomena. Dynamic photoelasticity along with
high speed photography are employed to collect time-
dependent data on the rapidly moving wave motion.
Simplified Hertz contact stress theory along with photo-
mechanics has been used to determine the load transfer
Between pairs of granules. The wave motion of interest
here 1s transient in nature being produced by explosive

loadings of short duration yielding a primary wave
length of approximately four to five grain diameters.

2 EXPERIMENTAL PROCEDURE

The experimental model used in this study was com-
prised of disc chain assemblies of Homalite 100 discs as
shown in Fig. 4. Homalite 100 is a birefringent brittle
polyester material whose mechanical and optical proper-
ties are well characterized (E = 4.8 GPa, v = 0.35. and
fs = 21.9 kN/m). The discs were 1 in in diameter and 1 4
in thick. The angies 8, and 6, in the assembly were
changed in a series of experiments. During the experi-
.ments the discs were dynamically loaded by firing a small
charge of explosive PETN in a specially designed charge
holder. The wave propagation phenomenon due to
explosive loading in the granular media was studied
using the technique of dynamic photoelasticity and high
speed photography.

The models were placed in the optical bench of a high
speed multiple spark gap camera. 1":.c camera was trig-
gered at some prescribed delay time after igniting the
explosive. This high speed photographic system operated
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DYNAMIC LOAD TRANSFER IN TWO-DIMENSIONAL GRANULAR AGGREGATES

Frame 12,1t = 125 us

Frame 16,7 = 148 5 us

Fig. 3. Isochromatic fringes due to explosive loadingin a hexaéonal cubic arrangement

as a series of high intensity, extremely short duration
pulses of light and provided 20 photoelastic images at
discrete times during the dynamic event. A typical
sequence of three images for two different orientations is
shown in Figs 5 and 6. These phatographs of the wave
propagation process at different stages of development
provided the data necessary to obtain the contact loads
along different chains. .

3 ANALYSIS PROCEDURE

A careful inspection of the photographs obtained from
the experiments revealed that the wave length, 4, of the
loading pulse was much larger than the disc diameter, D.
The wave length was determined by measuring the
length of the photoelastic fringe patterns of the loading
pulse. and the data indicated that 4 = 4D. Furthermore,
the fringe patterns around the contact points were sym-
metric on either side of the contact poin‘s and were
similar to the fringes obtained under static diametral
compression as shown in Fig. 7. Both these features indi-
cated that around the contact zone, quasi static loading
was present during the wave propagation event. Thus
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Hertz equations were used to obtain the contact stresses.
strains, and loads.

From the Hertz contact stress theory (7), the stress
field equations around the contact region of two discs. as
shown in Fig. 8, are represented as

(2(bd, — x¢3) + P ¢,)

2z ‘ﬂ.'_A. 1
b b? + 227 + 2x n ‘
N JEER S,
+ ﬂ{(zxz ~ b =30, + "—’éﬁ
+ 2B — xP = 22 i ¢,}]

b - , .
Oy = — —— [::(153 + B{(b‘ + 2x° + 224
nA

-2n ,E) - 3x:¢;}j| (2)
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Fig. 4. Geometrical arrangement used in experiments

where ¢,, ¢, are

6 = A + B)
'7 ABJ(2AB + 2x* + 2z% — 2b%)
A — B)
¢

T ABJ(2AB + 2x* + 2:7 — 2b)

A= J{b+x)?+2z;

1 — 2

B=J/{tb—x*+2}; A=2R

3)

with E = modulus of elasticity, v = Poisson’s ratio, f is a
friction factor, and b is the half contact length.

The stress field equations are coupled with the stress
optic law

Nf,
0, —06;= h

where o,, o, are the principal stresses, N is the fringe
order, f, is the material fringe value, and h is the model
thickness.

In order to accurately determine the contact length
and friction factor fr-m the full field photoelastic data,
equation (4) is solved using an overdeterministic method
developed by Shukla and Nigam (8). These values were
substituted in the Hertz stress field equations (2) and (3)
an¢ e contact stresses were numerically integrated
alo  ae contact length to obtain the contact loads.

. (4)

4 RESULTS AND DISCUSSION

A series of five groups of experiments was conducted
with the geometry shown in Fig. 4. These groups include

Frame 19
Time 142 s

Fig. 5. Typical isochromatic fringes obtained in symmetric arrange-
ment (8, = 0,)

a parametnic study of the effects of the branch angles 8,
and 8, on load transfer phenomenon. The branch angles
included the values of 30, 45, 60, 75. and 90 degrees. The
dynamic isochromatic photographs obtained for two of
these experiments are shown in Figs 5 a .d 6. Using the
stress field equations (2) and (3) along with (4), and the
photoelastic fringes near the contact points. gives the
intensity of the contact stresses. The fringes are sym-
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DYNAMIC LOAD TRANSFER IN TWO-DIMENSIONAL GRANULAR AGGREGATES

Frame 6
Time 66 us

Frame 7
Time 72 us

Frame 12
Time 110 us

Fig. 6. Typical isochromatic fringes obtained in unsymmetric arrange-
ment (6, = 0,)

metric in both chains, indicating predominantly normal
loading. The absence of any fringe patterns at contact
points along the side supports confirms that all energy is
channelled along the disc chains and no loss of energy
occurs to the side supports. The normal contact loads
obtained from these photographs for a specific experi-
ment are shown in Fig. 9 for case of 6, = 75 degrees and
A, = 30 degrees. The three contact loads at each of the
three contact points are labelled P,, P,, and P, as
shown. The load at each contact point increases as_the
wave interacts with it, builds up to a peak value, and
then monotonically decays to zero. It can clearly be seen
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that as the branch angle increascs the dynamic peak load
drops. However, the wavelength of the loading pulse
increases with the branch angles. Figure 10 shows
another typical case with 8, = 90 degrees and 6, = 30
degrees. For this case the load P, in the 90 degree branch
was found to be zero.

Since the significant point in our study is not the
actual loadings but rather the transfer characteristics, the
ratio of transmitted to incident loads is to be used. This
ratio has symmetry with respect to the branch angles 6,
and 0,, ie, P,/P, as a function of 8, and 6, is the same
as P,/P, written as a function of 6, and 8,. Consequently
only one ratio, P,/P,, will be considered in detail.
Figure 11 shows this load transfer ratio as a function of
contact angles 8, and 8, . This figure illustrates the rapid
attenuation of the load transfer with the branch angle,
and it also shows the inter-relationships of 8, and ¢, on
the load transfer. For example, a higher value of 6, pro-
duces less load transfer attenuation for a given branch
angle, §,.

The effect of branch angles on the signal wave length is
shown in Fig. 12. Here the duration of contact is plotted
against the angle 8,. It is observed that a significant
increase in this duration time occurs as the branch angle,
8,, is increased. This means that the granular assembly
will act as a wave guide which will increase the wave
length of the transmitted transient signal.

S CONCLUSIONS

The experimental study conducted in this paper demon-
strates the angular dependence of dynamic load transfer
in two dimsnsional granular media. The results indicate
the following.

(1) Rapid attenuation of load transfer occurs as the
branch angle increases from 0 to 90 degrees.

(2) The attenuation of load transfer also depends on the
inter-relationship between the two branch angles.

(3) The wavelength of the loading pulse increases with
the branch angle. Here again the inter-relationships
between the branch angles has an influence on the
duration of the contact load. The wavelength almost
doubles as the contact angle increases from 15 to 75
degrees.

It should be pointed out that the current work rep-
resents only a first step in understanding the wave propa-
gation process in a complex aggregate assembly. For
example, in considering the wave motion in Fig. 3, many
waves take very complex paths during their propagation
histories. The simple two branch geometries considered
in the current study can then be interpreted as only a
beginning in the understanding of how the local micro-
structure effects the transmission of waves in granular
materia’~. Finally, theoretical-numerical work is also
underway to calculate this dynamic load transfer pheno-
mena, and this will be reported in the near future.
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DYNAMIC LOAD TRANSFER IN TWO-DIMENSIONAL GRANULAR AGGREGATES
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Fig. 10. Normal contact load as a function of time
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Paper G

WAVE PROPAGATION IN
POROUS MEDIA AS A FUNCTION OF FLUID SATURATION
BY
A. Shukla and V. Prakash
Dynamic Photomechanics Labceratory
Department of Mechanical Engineering and Applied Mechanics
University of Rhode Island, Kingston, RI 02881

ABSTRACT

An experimental investigation is conducted using dynamic photoelasticity and high
Spcc& photography to study the wave propagation due to blast loading in porous media as a
function of fluid saturation. The porous media has been modelled as continuous solid
containing particular arrays of holes or voids. The study has focused mainly on the effect
of the porous structure on transient pulse propagation as well as the effect of the moisture
in the pores on wave propagation.‘ A series of experiments have been conducted using a
sheet of Homalite 100 with different geometry of the periodic array of holes. A small
amount of explosive is used to generate the »..ss wave. Dynamic photoelastic
photographs are taken with the high speed camera as the wave propagates across the holes.
These data are analyzed to obtain the wave velocity as well as the stress wave attenuation
in the porous media.

INTROD ION

The problem of interaction of .elastic waves with discontinuities or boundaries of
complex shapes arises in situations where waves propagate through a medium having
cavities, inclusions or cracks. Due to material inelasticity and inhomogeneity, the wave
propagation in a discontinuous medium is much more involved than hqmogenous elastic
wave propagation and it shows directional as well as frequency dependence. This
phenomenon becomes significant for step loading pulses where the Wavclength are of the
order of the size of the discontinuities. Such problems denoted as scattering and
diffraction problems have long standing interest in acoustics and electromagnetic wave
theory.
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Composite materials such as concrete, ceramics, etc. are characterized by the number
of pores, veids or fluid filled cavities. The influence of these pores on the deformation
and the failure of these materials has not been interpreted uniquely. Since areas of stress
concentration may arise in the vicinity of these pores, it is believed that the pores may
play a role in influencing the crack and wave propagation in these materials. Moreover,
porous matenals are used extensively for shock isolation as they are capable of absorbing
large quantities of energy during impact loading. Hence the behavior of these materials
under impulsive loading has been of substantial interest to engineers.

Wave propagation in a discontinuous media has also been of interest to the soil and
rock mechanics community. The propagation of elastic waves in the earth’s crust is most
intimately related to the properties of soil and rock. The elastic properties of these
substances are greatly affected by the amount of water contained in them, packing density,
porosity, the size of the particles that form the substances, and the binding material which
they contain. Current interest in geomechanics is focussed on the transient phenomena
occuning in earthquakes, wave loading and consolidation. Moreover the increasing needs
for urban and resource development demand faster, safer and more efficient procedures for
underground excavations of rock. Most methods of rapid excavation in hard rock use some
form of dynamic loading, such as explosive or water jet. This type of loading produces
stress waves which induce crack initiation and propagation.

The initial attempts to study rock media and soil structure as arrays of elastic
particles (eg. spheres and discs) were made by Iida (1,2), Takashashi and Sato (3),
Gasmann (4) and Brandt (5). They investigated the propagation velocity as a function of
confining pressure, particle size and aggregate geometry. The effcct of water content in
the pores on elastic velocity has been studied by several investigators. Oliphant (6) and
Owen (7) found that sliglit additions of water caused a sharp drop in velocity with a slow
decrease as the saturation approached 100 percent. Hughes and Jones (8) measured the
dilation wave velocity of samples of very low porosity, less than 1%. Using the same
apparatus and methods, Hughes and Cross (9) measured. the velocity in Socienhofen
Limestone (porosity 4%) and Caplen Dome Sandstone (porosity 5%) for dry and saturated

samples.
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A considerable amount of research is also under way in determining the internal
structure of porous and granular media by various sounding iechniques. For e¢xample,
acoustic emission methods have been presented by Hardy (10), while Aliison and Lama
(11) have discussed a low amplitude vibration technique to predict rock structure.

Current research in wave propagation in such media has involved, for example,
stanstical theories by Varadan et al (12) or mixture theories by Junger (13). Analytical
approaches are often limited as they cannot fully account for the material inhomogeneity,
isotropy and defects. Most of the previous work focused on wave propagation phenomena
in general without going into the details of relating specific microstructure to the associated
wave motion.

This paper reports on an experimental study of wave propagation due to explosive
loading in a porous medium. The porous medium was modelled as an array of holes
machined in a continuous sneet of a brittle polyester material Homalite 100. The study
looked at the wave propagation phenomenon from a microscopic point of view by going
into the details of the geometric nature of the porous structure. The geometry of the pores
was changed by varying the size of the holes, changing the pitch or the spacing between
the holes and changing the geometric arrangement of the holes. In all the expcriments tie
stress waves were produced by explosive lonadings of short duration. Dynamic
photoelasticity and high speed plintography were employed io collect the time dependent
data as the wave front moved rapidly through the porous structure.

EXPERIMENTAL PROCEDURE

To investigate the behavior of stress-waves in the periodically flawed half-plane, also
referred to as the porous medium, a series of dynamic photoelastic experiments was
conducted. The photoelastic models were fabricated from a large sheet of Homalite-100
having dimensions of 254mm x 305mm x 6.4mm. Homalite-100 is a birefringent brittle
polyester material whose mechanical and optical properties are well characterized. The
stress-st 1in behavior of this material is similar to that of rock. An array of holes having a
pitch p and diameter d was machined to simulate the porous media.

Figure 1 shows the geometry of the porous model. Dynamic loading to produce the
incident wave was achieved by detonating 80mg of lead azide directly on toy of the model.
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Two different arrangements of the holes were used as shown in Fig.2 The arrangement of
holes in the first and second type of configurations are referred to as geometry A and B
respectively. For geometry A three different pitches of 6.25mm, 12.7mm and 25.4mm were

used. The diameter of the holes was increased in steps to achieve different porosities.
Porosity is defined as:

2
% porosity = w[d(2] * 100

2
p

where d is the diameter and p is the pitch of the holes.

Due to the constraints in machinability of Homalite 100 and to avoid obscurity of
the fringe pattern in the photographs, the porosity was limited to a maximum of 70%.
Tables 1 and 2 list the pitch, the diameter of the holes and the corresponding porosity
which were used with geometry A experiments.

For geometry B, two different pitches of 12.7mm and 25.4mm were used. Again,
different diameter holes were used for each of these pitches to achieve different porosities.
Table 3 shows the pitch, the diameters of the holes, and the corresponding porosity which
were used with this geometry.

In the saturated porous media experiments, water was used as the saturation fluid.
It was contained within the pores by sandwiching both sides of the photoelastic models by
means of thin plexiglass sheets [14). The sides of these sandwiched models were made
leak proof by pressing them with pressure binders. Care was taken to minimize the
number of air bubbles so as to achieve a high degree of saturation [15,16].

The wave propagation phenomenon due to explosive loading was studied using the
technique of dynamic photoelasticity and high speed photography. The models were placed
in the optical bench of the high speed multiple spark gap camera. The camera was
triggered at a prescribed delay time after igniting the explosive. The high speed
photographic system operates as a series of extremely short duration pulses of high
intensity light and provides 20 photoelastic images at discrete time intervals during the

dynamic event. These photographs of the wave propagation process at different stages of

development provided the necessary data to obtain the velocity and attenuation of the
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leading front of the longitudinal wave.

ANALYSIS
The sequence of 20 photographs obtained from the high speed camera were analyzed

to obtain the compressional wave velocity and the stress wave attenuation in both the
unsaturated and the saturated porous media. The compressional wave velocity was
obtained by plotting the instantaneous position of the wavefront with respect to time. The
gradient of this line gave the average compressional wave velocity. Figure 3 shows a
typical position versus time plot. The portion of the curve between X and Y represents the
region during which the stress wave was in the porous zone. The portion of the curve
before point X and after point Y represent the regions before the stress wave entered the
porous zone and after it emerged from it respectively.

The fringe patterns were further analyzed to determine the propagation and
attenuaticn characteristics of the porous media. To obtain the attenuation characteristics, a
plot of the maximum normalized fringe order around the hole versus the hole number
(along the line ©=0) was obtained. The normalization was done with respect to the
maximum fringe order on the first hole directly below the explosive charge. To separate

the effects of material and geometric attenuation, an expression of the form

N s

max

JY

for the maximum fringe order was sought, where y is the distance from the loading source
and k, the coefficient of material attenuation. The term y'* accounts for the geometric
attenuation in two dimensional space (plate). The attenuation coefficient and the constant
N, were obtained by plotting N_.y'? vs.y on a semilog scale. In order to compare the
saturated and unsaturated porous media with the unflawed material the attenuation curves
for all three were plotied together.

RE TS AND DI ION
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The first series of experiments was conducted with geometry A and involved five
models with pitch equal to 12.7mm. The diameter of the holes was increased in steps to
achiev: porosity ranging from zero to seventy percent. With the detonation of the
explosive, longitudinal and shear waves were produced which travelled with velocities of
2140 m/s and 1220 m/s respectively in the plate. As the longitudinal wave passes over the
first row of the array of holes the stresses around them start to build up. Since the
diameter of the holes is much less than the radius of curvature of the approaching wave
front the fringes tend to align themselves in a direction which is normal to the approaching
wavefront as shown in Fig 4. As the wavefront impinges upon the hole boundary
scattering and diffraction takes place and reflected longitudinal waves ard shear waves are
produced. The reflected waves interact - with the propagating wave altering the
semicircular na ure of the wavefront. With the larger diameter holes, the ratio A/d (where
A is the wavelength of the pulse and d the diameter of the holes) decreases resulting in an
increased level of scattering and diffraction.

Figure 5 shows a typical set of photographs obtained during the wave propagation
experiments. These dynamic isochromatic fringes show the development of the wavefront
as the wave propagates through the porous medium. With continued reflection from each
row of holes and the superposition of the reflected waves, the curvature of the leading
dilatational wavefront keeps on decreasing as the wave moves further into the porous zone.
This phenomenon increases for higher porosities. Figure 6 shows the location and the
shape of the wavefront for a given porosity.

The dynamic photoelastic photographs were analyzed to get the leading wave
velocity. Figure 7 shows the variation in wave velocity as a function of porosity. The
dilatational wave velocity, measured in a direction directly below the charge (along the line
theta=0), is less than the dilatational wave velocity in an unflawed half-plane. The wave
velocity decreases by almost 18% as the porosity is increased from 0 to 20%. As the
porosity is increased further, the drop in velocity is small until the 50% porosity mark is
passed, after which wave velocity decreases sharply and drops down to almost 60% of its
value for the unflawed half-plane.

The dilatational wave velocity also shows directional dependence and tends to

decrease as the angle theta is increased. Figure 8 shows that the velocity at any angle
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theta depends upon the diameter of the holes in the porous zone. For small diameter
holes, little change in velocity can be seen as the angle theta is increased from 0-30%.
But as the diameter of the holes is increased, the wave velocity drops noticeably and this
drop increases as the angle theta is increased. Around © equal to 3(°, there is a drop in
velocity of 6% for the 9.6mm diameter holes, 10% for the 10.9 mm diameter hole and
16% for the 11.7mm holes. This dependence of the wave velocity in the porous zone on
the angle theta is due to the fact that the wave sees a different kind of microstructure for
different values of theta. This decrease in velocity also accounts for the decrease in the

curvature of the wavefront mentioned earlier.

Effect of Pitch

A series of experiments was conducted to study the effect of pitch, or the spacing
between the holes on the wave propagation phenomenon. Figure 9 shows typical
photographs of the stress wave propagation in the porous medium for three different values
of pitch. As the pitch is increased, the ratio of the number of holes to that of the
wavelength of the stress wave decreases, resulting in reduced diffraction and scattering of
the stress wave. The influence on the stress around the holes due to neighboring holes is
also reduced.

Figure 10 shows the normalized wave velocity vertically below the explosive charge
as a function of porosity for holes at three different pitches. For all three pitches, the
wave velocity decreases as the po .sit of the medium is increased. However, for 2 given
porosity, the wave velocity increasc. .s the pitch is increased. This behavior in stress
wave velocity is also observed in other directions (@ # 0).

Effect of Geometry

To study the effect of microstructure or the arrangement of the pores on wave
propagation characteristics, the arrangement of the holes in the porous media was changed
from geometry A (cubic arrangement) to geometry B (hexagonal arrangement). Figure 11
shows typical isochromatic fringes obtained during wave propagation in geometry B.
These fringes show more scattering and diffraction than obtained with geometry A. Figure
12 shows the wave velocity as a function of porosity vertically below the explosive charge

G7




for geometry B. The velocity in geometry B decreases with porosity like it does in
geometry A. The velocity increases as the pitch goes up for a given porosity. Although
the velocity vertically below this explosive charge shows a similar tend in both
geometries, the absolute value of velocity in geometry B is much lower than in geometry
A. This comparison is shown in Fig. 13.

For geometry B, the stress wave veiocity also shows directional dependence but
here, unlike geometry A, the velocity increases as the angle is increased from 0-30°.
Figure 14 shows the normalized wave velocity as a function of angle © for a given pitch
and varying porosities in geometry B. The velocity increases with © and, for © equal to
30, rhis velocity almost approaches the velocity for geometry A at ©=(°. A similar trend,
but in the opposite direction, can be seen for geometry A where the stress wave velocity
decreased with angle © and for ©=30" approached the wave velocity in geometry B at
©=0°. This behavior can be explained by looking closely at the microstructure the wave
sees as the angle © is increased in both geometries. Figure 15 shows a schematic of the
microstructure the wave sees at an angle of 45° in geometries A and B. It is interesting to
note that, at 45°, the pore arrangement in geometry B appears like geometry A at 0° and
vice-versa. Changing the angle further from 45° to 90° causes the microstructure to go
back to the one observed for ©=(r.

Effect of Moisture in the Pores

A series of experiments was conducted with geometry A to study the effect of
moisture in the pores on the wave propagation phenomenon. Figure 16 shows typical
isochromatic fringes obtained when the stress wave propagates in porous media. These
photographs were analyzed to study both the wave velocity as well as the stress wave
attenuation. Figure 17 shows the normalized wave velocity as-a function of the porosity
for three different pitch arrangements. The trend in velocity is very similar to the one
obtained for unsaturated media. However the velocities in the saturated media are much
lower than those for unsaturated media as shown in Fig. 18. For small porosities (1 <
20%) the amount of moisture per unit volume is very small and therefore there is no
difference in velocities. As the porosity is increased beyond 20% the velocity shows a

much more rapid drop in a saturated media than an unsaturated one. This can be
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explained to some extent by the fact that the composite density for the porous media with
water is higher than that of a porous media with air in the holes. These results are in

agreement with those obtained by others [1,2,7,9] for saturated soils.

Attenuation of the Stress Waves

The compressive wave front attenuates rapidly as the stress wave propagates through
the porous media. As in the case of the stress wave velocity, the attenuation of the stress
wave depends strongly on the microstructure of the porous media. Larger the size of ihe
holes, the higher is the porosity and greater is the attenuation of the stress wave.
Moreover, the wave shows a higher attenuation as the pitch or the spacing between the
holes is reduced. The geometry or the configuration of the holes also effects wm the
attenuation characteristics and there is higher attenuation for Geometry "B" than for
Geometry "A". This is to be expected since the stress wave undergoes much more
scattering and diffraction when it propagates through the porous media with Geometry "B”
than it does in Geometry "A".

Figure 19 shows the isochramatic fringe pattern showing the circumferential fringe
distribution around the periphery of the holes for two different hole diameters. To obtain
the attenuation characteristics, a plot of the maximum normalized fringe order vs. the hole
number (along the line theta=0) was obtained. Figure 20 shows the plot of the attenuation
curves for both the unsaturated and saturated porous media for Geometry "A" and pitch =
127mm. The attenuation curves are drawn for porosity of 11% and 20%. Figure 21
shows the attenuation curves for the case of unsaturated porous media with Geometry "B"
and porosity equal to 20% and 46%, respectively. For the sake of comparison, the
geometric attenuation in an unflawed halfplane is also drawn on the same plots.

To characterize the attenuation of the stress wave in the porous media and to
separate the geometric damping from the material damping, N,.y'” was plotted as a
function of y on a semilog scale as shown in Figs 23 & 24. These plots were analyzed to
calculate the attenuation coefficients which are shown in Table 4. These values give us
an idea of the attenuation characteristics of the porous material. Higher values of "K"

indicate higher attenuation of the stress wave in that material.
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LOSURE

Dynamic photoelasticity along with high speed photography were used to study wave
propagation in porous media. Plate specimens werse fabricated from Homalite-100 and an
array of holes, having a specific geomeury, were machined in them to simulate the porous
media. The specimens were loaded explosively on one edge and the resulting isochromatic
fringe patterns were analyzed to obtain the compressional wave velocity and the stress
wave attenuation in the porous material.

The -fress wave speed dropped with increasing porosity. For a given porosity, the
wave speed is lower for smaller pitch in both the geometries. The wave-velocity also
showed strong dependence on the micrcstructure of the porous media. Geometry B showed
- a larger drop in velocity than Geometry A for the same porosities. Due to the point
loading and the geometry of the porous models, the stress wave exhibits directional
dependence as it sees a different kind of microstructure as a function of the angle theta.

The stress wave shows appreciable attenuation in the porous media. The attenuation
observed was separated into its geometric and material components. The coefficients for
the material attenuation were calculated for different porous medias and are summarized in
Table 4. From the table it can be seen that the attenuation constants are higher for the
case of porous media with a higher porosity and they decrease for the porous media with a
larger pitch but having the same porosity. Moreover the attenuation constants are higher
for the configuration of the holes in geometry B than in geometry A.

The wave propagation characteristics also depend on whether the porous medium
is nearly saturated or unsaturated. Nearly saturated porous media show a larger drop in
wave velocity than the unsaturated media. Moreover the stress wave attenuation is much
higher in a nearly saturated medium than an unsaturated one.
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Paper H

DYNAMIC PHOTOELASTIC
INVESTIGATION OF WAVE
PROPAGATION AND ENERGY
TRANSFER ACROSS CONTACTS

A.SHUKLA  Department of Mechanical Engineering and Applied Mechanics, U niversity of Rhode Island,

Kingston, USA
H. P. ROSSMANITH

Institute of Mechanics, Technical University, Vienna, Austria

This paper deals with the dynamic contact of an explosively excited disc with another disc or a half-plane. Dynamic
photoelastic recordings show the development of the time-dependent contact area and the formation of the highly

complex diffraction pattern.

1 INTRODUCTION

The dynamic contact between elastic bodies and the
transfer of momentum and energy across the contact
area is fundamental to studies of dynamic load transfer
in granular or particulate media. When a body made up
of a large number of cohesionless particles is impacted
upon with a punch or an explosive, transient dynamic
load transfer paths develop which differ from those
established during static loading. This difference occurs
because, in dynamic loading, inertia effects play an
important role. Most of the research to date in contact
mechanics pertains either to static studies or when
dynamic impact is considered; first order discretized
lump mass models are employed. The dynamics and
mechanics of physical impact between solid bodies up to
the late 1960s is covered in references (1){4)t. Generally
in these studies the impacting body is considered rigid
and stress wave effects in the indentor are not taken into
account. Also, in collision problems, the bodies are
treated as particles and, again, wave propagation pro-
cesses occurring within the body are not taken into
account. Recently studies by Comninou er al. (5(6) have
focussed on the transmission of wave motion between
two solids. In these theoretical studies plane waves are
considered passing from one half plane to another.
Several initial conditions are looked at, including an
initial gap and also friction at the interface. A recent
experimental study of dynamic load transfer in a granu-
lar media was done by Rossmanith and Shukla (7) where
load transfer paths in both systematic and random
aggregates of disc assemblies were recorded using
dynamic photoelasticity.

This paper addresses the problem of forimation of
dynamic contacts between two solids. The experimental
technique of dynamic photoelasticity is utilized to visual-
ize the formation of contact and wave scattering between
the bodies.

The MS. of this paper was received at the Institution on 9 September !985 and
accepted for publication on 13 May 1986
t References are given in the Appendix
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2 EXPERIMENTAL PROCEDURE

The experimental method utilized in this study was
dynamic photoelasticity along with high speed pho-
tography. Dynamic photoelasticity provides global field
data during the dynamic contact, such as the change of
the state of stress in the vicinity of the contact region and
in the bulk of the contacting solids, as a function of time
and space.

In order to understand the physics of dynamic contact
between two elastic solids a series of four controlled
experiments was periormed, where an explosively loaded
disc was in contact with another disc or a half-plane and
the explosive excitation was located either at the centre
of the disc or at the rim. Figure 1 shows the photoelastic
model and explosive arrangement and Table 1 lists the
characteristics of the dynamic loading.

The circular discs of radius R = 76.2 mm and the half-
plane were fabricated from a 6.35 mm thick sheet of
Homalite 100 which is a commercially available clear
transparent polyester. This photoelastic material
becomes temporarily birefringent when subjected to a
state of stress and gives rise to optical interference fringes
when viewed in a circular polariscope. These fringes are
known as isochromatics and represent lines along which
the difference of the principal normal stresses is constant
2X9).

Dynamic loading was achieved by means of small
charges of 150 mg PETN (experiments Nos 1 and 2) or of
100 mg lead azide (PbN) (experiments Nos 3 and 4). The
explosive excitation source is located at the centre, A, of
the disc in experiments Nos 1 and 2 and at the top, B, in
experiments Nos 3 and 4. In the experiments with a

Table 1. List of experiments of dynamic contact

Experiment Location of
number Conliguration charge Charge
No. | Disc/half-plane Centre 150 mg PETN
No. 2 Disc/disc Centre 150 mg PETN
No. 3 Disc/disc Top 100 mg PbN,
No. 4 Disc/half-plane Top 100 mg PbN,
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2 kV detonation cable

Pressure
containment
device

Lead azide

2 kV detonation
cable

Explosive PETN

Fig. 1. Photoclastic model and dynamic loading arrangement

centre charge, a specially developed pressure contain-
ment device was utilized to prevent the field of view from
being obscured by the rapidly expanding cloud of com-
bustion gas products.

For photoelastic fringe pattern recording, a multiple
spark gap camera of the Cranz~Schardin type was used.
The system and its use in dynamic photoelasticity have
been documented frequently in the literature, see, e.g., (9).
The experimental outcome is a record of a time-
controlled sequence of 20 images of the spatial configu-
ration of the dynamic process at discrete times. Thus, a
sequence of 20 ultra-short fiash photographs are
obtained that show individual stages of the evolution of
the wave interaction process. In these wave propagation
experiments the camera was operated at 200000 frames
per second and provided an observation period of 100 us
with an additional initial deiay of 25 us.

3 THEORETICAL CONSIDERATIONS

3.1 Size of dynamic contact area
Consider two discs of radii R; {i = 1, 2) touching at a
point P(R,, 0) as shown in Fig. 1. Let the centres of the
discs be fixed at M (0, 0) and M,(R, + R,, 0). Upon
detonation of a cylindrical explosive charge at the centre
of disc No. 1 a circular crested detonation pulse radiates
from M,. The displacements, u,, u,, and the stresses, g,,,
dse vary according to Bessel functions. For ‘large’ values
of r, the asymptotic expansions yicld a plane wave
approach. ‘Large values’ of r are attained within 4 to §
zeroes of the Bessel function, and in the experiments this
distance r corresponds to a few plate thicknesses b (r =
8b). Furthermore, any explosively induced pulse dis-
turbance can be considered the result of the super-
position of a set of harmonic waves.

The data reduction procedures for circular cylindrical

pressure waves as developed in (11) render relations
between the strains, ¢,, ¢,, and stresses, a,, ,, and the
isochromatic fringe order distribution, N. In 2D dynamic
photoelastic wave propagation experiments an r~'
attenuation as associated with an expanding spherical
wave is commonly observed which is in marked contrast
to the r~!/? attenuation of the amplitude for cylindrical
waves as predicted by theory (12)13). For wave positions
far from the detonation centre a linear relationship
between radial stress, o,, and radial particle velocity, v,
(14), o, = pc,v, may be assumed to hold throughout the
pulse. This ‘far-field’ approximation corresponds to a
local replacement of the detonation wave by a plane
wave with r~! attenuation and is supported by experi-
mental findings.

For contact investigations, the radial expansion of the
edge of the explosively excited disc is of interest. Free
radial expansion can occur along the circumference
except in the region of contact. In Fig. 1, as disc No. |
expands, the contact area increases in time. The dynamic
contact problem is further complicated due to pulse dif-
fraction at the edge of contact and transmission across
the contact due to time dependent boundary conditions.
The situation is illustrated in Fig. 2, where two different
stages of contact area development during the passage of
a half sine pulse are shown. In Fig. 2 the distance A’'A” of
the intersection points of the two circles with radii R,

+u, and R, is an upper limit for the extension of
contact. For two discs the distance A’A” is given by

A'A" = 2a(t) = ZRI\/{(I + i) - 52} (n
R,

2

R, u; u, .\ R,)"
S (A1 UL . A =t
’ <R2+2R,R2+R2+ }<]+Rz @
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Fig. 2. Dynamic contact of two discs showing contact area develop-
ment

which reduces to ¢ = | for the disc - half plane experi-
ments. Results for Homalite 100 with ¢, = 2120 m;sec. a
half sine pulse length of A, = 12.5 mm and, of peak
fringe order N, = 30 for the disc—disc arrangement (R,
= R, = R =762 mm) and the half plane-disc arrange-
ment (R, = 76.2 mm, R, = x ). yield contact times of
12 us and maximum upper bound for the contact area of
a R £ 0007 (disc-half plane) and a R < 0.005 (disc-
disc).

Time change of size of contact area depends primarily
on the slope of the incident wave. Once contact is estab-
lished for an elemental section of the circumference,
energy is transferred to the receptor disc and the ratios of
particle speeds of the respective waves involved in reflec-
tion and transmission across the contact area are the
same as the ratios betwecen the wave amplitudes. A
typical wave front construction for the dynamic contact

————

Fig. 3. Diffraction and reflection of an incident elastic P wave during
formation of elastic contact. ——- reflected waves. - - - - transmitted
waves
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is shown in Fig 3. Time-dependent wave diffraction
about the moving contact edge during increasing and
receding contact (contact cycles) poses a challenging
theoretical problem. An exact quantitative analytical
treatment of this problem is not feasible to date. Numeri-
cal work for simulation of dynamic contact behavior is in
progress.

4 EXPERIMENTAL RESULTS AND DISCUSSION

The results of the dynamic photoelastic experiments will
be discussed here. For convenience the experiments with
centre charge and the top charge will be discussed
separately.

4.1 Dynamic contact experimerts with centre charge

The first experiment refers to the disc-half plane
gcometry. An explosive charge of 150 mg of PETN was
detonated at the centre of the disc. A sequence of three
photographs obtained during the experiment are shown
in Fig. 4. Upon detonation of the explosive charge a

Contact
length

Wave induced
cracking

+ RN

Frame 18,1 =113 s

Fig. 4. Centre charge induced dynamic contact showing P wave inter-
action
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cvlindrical longitudinal (compressive) wave, P, emerges
and radiates from the centre of the disc. Due to cracking
and breakdown of the borchole the rotational symmetry
is disturbed and this gives rise to a P wave along with a
random shear wave which quickly outdistances the
emerging cracks. Hence. P and S waves are emitted from
the detonation site and interact with the contact zone.

The first photograph, frame No. 8, taken at 1 = 56 us
after detonauon, shows the dynamic situation at a time
shortly after initial contact 1s established. The expanding
compressive incident P wave has been reflected along
the free sections of the boundary to vield a tensile P, P,
wave. Part of the energy and momentum of the wave has
been transferred across the contact. The exact location of
the front of diffracted transmitted P, P, wave 1s difficult
to locate (12); however. it 1s a common practice to iden-
tifv the wave front with a line drawn just ahead of the
N =1 2 fringe. Although the contact area is obscured by
a pseudocaustic, an estimate of the contact length was
made. At time 1 = 56 us the contact length was approx-
imately 13 mm.

In {rame No. 10 of Fig. 4. taken at t = 65 pus, the
reflected and transmitted longitudinal and shear pulses
have separated and the resulting fringe pattern in the half
pfane is similar to the pattern that would be generated
upon detonation of a concentrated charge ai the centre
of the contact zone. With increasing time after contact
the fringe pattern in the half plane unfolds into a longitu-
dinal wave P,P,, a shear wave S,P,, a von-Schmidt or
head wave. V, P,. and a Ravleigh surface-wave, R, P,.
The corresponding waves in the disc are labeled P, P,
S,P.. V,P,, and R,P,. Rayvleigh-wave-induced cracking
in the disc at a position adjacent to the end of the contact
zone was observed in this experiment.

Progressive dynamic contact formation due to shear
wave interaction with the contact 1s shown in the third
photograph of Fig. 4. frame No. 18 taken at t =113
usec. The front of the S, S, wave is located 43 mm below
the half plane boundary and this matches well with the
theoretical predictions. The R, P, Rayleigh waves have
completely separated from the other bulk waves and pro-
pagate with speed ¢y = 110 m/sec along the free bound-
ary. The increased number of fringes at the contact zone
1s indicative of increased contact stresses.

Frame 7. 1=84 u\

Fig. 5 Top charge induced dynamic contact showing P wave inter-
action

Ha
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Frame 16, r=175 us

Fig. 6. Top charge induced dynamic contact showing S wave inter
action

In a second experiment a disc assembly was used with
the same centre charge. The results were qualitatively
similar to the ones obtained in experiment No. 1.

4.2 Dynamic contact experiments with top charge

The third experiment was done with a disc-dise
assembly. A charge of 100 mg of lead azide was exploded
on the top edge of the first disc. This explosion generates
P and S waves which propagate in the bodv of the disc
and Rayleigh surface waves that travel along the circum-
ference of the disc.

The P wave which travels with a veloaty of ¢, = 2120
m/sec 15 the first wave to interact with the contact. This
interaction is shown in Fig. S

Frame No. 7. taken at ¢ = 84 us after detonation,
shows the establishment of contact where part of the
wave energy is already transferred across the contact.
The contact area is proportional to the size of the pseudo
caustic that forms at the contact zone (15). The contact
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Receding contact as leading
peaks superimpose

. .
:
L
Q o . *

Frame 14, (=215 us

Established contact as trailing
pulse superpose

r <= o

Frame 15, 1=232 us

Fig. 7. Top charge induced dynamic contact showing R wave inter-
action

length in this frame is estimated to be approximately
1.5 mm. Diffraction and transmission of the incident P
wave generates P and S waves in both discs and also
gives rise to R waves that travel along the outer bound-
aries of the discs.

The sequence of photographic recordings, Fig. 6,
shows the interaction of the incident § wave with the
contact. Frame No. 12, taken at ¢t = 127 us, depicts the
early stage of S wave diffraction about, and S wave trans-
mission across, the contact surface. Due to the shearing
nature of the wave the fringe pattern in the vicinity of the
contact region is unsymmetrical. Moreover, the experi-
mental recordings reveal that this fringe patiern oscil-
lates about the normal to the contact plane. This effect
can be seen in later frames. In frame No. 15att = 155 us
the smallest visible fringe below the contact in the recep-
tor disc is of order N = 6 as opposed to a maximum
visible fringe order of N =3 in frame No. 12. This
increase is indicative of severe contact stresses. This is
also evident from the increase of the size of the pseudo-
caustics at the edges of the contact area. In frame No. [5
the contact length is about 2 mm. Frame No. 16 at
t = 175 us shows the propagation of the S, S, wave and
the R, S; Rayleigh wave generated by shear wave inter-
action. The Rayleigh wave interaction with the contact
could not be studied in this experiment as the time dura-
tion of the experiment was not long enough.
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The second experiment was performed with the disc -
half plane assembly. The timings were adjusted so that R
wave interaction with the contact could be observed. The
interaction of the P and S wave with the contact were
similar to the previous experiment. The R wave inter-
action is shown in the sequence of photographs in Fig. 7.
Frame No. 13, taken at t = 210 us, shows the R waves as
they approach the contact region. Since the leading part
of the R wave exerts circumferential tension, the contact
area will recede due to radial contraction. This is shown
in frame No. 14, taken at ¢ = 215 us, where the leading
peaks of the R waves overlap and the contact has been
lost. In frame No. 15, taken at ¢ = 232 us, the compres-
sive trailing parts of the R waves superimpose and
contact is re-established. Part of the encrgy of the R
waves is transferred into the half plane, as can be seen
from the fringe development in frame No. 15.

§ CONCLUSIONS

Dynamic photoelastic investigation of the interaction of
elastic stress waves with contacts in solids provides full-
field information of diffraction, reflection, and transmis-
sion processes as a function of time. Qualitative
evaluation of dynamic isochromatic fringe patterns
reveals that the individual wave types interact with the
contact region in a distinctive way.

Incident P waves give rise to relatively strong trans-
mitted and reflected P, S, and R waves. The intensity of
the r- Jected R waves is high enough to initiate cracking
on either side of the contact zone in the donor disc. This
occurs due to the joint action of large tensile stresses at
the surface in the leading part of the R wave and high
friction in the contact area.

During S wave interaction with the contact compara-
tively little energy and momentum is transferred across
the contact area. The interface shearing stress and shear
deformations reverse sign during S wave interaction.

Very little energy and momentum are transferred into
the receptor solid during the R wave interactions because
of receding contact during the passage and superposition
of the leading R pulse. Although contact is re-established
during the passage of the trailing compressive R pulse,
the normal component of displacement is very small and,
consequently, little energy is transferred across the
contact.

Further work on the quantitative evaluation of experi-
mental fringe pattern recordings on the basis of the
approximate wave analysis developed in the paper is in
progress. Attention is focused on quantities of interest,
such as distribution of contact stresses as a function of
time and space, and amount of energy and momentum
transferred across the contact area. The experimentally
recorded patterns will serve as input for numerical simu-
lation of dynamic contact behaviour. A hybrid
experimental-numerical analysis of contact stress fringe
pattern for a quasi static problem where the wave length
is larger than the particle size has already been developed
(16).
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Paper 1

Dynamic Load Transfer due to Explosive Loading
in Virgin and Damaged Granular Rock Media

by

V. Prakash and A. Shukla
Department of Mechanical Engineering and Applied Mechanics
The University of Rhode Island
Kingston, RI 02881

Abstract

An experimental investigation is conducted to study dynamic load transfer in granular
rock media. The granular media is modelled as a one-dimensional chain of disks fabricated
from four different types of white Vermont marble. The study mainly focusses on the effect
of the microstructure on transient pulse propagation. The transient pulse is generated by
exploding a small charge of lead azide on top of the disk assembly. During wave propagation
dynamic contact strains are recorded using strain gages. This information is used to
calculate wave velocity and attenuation as a function of the cumulative damage in the disk
assembly.

Introduction

The response of particulate materials to impulsive loading, has been of substantial
interest to both engineers and researchers. The stress wave propagaicion in such a media,
due to explosive loading, depends primarily upon the load transfer process by which the
mechanical signals are transmitted. This phenomenon is related to the properties, geometry
as well as the microstructural arrangement of the particles in the media. As the stress wave
passes through the system rearrangement of the particles takes place. Further, depending
upon the amplitude of the stress wave, damage can occur in the particles. Thus the

transmitted stress-wave carries along with it the information regarding the microstructural
re-arrangenents of the grains. The wave propagation characteristics of the resulting red::
is different as compared to that of the virgin mater.al. Mcreover, it has been cbserved tha-
for real earth materials like sand and rock, this load transfer phenomenon is also a functien

of the state ard the history of the applied load.

The concept of modelling granular media as an array of elastic particles led to the
initial attempts at predicting wave propagation through such media. Early work by Iida
{1,2], Hughes and Cross (3], Hughes and Kelly (4], Gassman and Brandt (5] employed a normal
granular contact force concept. Anexcellent review by Deresiewicz (6] summarizes both the
static and dynamic studies prior o 1958. Experimental studies of the load transfer in
granular media have been previously conducted by Drescher and DeJosselin [7] who simulated
granular media by using assemblies of circular disks. They studied the static load transfer
through the assembly of the disks using photomechanics.

Rossmanith and Shukla [8] extended this idea to the dynamic case with the help of high
speed photography. Additional dynamic work was also carried out by Shukla and Damania {9’
and Shukla and Zhu [10].
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The present paper focuses attention on the wave propagation and load transfer in a
single one dimensiocnal chain of disk assembly. The disks were fabricated from four different
grades of white Vermont marble each having a different microstructure. The stress wave is
generated by exploding a small amount of Lead Azlide on top of the disk assembly. The
dependence of the stress wave velocity on the microstructure of varicus grades of marble
rccks is studied. Attempt has also been made to investigate and quantify the damage that
occurs in these one dimensional aggregate of disks under repeated stress wave loading.
Tensile splitting tests are performed to estimate the residual strength of the damaged disks.
Photomicrographs are taken at various stages of the shcck wave loading process. Moreover,
the stress-wave velocity as well as wave attenuation characteristics are obtained as a

function of the accumulated damage in the grains.

The results 1ndicate that a correlation exists between the grain size and the stress-
wave velocity. It 1s seen that the average stress-wave velocity 1s higher for rock disks
with larger grain size. Rapid attenuation in the stress wave peak load occurs in the first
few disks and then attains a steady rate of decay. The residual tensile strength of the
disks tirst decreases with the applied load and then approaches a limiting value before
eventually fracturing. The stress-wave velocity rises considerably and reaches a terminal
velocity upon repeated shock wave loading. The photomicrographs taken at various stages of
the shock wave loadings indicate that large scale crumbling and pitting takes place near the

contact zone. This leads to microcracking and eventual failure of the disks.

Experimental Procedure and Analysis

A series of experiments are conducted using a single chain assembly of disks as shown
in Fig. 1. These disks were fabricated from four different cores of Vermont marble having
different microstructures as shown in Fig. 2. The disks were 1.25 inches (31.75mm) in
diameter and 0.5 inches (12.7mm) in thickness. The assembly of the disks was explosively
loaded using 15mg of Lead Azide in a specially designed steel charge holder. The resulting
dynamic load transfer phenomenon in the disks was studied using electrical resistance strain
gages. In the experiments the wave length of the explosive loading pulse was sufficiently
large as compared to the disk diameters, thus resulting in a quasi-static type of loading
around the contact zone. Hertz contact theory along with the experimentally obtained strains

were used to obtain the contact stresses, strains and the dynamic loads.

From the Hertz contact stress theory, the stress field equations around the contact

region of two bodies, as shown in Fig. 3, are represented as:
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where ¢l and ¢2 are

¢1 - n (M+N)
MN / 2MN+2x°+22°-2b°

¢, = x (M-N)
MN J 2MN+2x'+22%-20°

M = /J(b+x)+z’ , N = J(b-x)+z2® and
2
A - 1 (l-vl + .VZ)
(A+B) E E,
1 2
A=176(L +1 +1 +1 )+
R, R, R R,
1/6/0(L - 1o +1 - 1.0 -4 - L) - 1l)Sin’a
Ry B Ry Ry Rl Ry Ry R
B=1/4¢(1_+1 +1 +1)
R, R, R

S 1/6/((L - L+ 1 - 1)) - 4l - 1) -1)sSin‘a
Ry Ry Ry By Ry Rl Ry R
Subscripts 1 and 2 refer to the two bodies making the contact as shown in Fig. 3.

R R R, and R! are the principal radii of curvature at the point of contact and

'
1 1 2 2
@ is the angle between the corresponding planes of the principal curvatures. "E" is the
modulus of elasticity and Y is the poisson's ratio.

Since the experiments were conducted for the single chain of disks, the contact stress
field was defined by only one parameter and that is the contact length, 2b. Frr the two-
dimensional plane stress problem the contact strains are given by:

€ =
zz

(0,, Vo ) (4)

1
E

Substituting for o, and o, from equation (1) and equation (2) and noting that =0
(frictionless case for the single chain experiments) the contact strain is obtained as a
function of the coordinates (x and 2z) and the contact length (2b). Since the strain gages
are mounted normal to the contact point the coordinate "x" is equal to zero. The contact
strain is plotted as a function of the normal distance from the contact for different values
of (2b) as shown in Fig. 4. The location of the strain gage from the contact is known (i.e.
"z" is known). Also, the strain at that location is known from the strain gage experiment.
Thus by interpolation the contact strain and the contact length can be obtained.

Since the strain gages have a finite size it averages the strain over its grid area.
This average strain is not equal to the strain at the grid geometric center. From the plot
of the strain vs distance it can be seen that steep gradients in the strain exist near the
contact point and the strain profiles peak around z = 1.0 mm. As the distance normal to the

contact point increases the strain gradients reduce and the strain profiles become fairly
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scnstant atter z = omm. Thus it 1s important that the stra:n gages be placed beycnd 2 = %

- SC as to minimize the averaging error.

To estimate the error induced due to the averaging effect the percentage error 1is
calculated by considering a straln gage with grid size (LxL) positioned at a height "z"
above the contact point. Now, the strain € at the geometric center of the strain gage is
calculated from equation 4. To evaluate the average strain the strain gage grid is divided
into a matrix of 100 x 100 points and the stfain at each point is evaluated. From this the
average strain is computed. The results are presented in Fig 5, which shows the error due
to averaging effect as a function of the gage grid length, L. The results are plotted for
different heights, z above the contact points. The error is higher for strain gages closer
to the contact points because of the steep strain gradients. Also the error increases as
the strailn gage size increases. For the size and the location of the strain gages used in
thls study the error is about 2%.

To investigate the relationship between the wave velocity and the size Of the grains
a one dimensional assembly of disks as described earlier was used. Strain gages were bounded
on four separate disks in the chain at a height of 7mm above the contact point. The strain
gages were suitably connected to the Nicolet Oscilloscope through bridge amplifiers. When
the explosive was fired, the oscilloscope was triggered. Strain as a function of time was
recorded. The transit time and the rise time of the gage are small (less than 1 %) as
compared to the pulse duration. Also the frequency response of the bridge amplifiers was
adequate for the experiments.

To study and quantify the damage induced in the media due to the propagation of the
shock waves both the residual strength as well as the wave velocity was computed for the
single chain of the disk assembly for repeated loadings. The residual tensile strength was
measured by the tensile splitting tests. In these tests the disks fabricated from the cores
of different grades of marble were laid vertically between the loading plates of the Instron
machine in the compression mode. The load was slowly increased at a very slow-rate until
the specimens failed by splitting across the vertical diameter. Assuming linear condition

within the core the approximate tensile strength ¢,, was calculated using the equation:

g = 2Phax (5)

mDT
where pmax - applied load at failure

D - Diameter of the core
T = Thickness of the specimen

To estimate the residual strength of the damaged rock disks 15 mg of Lead Azide was
used to generate the shock wave through the assembly of disks. Tensile splitting test was
performed on the first two disks taken out from the top of the assembly. Two new disks were
placed on top of the disk assembly to replace the damaged disks. The chain assembly, this
time was loaded twice, and again the top two disks were taken out and their residual tensile
strength was obtained. This procedure was continued until the residual tensile strength was

obtained for the disks which had been shocked six times.

To study the effect of compaction and the damage of the disks on the wave velocity
strain gages were bonded on the first, second, fourth and the seventh disks in the chain
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assembly. Again, 15mg of lead azide was used to generate the shock wave through the disk
assembly. From the peaks of the strain profile the stress wave velocity was computed every
time the disk assembly was loaded. This procedure was repeated six times, keeping the
location of the strain gages the same, and each time average wave velocity and the stress
wave attenuation was computed. This average wave velocity versus the number of times the
assembly was loaded was plotted to obtain the variation of the wave velocity as a function

of the load history.

RESULTS AND DISCUSSIONS

Wave Velocity in Virgin Rock Disk Assembly

A series of experiments were conducted with strain gages mounted 7mm from the contact
point of the disks. Strain versus time plots at the location of the strain gages were
recorded. A typical strain gage output profile is shown in Fig. 6. Position of the wave
front versus time plots were drawn for marble "A", marble "C" and marble "D" disk assemblies.
The average stress wave velocity was computed by drawing a least square fit line passing
through the experimental points. The results indicate that the average wave velocity
increases with the increasing grain size of the marble. The average grain size
of marble "A" was 0.32mm and the stress wave velocity was 1210 m;sec. The grain size of
marble "C" was higher and the corresponding stress-wave velocity obtained was 1425m/sec
while marble "D" had the largest averade grain size and a stress-wave velocity of 1525 m/sec.
This trend is to be expected as the stress wave encounters a fewer number of grain boundaries
or obstacles as it propagates through the granular rock material having a larger grain size.

To study the attenuation in the three different grades of marble mentioned above the
normalized peak strain was plotted against the stress wave propagation distance. As seen
from Fig. 7 all the three different grades of marble follow more or less the same pattern
of attenuation, but the marble with the smaller grain size shows a higher attenuation. At
a given contact the strain increased from zero to a peak value and then gradually decreased
to zero. A typical duration of the pulse at the contact was 75 microseconds. The wavelength
of the pulse was calculated by taking the product of the average wave speed and the pulse
duration at the contact. The wave length obtained was 95 mm (around 4 disk diameter). Due
to the internal losses within the disk, energy spent in closing the contact and some
frictional and reflection effects, the peak contact loads dropped as the distance from the
explosive loading-was increased. Using the values of the normalized peak strains it is seen
that a rapid attenuation in peak strain occurs as the wave propagates through the first
contact. After this the decay in peak load is gradual with distance and attenuates tc 35%
of its peak value in the next nine disks.

The tensile splitting tests were performed on all the four different grades of virgin
marble disks. Table "A" lists the tensile failure strength of the four disks. Results
indicate that marble "C" had the highest tensile strength of 1440 N/mz while marble "D'" had
the lowest tensile strength of 930N/m’. Marble "A" and marble "B" had almost similar tensile
strengths of 1145N/m2 and 1125N/m2 respectively.

WAVE PROPAGATION IN DAMAGED ROCK DISKS

To quantify damage occurring in the rock disks, tensile splitting tests were carried
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Sut to obtain the residual tensile strength. The tensile strength of the first two disks
was only determined since most of the attenuation in stress waves occurs in these disks.
Table B lists the residual tensile strength of the first two disks as a function of the
number of times the assembly was lcaded. It is observed that after the passage of the first
shock wave the residual strength of the first disk falls down to almost 40% of its value in
the virgin state. Additional drop of 10 percent in the tensile strength occurs when the
second loading wave passes through the disk assembly. The residual strength remains fairly
constant as tne number of stress-wave loadings are increased fur-ther and eventually the disk

fails by fracturing across the surface.

The tensile strength of the second disk in the assembly drops down by only 10% after
the first two stress waves. This happens because the cumulative damage occurring in the
second disk is small as compared to the first disk as the peak stress value attenuates to
almost 60% by the time the stress wave propagates one disk diameter. As the number of shock
wave loading is increased further the residual strength remains fairly constant until the
fourth loading wave after which the tensile strength falls to 72% of the tensile strength

value in the virgin state.

Next, the anmount of explosive was gradually increased and its effect on the residual
tensile strenath studied. The results are shown in Table C. When 15 mg of lead Azide was
dsed the tensiie strength of the second disk falls down to 95% of its value in the virgin
sTate atter the passage of one shock wave. When the charge is increased to 20mg the tensile
strength falls down to 90%. As the explosive charge is increased to 50mg the tensile strength
drops considerably to 55%. 1In case of 20mg, 40mg and 50mg of lead Azide the first disk
talled by fracturing across the surface. It is observed from all the experiments that the
residual tensile strength of the disks approaches a limiting value of 650N/m2 after which

upon repeated loading the disk fractures.

The average wave velocity in the chain was calculated as a function of repeated
explosive loading to study the effect of the cumulative damage on the wave velocity. Fig.
3 shows the plot of the average wave velocity as a function of the number of loading waves.
The stress wave velocity is seen to increase considerably after the passage of first loading
~wave. The stress wave velocity increases to 1400m/sec from 1080m/sec which is the velocity
ocbtained by loading the undamaged disk chain assembly. As the number of stress wave loadings
is increésed further the wave velocity undulates about the terminal velocity of 1450m/sec
and eventually falls down considerably as the cumulative damage increases and fractures the
disk. The increase in wave velocity with increased number of stress wave locading is a result
of the compacting process by which the disks come closer to each other thus increasing the
resultant st1 fness of the disk chain assembly. This also results in closing of the
preexisting voids and microcracks in the disks. The surface cracks impede the progress of
~he stress-wave as it has to travel around these cracks. Thus the compactive process re-

duces the transit time of propagation of stress waves resulting in an increase in velocity.

As the number of shock wave loadings is increased damage occurs around the contact zone
iue to high contact stresses and large scale crumbling and pitting is observed near the
contact zone. Figure 9 shows the photomicrographs of the area near the contact zone of the

1isks after the passage of the first two stress waves. The stress wave velocity reaches a
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terminal velocity at this stage. Upon repeated loading the microcracks grow and engulf the
entire contact zone. These microcracks combine together to create open cracks on the disk
surface as shown in photomicrograph in Fig. 16. This microcracking of the contact zone
lowers the stiffness of the assembly and the cracks impede the propagation of the stress wave

and hence lower the stress wave velocity.

CONCLUSTONS

Dynamic strain gage technique is employed to study wave propagation and dynamic load
transfer in granular rock media. The granhular rock media was modelled as a one dimensional
array of circular disks fabricated from different grades of Vermont marbles having different
microstructures. The dynamic data was analyzed to obtain average wave velocity, stress wave
attenuation for both virgin as well as damaged rock media. The residual strength of the rock
disks was estimated after the passage of the stress wave using tensile splitting tests. The
damage in the disks was studied by taking optical micrographs of the disk surface. The
results indicate that:

1. A correlation exists between the microstructure of the rock material and the stress
wave velocity. Larger the grain size of the rock media higher is the stress-wave
velocity.

2. Rapid attenuation in the peak contact loads, and thus the amplitude of the stress wave,

takes place initially as the wave propagates through the granular rock media and then
approaches a steady rate of decay. It is observed that the stress wave attenuation
decreases as the average grain size of the marble increases.

3. The stress wave velocity increases sharply after the passage of the first shock wave.
Upon repeated explosive loading the stress-wave velocity approaches a terminal velocity
and eventually falls off as the disk fails by fracturing across the surface.

4. The residual tensile strength of the disk decreases as the number of shock waves are

increased. Further, a limiting residual strength value exists which remains fairly
constant upon repeated loading until the disk fractures.

Acknowledgements-

The authors would like to acknowledge the support of the Army Research Office under
grant no. DAA L03-86-K-0125.

References

1. Iida, K., "Velocity of Elastic Wave in sand", Bulletin Earthquake Research Institute,
Volume 17, 1939, pp. 783-807.

2. TIida, K., "Velocity of Elastic Waves in a Granular Substance", Bulletin Earthquake
Research Institute, Japan, Volume 27, 1949, pp. 11-16.

3. Hughes, D.S. and Gross, J.H", Elastic Wave velocities at High Pressures and
Temperatures", Geophysics, XVI, 1951, pp 577-593.

4. Hughes, D.S. and Kelley, J.L., "Variation of Elastic Wave Velocity with saturation in
Sandstone", Geophysics, XVII, 1951, pp 739-752.

5. Grossman, F., "Elastic Waves through a packing of Spheres", Geophysics, XVI, 1951, pp
673-685.

6. Deresiewicz, H., "Mechanics of Granular Media", Advances in Applied Mechanics, v,
Academic Press Inc., 1958,

7. Drescher, A. and DeJosselin de Jong G., "Photoelastic Verification of a Mechanical
Model for Flow of Granular Material', J. Mech. and Physics of Solids, 20, pp 337-351,
1972.

17




10.

"Photoelastic Investigations of Dynamic Load Transfer
42, pp 211-225, 1982.

and Shukla, A.,
Acta Mechanica,

Rossmanith, H.P.
in Granular Media",

Shukla, A. and Damania, C., "Experimental Investigations of Wave velocity and dynamic
contact stresses in an assembly of disks", Experimental mechanics, Vol 27-number 3, pp
268-281, 1987.

Shukla, A. and zZhu, C.Y., "Influence of the Microstructure of Granular media on Wave
Propagation and Dynamic Load Transfer", J. of Wave Materlal Interaction, vol. 3, HNo.
3.

k ) (r0n) At £ - (10e) ARBLE O, Ly F1g 3. Schematic of the two bodies 171 contact.
Fig 2. Photographs showing the microstructure of the
) four different marbles.
y
+
13 1. A single zhain asseably of disks.
-
» 20 T 1 T 1 r 7 v 7 T T T T ~J T
- 4
S 1a[ Aspect Ratio &= 1.0 . 4
- - ‘ . l‘ -
2070 —— ——r— > = 16 - ) ’ _—
o . .
5 :_ Dynamuc Properties of Vermont Marble 1_‘- @ - R a J
9063 & | Elastic Modulus, € =413 GPs ; <“,U S g4k . . . 4
0086 o | Possans Rawo, vz 023 j ooV . . ‘
o w r ¢ . ' : J
£ ooe9 j 12: Z,=3mm 4 mm * e .
s b : ) mm, *
£ oou [ ] £ ol . T smm, ]
= v i . . . -
IR .{ E 3 . . K 6 mm. 4
- (30 - Han Contact Length b 8 ‘ : . .t -1
ooz8 b 12 9 ] w L . 7 mm-
z . - 4 w . o .
z 0021w 4 g 6 .t 7
n o -, '\\._.. fud b ..° et 4
2014 > - S, 9 2 ° *
—— e w 4+ . et h
“08 ———— e ————— . .
0007 e i —. sy < t . 1
—— o — o 2 F < 1
0000 bu L a1 i L T y- g_-' L Vet
0 2 4 8 8 10 12 14 1@ 18 . HTH
20 0 saafandingled PO U N S S
DISTANCE . Z (mm) 00 05 10 15 20 25 30 35 40 45 50
Fig 4 “Tontact strain as a function >f the normal
distance. GAGE LENGTH , L (mm)
Fig 5. Averaging error as a function of the strain gage
size.

b s casteey e e




551 \ 1280 T T T T T T
2% r b
— 3137 3% ~ 1.125 | ® Marpie A -
B A E L 8 Mardle C .
Z ovs - E 1.000 t ° > Marpie D
2 £ .
- 250 -
- "N 0.875 -
- z2s - ~ b -
2 v
T Tol === - A 0.750 - -
o \,?a—~=<¢><T\ — e ]
Do ' ,\//’\/\ £ -
N ‘ Ve < oe2s| z
3 ssor \ XJ - g . -
3 oovsr L g 0.500 - S -
F F . - .
3 o v 8§ oarsk - -
3 < 9 . [ )
25 ; L] L] - .
G [ g 0.250 + ° ; e
z &0 2c ac 240 12C 383 @20 48T Cz> 3
“IME. 1ip8) 0.125 -
0.000 i " i L 1 1 P L : " N
i . ) ‘ . 1 4 0 a
Fig 6. A typical strain preofile obtained during 0 40 80 120 160 200 240 280 320 36 99
experiment.
periment POSITION OF WAVEFRONT . D (mm)
Fig 7. Normalized peak strain as a function <f posizi:ion
from explosion.
(10x} HIGHLY DAMAGED MODEL 1 mm
Fig 9. Damage as a result of stress wave propagation.
1500
—_ ! o~
g 14804 PN
@ - Np ~ O
¥ 1eqd & T NN
= ! / \
~ 1350-’ h A
> : \
g 1xm1 / o
G 12%04 ! '
S : !
o 12004 /
> ] f
1 X
W 11304 J
= vmﬁ
] L4
I 10%04
1000 4+——— - e
] 1 2 3 4 5 8 7 8 9 ‘9
NUMBER OF SHOCK WAVES THROUGH THi DISK ASSEMBLY
Fig 3. Thange in wave velozity with repeated i%ading
(10x) 1mm
Photomicrograph showing damage near the roantact

Fig 10.

-

zone.

19




TABLE A

STRENGTH N/m’) OBTAINED FROM TENSILE SPLITTING TEST

ROCK AVERACE
TYPE ! 2 [ STRENGTH
MARBLI A 1130 1040 1180 1180 111s
MARBLE 1280 1020 1 1070 1125
MARBLE C 14560 15490 1380 1385 liul
MARRLE D 330 1140 1120 0 §12
TABL. B
NUMBER OF TIMES THE RESIDUAL TENSILE
SHOCK WAVE PASSED STRENGTH
THROUGH THE DISK DISK (N/m")
CHAIN ASSEMBLY NUMBER
(15 mg OF LEAD AZIDE)
1 610
1 2 1160
1 610
2 2 980
1 640
3 z oD
1 FRACTURED
4 2 1030
1 670
5 2 690
TABLE C
LEAD AZIDE RESIDUAL TENSILE STRENGTH
(mg) (N/m*)
DISK =1 DISK =2
15 610 1160
20 fractured 1070
40 fractured 780
S0 fraccured 633
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