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Abstract

The objectives of this research are to develop analytical and computer-aided design tech-
niques for monolithic microwave and millimeter-wave integrated circuits (MMIC & MIMIC) and
subsystems and to design and fabricate those ICs. Emphasis was placed on heterojunction-based
devices, especially the High Electron Mobility Transistor (1ICMT), for both low-noise and
medium-power microwave and millimeter-wave applications. Circuits to be considered include
monolithic low noise amplificrs, powsr amplifiers, and distributed and feeapack amplitiers.
Interactive computer aided design programs have been developed, which include large-signal
models of InP MISFETs and InGaAs HEMTs. Further, a new unconstrained optimization
algorithm-POSM has been developed and implemented in the general-purposc Analysis and
Design program for Integrated Circuit (ADIC) for assistance in the design of large-signal non-

linear circuits.

We have developed an accurate analytical drain current-voltage characteristics model for
HEMT devices based on the nonlinear charge-control formulation which describes the variable
offset distance of the Two-Dimensional Electron Gas (2-DEG) from the heterointerface in a more
consistent manner and with greater accuracy. The simplicity of this model makes it well suited
for Computer-Aided Design (CAD) applications in the analysis and design of nonlinear HEMT
devices and integrated circuits. In addition, we have developed a general-purpose finite-element
two-dimensional semiconductor device simulation program, which is able to analyze and simu-
late various device structures :..iucig homo- and hetero-junction III-V compound

semiconductor-based devices with arbi...  geometries.

The work also included the synthesis, growth, characterization and device prototype
development employing In,Ga;_, As ternary compound semiconductor material. Pseudomorphic
InGaAs HEMTs with higher currents and therefore, improved power performance in the high fre-
quency rangc are suitable for millimeter wave integrated circuit applications. Single hetcrojunc-
tion In,Ga gAs/GaAs and double heterojunction In ;sGagsAs/GaAs HEMTs of 1 pm and .25
pum gate length have been fabricated. Currents up to 310 mA/mm and 510 mA/mm have been
measured for the 1 pm single and double heterojunction devices. The 0.25 pm devices had a f,,,
of 85 GHz. Also reported are a new design technique for power distributed amplifiers using
large-signal S-parameters from harmonic balance analysis and design examples of distributed
amplifiers using the MESFET and HEMT devices.




I. Introduction

Due to their superior high frequency and high speed capabilities, III-V compound
semiconductor-based devices appear to be very attractive for microwave and millimeter wave cir-
cuit applications. New fabrication techniques such as Molecular Beam Epitaxy, high-resolution
Electron Beam Lithography, ... etc. allow novel high performance devices to be realized in the
laboratory.

Computer aided design techniques have to keep abreast of the fabrication technology and
precedes it, if possible, because the whole design must be made a priori and the circuit perfor-
mance are simulated via CAD tools, if we adopt a monolithic integrated circuit approach. The
computer-aided design of microwave circuit is now commonplace. Even though several commer-
cial CAD packages are available, they are originally devcloped for the analysis of linear elec-
tronic circuit in the low frequency region and with limited number of device models available.
Also those models are valid in a narrow operation range and are therefore limited in their applica-
bility to the latest GaAs MMIC and MIMIC technology.

There is a growing demand for the improvement of the CAD tools available for the MMIC
design and their further extensions to the applications for MIMIC design. In order to analyze
MMIC’s up to the millimeter-wave region, a simulator should be able to analyze a circuit design
in terms of its topological and physical parameters including frequency dependence. The built-in
device model of the circuit simulator should be accurate and simple in expressions even the non-
linearity of the device characteristics is taken into account so that the circuit simulator could run
efficiently.

The high electron mobility transistor, HEMT, has become an important device because of
it’s high gain and performance at high frequencies. The pseudomorphic HEMT, based on the
strained layer In,Ga;_, As epitaxial material, in particular, has potential for being the device of
choice for millimeter wave integrated circuit applications[1,2]. HEMTs employing InGaAs have
higher frequency performance than the conventional AlGaAs/GaAs HEMT because of the higher
electron mobility and velocity of the InGaAs compared with GaAs. The research presented is
concerned with the growth of pseudomorphically strained In, Ga;_, As/GaAs heterostructures and
the tailoring of the composition and layer structure for HEMTs. Power performance of devices at
high frequency will be an important issue for MMIC’s. Prototype devices of 1 pm and 0.25 um
gate length, with higher currents have been fabricated and cvaluated, showing the potential of
these devices to mect these needs.

The distributed amplifier is based on the principles of the artificial transmission lines into
which the input and output capacitances of an active device are absorbed, and then the gain-
bandwidth product of the distributed amplifier can be increased. Using the pscudomorphic
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InGaAs/GaAs devices reported here, several distributed amplifiers with very broad bandwidth
were designed and simulated at UCSD.




II. Computer-Aided Design

With the increasing complexity in modern semiconductor device structures and integraied
circuits, the use of computer programs have proven 1o be valuable aids in the design, develop-
ment and characterization of new devices and integrated circuits. The process of CAD consists of
three important segments, namely :

I Componel.” modeling
[1  Circuit analysis
III  Optimization.

We will present the research results on these subjects in the following sections.

2.1 Device Modeling

Device modeling has played an important role in the computer analysis and simulation pro-
grams. Device models can be considered in two broad categories: analytical and numerical
models. At present, the relative importance of analytical and numerical models is clearly esta-
blished: the former are especially useful in circuit simulation programs, where computational
efficiency is the main concemn. The latter, instead, arc being increasingly used for verification of
analytical model and as design tools to predict the achievable performance of a new device which
has not been fabricated. III-V compound semiconductor devices show great promise for use in
high-performance integrated circuits. Accurate analytical modeling and numerical simulation of
modemn devices become quite involved and time consuming. Difficulties in the modcling of
active devices have limited the use of CAD techniques at microwave and millimcter wave fre-
quencies. To aid in understanding the physical operation of these devices and to optimize their
design, accurate dcvice models, especially for heterostructure-based devices, arc required. The
aim of this research is to develop simple and accurate analytical models and efficient numerical
models for III-V compound semiconductor devices, which can help in design, characterization,

and optimization of high-frequency microwave and high-speed digital integrated circuits.

2.1.1 Analytical model

A CAD-oriented analytical model usually contains sceveral parameters which can be
adjusted by fitting expcrimental data; so doing, reasonable accuracy can be achicved. However,
the inadequacies of thec model may be compensated by data fitting process and those paramceters
can hardly be traced back to their physical meaning. Thus, in order to link device performance to
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the process parameters, simple models based on device physics with a minimum number of fitting
parameters are more desirable. In other words, a device model suitable for MIMIC design and
optimization should encompass the following features : (1) It should include the effects of
process-related device parameters (dimensions, material parameters, doping profile, channcl
thickness, recess depth, etc.). Device-circuit interactions play an important role and can not be
ignored. (2) Device models must be computationally efficient to allow for simulation of circuits
in an economic fashion. (3) The model must provide the circuit designer with synthesis capabil-
ity. (4) The device model must have nonlinear capability. From this point of view, we have
improved the charge control models for HEMTs and MISFETS by taking the nonlinear variation

into account, and which resulted in more accurate drain current-voltage characteristics models.

A. HEMT (High Electron Mobility Transistor)

The analytical models most widely used for characterizing HEMT performance arc based
on the linear charge control model which either neglects the variation of Fermi potential with the
applied bias or assumes a constant correction distance to account for the quantization effect in the
direction normal to the heterointerface plane. We have developed a simple and more accurate
nonlinear charge control model [3] (see Appendix A), derived from the triangular potential well
approximation. Based on the analytical nonlinear charge control formulation, we further
developed an analytical HEMT drain current-voltage characteristics model [4] (see Appendix B),
with which the gain compression phenomena near the pinchoff regime and the high parasitic
MESFET conduction are more accurately described. Moreover, the simple and analytical form of
the model expression make it very suitable for CAD applications.

B. MISFET (Metal-Insulator-Semiconductor Field-Effect Transistor)

As compared with the empirically optimized Si-SiO; interface, compound semiconductor
I-S interfaces are generally characterized by high density of interface states with a non-uniform
distribution within the energy band gap. To obtain more accurate description of the modulation
of surface potential by external bias, a simple empirical distribution of interface states within
energy band gap is included in the charge control formulation. The results show that the inclusion
of interface states distribution profile into drain I-V characteristics model leading to a more accu-
rate description of output characteristics of III-V MISFETs [5] (sece Appendix C).

2.1.2 Numerical model

As device configuration and fabrication process steps become complicated, the analytical
approach is limited in its accuracy for describing two-dimensional structures, such as rccessed
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gate transistors, or small-scale devices where fringing fields and other multi-dimensional effects
predominate. Accordingly, numerical models are necessary, and which can serve as (1) an aid for
a deeper understanding of device behavior, (2) an aid for the development and validation of
CAD-oriented analytical models, (3) a predictive design tool for device performance optimiza-
tion. We have developed a simple and feasible finite element discretization method [6] (sec
Appendix D) consistent with the exponentially fitted Scharfetter-Gummel scheme for variation of
carrier densities, in our general-purpose two-dimensional Semiconductor Device Analysis pro-
gram (SDA). Recently, we have extended the application of SDA program to the simulation of
I11-V compound semiconductor devices, including homojunction and heterojunction. The simula-
tion results of two example devices of

A. HEMT (High Electron Mobility Transistor)

B. MESFET (Metal-Semiconductor Field-Effect Transistor)

are reported. The simulated distributions of potential and carrier confirmed the validity of the
assumption of nonlinearity in the charge control formulation used in the analytical I-V model.

Two-Dimensional Finite-Element Models for HEMT and MESFET Devices

High electron mobility transistors are becoming increasingly important for the provision of
sup<cricr high gaii, high performai.ce devices for microwave and millimeter-wave applications.
To increasc the transconductance gy, and cutoff frequency f;, device geometries must be scaled.
The future trend is to reduce the minimum feature size down to deep submicrometer dimensions.
As the feature size is scaled to this range, careful consideration of short channel effects and hot
carrier effects in the conduction channel is crucial. To this end. a better understanding and
analysis of device operation is necessary for the successful development of device and accurate
prediction of its performance. Two-dimensional numerical device models are suitable for investi-

gating the details of intrinsic complex nonlinear characteristics in the scaled devices.

To date, papers published on full two-dimensional modcls for HEMT devices are very few
[7-11]. In addition, these models are restricted to finite-difference methods, which arc not appli-
cable for simulating irregular structures such as recessed gate structures commonly uscd in the

enhancement-mode HEMT devices.

Recently, we have successfully developed a gencral-purpose semiconductor device simula-
tor, which is capable of simulating various device structures with arbitrary geometrics, based on
new finite-clement discretization employing the Scharfetter-Gummel (S-G) scheme [6]. By
means of this devicc simulator we have developed two-dimensional numerical m~-¢ls for HEMT

and MESFET devices following the formulation for heterostructure in [12].
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To demonstrate the effectiveness and accuracy of the new two-dimensional modcel, the
simulation results of a 1 pm AlGaAs/GaAs depletion-mode HEMT d~vice are first reported. The
simulated DC current-voltage characteristics of the HEMT device, whose geometric structure and
simulation mesh are shown in Fig. 1 respectively, is piotted in Fig. 2. It is obvious that the gate
current plays an important role in the forward gate bias region, where in the low drain bias region
the source current dominates and shows a thermionic emission current, which is suppressed in the
reverse bias region. The potential and clectron distribution plots are shown in Fig. 3 and Fig. 4.
From the distribution plots we can sce the existence of two-dimensional clectron gas at the
heterointerface due to the conduction band discontinuity, and its being pinched-off by the drain
bias resulting in the current saturation. The next simulated device is an MESFET device with gate
length of 0.7 um, whose device dimensions and simulation mesh are shown in Fig. 5. The result-
ing DC drain I-V characteristics are shown in Fig. 6. Fig. 7 and Fig. 8 illustrate the potential and

electron density in the device at various drain voltages, respectively.

In these new models, we have also included the cnergy cquation to take short-channel
effccts and hot carrier effects into account. It is planned to extend the two-dimensional numerical
model to the modcling of submicron gate length InGaAs-based pseudomorphic HEMTs and
AlGaAs/InGaAs

2.2 Circuit Simulation and Optimization

As to softwares for microwave and millimeter-wave circuit design applications, we have an
in-house program called NODAL for the analysis and optimization of lincar high-frequency ana-
log circuits and the commercial package TOUCHSTONE from EEsof for the same purposes. To
design nonlinear large-signal circuits, we have CADNON program, which is an in-house
general-purpose time-domain simulation and analysis program based on state-variable method for
microwave nonlinear passive and active circuits. In addition, we have successfully ported the
SPECTRE frequency-domain simulator for nonlinear circuits to Apollo workstations in our CAD
laboratory. The SPECTRE, developed by U. C. Berkeley CAD group, uses the harmonic balance
approach to find the iarge-signal response of a nonautonomous nonlincar circuit. Since we have
sourcc codes of these simulators, we can tailor these programs for our uses by incorporating our

new device models.

Circuit optimization is an important stage during the design. Chen [13] has developed an
effective optimization aigorithin suitable for integrated circuit design. However, the resort to
linear search is still frequent in Chen’s method and the amount of iterations is huge. We have
developed a new unconstrained optimization algorithm using the Pscudo Objective Function Sub-
stitution method (POSM) (14] (sce Appendix E). This algorithm, requiring ncither derivative
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calculation nor lincar scarch step, substitutes the objective function by a sccond-order approxi-
mated formulation, which enhances the convergence rate substantially. The algorithm has been
implemented in the general-purpose analysis and design program (ADIC-2.C) for integrated cir-

cuit.
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II1. Device Fabrication

3.1 Material and Device Process

In addition to the higher electron mobility and velocity of InGaAs, the advantages for using
ti.e InGaAs psecudomorphic HEMT are that the use of AlGaAs can be avoided or at least used
with a low Al percentage (less than 20%). Because InGaAs has a smaller bandgap than GaAs, the
AEc, conduction band edge discontinuity, is comparable or greater than that for AlGaAs/GaAs
HEMTS. As a result, the probiems associated with trapping centers in AlGaAs of higher Al per-
centage, needed to achieve higher AE¢, can be reduced. Also, the wider bandgap of GaAs creates
a barrier at the interfacc between the InGaAs and GaAs buffer and substrate. This serves to
improve confinement of electrons to the InGaAs, reducing parasitic conduction or backgating
through the buffer or substrate.

In order to achieve higher current gain cutoff frequencies, f,, and increased currents, which
will improve power performance for these transistors, it is desirable to increase the sheet carrier
density, ., without degrading the electron mobility u. This can be achieved through increasing
the conduction band discontinuity, AEc, by reducing the fundamental bandgap of the
In,Ga;_, As, with larger fractional indium concentrations, x. Incrcasing AE¢ also decrcases the
real space charge transfer back into the lower mobility doped layer. An increase in x can lead to
higher electron mobility, but this may be offset by electron-clectron scattering duc to a larger n,.
There will also be a greater lattice mismatch, resulting in a larger strain so the thickness must be
reduced below the critical thickness for the generation and displacement of dislocations at the

heterojunction.

An alternative approach to increasing the sheet carricr concentration is to employ a double
heterojunction. With a highly doped layer both above and below the active channel, charge
transfer can occur from both sides. This is more feasible with pscudomorphic InGaAs HEMTs
because the quality of the interface between InGaAs on top of GaAs is better than that of GaAs
on top of AlGaAs. Results will be presented on 1 um and 0.25 pm gate length single heterojunc-
tion In,Ga g As/GaAs HEMT and double heterojunctio.: In sGa gs As/GaAs HEMT.

The In,Ga,_, As is latticc mismatched to GaAs, so its thickness and composition must be
chosen so that it is clastically distorted relative to its GaAs substrate thus insuring an csscntially
defect free heterojunction interface. It is advantageous that HEMTs be developed on GaAs sub-
strates because they are of significantly better quality than InP substrates and arc compatible with
current MMIC technology. The layer thickness of the In;Ga gAs is only 135 angstroms. HEMT
structurcs were grown with 25% and 30% In fractions, but the 1um devices that were fabricated

had inferior performance suggesting that on a GaAs buffer, using InGaAs with In percentage
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much above 20% may not be feasible due to the increased lattice mismatch and the layer thinness

required to prevent dislocations.

The electron donor layer of the devices is n type GaAs, avoiding any difficultics that may
exist with using AlGaAs. The doping is 2.3x10'®/cm® from Hall effect measurements. The layer
structure of the single and double heterojunction device are shown in Fig. 9(a) and 9(b). The 1
um gate length devices had gate widths of 50 um and 150 um. The device fabrication involves
mesa isolation, AuGeNi ohmic contacts, a wet chemical gate recess, and TiAu gates. The 0.25
um gates were fabricated on wafer by direct write electron bcam lithography at the TRW facili-
ties in Redondo Beach, CA.

3.2 Device Results

A comparison of the current levels of the 1 um gate single heterojunction In,Ga g As/GaAs
device and the double heterojunction In;sGa gs As/GaAs device with the single heterojunction
In ;5Gags As/GaAs device done in earlicr work are favorable. The pcak current of the
In,GagAs/GaAs HEMT was 310 mA/mm, nearly 25% better than the 250 mA/mm found for
the In ;sGa gsAs/GaAs HEMT. The double heterojunction HEMT had peak current values of up
to 510 mA/mm, which indicate that charge transfer is occurring across both interfaces. These

current values are taken near the peak transconductance values.

To achieve higher frequencies, HEMTs must go to submicron gate Ilengths.
In,GagAs/GaAs HEMT's of 0.25 pm gate length have length have been fabricated by UCSD
with a g, of up to 500 mS/mm. One device on which s-parameter measurements were made (up
to 26 GHz) had an extrapolated maximum frcquency of oscillation, f,«. of 85 GHz and current
gain cutoff frequency, f;, of 40 GHz. The maximum available gain (stability factork > 1) at 26
GHz was 10.6 dB. An example of the well behaved dc characteristics of these devices is shown in
Fig. 10 and a plot of the maximum available gain is presented in Fig. 11. One featurc found on
many of the devices has been a broad transconductance curve. This will improve the operating
range of the devices. Double heterojunction InsGagsAs/GaAs HEMT's with 0.25 um gate
have exhibited peak currents of 430 mA/mm, and a g, of 350 mS/mm. A f,,, of 75 GHz and f;
of 50 GHz were extrapolated from measurements on one device. The increase in f, reflects the
higher current of the device. The dc characteristics are shown in Fig. 12 and the plot of max-

imum available gain is found in Fig. 13.
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IV. Circuit Design

4.1 Design Approach : A Systematic Approach to Design of Distributed Amplifier

The idea behind the design of distributed amplifier is to avoid the input and output capaci-
tances of active devices being frequency limiting parasitics by incorporating these capacitances

into the per-unit-length capacitance of the artificial transmission lines which serially connect all

the input ports and all the output ports together in a distributed manner. The topology of a distri-
buted amplifier is shown in Fig. 14, This approach allows the gain of active device to be paral-
leled without the corresponding paralleling of the device input and output capacitances, and, thus,
enhances the overall gain-bandwidth product. Previously we developed analytical and computer
aided design techniques for broadband high frequency distributed FET amplifier design, and
implemented in the analysis and design program (DFETA) [16]. The approach employed in the
DFETA program can be summarized as follows. For simplicity, a unilateral simplified model of
FET is adopted. The gate transmission line is modeled by cascaded lumped low-pass filter sec-
tions which have the same characteristic impedance and cutoff frequency as that of the gate
transmission line. Because of the very small drain capacitance, C4, of FET, the corresponding
characteristic impedance of the drain transmission line is too large for a realistic design of output
matching circuit. We included a series inductance to C4 to construct the equivalent m-derived
low-pass filter sections which emulated the drain transmission line with the same characteristic
impedance and cutoff frequency of the drain transmission line. The m-derived drain transmission
line can match the impedance at the output port of the circuit easily. Gain response of a DFETA
can be cstimated from the normalized gain curves generated by the DFETA program with the
normalization parameters ( T, =Ry 'Cy-fe, 14 =R4Cy-fe, and f, = f/f;). After these normalized
design parameters are adjusted to achieve the desired or optimal flat gain response, we can deter-

mine the real circuit design from those parameters.

In DFETA, the characteristic impedances of gate and drain transmission line and the DC

voltage gain can bc expressed as follows :

1.031
7, = LO31S 0
nf,Cy
m
= 2
Zam nfaCq @
Voo = ~Ng (Ze Zan)! 2 3)
Gain(DC) = 2 gm( gde)

where
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fcg : the cutoff frequency of the gate transmission line
foa : the cutoff frequency of the drain transmission line
m : the m-derived parameter (m < 1)

C, : the gate capacitance in the simplificd model

Cyq : the drain capacitance in the simplified model

£m : the transconductance used in the simplified model
N : the number of FET devices used in the circuit

And the corresponding lumped element values can be expressed as

11474 , €

72,8
87 1.0315 Z 2 @)

Zsm

L=
— &)

Ly=mL (6)

1-m?
Ldm = m L (7)

The lumped inductance can be introduced by using microstrips whose size can be determined by
the following formula under the assumption that the size is much smaller than the quarter wave
length at the operating frequency [17].

1=L-vu,Z, ®
where
1 : the microstrip length
L : the value of inductance L, Ly, or Lgp,
Zy : the characteristic impedance of the microstrip

V,, : the propagation velocity of signal in the microstrip

Although we can always obtain a set of normalized design parameters for a specified or
optimal gain response from the simulation results, it may not be practical for thosc components to
be realized in a monolithic chip. For instance, we have to keep the active devices as far as possi-
ble away from each other, e.g. 300 um, because the coupling effects among those active devices
is a big concem when it comes to the monolithic IC design. However, from cquation (1)-(3), it is
apparent that increase in the bandwidth of a distributed amplifier will cause a reduction in both
the characteristic impedances of the gate and drain transmission lines, consequently a reduction
in the length of microstrip. In order to avoid unrealistic design, we developed a systematic
approach to designing broadband distributed amplifier which takes the realizability in a
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monolithic chip into consideration.

First, we derived the equation goveming the characteristic impedance, the lumped induc-
tance and the physical microstrip sizes of the gate and drain lincs. Some example cases are
derived and listed in Table I and Table 11, respectively, where the Ly, values are omitted because
it is not important as far as the realizability is concemed.

As seen from the data listed in Table I and Table II, there are restrictions imposed on the
design of distributed amplifier due to the consideration of realizability. The results indicate that
the DC gain can not be set as low as we wish. There is constraint on the minimum DC gain. So is
the maximum bandwidth of a reasonable design. The active devices employed in our design are
0.1S pm pseudomorphic InGaAs/GaAs HEMTs which were fabricated and measured by TRW.
Their small-signal equivalent circuit model and de-embedded model are shown in Fig. 15(a) and
15(b), respectively. Based on the de-embedded model, we further derive its simplificd unilateral
model as shown in Fig. 15(c). Referring the data in Table I and 11, we use DFETA simulation pro-
gram to evaluate the gain performance ~f e distributed amplifier design where we used four
HEMTSs. The best results of the distributed amplifier design using uniform gate and drain
transmission lines are shown in Fig. 16. We further incorporated the tapered gate and drain lines
into the DFETA simulation program in order to enhance design flexibility and to optimize the
gain response, in which we set the source and Ioad impedances of the distributed amplifier as 50
ohms. The best results of the distributed amplifier with tapered lines are shown in Fig. 16. To
verify the design, we analyzed the distributed amplifier with tapered lines by the TOUCHSTONE
analysis/optimization program from EEsof, where the de-embedded model, instead of the
simplified model, was used. The results are shown in Fig. 17, also shown are the results after par-
tial optimization. The results show the gain is 9.5 dB and the bandwidth is 40 GHz of the lumped
distributed amplifier. Finally, we converted the lumped inductances into microstrip design on a
GaAs substrate with thickness of 100 wm. The analysis results of the initial microstrip design are
shown in Fig. 18, also shown are the results after partial optimization. The gain is about 8.5 dB
and the bandwidth is 42 GHz. The resultant sizes of microstrips and other element values are
listed in Table III.

4.2 Power Distributed Amplifier Design

We further extended the application of the systematic approach of distributed amplifier
design to the design of power distributed amplifier. Because the operation region of the power
device may include the nonlinear region, the S-parameter measurcd under the large-signal condi-
tion is a function of the input drive power. In [18], we have investigated the validity of applying
conventional large-signal S-parameter in distributed amplifier design by harmonic balance
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analysis. We found that the input drive power level plays an important role in detcrmining the
frequency range within which the large-signal S-parameter can be applied in the power amplifier
design without causing severe discrepancy.

A nonlinear FET model was used in our initial power distributed amplifier design. The
model is shown in Fig. 19(a). The DC characteristics of this nonlincar FET model are shown in
Fig. 19(b). The DC operating point of the FET device is at gate bias of 0.0 volt and drain bias 4.0
volts. The large-signal S-parameter beyond 6 GHz derived at 9 dBm RF input power drive was
shown tc be valid in [18]. The corresponding simplified large-signal model is shown in Fig. 20.
Following the systematic approach of distributed amplifier design proposed in the preceding sec-
tion, we evaluated the power performance of the power distributed amplifier by DFETA program
using the simplified large-signal simplified model. The results are shown in Fig. 21 with a com-
parison with the results derived by Touchstone using the large-signal S-parameter rather than the
simplified model. The complete microstrip design of the power distributed amplifier converted
from the lumped element design, including the bias circuit, is shown in Fig. 22. The optimized
output performance estimated by Touchstone is shown in Fig. 23. To evaluate the sensitivity of
the power performance of the distributed amplifier design to the input RF power drive, the SPEC-
TRE, a simulation program based on harmonic balance method, was used. The output power
responses at various input drive power levels are shown in Fig. 24, where the curve with 0 dBm
input power drive shows the power gain at normal or small signal operation. In Fig. 24, the
curves with input drive power lower than 10 dBm indicates the device operates in the linear
region. As seen from Fig. 24, there is a significant discrepancy between the power gains below 6
GHz under normal operati ' condition estimated by SPECTRE and calculated by Touchstone. It
can be well explained that below 6 GHz the large-signal S-parameter derived at 9 dBm input
power drive are no longer accurate to be applied in the broadband amplifier design, since their
higher-order harmonics are too large to be assumed negligible [18]. However, higher than 6 GHz
the power gain calculated by SPECTRE is almost the same as that estimated by Touchstone. The
1 dB compression points at each frequency are shown in Fig. 25, which indicates the maximally
useful large-signal operation of a power distributed amplifier. These preliminary results
confirmed the applicability of the proposed systematic design approach of distributed amplifier to
the power distributed amplifier design by incorporating the method of deriving the accurate
large-signal S-parameter by harmonic balance analysis.
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V. Summary and Recommendations

Analytical and numerical device models for III-V compound semiconductor FETs have
been developed. By consideration of the nonlinearity of charge control mechanism, the analytical
models were able to describe the general shape of the I-V characteristics more accurately without
introducing additional fitting parameters. We will further be concerned with the derivation of an
appropriate gate capacitance-voltage characteristics model taking into account the nonlinear vari-
ation of channel charge with the applied electrical field and its frequency. The two-dimensional
numerical models will be finished. Then the short channel devices will be investigated to further
extend the applicability of the numerical model to simulation of the hot carrier effects which can
not be modeled accurately by analytical approach. Also, the power performance of those devices
will be evaluated.

The initial results are very encouraging for the use of pseudomorphic InGaAs HEMT's in
millimeter wave integrated circuits. With In ;5GagsAs/GaAs HEMT material grown at UCSD,
TRW fabricated 0.15 um gate length HEMT with a maximum frequency of oscillation, f,,, of
125 GHz and a current cutoff frequency, f;, of 75 GHz. In;GagAs/GaAs HEMT’s of 0.25 um
gate length have been fabricated by UCSD with a g, of 500 mS/mm and f,,, of up to 88 GHz.
Double heterojunction In;sGa gs As/GaAs HEMT's with 0.25 um gate have exhibited a current
of 550 mA/mm, a g,, of 320 mS/mm and f,,, of 75 GHz. The next step will be fabrication of
wide gate devices for increasing the current output of these pseudimorphic HEMT’s for use as
power amplifiers. Airbridges will be used for the interconnections.

Work in design method for distributed amplifier has come up with a new design technique
for power distributed amplifiers using large-signal S-parameter derived from hammonic balance
analysis. The initial designs of power distributed amplifiers using the pseudomorphic HEMT dev-
ices have shown excellent performance. The application of the new design technique to the
design of distributed amplifier operating at millimeter-wave frequencies is under way.
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simplified unilateral model of a 0.15 um pseudomorphic InGaAs/GaAs HEMT.

Fig. 16 The estimated gain performance by DFETA program of the distributed amplifier

employing ideal uniform gate and drain transmission lines and that employing the

tapered gate and drain transmission lines.

Fig. 17 The output performances of the initial design and the optimized design by Touchstone of
the distributed amplifier with tapered lines where the de-embedded model instead of the
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Table 11

The conversion table of the gate inductance into a high impedance microstrip line.
The width of microstrip line is 18 ym on a semi-insulating GaAs substrate with thick-
ness of 100 um. Z, is the characteristic impedance of the gate transmission line used
in DFETA [16], and L, is the corresponding lumped inductance in the simplified
low-pass filter section of the gate line.

The conversion table of the drain inductance into a high impedance microstrip line.
The width of miciostrip line is 18 pm on a semi-insulating GaAs substratc with thick-
ness of 100 um. Z,; is the characteristic impedance of the drain transmission line used
in DFETA [16], and L4 is the corresponding lumped inductance in the simplificd

low-pass filter section of the m-derived drain line.

The sizes of microstrips and other element values of the distributed amplificr whose
output performance shown in Fig. 18. The elements refer to the circuit topology in
Fig. 14.
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| |
\ /
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a) Layer structure of single heterojunction In £3a As/GaAs HEMT

Source Gate Drain

n" GaAs, 2.3x 1018/cm3 400 A
undoped GaAs 50A
In ;sGa gsAs 200 A
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b) Layer structure of double heterojunction In ;sGa gsAs/GaAs HEMT
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Table |

Zg (Q) Lg(nH) | microstrip length (um)
56.6 0.1.3 141.3
67.9 0.149 204.4
79.3 0.203 278.4
90.6 0.265 363.5
101.9 0.335 459.5
113.2 0.414 567.8
Table |l
Z4 (Q) La(nH) | microstrip length (um)
80 0.115 157.7
90 0.146 200.2
100 0.180 246.9
110 0.218 200.0
120 0.259 355.2
130 0.304 417.0
140 0.353 484.2
150 0.405 555.5
160 0.461 632.3
170 0.520 713.2
180 0.583 800.0
190 0.650 891.5
200 0.720 987.5
210 0.794 1089.0




Table Ili

Lmi  Lgt Lg Lgs Lgmi Lgre Lawr  Lam2

microstripwidth (um) | 18 18 18 18 18 10 10 10

microstrip length (um)| 131 225 280 263 386 232 186 240

Lm2 Lot L2 Ly Lamt Ly Loms  Lowa

microstrip width (um) 18 18 18 18 18 10 10 10

microstrip length (um) | 140 401 394 250 415 218 199 232

Zo Zez Ry R Cmi Cw Cqr Car

50¢ 50Q 47 538Q O0pF OpF 0.052pF 0.053pF
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On the Charge Control of the Two-Dimensional
Electron Gas for Analytic Modeling
of HEMT’s

AN-JUI SHEY ano WALTER H. KU

Abstract—A simple cbarge control model of the two-dimensional
electron gas (2-DEG) of HEMT’s, which explicitly takes into account the
effective distance of the 2-DEG from the heterointerface, has been
developed for use in saslytic /-¥ and C-¥ modeling. Ia this model, the
Fermi energy level versus the 2-DEG sheet carrier concentration is
represented by a simplified expression derived from the trisngular
potential well approximstion and is shown to be dominated by terms with
different functional forms in two distinct operation regions: 8 moderate
carrier concentration region snd s subthreshold region. The validity of
the analytic charge controi model is supported by the calculated results of
self-consistent quantum mechanical model.

1. INTRODUCTION

HE recent development of the HEMT, employing novel

layer structures such as strained-layer heterostructures,
has shown a promise of higher transconductance and a good
power capability resulting from superior electronic transport
properties of the active channel, a larger sheet carrier
concentration, and better confinement at the heterointerface.
These enhanced characteristics lead to improved device
performance which demands a more accurate approximation
of the charge control model over a wider operation range in
order to obtain accurate HEMT -V and C-V models useful
for circuit simulators. The analytic models most widely used
for characterizing HEMT performance are based on the linear
charge control model (1], {2], which either neglects the
variation of the Fermi potential with the gate bias, or for
simplicity, assumes a constant correction distance in the
direction normal to the heterointerface plane accounting for
the quantization of the two-dimensional electron gas (2-DEG)
in the quasi-triangular potential well. These assumptions only
hold for a very narrow range and result in a low degree of
accuracy in the model when device behavior is characterized
over the whole operation region.

Recently, Kola ez al. {3] proposed a data fitting expression
for Fermi level versus sheet carrier concentration that would
take into consideration the modulation effect of an applied bias
on the Fermi energy. However, the expression lacks corres-
ponding physical significance and requires a sophisticated data
fitting process. In this study, we developed a simple yet more
accurate Fermi energy expression, derived from the triangular

Manuscript raceived July 7, 1988; revised September 26, 1988. This work
was supported by AFOSR, Boiling Air Force Base, DC, under Grant AFOSR-
86-0339 monitored by Dr. G. Witt.
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ing, University of California, San Diego, La Jolla, CA 92093.

IEEE Log Number 8824829,

potential well approximation, which yielded a more rigorous
analytic charge control model in which the dependence of the
effective distance of the 2-DEG from the heterojunction on the
2-DEG carrier concentration was accurately reflected.

II. ExTENDED MODEL

To obtain an exact charge control formulation of the 2-DEG
channel in HEMT structures, Poisson’s equation and Schro-
dinger’s equation would need to be self-consistently solved.
Unfortunately, the physical calculations are too involved for
use in analytic device modeling. However, an approximation
approach based on the linear charge control concept can be
applied {4]. Additionally, the triangular well approximation,
in conjunction with Fermi statistics, was found to give a fair
description of the 2-DEG carrier concentration dependence on
the gate voltage if an appropriate empirical parameter was
incorporated to account for the discrepancy in field strength
due to the assumption of an infinite barrier height imposed on
the junction [S].

Consider a HEM7T structure with an n~-type substrate,
whose energy band diagrams are shown in Fig. 1. The flat-
band voltage is the gate voltage applied simply to counterbal-
ance the bending of the quasi-Fermi level across the active
channel at thermal equilibrium and can be expressed as

Ves=é5- (V‘;+é—?+ V..) m
where ¢3 is the Schottky barrier height; AE, is the conduction
band discontinuity; V, is the potential difference between the
Fermi level and the conduction band edge in the neutral
substrate and V9 = gNpi(d) — d,)?/2¢, is the potential across
the fully depleted top layer under flat-band condition, where
€1, dy, and Np, are the permittivity, thickness, and doping
density of the large-gap semiconductor layer, respectively;
and d, is the spacer layer thickness.

When the gate bias V is higher than Vg, the voltage Vg —
Vs can be partitioned between two components: ¥, = (!} —
V,), the voltage drop absorbed by the top depleted layer, and
V,, the band bending of the 2-DEG channel, i.e.,

VG_ VFB= V| + Vz. (2)

Referring to the energy band diagram, the band bending across
the 2-DEG channel may be expressed by

Vi=Ep+ Vot Ve(x) 3)

0741-3106/88/1200-0624$01.00 © 1988 IEEE
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Fig. 1. Energy band diagram of a HEMT on the n ~-type substrate in the 2-
DEG charge control regime by a Schottky barrier. (a) Flat-band condition.
(b) Thermal equilibrium.

where E is the Fermi potentia! and references the conduction
band edge of the 2-DEG channel, and V.(x) is the channel
potential at point x along the channel defined with respect to
the source contact.

According to the triangular potential well approximation
and Fermi-Dirac distribution the relation between the 2-DEG
carrier concentration 71, and the Fermi-level can be established
only if the lower and the first excited subbands are being
considered and is given by

kT 1
EF=—q«ln {—5 fexp [(g/kT)vo - n??)]
+exp [(g/kT)v, - n?3)]]
1
- (Z [exp [(g/kT)y, - n¥?))

—exp [(g/kT)~, -
+exp [(gn;/DkT)]

n¥HP?

12

- exp [(g/kT)(yo+v1) ° "3”]) } O]
where D is the density of states in the 2-DEG, and v, and +,
are material parameters, usually estimated from experimental
measurements [1]. For moderate values of n, the argument of
the exponential terms is small and a series expansion of these
terms converges. For qualitative consideration, we end the
expansion after the linear term. The result for the Fermi
potential takes the simplified form

(

The contribution of the second term to the variation of Fermi
energy with carrier concentration is apparently small com-

kT

n
EFE—ID s
q

+D 2
ot ) T3 (v1—0)

SR+ (ot) - A (8)
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pared to other terms. Furthermore, the first term dominates
only in the subthre fegto&.lx@ normal operation region
the former two tefms car: be considered,to be a constant which
can be evaluated at the equilibrium carrier concentration 71,5.
Therefore, we can approximate Er by expression of the form

(6

By charge conservation and Gauss’ law, further manipula-
tions yield the 2-DEG charge: control formulation as

Eg=Egy+ Y n}”.

€]

Ve—Vr—-V,
d,-i-Ad[G T ]

0]

Q.=qn,= -AQg= -

where the threshold voltage is defined as Vr = ¢5 — (AE-/q)
+ Epy — V7, and the corresponding effective distance of the
2-DEG from heterointerface can be expressed as

ad=22 . p-ws, ®)
q

This analytic expression is essentially the same as that derived

by Stern [6] using a variational method.

II. ReSuLTs AND DISCUSSIONS

Fig. 2 shows a comparison of the fitted results of the linear
approximation {2}, the second-order polynomial expression
{3], and (6) with an exact calculation of the triangular potential
well approximation [1]. As seen in Fig. 2, (6) has a better fit
with the exact Er versus n, characteristics than other approxi-
mate functions in all regions of operation of interest, where
Ep = -0.062Vand y = 0.385 x 10, The correspond-
ing effective distance of the 2-DEG from heterointerface is
also compared with the constant effective distance used in [2].
The results indicate that the variation of the effective distance
over the operation range significantly affects the characteriza-
tion of the charge control of the 2-DEG in HEMT structure.

To further confirm the effectiveness and consistency of this
model, the numerical calculations of electron energy levels in
a GaAs/Ga;_,Al As heterostructure by exact quantum me-
chanical model [7] are included for comparison with the
results of our model and are illustrated in Fig. 3, where Egy =
—57.0 mV and v = 0.298 x 10-%. The slight difference
between these two curves in the low carrier concentration
region is caused mainly by the subthreshold effect in which the
variation is logarithmic in nature. The plot of corresponding
effective distances shows that without introducing an addi-
tional fitting parameter in (8) the approximation is very close
to the numerical results of the quantum mechanical model and
indicates that the extended model is more accurate as far as the
nonlinearity of charge control of the 2-DEG is concerned.
Moloney et al. [8] have also given a similar approximation for
the Fermi energy versus carrier concentration of the 2-DEG
while modeling the C-V characteristics of HEMTs, in which
a functional dependence like the second term in (5) was
assumed dominant at room temperature rather than the third
one. The fits based on this formula, as shown in Fig. 3, are
fairly good at first sight even in the low carrier concentration
region. However, the corresponding effective distances of the
2-DEG from the heterojunction deviatc considerably from the
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Fig. 2. Comparison of some approximate expressions on Fermi energy
versus sheet carrier concentration of 2-DEG channel at 300 K and the
corresponding effective distance of 2-DEG from the heterointerface. Note
the results of (6) almost overlap those calculated from the triangular
potential well approximation.
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Fig. 3. Comparison of the exact numerical solution and the approximate
models on Fermi potential versus 2-DEG density in 2 GaAs/AlGaAs
heterojunction and the corresponding effective distance versus 2-DEG
concentration.
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results of the exact numerical model. This comparison reveals
the importance of the extraction of a proper functional
dependence for the analytic fitting expression from a detailed
physical analysis to ensure the consistency of the formulation.

In conclusion, a better general agreement with the exact
calculation of the quantum mechanical model indicates that the
extended model provides a realistic description of the 2-DEG
charge control of a HEMT structure. Further, the simplicity of
this model makes it well suited for use in analytic modeling of
HEMT’s. It has been successfully applied to predicting the
I-V characteristics of pseudomorphic InGaAs/GaAs HEMT's
with satisfactory agreement with the experimental data over a
wide operation regime.
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Abstract

Consideration of nonlinear variation of the sheet carriecr concentration of the Two-
Dimensional Electron Gas (2-DEG) with Fermi potential in the quasi-triangular potential quan-
tum well of the HEMT structure has led to a bias-dependent effective offset distance of the 2-
DEG from the heterointerface. The inclusion of the variable 2-DEG offset distance allows model
characterization of the charge-control mechanism in a more consistent manner, and with greater
accuracy, than the conventional linear charge-control model does. Based on the nonlinear
charge-control formulation, we developed an accurate analytical drain current-voltage charac-
teristics model for HEMT device. This model is valid over a very wide range of operation,
extending from near-subthreshold regime to high parasitic MESFET conduction regime. This
model also includes the broadening effect of the 2-DEG quantum well in the pinchoff regime,
providing a more accurate description of current saturation mechanism. We demonstrate the
effectiveness and accuracy of this model by comparing measured and modeled dc characteristics
of normally-on as well as nomally-off HEMT devices. Furthermore, the simple analytical
expressions make the model very suitable for CAD applications in the analysis and design of
high-frequency microwave and high-speed digital HEMT devices and integrated circuits.
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Introduction

Since it was demonstrated in 1980, the High Electron Mobility Transistor (HEMT), a field-
effect transistor that takes advantage of the novel properties of the two-dimensional electron gas
formed at the heterojunction, has shown very promising performance for both high-frequency
microwave and high-speed digital circuit applications. In order to optimize the performance of
HEMT devices and circuits, many analytical models for HEMT’s based on a simple linear
charge-control model have been proposed [1-5]. These models are similar to that for conventional
MOSFET’s with only the gate insulator layer being replaced by a fully depleted doped semicon-
ductor layer. These models, however, show a limited range of validity, basically because of the
inaccurate assumption of linear charge-control for the modulation of the 2-DEG channel charge

by the external bias. Thus, more accurate and realistic models are clearly needed.

The inaccuracy of linear charge-control modeling of the HEMT operation could stem from
the improper estimation of the effective offset distance of the 2-DEG channel from the heteroin-
terface, especially in the pinchoff regime. Hughes et al.[6] pointed out the important effects of
nonlinear characteristics of the charge-control model on the evaluation of transconductance. Tak-
ing into account the variable 2-DEG offset distance from the heterojunction by numerical calcula-
tion, they obtained a fair agreement between the calculated and measured transconductance
characteristics over a wide operation range. However, the derivation of this model is not explicit
in terms of the physical parameters, and the numerical solution is too complicated for applica-
tions in the analysis and design of integrated circuits.

Recently, Kola et al. [7) proposed a data fitting expression for the Fermi potential versus 2-
DEG sheet carrier concentration that would take into consideration the variation of the Fermi
level in the 2-DEG channel with the externally applied bias. In order to avoid a sophisticated data
fitting process and to provide a direct physical insight into the operation of the device, we have
developed a simple but more accurate nonlinear charge-control model{8], which is derived
directly from the triangular potential well approximation. Based on the analytical nonlinear
charge-control model, we further developed an analytical HEMT drain current-voltage charac-
teristics model, in which the gain compression phenomena appearcd near the pinchoff region and
in the high parasitic MESFET conduction region are more accurately described.

Charge-Control Model

The first proposed conventional charge-control modcl {1] derived from Poisson’s cquation
for HEMT’s neglected the Fermi-potential term. The resultant modcel (see the energy band

diagrams in Fig. 1) shows that the channel carrier concentration depends lincarly on the gate bias.
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where n, is the 2-DEG sheet carrier concentration; €, and d, are the permittivity and thickness of
the electron supply layer with a wider energy-band gap, respectively; q is the electronic charge;
V¢ is the gate-source biased voltage; ¢p is the barrier height of the Schottky-gate; AEc is the
conduction band discontinuity at heterojunction; Np, is the doping concentration in the electron
supply layer; d. is the spacer layer thickness. Note that subscript 1 refers to the parameters asso-
ciated with the electron supply layer with a wider energy-band gap and subscript 2 for the 2-DEG
channel layer.

Drummond et al.[2] extended this model to include the variation of the 2-DEG Fermi
potential gas with the sheet carrier concentration. A linear approximation,

Ve=Vg +an,, 3)

yields the linear charge-control formulation used by most of the existing analytical models,

&
d; +Ad

qng = [V - Vro - V1l, @

where Vg is the equilibrium Fermi potential; and Ad is the corresponding offset distance of the
2-DEG from heterointerface. Ad is assumed to be a constant value, i.e.,

&a ~
Ad=—;—=802\ (5)

This model was further modified in [6] to take into account the nonlinear dependence of the
average position of the 2-DEG channel, Ad, from heterointerface on the gate bias. The 2-DEG
offset distance is calculated from the weighted average distance of all energy levels,

2
?Znsndn
n

AM=———— n=0,123, - ©6)
N

where ng, and d,, are the density and average distance from the heterointerface of carriers in the
n-th subband, respectively. The total carrier concentration ny in the 2-DEG channel is a sum of all

occupancy of energy states at various energy levels,

ng=Y ng n=0,1273, --- )

However, the computation process is too involved to be useful in the CAD environment.
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In the triangular potential well approximation, if only the lower and the first excited sub-
bands are considered, the relation between the 2-DEG sheet concentration n, and the Fermi-level

can be expressed as
1

= qn, e

2 2 2 2
q ., 5 q .3 9. 7 9 2 9 s (2
ynl Ynl Ynl ‘Yonl ('Yo l)nl
Eg =(kT) In —-—; [e“ Tt ekl ]+ 1 [e“T Tt ekT ] +¢ DT g kT

S

(8)

where D is the density of states of the 2-DEG; vy and ¥, are material parameters of the 2-DEG
channel layer, usually estimated from results of resonance experiments [1]. ¥p and 7y, link the 2-
DEG carrier density with the longitudinal quantized energy through the equations

Eo =1 n{"
E; =y n??

For moderate values of ng, the argument of the exponential terms is small, and a series
expansion of these terms in (8) converges. We can then approximate the Fermi energy Ep by

1 2
- qn D 2.3 3
Er = KT) In(55 ) + 4-n = w00 +ato +1) 0/ ©)
In the normal operation region the third term dominates and the first two terms can be con-
sidered to be constants that can be evaluated at the equilibrium carrier concentration ny. There-
fore, we have a further simplified form

2

Ep =Eg +yn (10)
This approximation holds as long as the device is not operated in the deep subthreshold region,
where the quantization effect is of minor importance because the potential well broadens remark-
ably and the subbands are closely spaced. An advantage of using (10) is that only two adjustable
parameters are involved. They can be determined from estimated values in the corresponding
terms in (9). This requires much less effort when compared to other data fitting expressions. Fig.
2 shows plots of the fitted results of the linear approximation{2], the second-order polynomial
expression[7], and (10) together with an exact solution of the triangular potential well approxima-
tion under the assumption of negligible background impurities [1]. The expression in (10) clearly
shows a better description of Egp versus ng characteristics in all regions of interest, where
Epg =-0.062 eV and y=0.385 x 107! ev-m*/3,

Substituting (10) into (1) and rearranging terms, we can express the 2-DEG sheet carrier

concentration as
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n,

T +Eny" [VG_V“’—V]’ o

where V is the channel potential. The threshold voltage Vy, the linear charge-control coefficient
B. and the offset distance coefficient £ are separately defined as

AEc GNp;

V'm=¢B—_q“+EFo— %, d; -de)? (12)
€

& 13

B o (13)
€

E=—Y _yp (14)
qa,

It is interesting to note that, from comparing (11) and (4), the corresponding offset distance
of the 2-DEG, Ad, from the heterojunction is proportional to n;!/?, which is essentially the same
as the results derived by Stemn [9] using a variational method. In fact, the key feature of our new
nonlinear charge-control model is the inclusion of the nonlinear dependence of the offset distance
of the 2-DEG channel on the 2-DEG sheet carrier concentration. This offset distance will affect
the transconductance performance significantly[6]. Fig. 3 shows plots of the corresponding offset
distances of the 2-DEG as calculated by the above expression, the linear charge-control model,
and exact quantum mechanical model {10]. Without additional fitting parameters in (11), our
approximation of the effective offset distance of 2-DEG is very close to the numerical results of
the quantum mechanical model, with a maximum discrepancy of less than 10 A

Drain I - V Characieristics Model

1. Empirical Velocity versus Electrical Field Model

Experimental measurement has shown the velocity saturation phenomenon in III - V com-
pound material at high fields. To take velocity saturation into account, the following functional
form is commonly employed in numerical models for depicting velocity versus electrical field
curve.

uE+mM§LF
WE) = = = (15)
1 =~ _\n
Hgs)

where p is the low-field mobility; v, is the saturation velocity; Ec is the electrical ficld

corresponding to the peak velocity; n = 4 is found to give the best fit to the experimental data. In




-6-

order to obtain an analytical solution, we set n = 1 for both the parasitic MESFET channel and the
two-dimensional electron gas channel, i.c.,

(p+ ;’;‘ )E
wWE)=——F— E<Es (16)
1+—
Ec
= Vg E2E;g an

where the electrical field Eg at the onset of velocity saturation is determined by the equation

Eg=-— (18)

2. The Threshold of the Parasitic MESFET Conduction

In the normal operation mode of HEMT'’s, the depletion of the doped layer is from the
charge transfer and the Schottky gate depletion. At thermal equilibrium the undepleted channel
width of the parasitic MESFET, h, as shown in Fig. 1, is

1
ng 2¢4 2
h=(d -d) - Nor (68 — Vo — Vi) (19)

where V,, is the potential difference between the conduction band edge and the Fermi-energy in
the neutral carrier supply layer.

The threshold voltage V¢ of the parasitic MESFET’s conduction can be easily evaluated by
letting h=0. Then

N
4701 4, —d, - =2 20)

Ve=¢g -V, - ——
C ¢B n 28] NDl

3. Intrinsic HEMT Operation Mode (Vg < V¢)

(a) Linear Region (Vp < V)

When the applied drain voltage is not high enough to accelerate carricrs up to saturation
velocity, the drain current can be evaluated by combining (11) and (16) and using a one-stcp sub-
stitution approximation for the 2-DEG sheet carrier concentration. We then obtain




Ip = Wgn,v

WaPua[Vg — Vo — V) E

21

2

C[1+n(Ve-Vp-VP |, E

where W is the gate width; L is the nominal gate length; 1 (=yB*> ) is the nonlinear charge-
control coefficient; V is the channel potential; Ec; is the characteristic electric field used in (16)
for the 2-DEG case.

Let y define the inverse offset distance variable as a function of channel potential for the 2-
DEG channel by

y=[Vg~ Vo - V)" (22)

The boundary conditions on the 2-DEG channel require that V(x) equal zero at x = 0 and Vp at x
= L, which correspond to

Yo = [Vg ~ V1ol (23)
yp = [Vg ~ Vo - VpI'?? (24)

Substituting (22) into (21) and integrating y from yp to yp and x from 0 to L, we obtain the drain
2-DEG current below saturation given by

3A S [ (=" yp +1
Ip = ———2— 4 3 [E 6 (ypyB)] + 06 In | 22 @5)
VD n=1 n Yo +n
a+—)
B,
where A, and B, are defined as
Wi
Ay = H2qP 26)
L
By =LEc Q@7

(b) Saturation Region (Vp = V)
When the 2-DEG carriers are accelerated to the saturation velocity by the longitudinal

electrical field parallel to the current fiow, the 2-DEG channel current in the saturation region is
expressed in the equation

(Vg = V1o — V)
Ip = Wap = e Vg 28)
[1+n(Vg = V10~ V) 7]

The velocity of the electrons in the channel reaches saturation at the point x = L. Further
increase in drain bias will increase the electrical field along the channel and causc the clectrons to
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reach velocity saturation at a point closer to the source electrode, i.c., reducing the effective
length L,. By requiring the current continuity between the linear regime and saturation regime,
we arrive at the expression for the length L, of the linear channel region

Veat Ex +E <+ 6 (—1)" <+
L= g 2152, Y “){Zlﬁn‘ﬁuy;‘—ysnmﬁm[y "“

Ec EqEs: yd e N Yo+M
(29)
where the voltage drop, Vg, across L, is
Vi = Vg = V1o - ¥ (30)

4. Current Saturation Mechanism

To determine L, and Vg, one can solve the two-dimensional Poisson’s equation in the
pinchoft region by using self-consistent approach and keep the lowest space harmonic of the
approximation solution along the boundary [11]. The approximation yields the relation between
L and V as

Vp = Ve =

2 satE L—Ls
duucs: sinh[n( )J G1)

2d¢a

Note that due to the nonlinear charge-control mechanism, the effective distance of the saturated
2-DEG channel from the gate electrode is a function of potential at L, namely,

deu =4, [1 1 (Vg = Vig = Vi )13 ] 3)

As illustrated in Fig. 4, in the saturation region the high saturation voltage reduces the depth of
the quasi-triangular quantum well, and the 2-DEG channel becomes broader at the drain side.
This is equivalent to an increase in the offset distance of the 2-DEG channel from the heterojunc-
tion. This phenomenon could be observed in the electron density distribution plot in a two-
dimensional numerical HEMT model, e.g., [12,13].

The value of y, as a function Vg and Vp can be easily found by combining (29)-(32) and
using a simple Newton’s rooting method in a few iterations with the initial value set as yo. Once
y, is known, the drain current can be calculated directly from (28).

5. The Consideration of Parasitic Components

Once the gate voltage is larger than V¢, the po aitic MESFET channel starts conduction,
i.e. the carrier supplying layer is not fully depleted, leading to current contribution from the 2-
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DEG channel as well as the parasitic MESFET channel undemeath the Schottky gate. The calcu-
lation of parasitic MESFET conduction current is very similar to that derived in [5]. The detailed
derivation is shown in the Appendix.

The intrinsic HEMT model does not explicitly include the parasitic resistances Rs and Rp
on the source and drain sides. To take these parasitic resistances into account, we can calculate
the intrinsic HEMT bias voltages Vg and Vp by solving the equations

Vp =V4 —Ip Rs +Rp) @31
Vg = Vgs -IpRs (32)

where Vg4 and Vg, are the terminal voltages at the drain and gate electrodes relative to the source
contact.

Results and Discussion

To show the accuracy and effectiveness of our nonlinear charge-control model, we compare
our calculated drain current-voltage characteristics with experimental measurements of a
normally-off HEMT and a normally-on HEMT reported by Drummond ez al. [2] and Lee et al.
[3], respectively, which are two typical samples commonly cited by the linear models reported in
the literature. The parameters used for the modeling are summarized in Table 1. Fig. 5 shows the
I-V curves of a normally-off HEMT with 1 pm gate length from our model and from a linear
charge-control model in conjunction with a two-piece velocity model. As seen in ~ 1. §, our
modeled results are in good agreement with the experimental data. Here, the device size, R, |,
and Np,; are measured values. Moreover, we do not need to add a resistance parallel to the chan-
nel as in [4], in order to fit drain I-V curves in the saturation region for this 1 pm gate HEMT. As
indicated in the electron density distribution plots of a two-dimensional numerical simulation
[12,13], the carriers in the saturation region (fewer compared to those in the linear region) arc
further repelled from the heterojunction toward the substrate by the gate field. When fitting the
drain current curves in the saturation region, because of the basic assumption of constant offset
distance, the linear model includes only the current contributed by the carriers within the constant
effective distance from heterointerface and leaves out others. Therefore, R or p values different
from measured data and a parallel conductance are rcquired in the linear model to take into
account the conduction current contributed by those 2-DEG carriers with larger offset distance.
Note that this current component is often interpreted as the substrate current or leakage current in
the linear model. Since the channel broadening of the quantum well in the saturation region has
been included in the nonlinear model by using the bias dependent effective offset distance, a

more accurate estimation of carrier concentration in the 2-DEG channel is obtaincd. This results

|
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in a more accurate prediction of the drain saturation current by present model as compared to that
calculated by a linear model. As theoretical estimation or experimental measurement of satura-
tion velocity, Uy, 0f 2-DEG in the quantum well has not been widely reported, we use the simu-
lation values calculated by Monte Carlo method [14].

Fig. 6 shows the experimental data of a normmally-on HEMT, our calculation, and the
modeled results by a linear charge-control model using a three-piece velocity model. The parame-
ter values used for modeling are also listed in Table 1, where R, and [ are measured values. It
can be seen that the accuracy of the derived I-V characleristics is quite satisfactory when the non-
linear modulation effect is included in the charge-control formulation. Fig. 7 shows the calculated
and measured saturation drain current as a function of gate voltage. In the near subthreshold
region, our resu!ts agree very well with experimental data, due to the more accurate nonlinear
charge-control description embeddcd in the drain I-V characteristics model. The existing linear
models usually underestimate the 2-DEG sheet carrier concentration and fail in the near subthres-
hold region.

Using a logarithm functional form similar to that of the first term in (9), which proved to be
dominant in the subthreshold regime, a refinement in modecling the nonlinear charge-control
could further extend the validity of the present model into the subthreshold region.

Conclusion

We have devcloped an analytical HEMT model based on a simple nonlinear charge-control
formulation that explicitly takes into account the variation of the 2-DEG offset distance from
heterointerface as a function of bias. The validity of the analytical charge-control model is sup-
ported by the results of a self-consistent quantum mechanical model. The 1-V characteristics can
be e. cessed in a simple analytical form, making it very suitable for the analysis and computer-
aided design of microwave and high-speed HEMT integrated circuits. In addition, although the
derived model is still in an approximate form, the modeled results are in fair agreement with
experimental data. The model can therefore be applied to optimize device performance.
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Appendix
Inclusion of Parasitic MESFET Conduction Model (Vg 2 V¢)

Consider the case where the MESFET channel is pinched off at x =Ly by the gate bias.
The channel potential at this point is

VM =V, — (¢ — Vo) + Vg , (AD)
and the pinchoff voltage is given by
Nso

a4 2
qNp; (d; - d. Nm)

V, = . A2
P %, (A2)

Within the conduction channel, wherever the channel poteniial is lower than Vy, the 2-
DEG will not be perturbed by the gate and drain voltages and will stay at its thermal equilibrium
values, nyp, which can be estimated self-consistently by the equation

€
o T [¢B V-V, - vm] . (A3)

~ qdy[1+Eng”
(a) Linear MESFET Channel (Vp < V)

The current flowing through the MESFET channel can be derived as in the conventional
MESFET model.

Ay 2 (@8 — Vo — Vg + Vp)*'2 — (9 — Vu — Vi)*'?
h=—+F"1Y0-3 (A4)
1+-=2) Ve
B,
where A and B, are defined as
Wqu Npy ngo
- — —d - AS
1 L (dy —d. Noj ) (AS)
B; =LEq (A6)

In the case of Vp < Vy, since the whole 2-DEG channel behaves like a linear resistor, the
current flows through the 2-DEG channel is

_ A28 = Vo =V, - V1) Vp

L= (A7)

(1+—;1—]2))[]+§n;0”3]
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The total drain current I is

ID = 11 + 12 (AS)

(b) Pinchoff MESFET Channel (Vy < Vp < V)

The current due to the equilibrium two-dimensional electron gas can be <alculated as in the
linear region.

_ LA (g = Vo=V, — Vo) VM.

2 (A9)

\"%
Ly + —) (1 + & ngd )
E;

The current flowing through the MESFET channel can be evaluated with the boundary condition,
V(Lym) = Vi, and can be cxpressed as

2 (bg — Vo — V6)*?
Al VM - —[Vp - P 2 ]
3 \fvp
L = (A10)
Aal9p~Va—Vp—-V.] 1 1 |,
L1 +Eng] B, B |

Similar to the derivation in the normal operation mode, the 2-DEG current can be explicitly
expressed as

~ Vulog~V,~V,—V 6 [y
L = 3A; { mldB p— V10l i3 [( D NSy Boyl] } +n6ln[ ypH }}
) n=]

31 +&ng”? n ym+N
(A11)

(c) Saturated MESFET Channcl (V, < Vp)

In this opcration region, formulation of the current flowing through the MESFET channel is
identical to (A10). And the 2-DEG current is very similar to that in the pinchoff region and can
be derived as

-3A;L Vailog=Va=Ve=Viol &1 (D" 6y ysth
L= —— 4 o0y [ e groyg | 40| 2
(L + vsal) 3[1 +§n50 | n=1 n ymin 1

S
Ecz

(A12)
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Similarly, the variables L, and V,,, can be solved from the following two equations, derived
from current continuity requirement and from Poisson’s equation in the saturation region with
fixed boundary d; .

_ (Vo -Vro-¥7) 3 Eq+Es  ys+M y-

b Ec; > EgEgy vl
{ vM[;b[Bl—:’;;’},;;—]Vm] + é[%ﬁ N (ys - yD1+n° m{ﬁ }(A13)
Vp = Ve = 2dfs' sim[n(;d:mL“ ) } A1)
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Energy band diagrams of a normally-on HEMT on an n”-type substrate (a) at thermal
equilibrium and (b) in the 2-DEG charge-control regime.

Comparison of the exact numecrical solution and the approximate models on the Fermi
potential versus 2-DEG sheet carrier concentration in a GaAs/AlGaAs heterostructure at
300° K. Note that the fitted results of equation (10) are almost indistinguishable from
the exact calculations.

The effective offset distance of the 2-DEG from the heterointerface as derived from the
results shown in Fig. 2 by both the lincar and nonlinear charge-control models.

Schematic diagram shows the 2-DEG channel spreads out toward the substrate in the
saturation regime and the conduction of parasitic MESFET. The decrease of the 2-DEG
sheet carrier concentration and the broadening of the quantum well result in an increase
in the effective offset distance.

Measured and calculated drain current-voltage characteristics for a normally-off HEMT
[2]. Solid line: present model. Dots: measured points. Dashed line: linear charge-control

model with a two-piece velocity approximation.

Measured and modeled drain I-V characteristics of a normally-on HEMT [3]. Solid line:
present model. Dots: measured points. Dashed line: linear charge-control model with a

three-piece velocily approximation.

The calculated and experimental saturation drain current of a normally-on HEMT [3]. as
a function of gate bias (Vp = 1.5 V). Solid line: present model. Dots: measured points.




The device parameters used by present model for modeling
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Table 1

the HEMT's
Mode | Normally-OFF Normally-ON unit
L 1 1 pm
w 145 145 pm
d, 400 410 A
de 100 60 A
V1o 0.03 -0.99
AEg 0.32 0.32 eV
0B 1.106 1.106 Y
€1 12.2 12.2 €0
Np1 1.0 x 108 1.0 x 108 cm™3
m 4300 6800 cm?/V-s
Vgat 2 x 107 5.7 x 107 cm/s
Rs 12 7 Q
Rp 12 7 Q
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Appendix C

Analytical and Computer-Aided Models of
InP-Based MISFETSs and Heterojunction Devices *

Presented at Joint NOSCINRL InP MicrowaveiMillimeter Wave Technology Workshop, San Dicgo, CA, January 25-26, 1989.




Analytical and Computer-Aided Models of
InP-Based MISFETSs and Heterojunction Devices

The superior properties of InP material, c¢.g., higher peak electron drift velocity, thermal
conductivity, and breakdown field, to GaAs have madec it an altemative for high performance
applications in microwave and millimcter-wave regimes as well as high-speed digital circuits.
Recently, a high-efficiency InP MISFET has demonstrated 4.5 watts output power with 4dB gain
and 46% power-added cfficiency at 9.7 GHz by Messick et al [15]. These impressive resulls
clearly confired the promising superior performance og InP MISFETS.

The main concemn in the applications of III-V MISFETs has been the reliability of output
characteristics of the devices, which is mainly attributed to the variations of interfacial propertics
of the gatc dielectric layer and the underlying semiconductor active layer. The task of modcling
output characteristics of III-V compound-based MISFET devices has become complex with the
possible dominance of the interfacial propertics in the devices’ performance. Much more atten-
tion should be paid to the nonlinear modulation of the surface potential by the cxternal gate vol-
tage duc to the presence of an cxcessive amount of interfacial states, since the accompanying car-
ricr trapping, scattering, and recombination could have altered completely the charge control and

transport mechanisms, and consequently the device output characteristics.

Because of these factors, we have developed analytical and compuler-aided models for
depletion-mode and accumulation-mode MISFETSs based on a nonlincar chargs control model
derived from scmi-cmpirical surface potential formulation, which can provide us not only an
accurate description of the drain I-V characteristics, but also a comprchensive study of the
influence of interfacial properties on the ouiput performance of InP MISFETs. Key aspects of the
physics of this device, which relate to charge control, carrier trapping, and ficld-dependent mobil-

ity, arc modcled in this study.

In order to funther verify the calculated results and predict device performance in the submi-
cron gate-length regime, we have developed a gencral-purposc finite _lement two-dimensional
semiconductor device simulation program, whic’ is able to analy:c and simulate various device
structures including homo- and hetcro-junctions 111-V compound semiconductor-based devices
with arbitrary gcometrics. Preliminary simulation results of a | um AlGaAs/GaAs HHEMT device

arc reported. It is plann~2d to cxtend the two-dimensional mode! to submicron InP MISFETS.
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Appendix D

Two-Dimensional Semiconductor Device Analysis
Based on New Finite-Element Discretization
Employing the S-G Scheme
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Two-Dimensional Semiconductor Device Analysis
Based on New Finite-Element Discretization
Employing the S-G Scheme

GEN-LIN TAN, XIAO-LI YUAN, QI-MING ZHANG, WALTER H. KU, anp AN-JUI SHEY

Abstract—The finite element method has been playing an important
role in the solution of many engineering problems. To make the appli-
cation of the finite element method practical in semiconductor device
simulation, we have applied the Scharfetter~Gummel (S-G) scheme in
conjunction with an accurate seven-point Gaussian Quadrature rule to
the assembly of the finite-element stiffness matrices and right-hand side
vector of the semiconductor equations, which has resulted in solutions
with high accuracy even on coarse mesh as well as a significant speed-
up of convergence rate.

I. INTRODUCTION

HE Scharfetter-Gummel scheme [1] has been widely

used in the discretization of the continuity equations
and has shown great suitability due to an inherent advan-
tage of uniform convergence. However, to date the ap-
plications have been almost restricted to the finite differ-
ence method or its variants. The classical finite element
method, by which the carrier densities are usually ap-
proximated in low order polynomial expansions [2], re-
quires an excessively fine finite element mesh in order to
achieve a reasonable approximation error. Additionally,
it suffers a prohibitive convergence rate because of the
large integration errors incurred due to the inaccurate low
order polynomial approximations. Therefore, the classi-
cal finite element method is inferior to its finite difference
counterpart employing the Scharfetter-Gummel (S-G)
scheme in which the functional variation of carrier den-
sities is exponential in nature, the so-called Box Integra-
tion Method (BIM-SG) [3]. in the treatment of current
continuity equations.

Manuscript received July 1. 1988: revised October 3. 1988 and January
3. 1989. This work was supported by AFOSR. Boiling Air Force Base,
Washington. DC, under Grant AFOSR-86-0339. The review of this paper
was arranged by Guest Editor M. Pinto.
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W H Kuand A -J. Shey are with the Department of Ejectrical and
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CA 92093,

IEEE Loy Number 8926894

Recently, various upwind schemes [4] have been pro-
posed for finite difference and finite element to achieve
the upwind effect in order to avoid the spurious oscillation
in solving the convection dominated flow equations. In
essence, the optimal upwind formulation in one-dimen-
sional case (without source terms) can reduce to a form
equivalent to the S-G sche.ne. Nevertheless the flow di-
rection not always being along the grid line, it is difficult
to extend these formulations to two or three dimensions
in a straightforward manner [5].

A simple and feasible finite element method consistent
with the exponentially fitted scheme has not been devel-
oped for two-dimensional problems. In order to further
exploit the promising usefulness of the S-G scheme in the
finite-element method, we have developed in our general-
purpose two-dimensional Semiconductor Device Analysis
program (SDA-1) a simple and accurate finite element
discretization method (FEM-QSG), where the S-G scheme
is embedded in the quadrature of finite element assembly
of Poisson equation and continuity equations. The new
method not only avoids the problem of flux direction in
the discretization of flow term, but also extends the ap-
plication of the S-G scheme to the discretization of source
term in a consistent way.

In Section II, the basic governing equations in SDA-1
and the classical finite element discretization method are
reviewed. Next, a new finite element discretization
method employing the 5S-G scheme is presented in Section
III. In Section IV, some typical simulation results are dis-
cussed and are compared with the results obtained by the
classical finite element method.

II. FORMULATION OF Basic EQUATIONS

In order to devise a general-purpose device simulator,
which is capable of simulating various device structures
including homojunctions and heterojunctions with arbi-
trary geometries under any operation condition, we based
our analysis on a macroscopic description of semiconduc-
tors. In accordance with the quasi-Fermi level concept and
in terms of normalized variables, the basic semiconductor
equations governing device's operation with (y. v, w) (v
= ¢™®, w = ¢*) as dependent variables are the following

(6. [7):

V(W) =(n-p-N;+N7) (1)

0278-0070/89/0500-0468301.00 © 1989 IEEE
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. on
A\ (p.,,ew*'h)VV) =E + R (2)

Vo (ppe Tt PV) = % + R (3)

where ¢, and ¢, are the quasi-Fermi potentials for elec-
trons and holes; v and w are the Slotboom variables; ¢ is
the permittivity of semiconductor; Nj and N are the
concentrations of ionized donor and acceptor; p, and p,
are the mobilities of electrons and holes; R is the net re-
combination-generation rate including Shockley-Read-
Hall recombination, Auger recombination, impact ioni-
zation. .. ; n and p are the electron and hole densities
and are given by

n = n,eld+Va-on (4)
p (dp~¥+Vp) (5)

where V, and V, are the band parameters, which take into
account the variation of band edge with doping and com-
position, the shape of energy band, and the distribution
statistics.

Equations (1)-(3) can be generalized and expressed in

the form .
V- (aVu) =f | (6)
u=(y,» ) (7)

PR ()

n,e

a = (€ p,e

_ on ap

—a — —— + — —
f-(n J4 ND+NA,at+R,at+R>.
(9)

Note that (6)-(9) denote three individual equations in the
same mathematical form.

If the Gummel iteration method is assumec g
the Galerkin's analysis of (6), the finite element discreti-
zation results in the formulation [8]

N - N
Zl (Kj + Gj)ay = —( Z Kju; +ﬁ> (10)
j= j=1

where the stiffness matrices and load vector are defined as

K; = SSann-Vdajds (11)
G; = Sgg‘f@‘f’jds (12)
fi= chb,-ds (13)

and ¢, is the shape function, usually chosen as a low order
polynomial. Note that there is no derivative term of a in-
volved in the K;; term, however, which may appear in cer-
tain cases as stated in Appendix C. Here, the derivative
of a is implicitly included in the decoupled iteration
scheme, where the Poisson equation is solved first by as-
suming known quasi-Fermi potentials, then continuity
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equations are solved with the potential given from the pre-
ceeding step. And the Gummel iteraticn is repeated until
self-consistent values of all unknowns are obtained.

For finite element analysis, the main concern is the ac-
curacy of the quadrature in the assembly of stiffness ma-
trices and right-hand side vector of (10), i.e., assembling
(11)-(13), in which the complex calculations are involved
in determining the values of the function to be integrated.

Conventionally a set of low order polynomials [2] are
also used to approximate the carrier densities, n and p,
(e *"), and (e‘~¥* "), which can be written as

n = g,,‘d,l (14)
p=Zps, (15)
W+ = g(e(“m)ﬁbi (16)
eV = T (o) g, (17)

iee

where index i is the alternation of the vertices of the tri-
angular element e. Let’s take an example of assembling
the matrix element G}f—" of Poisson equation due to ele-
ment e.

G,ﬁ" = SS (n + p) o9, ds (18)

e

where two methods can be applied for the approximation
of such integral functions. On the one hand, the direct
integration is an intuitional choice; on the other hand, the
Gaussian quadrature rules with various orders are appli-
cable. If the direct integration method is applied, the re-
sultant approximation will be simply in the form

i

A | T

e

(19)

kze: (n + P)k SS $:9;9, ds.

4

It is clearly seen from the above that using low order
polynomials to approximate the carrier densities, n and p,
(e *¥), and (e'"**"’) will no doubt result in large
integration errors because these variables inherently ex-
hibit a highly nonlinear varation in a small region, lead-
ing to an inaccurate solution as well as a poor conver-
gence rate, except that the mesh is intensively refined.

The Gaussian quadrature requiring a least number of
evaluations to achieve a maximum accuracy is ideally
suited for our use (8]. If the Gaussian quadrature rules are
applied, we might need values of n, p, (¢**""), and
(e!~¥*¥)y at certain points in addition to those at vertices
of the =lement in order to have an accurate high order
approximation, which could be interpolated from the
known values at vertices. However, it is obvious that
using the same low order interpolation polynomials like
(14)-(17) in Gaussian quadrature will suffer from the same
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low accuracy problem as that which occurs in the direct
integration method. Thus an approximation of the inte-
grand in the Gaussian quadrature based on a nonlinear
functional fitting would be more desirable.

III. New FINITE-ELEMENT DISCKRETIZATION EMPLOYING
THE S-G SCHEME

In order to take advantage of the simplicity and accu-
racy of the S-G scheme associated with the finite differ-
ence discretization and to avoid the shortcomings of the
classical finite element integration method, we employ a
seven-point Gaussian quadrature rule in conjunction with
the S-G scheme, while assembling the finite-element stiff-
ness matrices and right-hand side vector. This new scheme
can be outlined as follows.

For an arbitrary triangular element, e, as shown in Fig.
1, the seven-point Gaussian quadrature rule with error es-
timate of O(h*) [8] reads

7
I= Sefds =2A g)l wif (L, L), (20)
where A is the area of element e; L; and L, are natural
coordinates of the triangular element; the seven sampling
points on an element are taken at the vertices of triangle,
the middle points of the edges and the center of triangle,
respectively, as illustrated in Fig. 1; and the correspond-
ing weighting coefficient for Gaussian quadrature at the
kth point, w,, is listed in Table I.

If the quadrature rule (20) is applied to the finite ele-
ment integration of (11)~(13), a general form can be de-
scribed as

§S G(”’ p, e(\0+Vn)’ e(-\é*-Vp)) ds

e

=2A % G(nk, P (e(¢+Vn))k, (e(—¢+vp))k) Wy

(21)

where N Pis (e(‘b+yn))ka (e(—W+Vp))k’ (k = l’ m, n, P)
can be evaluated using a S-G formula-like function. For
the approximations of n, and p;, we follow the §-G scheme
and assume the electric field and the current densitv be-
tween two neighboring grid point i and j are constants,
which yields the interpolation formula based on current
density equations (see Appendix A for details).

n(x)], = [1 = g(x a¥y)]n + glx, Ady)n,

xké[’rn x/] (22)
PO, = [1 = g(x —89))]pi + g(x ~¥;)p;
xelx x5 (23)
| — e)’(th x;)
$xy) = ——— (24)
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i | k

Fig. 1. A triangular element and its sampling points of Gaussian quadra-

ture.
TABLE 1
THE WEIGHTING COEFFICIENTS FOR THE SEVEN-POINT GAUSSIAN
QUADRATURE
i j k 1 m n P
2w, | W60 | ¥60 | 360 | weo | as0 | weo | 20
Ay = + Vy ~ (4 + Vo) (25)

For the approximations of (¢¥*"") and (e"¥*"),
Bank [9] pointed out that the following three schemes can
be applied:

(1) linear interpolation from the nodal values
(e(‘# + Vn))‘_ and (e(\b + V,.));

(2) linear interpolation from the nodal values (¢ + V,),
and (¢ + V,),

(3) interpolation by using Bernoulli function

and suggested that scheme (3) is more accurate than the
others in the sense or nonlinear functional fittinz. Based
on device physics considerations, we derive an interpo-
lation rule similar to the scheme (3), which can be ex-
pressed as

(e¥*"), = B(Agy)ethi™ (27)

(e77%), = B(=agy)e v " (28)
with Bernoulli function defined as
X

Concemning the determination of the function value at
the central point, we take an average of the three inter-
polated values which are obtained by applyiig the inter-
polation rule described above along the respective line
connecting a vertex and the middle point of the corre-
sponding edge opposite to it, i.e.,i — n,j — I, and k —
m in Fig. 1. In an appropriately refined mesh which when
used in the new scheme is always more coarse than that
for the classic finite element method, the differences
among these three interpolated values are negligible since
we have a more accurate functional fitting expression cho-
sen for interpolation.
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For clarity, let’s formulate the quadratures for Poisson
equation and electron continuity equation in the followis
(decoupled iteration method assumed):

(1) Poisson equation: The calculation of K ,f' is sim-
ple, since a = ¢ is constant. Here only formulations for
G.® and f* are given, which read

]

sS (n + p)qS,~<i>j ds

[ 4

Gte

=24 k§| (m + p) (9i), (0)we  (30)

y.e
]

il

SS (n~—p—NJ)oids

e

=24 :él (ne = px — Ny) (¢i),we  (31)

where ny, p, (k = |, m, n, p) can be evaluated from (22)
and (23), respectively, and (&; ), = &; (X, Yi), (&) =
&; (x5 Yi)-

(2) Continuity equation:

Ky© = H pr €YV, V, ds
L4

7
= 2A k§l ﬂk(€¢+yn)k (Vé )k (V¢j )kwk (32)

where V¢; and V¢, are constant vectors, if linear shape
funciions are chosen for triangular element.

For simplicity, let us assume the S-R-H recombination
dominates the recombination mechanism

np — n?

f=R=‘r,,(p+n,-)+Tp(n+n,-) (33)
QI _ (p + ni) (Tnp + Tpni) n e(“,+yn)
dv [ra(p + m) + 1,(n + n)}

= R(n, p)n;, e®* " (34)

then the matrix elements are given by

X g R(n, p)n, (e“*") ¢,0; ds

4

ne
G

7
24 k§| R(nky p‘() ni’(e(“"*Vﬂ))k (¢l )k (¢] )kwk

(35)

()

=

7
i SS Ro, ds = 2A ,,Zl R(ne. pe) (&), Wi

€

where for k = (I, m, n, p), . pi. and (&%), are
calculated by (22)-(29).

In the sense of finite element analysis, the FEM-QSG
formulation conforms to the Galerkin method, where the
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shape functions serve as the weighting functions. In sit-
uations where the dominant drift term is strong enough to
cause spurious oscillations, we can easily modify the
weighting functions in the FEM-QSG formulation to
achieve upwind effect without any inconsistency [4]. (See
Appendix C for a detailed discussion.)

In order to take advantage of the simplicity in deriva-
tion and its consistency with the finite element theory, the
definition of current proposed by Bames er al. [2] is
adopted in our current calculation, by which the local as
well as global current conservations are preserved. It must
be stressed that in the FEM-QSG formulation the modi-
fication on the interpolation of n, p, eV e ¥*¥ for the
quadratures would not perturb the current conservation
property and the consistency with the finite element the-
ory. »

This new discretization scheme not only uses an accu-
rate seven-point Gaussian quadrature rule instead of the
classical integration method but also applies the S-G
scheme to calculating the values of quadrature points
which are not on the vertices of an element so that the
approximation of carrier densities, (e®“*") and
(e'™¥*") yields an accurate exponential functional fit-
ting form. As a result, the convergence rate would be sig-
nificantly enhanced and the accuracy of solution would be
obviously improved due to the low finite element discre-
tization error generated by the new method.

IV. SiMULATION RESULTS AND Discussions

In the BIM discretization, an equivalent central finite
difference discretization scheme is usually applied to the
equation assembly of Poisson equation in a two-dimen-
sional domain, which results in a solution with compara-
ble accuracy to that generated by the classical finite ele-
ment method using piecewise linear finite elements [10].
Additionally, the linear interpolation on the source terms
(the right-hand side terms) of Poisson equation by the BIM
will inevitably introduce a larger discretization error than
that by the S-G interpolation in our method, especially for
the strong coupling cases. On the solution of cuirent con-
tinuity equations, a hybrid finite-difference finite-element
technique in conjunction with the S-G scheme is applied
in the BIM scheme. From the viewpoint of the general-
ized finite-element method [11], it is found that there is a
natural correspondence between the BIM scheme and our
new method on the discretization of continuity equations.
A more detailed comparison is presented in Appendix B.

To demonstrate the effectiveness and accuracy of this
new discretization method (method II) compared to the
classical one (method I), we give three examples. From
the theoretical analysis, we gather that the convergence
rate is strongly dependent on the accuracy of discretiza-
tion. We thus consider that a detailed comparison with the
classical finite element can show us to what extent that
the discretization errors have influence on the conver-
gence rate.

First of all, a simple abrupt p-n junction is simulated.
Two meshes used for simulations are illustrated in Fig. 2.
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Fig. 2. Meshes used for simulations of an abrupt p-n junction with grid-
points of (a) NP = 37, (b) NP = 640.

The coarse mesh is used as a reference for the following
evaluations. The mesh with fine grid is a typical mesh
example for obtaining the optimal solution.'

Fig. 3 shows the number of iterations required by
method II to reach convergence and that required by
method I, as a function of impurity concentration. Fig. 4
compares the minimum number of mesh points required
for convergence by method II with that by method I, also
as a function of impurity concentration. As seen in Figs.
3 and 4 the results indicate that the integrations by method
II are so accurate that the convergence speed is almost
independent of the impurity density and the grid size of
the mesh. On the contrary, the convergence rate of the
simulation discretized by method I is very sensitive to the
impurity density and the fineness and the layout of the
mesh due to large integration errors involved in the ap-
proximation of nonlinear functions during assembling the
element matrices, especially for highly doped regions.

Fig. 5 shows the decreasing rate of the error function
of Poisson equation (at zero bias). It is obvious that the
convergence rate is quadratic for method II. Besides, it
does not need d: mping scheme in Newton iteration 2xcept
the first few iterations, whereas the convergence rate is
almost a linear one for method 1.

In Fig. 6, we compare the discretization error, ERR,’
of Poisson equation by method II with that by method I,

'Here the optimal solution is obtained by keeping reducing the grid size
by half each time (i.e., refining the mesh) until the relative deviation be-
tween solutions of two successive discretizations is less than ! percent.

2The discretization error ERR is defined as the relative error between
the exact solution and numerical solution.

Fig. 3. The number of iteration NUM required for convergence versus im-
purity concentration Np (N, = 1 X 10" cm™3, zero bias).
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Fig. 4. The minimum number of mesh points N, required for conver-
gence versus impurity concentration Np (N, = 1 X 10'® cm™?, zero
bias).
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Fig. 5. The decrease of the error function of Poisson’s equation versus the
number of iterations (NP = 37, zero bias) by (1) method I and (2) method
II.

as a function of minimum mesh size. And we show in Fig.
7 the discretization errors of continuity equations of elec-
trons and holes by method II with that by method I, again
as a function of minimum mesh size.

Figs. 6 and 7 confirm that by method Il we can obtain
a more accurate solution than that by method I on the same
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Fig. 6. The discretization errors ERR between exact solution and numer-
ical solution of Poisson’s equation as a function of minimum mesh size
Ax . (N, =1x10%cm™>, Np = 1 x 10" cm™?, zero bias).
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Fig. 7. The discretization errors of continuity equations of electron and
hole between exact solution and numerical solution as a function of A x,,,,
(N,=1x%x10%cm™>, Ny =5x10%em™, ¥, =0.6V).

app

grid, in particular for the Poisson equation case. In addi-
tion, the results illustrate that applying method II to con-
tinuity equations will allow us to take the same advan-
tages of the §-G scheme as those well known in the finite
difference counterpart. Therefore, this new finite element
scheme is competitive with the finite difference method
with exponential functional fitting in the sense of discre-
tization accuracy.

Fig. 8 shows the simulation potential distribution and
electron and hole concentration plots of the abrupt p-n
junction of the optimal solution' compared with those ob-
tained by methods I and II using the mesh shown in Fig.
2(a). We can see that the solution calculated by method
I is closer to the optimal solution than that by method I
on the basis of same simulation mesh.

In order to test the effectiveness and efficiency of the
new method for complex device cases, we further simu-
lated a typical bipolar transistor and a MOS transistor.

The simulated bipolar transistor, whose geometric
structure is shown in Fig. 9(a), is doped with an impurity
concentration profile as plotted in Fig. 9(b). Tables II and
I11 list the relative deviation, RD? of the calculated results

}The relative deviation. RD. is defined as the maximum relative devia-
tion of the calculated results from the optimal solution.
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Fig. 8. Plots of (a) the potential distribution, (b) the electron concentra-
tion, and (c) the hole concentration of along the central line of the abrupt

p-n junction of (1) the ootimal solution. solutions obtained. (2) by method
I, and (3) by method II.

v ith respect to the optimal solution for the bipolar tran-
sistor biased at V. = 1.6 V and V, = 0.9 V with various
meshes by methods I and II. The results manifest that by
using method II the solution has higher accuracy than that
by method I. In other words, under the same accuracy
requirement, method Il can use a coarser mesh than that
used by method I to reach the same goal.
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Fig. 9. (a) The device structure and (b) the doping profiie along the line
of y = 0 of the simulated bipolar transistor.

TABLE I
THE RELATIVE DEVIATION OF THE CALCULATED RESULTS FROM THE
OPTIMAL SOLUTION FOR THE BIPOLAR TRANSISTOR (AT V. = 1.6 V, V,
0.9 V) usiNnG VARIOUS MESHES (METHOD 1)

NP
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Fig. 10. (a) The device structure of the simulated MOS transistor and (b)
the mesh used for simulation.

-
[=2

RD(%)v | 2.775 | 2774

RD(%)n | 8722 | 8720

RD(%)p | 53512 | 5.7

TABLE III
THE RELATIVE DEVIATION OF THE CALCULATED RESULTS FROM THE
OPTIMAL SOLUTION FOR THE BIPOLAR TRANSISTOR (AT V. = 1.6V, V, =
0.9 V) usING Various MEsHES (METHop 1I)

NP l 162| 593 | 11 (131

RD (%) v 3570:2.753 2753 | 2.142

RD(%)In | 2107 | 8252 | 8.252 | 6471

RD(%)p | 1299 | 5738 | 3771 | 3.7

Secondly, a MOS transistor, whose structure is shown
in Fig. 10, is simulated as well. Fig. 11 shows the con-
vergence rate of Poisson equation for MOS. We found out
that method II also held a quadratic convergence rate. We

Emor Func.

-

1

163 : -

15 20
# of fteration

Fig. 11. The decrease of the error function of Poisson’s equation versus

the number of iterations of Poisson’s equation for the MOS (zero bias)
by (1) method I and (2) method II.

16 25 30 35

tabulate the RD of the MOS example by methods I and II
in Tables IV and V, respectively, ard the results also re-
veal that the accuracy of solution by method II is higher
than that by method I. Fig. 12 shows perspective plots of
electron and hole distribution for the BJT (at V. = 1.6 V,
Vy =0.9V).

We can easily find out from the examples demonstrated
above that the advantages of the new discretization method

applied equally well to a simple abrupt p-n junction and
the complicated device structures.




TAN et al.: DEVICE ANALYSIS BY S-G SCHEME

"""” ssssay

e
Sueriess:
190009 o oer

P
(am®)
1 ™
0.3 02 0.1 0?0
Y{sm}
(a)
I
%Z:///////;//;:.u i
///y',’ 'u;;" !
//I :‘t /i //}/,
N
(cm)
- — 0

(b)
Fig. 12. The perspective plots of electron and hole distributions of the
simulated BIT(V. = 1.6 V, ¥V, =09V).

TABLE IV
THE RELATIVE DEVIATIONS OF THE SOLUTIONS FOR n-MOS (AT ¥, = 1.0
V, V4 = 0.5 V) ESTIMATED ALONG THE LINES OF x = 0.04 AND 0.06 um
(MeTHoD II)

NP no | s

RD (%) | x=0.04 | 128 ]1.08

v 2=006 | 2.46 | 1.60

x=0(A4 | 3.84 | 473
386 14.70

RD (%)
n x=(.06

TABLE V
THE RELATIVE DEVIATIONS OF THE SOLUTIONS FOR n-MOS (AT ¥, = 1.0
V, ¥V, = 0.5 V) ESTIMATED ALONG THE LINESOF x = (.04 AxD 0.06 um
(MegTHCD 1)

NP 240 | 295 | 492

RD(%) | x=0.04 | 403 | 304 371
v 2006 | 468 | 422402

RD (%) | ==0.04 | 86¢ | 833 (3596

n =006 | 780 | 766(519
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The weakness of the new method stems from the con-
stant derivative assumption of , ¢,, * * * imposed on the
S-G scheme. The approximation is poor by the S-G
scheme at the transition layer where a large variation of
electrical field or current density occurs. The remedy to
this is refining the mesh properly by self-adaptive algo-
rithm.

V. CONCLUSIONS

A simple and accurate finite element discretization
method has been developed in the two-dimensional semi-
conductor device analysis program SDA-1. The key of
this method lies in (1) accurate interpolation rules, which
are derived based on simple device physics considera-
tions, are applied to the functional approximations of n,
p, e¥*¥ ... necessary in the finite element assembly
of stiffness matrices as well as source terms of Poisson
equation and continuity equations in a consistent way
rather than just concentrating on the discretization of flow
term, V + (aVu), of continuity equation like the BIM-SG
scheme does. (2) The inherent simplicity and flexibility
in the finite element formulation make the new method
applicable to multidimensional problems. (3) The sim-
plicity of embedding the S-G scheme in the quadrature of
finite element assembly lends itself to all kinds of finite
element methods employing various elements, shape
functions and weightings. The resultant exponential func-
tional fitting by the new method avoids high discretization
errors usually incurred by the classical finite element dis-
cretization method. Using this new method, we not only
obtain solution with high accuracy but also speed up the
convergence rate significantly. Moreover, as the theoret-
ical prediction, the numerical experiments confirm that the
convergence rate strongly relies on a proper functior-} fit-
ting and an accurate numerical integration in the appli-
cation of the finite element method to the semiconductor
equations.

APPENDIX A
THE APPLICATION OF THE S-G SCHEME TO FINITE
ELeMENT METHOD BaseDp on DevICE PHYsICS
CONSIDERATIONS

Considering the current density equation for electrons,
in terms of different dependent variables, they can be ex-
pressed. respectively, as

Jo = —pa(n¥Y — Vn) (A1)

or

J. = p,e¥Vn. (A2)

According to the Schafetter-Gummel (S-G) scheme, if
the derivatives of ¥, », * -+, between point i and j are
assumed constant, the S-G approximation of the current
density equation projected on i — j line by central differ-
ences reads

V’l - an
Jy = et B(aY,) =

p (A3)

—— ]
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where B(x) = x/(e* — 1) is the Bernoulli function; 4 is
the average value of u between point i and j [9]. It seems
difficult to derive a similar expression like (A3) by the
finite element discretization. However, the similarity be-
tween (A3) and (A2) suggests that e“B(Alpj,-) is a proper
interpolation formula for evaluating ¢¥ at certain point be-
tween points I and j; or in a more exact term, the e¥ value
at midpoint M between points { and j can be approximated
by

(e%), = € B(aY;). (A4)

The carrier densities, n and p, are well known for hav-
ing an exponential functional dependence on . The lin-
ear interpolation will obviously result in an inaccurate es-
timation. However, we can further extend the idea behind
the S-G scheme to the evaluation of carricr concentration,
at point k [ocated in between two neighboring gridpoints
i and j, in terms of the given carrier concentrations n; and
n; at these two terminal point as follows.

Based on the constant derivative assumption, the cur-
rent density equation (Al) in a one-dimensional case re-
duces to a two-point boundary value problem:

% + Egn = ii (AS)
with the boundary conditions
n(x;)=n; (A6)
n(x;) = n (A7)
where E.g = ~Vy.
The general solution n can be expressed as
n=n(l~-g)+ng (A8)
| — e y(x - x)
g = o (49)
1 ~e’

where h; = x; — x;, ¥y = [{; — ¥;]. Then the equivalent
S-G formula, (22), can be obtained and (23) can be de-
rived in the same way.

APPENDIX B
THe CoOMPARISON OF THE NEW METHOD WITH THE
BIM-SG ScHEME

A triangular (or rectangular) domain partition process
is usually employed in the BIM scheme first. Then boxes
are constructed around every gridpoint by taking the mid-
perpendicules of line segments directed to its neighboring
points. If the Green's theorem is applied to (6) on a box,
we have

SaVu dl = Sfds (B1)

or

2avVu - Al =fs (B2)

where 7, is the unit normal vector of box edge I; [, is the
length of the edge; S is area of the box.

If the BIM scheme is applied to Poisson equation on the
example mesh shown in Fig. 13, a standard central dif-
ference expression would be obtained:

(B3)

This shows an equivalence of the BIM scheme on Poisson
equation to the standard central difference with accuracy
of second order. From other point of view, the application
of classical FEM to Poisson equation on the same mesh
will yield a same central difference expression. Thus the
BIM scheme is equivalent to the classical FEM on the
discretization of Poisson equation. Although we use a
rectangular mesh here, the derivation holds generally true
on other mesh geometries [10].

In Section III, we have shown the superiority of the new
method to the classical FEM due to the accurate assembly
of the stiffness matrices. Besides, we introduce the S-G
scheme to the Jacobian and right-hand side vector via { §
(n +p)¢;¢;dsand [f (n — p — N,) ¢; ds. Compared
to the BIM scheme where the source term is aporoximated
simply by f, times the box area, the more ac irate treat-
ment of the right-hand side vector in the new method will
definitely further reduc~ he discretization error. Thus the
new method does not need mesh as fine as that usually
used by the BIM sche .e to achieve a same convergence
rate in solving Poisson equation.

As for continuity equation, the BIM scheme incorpo-
rates the S-G current formula to improve the discretiza-
tion accuracy. For convenience, in the following compar-
ison we consider the contribution to the Jacobian only
from the triangule AO15 as indicated in Fig. 13 by th
BIM-SG scheme, which gives

aluy + uy + uy + uy — dug) =f0h:.

VvV, — YV
Do L+ 0y b = pg e B(Adg) —— |,
Vs = Vo
+ pose®B(AYgs) == 1.
Hos ( 05) ‘/-2-}1 2
V., — Y

= po1e®B(Avy,) (B4

2
where for the mesh in Fig. 13, !/, = h/2and /, = 0. (Foﬂ
other cases, [y, [, may not be zero; however, the compar:
1son still holds valid.)

If the new method is applied, according to (32), th
discretization of continuity equation on element AO14
reads

Z Ky =288 Twle), - Z(V9,), (V8)),,
J

j=0.1.5

(BS
Assume the shape function is linear, then
bb; + ¢

Vo Vo = — (qu
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Fig. 13. An example rectangular mesh.

where A is area of element A0Q15, and (BS) becomes

- ;<§k] 2»vk(e‘°)k> ? (M>

Z K::‘,"elr'j 4A

j=0.1.5
(B7)

where u is average value of u. Moreover, from the linear |
shape function, we can easily prove that
Zb,bj + CiCj _ Vo — ¥y
j 4A 2

Therefore, (B7) can be further expressed in the form

(B8)

ne, o - - v Vo — V)
j=0.1.5 Ky p(% £ )"> 2 (B9)
where
Sowe!), = D = (e%), + = (¢*), B(abor)
K ko k=015 60 k60 0

8 v 8 v
"'6—0(" )o B(AY0s) +‘6_0(€ )

27
. / il '
B(&bis) + o5 (¢4, (B10)
Equation (B10j) is equivalent to a weighting scheme over
(e*) with weights on

(1) three vertex values (e¥) by 3/60;

(2) midpoint values of three edges (corresponding to
(e%)o B(Ayyp,) in the S-G scheme) by 8/60;

(3) the value at the central point (e¢)p, which is also
an average of the midpoint values and the vertex
values, by 27/60.

Comparing (B9) with (B4), we will find that the idea
behind the S-G scheme is embedded in the new method
in a different form wher> the weighting average of (e*)
is taken on the element rather than on the edges by the
BIM-SG scheme. Thus, the new method is at least as good
as the BIM-SG scheme in the sense of applying the $-G
scheme to continuity equation. It might have a lower dis-
cretization error than the BIM-SG scheme does, if we
count the factors of using the accurate seven-point Gauss-
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ian quadrature rule and weighting the average of a on ele-
ment instead of on edges.

Again, the new method has a more accurate treatment
on the source term f than the BIM-SG scheme does by
further introducing the S-G formula to the terms, | §
(0f/0u) ¢;¢;ds and § | fo; ds, where the BIM-SG scheme
simply approximate these terms by linear interpolations.
In this respect, if decoupled solution method is used and
the generation-recombination terms are neglected where
the continuity equation is linear, the new method is iden-
tical to the BIM-SG scheme. However, if the generation-
recombination terms are taken into accouat, then the
equation being a nonlinear one, the new method certainly
would have a better performance than the BIM scheme
due to a lower discretization error from source term.

AppPEnDIX C
RELEVANT CHARACTERISTIC: TO THE UpwIND EFFECT

If a in (6) is a function of u, (10) will involve a first-
order derivative term (the drift term), via

V- [a(u)Vu] = a(u) Vu + Va(u) - Vu = f (C1)
The drift term has to be taken into consideration at the
following situations.

(1) A coupled solution method is used.

(2) A decoupled iteration method is used. while the
mobility, u, is a function of the Fermi-potential or carrier
density.

As is well known, the solutions to iie convedtive wans-
port equation like (C1) by the standard finite difference
method or the classical finite element method are often
spoiled by spurious oscillations. To preciude such oscil-
lation various schemes have been proposed over the years
for finite difference discretization method and finite ele-
ment discretization method. In the finite element regime,
artificial diffusion, quadrature, and the Petrov-Galerkin
method are common techniques utilized to achieve the up-
wind effect.

The application of the 5S-G scheme has been shown to
be equivalent to adding certain ‘‘upwind term'" to the
standard discretization [5). In the new method, the S-G
scheme is incorporated in the quadrature and an accurate
quadrature rule is employed. These techniques will come
up to enhance the upwind effects in the solution.

Recently, a streamline upwind/Petrov-Galerkin method
{4] has been shown effective for two-dimensional convec-
tion dominated flow problems by choosing weighting
function to be the sum of the standard shape function and
a streamline upwind perturbation. Since the new finite
element formulation FEM-QSG conforms to the standard
Galerkin method, it can be easily converted to the Petrov-
Galerkin formulation by simply modifying the weighting
function w, based on the shupe “unction ¢, without causing
any inconsistency. Therefore. the nesv finite element dis-
cretization scheme is able to enhance the upwind effects
by all kinds of techniques.
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ADIC-2.C: A General-Purpose Optimization
Program Suitable for Integrated Circuit
Design Applications Using the Pseudo

Objective Function Substitution

Method (POSM)

GEN-LIN TAN, SHAO-WEI PAN, WALTER H. KU, axp AN-JUI SHEY

Abstract—In this paper, a new unconstrained optimization algo-
rithm—POSM—is presented. This algorithm, requiring neither deriv-
ative calculation nor linear search step, substitutes the objective func-
tion by a second-order approximated formulation, which enhances the
convergence rate substantially and has been implemented in the gen-
eral-purpose Analysis and Design program for Integrated Circuit,
ADIC-2.C. Its high efficiency has been demonstrated by numerical ex-
amples as well as integrated circuit designs.

I. INTRODUCTION

HE COMMON features found in the optimization

problems of circuit and system designs are a limited
number of parameters to be optimized and a huge com-
putation lcad that is incurred due to an excessively com-
plicated objective function evaluation need (especially for
the optimization of transient characteristics). For the 2x-
isting optimization algorithm, calculation of the deriva-
tives of the objective function or its equivalences is usu-
ally a necessity. Because of an increasing complexity of
the circuit and the high nonlinearity of active elements
involved, this is a complicated process concerning mod-
ern integrated circuit designs. Thus the reduction in the
number of function evaluations is crucial to its efficiency.
Furthermore, the linear search is an essential .step to en-
sure the convergence of Newton's iteration. The tech-
niques employed during the linear search step in existing
optimization schemes are very time consuming. There-
fore, it is our intention to develop a new algorithm with
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Office of Scientific Research, Boiling Air Force Base, Washington, DC,
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S.-W. Pan is with the Department of Electrical Engineering, Beijing
Polytechnic University, Beijing. China.

W. H. Ku and A.-J. Shey are with the Department of Electrical and
Computer Engineering, University of California at San Diego, La Jolla,
Ca 970973,

IEEE Log Number 88229u1.

the following characteristics:

(1) no need for derivative calculation,
(2) reducing the need of linear search to a minimum,
(3) converging in fewest iterations.

Chen [1] has developed an effective optimization al-
gorithm suitable for integrated circuit design with the fol-
lowing characteristics: (1) making full use of the evalu-
ated objective function values (OFV) in much the same
way that the simplex methods [2] do and (2) estimating a
falling direction from current n + 1 OFV’s and finding a
new point with an improved objective function along the
falling direction in a manner similar to the Newion's
method, rather than blindly taking the reflection point with
respect to the center in the simplex methods (SM). Thanks
to these features, Chen’s method proved to be more ef-
fective than other known optimization methods [1]. How-
ever, the resort to linear search is still frequent in Chen's
method and the amount of iterations is huge. Thus we
proposed a new algorithm—POSM. The principal idea lies
in finding the minimum point of the pseudo objective
functions which are formulated to approximate the exact
objective function in a much simpler form without in-
volving complicated calculation instead of looking for the
minimum point of the exact objective function by a linear
search along a falling direction. Note that the error func-
tion can be approximated by a first-, second-, or even
higher order polynomial of which the minimum point is
easy to find, and a series of optimization methods with
various degrees of complexity can be developed accord-
ingly following this idea. Moreover, the modified simplex
method in conjunction with a quadratic interpolation
scheme is incorporated to further alleviate the necessity
of linear search step. The total combination leads to the
pseudo objective function substitution method (POSM).

In Section II, the basic concept and a detailed algo-
rithmic procedure of the pseudo objective function sub-
stitution method are described. The evaluation results of
the proposed algorithm by a few typical optimization
problems selected from literature are discussed and com-

0278-0070/88/1100-1150301.00 © 1988 IEEE
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pared with oth~r well-known algorithms in Section III.
Secticn IV presents some circuit design examples illus-
trating the great suitability of the application of POSM in
ADIC for integrated circuit and system design. The final
section presents summary and conclusions about this al-
gorithm and comments on its further applicability.

II. ALGORITHM

Generally speaking, the circuit optimization can be per-
formed by successively modifying the parameter vector x
= (x|, x3, * * * , x,) until the calculated response u(x, )
comes close to the desired response r(¢) within a certain
tolerance in the sense of a least pth approximation [3], in
short, finding an x such that the objective function S(x)
being a minimum

m
S(x) = ,~=Zl [e(x)) (1)
where p is an even positive integer, m is the number of
sampling points, and e¢;(x) is the corresponding error
function at the jth sampling point, and is defined as

g(x) = u(x, ) — r(y),
where ¢, for example, can be input voltage in dc charac-
terization, frequency in ac analysis, or time in TRANsient
evaluation; u(x, t;) and r(#;) are the calculated response
with parameter vector x and the desired response at the

Jth sampling point, respectively. The basic assumption of
POSM is that ¢; can be approximated' by

j=1L2,--,m

n n
2
g = ej'-" + igl b,-j(xi - x,’") + E;I ci(x - xf") ,

(2)

where the notation ¢; is for ¢;(x), e}" for ej(x"’), and b;
and c;; are approximation coefficients to be determined. In
order to determine these approximation coefficients a
super-polygon with 2n + 1 vertices in n-dimensional pa-
rameter space is constructed, and the error function e} =
ej(x" ), and the objective function S* are evaluated at these
vertices (k = 1,2, -+, 2n+ 1,j=1,2, -+, m),
from which x* and x™*, the parameter vectors of the best
and worst point, i.e., S¥ (§™*) with the smallest (big-
gest) value, among the 2n + 1 points can be selected as
a reference for ugdating the super-polygon. Putting these
values (e,'»‘ and ¢;") into (2), we can formulate a set of 2n
equations in terms of coefficients b; and c,; (for each j):

w"(ej'-‘ - e}')

j=1’2,..-’m

n n

2

= wt ‘Zl bij(xf‘ - xM) + Wt iZl c,j(xf‘ - xMy,
i= =

k=1,2,+,2n (3)

'Here the mixed terms in the Taylor series expansion are neglected for
reduciug ihe computation load when caicuiating those coetnicients. Never-
theless, the experimental results do not show high sensitivity to those mixed
terms.
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where w® = (§*)7!/7 is the weight of the kth equation
[1]. Equation (3) can be expressed in a matrix form

w0 2] =5

7

(4)

where E = [w'(ef = ) laaxm X = [¥] = xMhanxns
Y= [(xxk - x:‘“)2]2nxm B = [bij]nxmv and C = [ij]anr
E;, B;, and C; denote column vectors of E, B, and C, re-
spectively. From (4), B; and C; can be solved by

B
[—}:\ =[W(X|Y)]+Ev, Jj= L,2,---,m (5)
G

where the notation [ ]* represents a generalized-inverse
operation [4]. Note that we only need to calculate B and
C from (S) with generalized-inverse operation once, since
w(X|Y) in (5) is independent of j.

Based on the second-order error function approxima-
tion. a pseudo objactive function § corresponding to (1)
can be formulated in terms of the Taylor series expansion
of S(x) at S¥ [5] (see Appendix 4).

S(x¥ + Ax) = S™ + pAx"BR
+0.5p(p ~— 1)Ax"BDB"Ax + pY'CR
+ 0.5p(p — 1)Y'CDCTY
+ p(p — 1)Ax"™BDCTY (6)
where
R={(e)7 ()™ ()]
D = diag [(e},“)p_z, (eg')P—z, S, (e:{.)p_zl

Y =[Ax} Ax}, - -+, AxY], B=[b] ..

C= [C"f]uxm'

The minimum point of $ can be found by equating the
derivative of § with respect to Ax to zero

aS(x* + ax) _

IAx 0. (7)

g(ax) =

From (6) we have
g(Ax) = pBR + p(p ~ 1)BDB"Ax + 2pZCR
+ p(p — 1)BDCY
+ 2p(p — 1)ZCDBAx
+2p(p — 1)ZCDCTY = 0 (8)

where Z = diag [Ax;, Axy, * * , Ax,]. Ax can be solved
by using a globally convergent modified Newton's method
[6), and the parameter vector can be modified by

x™ = xM + Ax.

(9)

Thus the optimum solution x* of S is further approached
by x"". The modified Newton's iteration can be written
as

Ax*tt = Axt - )\[Q(Ax")]_'g(Axk) (10)
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where
_ 0g(Ax)
Q(ax) = 3Bx

=p(p — 1)BDBT + 2pV + 2p(p — 1)G
(11)

where V = diag [C\R, C3R, - -+ , C,R], G = diag
(C,DCTY, C,DCTY, - - -, C,DCTY], and X can be found
by backtrack linear search [6] such that

S(ax**') < $(axt) — ar[g(axh)]”
[o(axh)] ™" - g(ax®)

where o = 0.0001 [6]. Note that there is only a simple
polynomial calculation rather than a complicated objec-
tive function evaluation required for the linear search em-
ployed here, which relieves the computation load sub-
stantially. Moreover, if the Hessian matrix Q(Ax) =
vis (x) is nonpositive definite, we can convert it to a pos-
itive definite one by substituting Q(Ax) by [Q(Ax) +
vI) (v = 0) [6] to avoid the possible convergence at the
maximum or saddle point.

Once convergence of Newton's iteration is reached,
(i.e., x™" could be found) we calculate S™ = S(x"¥)
and compare it with $™* and S™.

If §™% < §™*, i.e., the current iteration is successful,
we update the super-polygon by replacing x ™* with x "*;
further if $™* < S™, we update the super-polygon by
replacing x™* with x™ and substitute x™* for x*. After

(12)

x2(1.02 + §), k=i
(1.02 + £), k =i,
xf= x%098-¢%), (k-n)
(0.98 — £), (k — n)
x? k # i,

the reference point x™* is determined from the new super-

polygon, the next optimization iteration starts until the
convergence condition is satisfied Note POSM only eval-
uates the objective function once in the successful itera-
tion.

If $™% > §™*, the current iteration fails. The remedy
for the failure case is a crucial point in this algorithm. If
™Y > §™* is the case, we apply the modified simplex
method by finding the weighted center ¥ of the super-
polygon with 2n vertices (with x™* excluded).?

1 2n+ k
=% & 5 (13)
k * max

INote that the weighted center of the super-polygon is chosen as new
reference point in MSM employed here, instead of the geometric center in
conventional SM (2].
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where
2n+ |

1

k=1 S
k # max

SD =

Then a certain reflection point of x™* with respect to X is
chosen as the new point, i.e.,

™ =%+ B(x-x"™), Be(0,1]. (14)

If ™ = S(x™%) < S or ™% < §$™*, the same
procedure for successful iteration mentioned above can be
resumed.

If $™*% > $™* still holds, we can apply the quadratic
interpolation scheme through the three known points x™*,
x*, and x™" to find a new point £"*, since S¥ < §™
< S$™" in this case. If the value of the objective function
at ™" is smaller than §™*, x"" is replaced by £"*. In
case $"% = S(2"") is still greater than $™*, which rarely
happens, the minimum point of S may be inside the supet-
polygon. If this happens, we can shrink the size of the
super-polygon to locate the minimum point more accu-
rately [2].

However, based on our experience, the odds of needing
to shrink the super-polygon are quite rare. As a result,
POSM needs evaluations of objective functions no more
than twice for any failed iteration except in some extreme
cases.

The algorithm as stated above can be summed up in the
following algorithmic procedure:

Algorithm POSM?2

(1) Initialize a super-polygon from the 2n + 1 points
picked around the initial point x;.

x? #0, k

<n

x?=0, k<n
= |, x? %0, n<k=<i2n
= |, x? =0, n<ks=<2n

(k—n) =i

where £ is the spreading coefficient’ used to determine the
size of the super-polygon.

(2) Evaluate the error functions e =(j=
m) and the objective functions S k,

(3) Select the point with minimum error x* = x
among 2n + 1 points { S = §(x™)}.

(4) Determine the point with maximum error x™*
among 2n + 1 points { ™ = §(x™*)}.

(5) Calculate pseudo objective function $.

(6) Solve Ax using a globally convergent modified
Newton method [6], and update x™* = x* + Ax.

(7) If the optimization iteration converges, then stop.

(8) If $™* < S, then update the super-polygon by
replacing x™* with x¥, substitute x™* for x, and go to

4).

L2,

min

’Selecting 1.02 and 0.98 instead of 1.0 makes points x(k = 1,
2, -+ -, 2n) distribute in a more random way.
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(9) If $™* < §™*, then update the super-poiygon by
replacing x™* with x™" and go to (4).

(10) (In this case, $™¥ > S$™* means the current it-
eration fails.) Find x ™" by the modified simplex method
(MSM) and calculate S™* = S(x"™¥).

(10.1) If $™* < S¥, then update the super-polygon
by replacing x™* with x™, substitute x™* for x¥, and go
to (4).

(10.2) If S™¥ < §™*, then update the super-poly-
gon by replacing x™"* with x"¥, and go to (4).

(10.3) Calculate a minimum point 2™" by quadratic
interpolation through the three points (x"*, $™¥), (x¥,
§*), and (x™*, $™*), then replace x"** by £"" and cal-
culate $™¥ = S(x™Y).

(10.4) If $™¥ < S™*, then go to (8), otherwise go
to (11).

(11) Shrink the size of the super-polygon, i.e., calcu-
late (1]

(Su)l/p
CIEYCE A

(12) Then go to (2).

Notes:

(1) In step (1), users only need to provide an initial
point x°. The other 2n points will be chosen by moving
x along positive and negative directions on each coordi-
nate axis, and the distance is determined by the spreading
coefficient. Results show that POSM is not sensitive to
the selection of the initial super-polygon.

(2) In step (7), if (1) [$™* — S¥| < ¢,S¥ + ¢, and
(2 Jx™ — xM} < exM + e (i=1,2,--,n), then
the iteration stops. Here, ¢, is the absolute error tolerance
and ¢, is the relative error tolerance which are given by
the user (¢; = € = 107 '2 by default). For the examp’:s
in Section III, the stopping criterion is set as { gl < ¢, or
| S| < ¢, in order to have fair comparisons with the results
in {1] and [7].

(3) In step (10.3), the quadratic interpolation function
is applied to the three points (x"*, $"¥), (x*, §*), and
(x™, §™*) and yields

M T — eNew
Sl(x) = Smax (x x )T(x d )
(xmax _ .XM) (xmax — xncvv)
M (I — xmuX)T(x - xncw)
+ S -
(XM _ xmax) (I _ xncw)
o grew (2= 2™) (x ~ x¥)

(x™ — xmax)r(xncw _ xM)'

The minimum point of S/(x) can be expressed as

B =

“
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(4) From a number of examples in the following sec-
tion, we will find that the case of (11) occurs only when
xM is very close to x* (the optimal point). In general, if
this happens, unless very high accuracy is needed, the
iteration can be terminated because the improvement of
| S(x)| will be very little if the iteration keeps going.

(5) If Chen’s method is employed to calculate Ax, in
which a linear approximation of e; and a second-order ap-
proximation of S(x* + Ax) are assumed, and the steps
(10) and (11) are adopted for processing the failed itera-
tion instead of Chen’s strategy [1], we would call this
modified algorithm the first-order POSM (POSM1), and
the algorithm mentioned above the second-order POSM
(POSM2) (or abbreviated to POSM).

(6) It is evident that the POSM needs at least 2n + 1
initial objective function calculations, while Chen’s
method needs only n + 1 initial objective function cal-
culations. In order to circumvent this shortcoming a
variable order POSM scheme has been proposed in which
the first-order POSM is applied in the first n iterations
without discarding the replaced points; then the second-
order POSM is initialized through the super-poiygon
formed by the accumulated 2n + 1 points automatically.

III. NuMericaL ExXAMPLES aND COMPARISONS WITH
OTHER ALGORITHMS

First, we will present the computation results of some
numerical examples to show the advantage of the high
efficiency embodied in the POSM in comparison with
other existing methods.

Example 1: Rosenbrock’s Parabolic Valley problem

(p=2):
S=10ix. ~x) + (1 - x).

The objective functivu has a minimum value of zero at
(1, 1). The initial point is set at ( —1.2, 1). The results
are listed in Tables I and II, where A S is the change of
the objective function.

As seen in the results, the POSM is superior to other
well known methods in terms of a minimum number of
objective function evaluations. Also, it is an obvious ad-
vantage that POSM is insensitive to the spreading coeffi-
cient £.

The objective function and the POSM optimization pro-
cess are illustrated in Figs. 1 and 2 by showing contours
of constant values of objective function and the evaluated
variable loci of this example as the optimization proceeds.
It is clearly found that the variable loci move downward

(§™BC + S™¥AB)x" + (SMAC + S™™AB)x™ + (S™*BC + SMAC)x"™"

where
A= (xmax - xM)T(xmax - xneW)
B = (XM - xmax)r(x.’vl _ xnew)

C = (xncw - xmayx)r(xm:w - xM)

2(S™ + sM + §5™¥)

towards the local bottom of the objective function valley
at the first step, then continuously move along the mini-
mum objective function valley toward the optimal point
with fast monotonic decrease in objective function value.

Example 2: Colville's four-dimensicnal banana prob-
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Fig. 1. The objective function contours of Example 1 showing the fast
monotonic decrease in objective functioca valuz at consecutive optimi-
zation steps by POSM; -: OFV = §, -.: OFV = 10, - - -: OFV = |5,
-+-: OFV = 20.

Fig. 2. A three-dimensional plot of variable loci illustrating the optimi-
zation path of Rosenbrock’s parabolic valley problem by POSM, and *
symbols indicating the initial super-polygon.

TABLE ]

Method Stopping Criterion Ns (Nsg) ¢
Fletcher-Powell s<107? 120 - 380°(1]
Jacobsoo-Oksman | A S < 1078 a1l
Powell s<10* 70 (1)
Peckham $ <4x10°1° 121
Hooke-Jeevs s <2x1077 353(7]
Nelder-Mead s<10”’ 300 [7}
Powell S<107¢ 150 - 1500°(7]
Newton s<ioh? 98 (7]

D-S-C s <107’ 187 [7)
Simplex s<107® 133 - 161°
Chen (1] S<io® 7-135°
POSM $<107® 15~ 17¢

*Spreading coefficients (£) 0.1, 0.4, 1.0, 2.0 are used for these results.

$Ns is the total number of objective function evaluations; Nsg is the
total number of objective function calculations and its associated deriva-
tives.

TABLE II
Algorithm | £=0.1 | 0.4 | 10 | 20
Simplex 161 | 137 | 133 | 140
Chen 68 [us| o 7
POSM 16 15| 17| 16

lem (p = 2):
S=100(x2 = x,) + (1 - x,)" +90(x? - x,)
+ (L= xy) +10.1](x = 1) + (x4 = 1)}]
+ 19.8(x, — 1)(xy — 1).

Note that this objective function is not an explicit sum
of pth error terms in real numbers, but it can be rearranged
in a least pth approximation form with p = 2 like [1]

where the error terms are defined as
e, = 10(x? - x,)

(1 —x)

s/§6(x§ —x;)

e = (1 —x;)

€;

€3

es = V0.2(x; — 1)
es = V0.2(x — 1)

ey = V9.9(Iz + x;3 — 2)

The objective function has a minimum value of zero at
(1, 1, 1, 1) and a stationary point at ( —~0.9679, 0.9471,
~0.9695, 0.9512). The evaluation results of POSM with
various initial points are summarized in Table I1I for com-
parison with other methods.

It is interesting to point out that the POSM2 algorithm
has a convergence rate faster than that of any other meth-
ods even when the initial point happens to be the nonop-
timal stationary point. In addition, the results show that
the location of the initial point does not affect the conver-
gence rate much in POSM2.

Example 3: Powell's Function problem (p = 2):

S=(x + IOxz)2 + 5(xy — x4)2
+ (x, — 2x3)4 + 10(x; — x4)‘.

The objective function has a minimum vaiue of zero at
(0, 0, 0, 0) where the Hessian matrix is singular. Table
1V shows the results calculated by POSM in contrast with
those obtained by other methods.

Even though the POSM does not employ an exact sec-
ond-order formulation by neglecting the mixed terms for
reducing the complexity of objective function evaluation
in the error function approximation, the performance of
the POSM is still superior to nther methods, since the r2-
sults fromn the preceeding examples, where there are mixed
terms involved only in the error functions e; and e of
Example 3, show that the inclusions of the mixed terms
in the error function has only a minor influence on the
convergence rate. Thus we trade the accuracy in the error
function approximation, where higher accuracy in ap-
proximation may lead to faster convergence, for a less
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Method Jacabson Fletcher Sunplex Chen POSM
-Oksman -Powell
Inidal Point | NgN <10~ | ggh S107* | ASS 107 | 4l <107 | pgii s 10°¢

(-3-0:3.:1) 135 161 694 26 25

-3.0-3.0) 154 595 549 3 26

(12,1120 194 643 573 107 30

stationary point fai) il 2 231 4]

TABLE IV [1)

Method Fletchec Jacobson | Rank-one Project- Huang Chen |  POSM

-Powell -Cksman tion
Initial 4 —6 3 -3 -6 -6
Point ligll<10 figh<10™ | Hglisto liglls10 lIgli<10 lIgll<10™ | "¢l<10
3.-10.1 80 64 28 , 21
10.10,10,-10 378-925 286660 172-663 28 L 43

computation load of objective function evaluation in order
to maximize the overall performance.

IV. Circuir DEesicN ExaMPLES

Due to its inherent high efficiency advantage, POSM is
highly suitable for applications in the optimization of
complicated integrated circuit designs. As a rule, the more
complex the IC is the more efficient it appears.

Example 4: AC optimization of a second-order active
low-pass filter:

The circuit schematic is shown in Fig. 3 and the input
circuit description codes are listed in (1) of Appendix 2.

Fig 4 illustrates the frequency response of the circuit
at different optimization stages. As seen, a significant dis-
crepancy exists between the corresponding frequency re-
sponse (#2) for the initial parameter vector and the de-
sired frequency response (#1). In a few iterations, the
intermediate optimized response (#3) has been very close
to the desired response. Finally, a fairly good agreement
between the desired response and the optimized response
(#4) is observed with reasonable optimized parameter
values. The quantitative details that include iteration sta-
tistics, objective function values, and parameter vectors
are listed in Table V and compare with the results ob-
tained by Chen’s method [1], (run on IBM 4381, the same
hereafter) where the performances are evaluated in terms
of the following:

N; the number of iterations,

N, the number of objective function evaluations,

N, the number of additional objective function evalu-

ations while iteration fails, rr

IVOF, FVOF, IPV, FPV stand for initial value and fi-

nal value of objective function, initial and final pa-
rameter vector, respectively,

p is the order of least pth approximation.

From Table 1V, it is found that Chen’s method is sen-
sitive to p (large variation on the number of iterations

voB(5) z
7638E__ ..

1.488

-4.6621

-10.81}F ’

-16.96
-3} \ 12
-20.26} AN £

-35.41 R R N R , . AN .
t 2 3 4 5 6 7 8 9 10 1u
Fig. 4. The simulaied frequency responses of the active low-pass filter
shown in Fig. 3. #1] the desired ac response; #2 #4 the initial calculated
frequency response and the improved frequency responses obtained at
successive optimization stages.

KHz

with respect to p), while POSM is not, and POSM is more
effective than Chen’s no matter what the p value is.

Moreover, the final row in Table V shows if linear
search (as in Chen's method) is adopted instead of MSM
in step (10) in the algorithm POSM2, then the number of
iteration and failed iteration increases. It is apparent that
the low efficiency inherent in the linear search strategy
causes the degradation in the performance of Chen's
method.

Example 5: Parameter extraction of MOS device:

Because of technological limitations, the final values of
the devices’ parameters will not match the design values
exactly especially for small size devices. In order to pre-
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TABLE V

Metbod | Ni | Nc | Na | p | IVOF | FVOF | 1PV FPV CPU tinic

Chen 43 | 21 163 2310 4.29 Cl=10U | Cl=082U 83.375S
x10° C=IU | C2=0.315U

POSM | 20| 25| o0 2] 312 | 00987 | Cl=iloU | Cla302U 12375
x10° ClsiU | C2=0.097U

Chen |16] 23| 4| 4| 1736 | 0082 | ClaiOU | Clad.17U 11308
x10% C2atU | C2=0.095U

POsM [ 14| 19| o 4| L7136 | 0omt | ci=i0U | C1m3.16U 98705
x10° C=lU | C2=0.092U

Chen | 34| 77| 46| 6] 4165 | 2398 4 ClmicU | Ci=3.480 31.34S
x10° ClaiU | C2=0.083U

POSM |2t | 28] 2| 6] 4169 | 039 | CiatoUu | Clad2sU 1330S
x10° C=1U | C2=0.094U

POSM* (24 | 331 4| 6{ 4169 | 04t | ClsioU | Cix3.20U 1408 €

| x10° Claly | C20.091U

*For the handling of iteration failure here. Chen’s method is used rather
than the Modified Simplex Method as in step (10) of POSM2.

pare a more accurate empirical device model, the devices’
effective parameters (e.g., channel length) must be ex-
tracted from measured data. To this end, the output char-
acteristics of device are measured first and taken as the
given requirement; then the dc optimization is performed.

The circuit for parameter extraction of a MOS device
is depicted in Fig. 5, and its input codes are listed in (2)
of Appendix 2. The rcsults as compared with those ob-
tained by Chen’s method, shown in Table VI, show that
if the initial value L = 10U is selected, the number of
iterations by Chen’s method increases, while the number
of iterations in POSM does not change whether L = U
or L = 10U. The results of POSM are not sensitive to the
initial value of parameters.

Example 6: Transient characteristic optimization of a
circuit simulating a low power position-follow system:

In this example, the objective is to make the rise and
fall times of the TR response shorter and its overshoot
smaller. The results compared with those obtained by
Chen’s method are shown in Table VII, and the transient
characteristics in Figs. 7-10. The circuit schematic is
shown in Fig. 6.

As shown in Table VII, POSM comes up with a better
performance than Chen’s method, which has very often
been involved with linear searching and simplex shrink-
ing, and the number of additional objective function eval-
uations is enormous. Therefore, POSM is preferable. Ini-
tially in this example, the circuit was optimized using
POSM with weight as 1 (default value). The output wave-
form of this optimization as shown in Fig. 8 did not meet
the design goal; therefore, the optimization was further
carried out interactively by altering the weights (i.e., re-
ducing the weight at the sampling point where the devia-
tion is small and increasing it at the point where the de-
viation from the desired value is large). For example, the
weights of 2nd-6th and 13th-17th points are raised to 10.
The optimization process is stopped once the output char-
acteristic comes closest to the desired response. The re-
sults are shown in Fig. 9. The initial calculated voltage
waveform of v (21, Q) in the circuit as shown in Fig. o is
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Fig. 5. The MOS circuit used for effective device parameter extraction.
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Flg. 6. The equivalent circuit of a low power position-follow system.

TABLE VI
Method | Ni | Nc | Na | IVOF FVOF | IPV FPV | CPU time
Chen | 8 | 11 ] 1 | 1.5287 | 43x107° | L=9U | L=6.00U | 586S
POSM | 4 | 7] 0 |} 15287 | 43x107° | L=OU | La6.00U | 426§
Chen | 9 | 12| 1 | 15287 | 43x107° | L=10U | L=6.00U | 7065
POSM | 4 | 7| 0 | 15287 | 43x1077 | L=10U | Le60OU | 4245
TABLE VII
i i |
Method Ni | Nc | Na ! IVOF FVOF | 1PV FPV CPU tme
f
’ l R1=100k | R2=313K
Chen 18176 | 48 | 02518 | 02398 | R3=100k | R3=92K 1836 §
. ‘ R3=SOk | R4=50.7K
! R4=100k | RS5=126K
POSM R22400k | R2=411 1K |
with 18127 | 0102548 | 0067 | R3=100k | RI=97.7K 575 S
unuform R4=50k  R4=21.3K
weight | RS=100k | RS=99.6K
POSM R2=400k | R2=679K
with 1772 | 0] 7918 | 02663 | RI=100k | R3=1286K | 189S
vanable Ra=50k R4=16.2K
weights RS=100k | R3=86.6K

illustrated in Fig. 7. The waveform obtained by Chen’s
method is shown in Fig. 10. It is evident that the over-
shoot as well as the rise and fall times are reduced re-
markably after POSM optimization application.

Example 7: Optimization of a high-order bandpass fil-
ter design

As shown in Fig. 11, the circuit consists of an active
7-order low-pass filter and an active 5-order high-pass fil-
ter. The specification of the design requires that the atten-
uation in stop-band should be greater than 45 dB. There
are 22 design parameters assigned. The input circuit de-
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Fig. 7. The initial voltage transient response at (0, 21) of the circuit
shown in Fig. 6.
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Fig. 8. The optimized transient response at #(0, 21) of the circuit shown
in Fig. 6 using the POSM with uniform weights 1°s.

scription codes are listed in (4) of Appendix 2. The opti-
mization results are shown in Table VIII.

IPV for both are:

R4 = 100K R15 = 100K R28 = 100K
RS5 = 100K R19 = 100K R29 = 91K

R6 = 80K R20 = 100K R30 = 50K

R7 = 10K R21 = 50K R34 = 100K
R8 = 50K R22 = 100K R35 = 81K
R12 = 100K R26 = 100K R36 = 10K
R13 = 100K R27 = 100K R37 = 50K
R14 = 50K

FPV for Chen’s method are:

R4 = 157.8K R15 = -36.3K R28 = 176.6K
RS = 144 8K R19 = 36.52K R29 = —47.0K
R6 = 41.21K R20 = 64.57K R30 = 25.24K
R7 = 8.35K R21 = 56.05K R34 = 287.5K
R8 = 46.45K R22 = 34.57K R35 = 82K
R12 = 20.6K R26 = 194.8K R36 = ~9.09K
R13 = 98.32K R27 = 319.2K R37 = 159.7K
R14 = 59.03K

OQUTPUT = -0.5V o.ov 0.5v 1.0v 1.5V

TME=S

0 Q00E+00 - t

1.000E-01 .

2 000E-01

3.000E-01

4.000E-01

5 000E-01

6.000E-01
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9.000€-01

1.000€+00

1.100E+00 -

1.200E+00 . .-

1.300E+00 - <..

1.400€ +00 . 1

1.500€E +00 !

1 600E+00 . t

1.700€+00 . :
i
1

.....

1.000E +00
1.900€ +00
2.000E +00

Fig. 9. The optimized transient response at v (0, 21) of the circuit shown
in Fig. 6 using the POSM with variable weights.

_____

_____

Fig. 10. The optimized transient characteristic calculated by Chen’s

Method.

FPV for the POSM are:

R4 = 118.7K R15 = 30.51K R28 = 104.9K
R5 = 100.6K R19 = 126.0K R29 = 84.59K
R6 = 92.11K R20 = 124.1K R30 = 31.79K
R7 = 7.71K R21 = 8.64K R34 = 98.98K
R8 = 49.97K R22 = 90.74K R35 = 82.71K
R12 = 24.34K R26 = 90.83K R36 = 24.99K
R13 = 94.65K R27 = 97.86K R37 = 66.44K
R14 = 1000K

Notice that the results shown in Table VIII by the
POSM were summarized from a convergent computer run,
whereas those by the Chen’s method were extracted from
intermediate optimization results, which are not accept-
able due to unrealistic resistances because it fails to con-
verge after a long-time computer run.

This fact shows that for large size optimization prob-
lems, the POSM basically runs in time proportional to the
dimensions of the parameter vector and always obtains
convergent results, while, on the contraiy, Chen's method
often fails to reach a reasonable solution because it easily
becomes trapped in the linear searching and simplex
shrinking loop.
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TABLE VIII
Method | Ni | Nc | Na | IVOF | FVOF | CPU Time
POSM | 56 | 101 0 | 16350 | 4562 560 S
Chen | 131 | 707 | 533 | 16350 } =65¢ 2645 8

Example 8: Constrained optimization on the transient
response of an inverter chain [8):

In this example, the signal delay is subjected to min-
imization under the constraint that transient power is less
than 2 mW. The channel lengths of PMOS’s and widths
of NMOS’s are designated as adjustable parameters with
a total number of 10. The circuit schematic is shown in
Fig. 12. The results are shown in Table IX and the initial
and optimized output responses, where the signal delay is
reduced from 1, = 148 ns to 1, = 80 ns, are plotted in
Figs. 13-14, respectively.

V. CONCLUSIONS

We have presented an unconstrained optimization al-
gorithm suitable for integrated circuit design applications.
The algorithm has been implemented in the general-pur-
pose analysis and design program for integrated circuit
application ADIC. To show the effectiveness and effi-
ciency of this algorithm, we have evaluated it by a num-
ber of typical numerical examples which are commonly
examined by other existing optimization methods as well
as some practical IC designs. As a result, the POSM has
proved to be more effective and efficient than other meth-
ods in terms of the number of iterations, objective func-
tion evaluations, the chance of needing super-polygon
shrinkage, and CPU time. The high efficiency is attrib-
uted to 1) POSM adopts high order approximations for
error function, 2) the modified simplex method is used for
handling the failed iteration during optimization, and 3) a
globally convergent modified Newton method is used for
obtaining the minimum point of §. By this sort of com-
bination, POSM reduced bcth the number of objective
function calculations and the chance of shrinking poly-

Fig. 12. The circuit schematic of an inverter chain.
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Fig. 13. The initial output response of an inverter chain (1, = 148 ns).
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Fig. 14. The optimized output response of an inverter chain (1, = 80 ns).
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TABLE XI

IVOF FVOF 149 1244 CPU ume

POSM |34 | 13| 0 | 0.710x10* | 0.159%10° M1 L=20U
M2 Wal6U
M3.L=20U
M4, Wal6U
MS L=20U
M6 W=16U
M7 L=20U
M8 W=16U
M9 L=20U

MI0,.W=l6U

L=t1.29U
W=x25.92U
L=3$.360U
Wuel16.65U
L=17.58U
Wal1.60U
L=18.91U
W=15.99U
L=19.54U
W=l3.56U

15763S

gon, and led it insensitive to the initial polygon and the p
value. Experiments in IC design applications also show
that the POSM performs equally well in terms of accuracy
and effectiveness for large size problems, especially for
complex circuits with very complicated objective func-
tions, and very fast in computer run-time. Extensions to
constrained optimization have also been proposed and
tested for emerging high density VLSI circuit designs, on
which the design constraints imposed are more stringent.

APPENDIX |
INPUT STATEMENTS Useb IN ADIC-2 FOR
OPTIMIZATION PURPOSE

The POSM has been implemented in a general-purpose
IC Analysis and Design Program ADIC-2.C. The input
language of ADIC-2.C is compatible with that of SPICE-
2G.5 with some additional statements included, for ex-
ample, parameter statement, optimization statement,
macro-model statement [8], - - - etc, making the specifi-
cation of optimization problem more precise and com-
plete. '
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EPS is the accuracy of optimization (default 0.001), P is
the order of the least pth approximations (default 2).
CONS specifies the constraints where C can be PW
(power), TR (rise time), TF (fall time) and/or TD (delav
time), etc., and C; is upper limit value of C;. The objec-
tive function of the circuit optimization problem can be
written as

k m
S(x) = % W, Z (Wlux, 1) - v,)) (A1)

=]

where u;(x, 1,) is the calculated value at jth sampling point
of V,.

For the constrained optimization problems, the La-
grange multiplier method (PHR Algorithm [10]) can be
applied. In general, the constrained optimization problem
can be decomposed into a series of unconstrained opti-
mization problems* whose objective function is’

1
Se(x, N = S(x) + L Nomax {Li(x). = N/u'}

]
+0.55% 2 [max {L,(x), ~\/u"}]

(A2)

where L;(x) = C, — C; or C; ~ C;, u is the penalty func-
tion factor, and A, is the Lagrange multiplier for ith con-
straint. It should be noted that the lower and upper limit
values of the designable parameters are treated like con-
straints. The details of the usage are described in Appen-
dix 2.

.PARA [subcircuit-name,] elementname [(lower limit,upper limit)] - - -
+ [subcircuit-name,] model-name,parameter-name [(lower limit,upper limit)]

.MIN type OBJIT(V1, V2, * - - , VK)

+ w=w V[.W,] Viol.Wa] - Viel o Wim ]
+ W=w, Vyl.Wul Val.Wal] - Vamls Wom)
+

+ W =W, Vu[qu] sz[kaZ] e Vk,,,k[,W,m]

+XI = §, LT = N,

where .PARA statement is used to specify the adjustable
parameters in the optimization procedure, which could be
any parameter of the element in the main circuit or sub-
circuits. .MIN statement is used to specify the optimiza-
tion objectives: the ‘‘type’’ could be dc, ac, or TRAN;
the optimization objects (OBJT) indicates the nodal or
branch variable ¥, to be fitted, where V; could be branch
currents, nodal voltages, power of branches, rise, fall or
delay time of signal at some nodes, and W;, W;; and ¥
are the overall weight, the weight and desired value at jth
sampling point of variable V,, respectively. W;’s are ls
by default. X/ is the spreading coefficient (default 0.03).
LT is the limit of the number of iterations (default 100).

EPS =¢, P=M,,

CONS(C,(C)) - - (C(TD)

APPENDIX 2
THE SPICE-CompaTiBLE CIrcuiT DEescripTioN CODES
FOR THE OPTIMIZATION EXAMPLES OF INTEGRATED
Circuit DESIGN

(1) A Second-Order Active Filter

A SECOND-ORDER ACTIVE FILTER
.WIDTH IN=80 OUT=80

RI 12283

R2 23 729

R3 0 4 10K

*The details about how to handle the constraints will be presented in
another paper.
3C, is the upper limit value of C,, and C, is the lowe:-limit value of C,.
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.AC DEC 5 100 10K

.PRINT AC VM(5) VDB(S) VDB(3)

.PLOT AC VDB(S)

MIN AC OBIT(VDB(5)) W=1 6.054 6.054 6.054 6.054 6.054 6.054,
0.1

+ —-0.3955 -7.960 —16.00 —-24.05 —32.07 XI=0.5 EPS=0.0001

.PARA C1(100P,20U) C2(100P,10U)

.END

In this example, the adjustable parameters are C1, C2
(.PARA statement). .MIN statement designates ac opti-
mization; the output to be optimized is ¥ (5); there are 11
sampling points® that are determined by the ac statement,
and the weight of every sample point is default value 1
except the sixth point whose weight is 0.1.

The macro-model [11] of uA741 is included for mod-
eling the operational amplifier in this circuit. X1
MACRO OP-UA471 statement’ is used for calling in the
macro-model of the pA741 from the macro-model library
and its parameters can be modified during the optimiza-
tion if they are specified in the .PARA statement.

(2) MOS Output Characteristics

MOS OUTPUT CHARACTERISTICS
.WIDTH IN =80 OUT=380

vDS 3 0

VGs 2 0

X11 1 2 0 SUBTESTI

.SUBCKT SUBTEST! | 2 4

M1 1244 MODI L=10U W 10U
+ AD=10P AS=10P

.MODEL MODI1 NMOS (VTO=-1.5
+UO=550 KP=3.0E-5 NSUB=1.E15
+ LAMBDA=0.02 PHI=0.65)
.ENDS

ViDl 31

.DC VDS 08 .5VGS 041
.PRINT DC KVIDI) V(2)

.PLOT DC I(VID1)

.MIN DC OBJT(I(VID1)

+W=1000 0.0 3.16E—-5 ... (total 85
+ideal values at sampling points) ...
+XI1=0.5 EPS=0.0001

.PARA X1 M1 LR2E-6,20E-6)
.END

(3) Transient Characteristics Optimization Example

TRANSIENT ANALYSIS EXAMPLE
Rl 1 0 IK

R2 2 3 400K

R} 4 5 100K

R4 6 7 SOK

R5 8 9 100K

RI0 16 17 1.1571MEG
Ri1 17 18 2.8692K
R12 19 20 1000K
R40 4 O 1ES8

R80 8 O 1IES8

Cl 3 41U

*Here, the sample points are the output points of response V(5).

"In ADIC-2.C, the subcircuit calling statement can have real parame-
ters, i.e., "XYYYYYYY NI(N2 N3...)SUBNAM [REAL-PARAME-
TER]"".

C2 56 1U

C3 7 8 1U

Cs 9 10 1U

Ccs 17 19 1U

C6 18 0 0.1U

C7 20 21 1U

VIN 1 0

+ PULSE(0 1 0 0.10 0.10 1.0 2.2)
El 2 0

+ POLY(2) 1 0 21 0 © 195 195
EZ 0 6 4 0 LEIO

E3 0 10 8 0 IEIO

E4 16 0 11 0 4.75

E5 19 0 18 0 |

E6 0 21 20 O 1EIO

R6 10 11 100K

R7 11 12 10

R8 11 14 10

RO 11 0 100K

V2 0 13 DC 6

V3 15 0 DC 6

DI 13 12 DWY

D2 14 15 DWY

_MODEL DWY D

.TRAN 0.10 2.0 UIC

JLOT TRAN V(0,21)

.PRINT TRAN V(2) V(4) V{6) V(8)
+ V(11) V(19) V21)

.MIN TRAN OBJT(V(0,21)) W=101 11
+11111111000000000

+ XI=0.5 EPS=0.001
.PARA R2 R3 R4 RS
.END

(4) A High-Order Filter
A HIGH-ORDER FILTER

Cl1 1 2 30U

RI 3 2 220K

R2 2 0 9IK

R3 4 40 15K

QI 3 2 4 QMODI
.t‘FlRST.ctt

R4 4 5 100K

R5 5 6 100K

R6 6 9 80K

R7 7 8 10K

R8 8 0 50K

R9 11 0 10K

RIO 7 11 51

Ril 3 10 10K

C2 5 0 280P

C3 5 8 2%0p

C4 6 7 250p

C5 8 9 1300P

Cc6 8 0 IIOP

Q2 10 9 11 QMODI
Q3 7 1”3 QMOD2
essGECOND?»s*»

C7 7 14 438P

C8 12 13 2120P
C9 14 15 1062P
Cl0 14 0 624P
R12 7 12 100K
RI13 12 15 100K
Ri4 13 14 SOK
RIS 14 0 SO0K
R16 18 40 10K
R17 13 18 51

RI18 3 16 10K

Q4 16 15 18 QMODI
Q5 13 16 3 QMOD2
ottTHIRDt-‘o

Cil 13 21 638pP
Ci2 19 20 2020p
C13 21 22 1010P
Cl4 21 0 372p
R19 13 19 100K
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R20 19 22 100K

R2l 20 21 50K

R22 2! 0 100K

R23 24 40 10K

R24 20 24 50

R25 3 23 10K

Q6 23 22 24 QMODI

Q7 20 23 3 QMOD2

‘..FOURTH..‘.

Cls 20 25 700P

C16 25 26 700P

C17 26 29 4000P

C18 27 28 60000P

C19 28 0 5000P

R26 25 0 100K

R27 25 28 100K

R28 26 27 100K

R29 28 29 9IK

R30 28 0 10K

R31 31 40 10K

R32 27 31 50

R33 3 30 10K

Q8 30 29 31 QMODI

Q9 27 30 3 QMOD2

.‘.FlFrH.“‘

C20 27 32 4000P

C21 32 35 4000P

C22 33 34 6600P

C23 34 0 1300P

R34 27 34 100K

R35 32 33 18K

R36 34 35 10K

R37 34 0 SOK

R38 37 40 10K

R39 33 37 S0

R40 3 36 10K

Q10 36 35 37 QMODI

Qll 33 36 3 QMOD2

C24 33 38 30U

RL 38 0 200K

SESEUPER EESRIRBEERSED

.MODEL QMOD! NPN BF=80 VAF=200
+CJE=IP CIC=1P TF=0.IN TR=100N
.MODEL QMOD2 PNP BF=80 VAF=200
+CJE=IP CIC=1P TF=0.IN TR=I10N

VIN 1 0 AC

vCC 3 ¢ DC 12

VEE 40 0 DC -12

.WIDTH IN=80 OUT=80

.AC DECI0 100 20K

.PLOT AC VDB(38)

MIN AC OBJT(VDB(7), VDB(13).

+ VDB(20),VDB(27),VDB(38))

+W=1 -.52 -.52 -.52 -.52 -.52 -.52
+-.5" -52 -.52 -.52 -.52 -.52
+-.20 -.40 -83 -14.5 -224 =33
+-40.0 ~-40.0 —40.0 -40.0 -40.0 -40.0
+W=1 —.48 -.48 —.48 —.48 -.48 -—.48
+-.48 -48 -.48 -48 -.53 -.70 -.90
+-12 -15 -87 -26.0 -47.0 -47.0
+-47.0 ~47.0 -47.0 -47.0 -47.0 -47.0
+W=1 —.47 -47 -47 -47 -47 -47
+-47 -47 -47 -47 -50 -.60 -.90
+-17 -24 -40 -50.0 -50.0 -50.0
+-50.0 ~50.0 +-50.0 -50.0 —50.0 -50.0
+W=1 -41.3 -413 -413 -41.3 -a13
+-41.3 ~41.3 —-16 ~10 -6 -3 -2 —13
+-.77 -.38 -24 -52 -52 -52 -%2
+-52 =52 -52 -52 -52

+W=1 -52 -5. -52 -52 -52 -52 -52
+-21 -4 -2 -2 -2 -2 -2 -4 -21
+-52 -52 -52 -52 -52 -52 -52 -52
+-52 X1=0.1 LT=130 ORDER=3

PARA R4 RS R6 R7 R8 RI2 RI3 RI9
+R14 (10K, 1000k) RI5 (10K, 2000K) R20
+R21 R22 R26 R27 R28 R30 R34 R37
+R29 (10K, 2500K) R35 R36(3K. 2000K)
.END

(5) An Inverter Chain

CIRCUIT OF INVERTER CHAIN

WIDTH IN=80 OUT=80

M1 3211 MODI L =20U W=6U

+ AS=40P AL=20P

M2 3200 MOD2 L=6U W=16U

+ AS=30P AD=30P

.MODEL MOD2 NMOS(LEVEL=2 VTO=+1.5
+KP=0.8E-5 LAMBDA=0.02 CGSO=2E-12
+CGDO=2E-12 CGBO=3E-11 NSUB~=1Ei5§
+C1=2E-7 TOX=8E-8 XJ=1U LD=:0.5U)
CL1 3 0 SE-14

CL2 4 0 SE-14

M3 4311 MODI L=20U W=6U

+ AS=40P AD=20P

M4 4 3 00 MOD2 L=6U W=16U

+ AS=30P AD=30P

M5 5411 MOD! L=20U W=6U

+ AS=40P AD=20P

M6 54 0 0 MOD2 L=6U W=16U

+ AS=30P AD=3CP

M7 6 511 MOD] L=20U W=6U

+ AS=40P AD=20P

M8 6 500 MOD2 L=6U W=16U

+ AS=30P AD=30P

M% 76 1 1 MOD! L=20U W=6U

+ AS=40P AD=20P

Mi0 7 6 0 0 MOD2 L=6U W=16U

+ AS=30P AD=30P

.MODEL MODI PMOS (LEBEL=2 VTO=-1.5
+ KP=0.4E-5 LAMBDA=0.02 CGSO=2E-12
+CGDO=2E—-12 CGBO=3E~11 NSUB=1Ei$§
+ CJ=2E-7 TOX=8E~8 XJ=1U LD=0.5U)
CL3 50 SE—-14

CL4 6 0 SE-14

CL5 7 0 SE-14

VDD 10 DC 5

VIN 2 0 PWL(O O 10N O 20N 5 200N 5)
.PLOT TRAN V(3) V(4) V(5) V(6) V(D)
.TRAN 10NS 200NS

MIN TRAN OBIT(V(3), V(4), V(5), V(6),

A
N L b
-~ -
[3] ~
Pibgh it
255
222
w w
Ll
wnowmo

0
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M1,L(5U,40. ) M2,W(5U,400)
M3,L(5U,40U, M4,W(5U 40U)
M5.L(5U.+0U) M6,W(5U,40U)
M7,L(5U,40U) M8, W(5U,40U)
M9, L(5U,40U) MI10,W(5U,40U)
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APPENDIX 3

THe ExTENsION OF POSM 10 CONSTRAINED

OPTIMIZATION APPLICATIONS
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The optimization problems encountered in the field of
circuit and systcm design are generally cataloged as the
constrained optimization type. By using the Lagrange
multiplier methnd (the PHR algorithm in [10]), a con-
strained optimization problem can always be decomposed

to a series of unconstrained problems.

The following algorithm summarizes the proposed pro-
cedures to deal with the constrained optimization prob-

lems by employing the PHR method.

(1) Select a nondecreased sequence of {u*'} of pen-
alty function factors and initialize the process by setting
initial point x°, initial multiplier A\'*’, error tolerance e,

and k = 1.
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(2) Use the proposed unconstrained optimization al-
gorithm POSM2 to solve the decomposed unconstrained S(x)
optimization problem ((A2) in Appendix 1).

N

Zl (e, + bjAx; + ¢ Ax )
I-

- 2
(3) Update muitiplier by = sM 4 a5 Ax, + ’1 ) Ax Ax.
)\EHI) = )\Sk) + ”(k) max {L-(.r") __A(_k)/‘;{k)} ax, Ax=0 2 dx;-9x;- ar=0
. 2
= max {0, x,('k) + u(k)Li(x(k))}, = SM aS ae Ax.. + aS a
ae ax, Ar=0 ae ax;: ax .
i=1,2, -+, 1 (A3) ,
a’s de; de;
4) IF LAX.
@ ae ax dx; )A"oAx, ax;
Z max {L;(x*), =A% /,® e (A4)
"'[ { 1 =S" + Zpe by + 2c;0x:)| A%

THEN STOP (x* is the approximation solution of

the problem) + 1 }: pef"Zc,-jé,-.,--[ Ax Ax,
ELSEk =k + 1, GO TO (2). 2 j=1 ax=

APPENDIX 4 +t3 Z p(p — 1) el X (biy + 2¢i5Ax,)

Txe DERIVATION OF S(x)
Let Ax; = x; — x¥, and based on the second-order

error function approximation the objective function can = S" + pAx"BR + 0.5p(p — 1)
be written in implicit sum notation as

- (bl'j + 2C,‘jAX,")| Ax,"Ax"-

Ax=0

- Ax"BDB'Ax + pY'CR (A6)
S(x) = > [e,-(x)]P where §;;- is Dirac & function. (AS) is identical to (A6)
=1 except for the inclusion of two additional high order terms
m which usually do not introduce too much difference and
= 2 (M + bjAx; + ¢; Ax? little improvement on approximation. Thus we adopted

= P
/= (A5) rather than {A6) in this algorithm for more accurate

This equation can be expanded into binomial series like ~2PProximation.
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