AD-A213 592 EPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS
 UNCLASSIFIED

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE
 Available for public release. Distribution unlimited.

3. DISTRIBUTION/AVAILABILITY OF REPORT
 Available for public release. Distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
 Final Report

6a. NAME OF PERFORMING ORGANIZATION
 Massachusetts Institute of Technology

6b. OFFICE SYMBOL
 (if applicable)

7a. NAME OF MONITORING ORGANIZATION
 Office of Naval Research

7b. ADDRESS (City, State, and ZIP Code)
 Polymer & Organic Chemistry Division
 Code 113P0, 800 North Quincy Street
 Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING ORGANIZATION
 Office of Naval Research

8b. OFFICE SYMBOL
 (if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
 Distribution unlimited.

10. SOURCE OF FUNDING NUMBERS
 PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT ACCESSION NO.

11. TITLE (include Security Classification)
 New Polymers Made with Well-Characterized Organometallic Catalysts

12. PERSONAL AUTHOR(S)
 Richard R. Schrock

13a. TYPE OF REPORT
 Final Report

13b. TIME COVERED
 FROM 2/1/89 TO 12/31/89

14. DATE OF REPORT (Year, Month, Day)
 October 16, 1989

15. PAGE COUNT
 16

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
 UNCLASSIFIED/UNLIMITED

21. ABSTRACT SECURITY CLASSIFICATION
 UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL
 Richard R. Schrock

22b. OFFICE SYMBOL
 617/253-1596

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. All other editions are obsolete.
In the first publication we reported that \(\text{Mo}(\text{CH-t-Bu})_2(\text{NA})_2(\text{O-t-Bu})_2 \) was a good catalyst for the ring opening metathesis polymerization of \textit{endo,endo}-5,6-dicarbomethoxynorbornene to give homopolymers with polydispersities in the range 1.11-1.22, as well as block copolymers containing \textit{endo,endo}-5,6-dicarbomethoxynorbornene and norbornene with similar low polydispersities.

In the second publication we reported additional details of the metathesis of functionalized monomers by molybdenum, and also that 7,8-bis(trifluoromethyl)tricyclo[4.2.2.0\text{2,5}\text{,4}7,9\text{]}deca-3,7,9-triene could be ring opened and the polymer cleaved with pivaldehyde to give (after pyrolysis) soluble polyenes, \((\text{t-Bu})(\text{CH=CH})_{2x+1}(\text{t-Bu})\). Triblocks containing a 40-ene (average) central chain, capped by two polynorbornene chains also were prepared.

In the third we applied some of the principles of Mo and W chemistry to Ta. \(\text{Ta}(\text{CH-t-Bu})(\text{DIPP})_3(\text{THF}) \) (1), \(\text{Ta}(\text{CH-t-Bu})(\text{DMP})_3(\text{THF}) \) (3; DMP = 0-2,6-\text{C}_6\text{H}_3\text{Me}_2), and \(\text{Ta}(\text{CH-t-Bu})(\text{TIPT})_3(\text{THF}) \) (5; TIPT = S-2,4,6-\text{C}_6\text{H}_2-i-\text{Pr}_3) were prepared by straightforward methods. These species react with olefins to give metallacyclobutane intermediates, e.g., 1 reacts with norbornene to give an isolable tantalacyclobutane complex, \(\text{Ta}[(\text{C}_5\text{H}_8)\text{CHCH(t-Bu)}](\text{DIPP})_3 \).

Norbornene is polymerized by \(\text{Ta}[(\text{C}_5\text{H}_8)\text{CHCH(t-Bu)}](\text{DIPP})_3 \) in a reaction that is zero order in norbornene to give essentially monodisperse polynorbornene. The TIPT system behaves similarly, and in this case secondary metathesis (after NBE has been consumed) is negligible. Several crystal structures were reported.
In the fourth publication we reported that Ta(CHCMe$_3$)(DIPP)$_3$(THF) (DIPP = 2,6-diisopropylphenoxide) reacts with one equivalent of 2-butyne, diphenylacetylene, bis(trimethylsilyl)acetylene, or 2-methyl-1-buten-3-yne to give THF-free metallacyclobutene complexes, and that addition of pyridine to two of these metallacycles yields vinyl alkylidene complexes that react with up to 200 eq of 2-butyne readily to give living polymers. Ta[[C(Me)C(Me)$_x$CHCMe$_3$](DIPP)$_3$(py), from which the organic polymer can be cleaved by treatment with benzaldehyde and shown to have a very low polydispersity (< 1.05). This work establishes that it is possible to polymerize acetylenes in a living fashion, and incorporate them into block copolymers made from cyclic olefins by ROMP.

In the fifth publication we examined potential chain transfer (CT) reagents for removing a growing polymer from living ROMP catalysts. Although 1-(2-cyclopentenylmethyl)-2-phenylethene will react with W(CH-t-Bu)(NAr)(O-t-Bu)$_2$ to give W(CHPh)(NAr)(O-t-Bu)$_2$ in 60% yield, other potential chain transfer (CT) reagents for W catalysts fail to varying degrees for a variety of reasons. The most significant problem is that the double bond in the alkenyl side chain of the alkenylcyclohexene (the rearrangement product of the CT reagent) ultimately reacts with a relatively small alkylidene ligand (e.g., a propylidene ligand) in the just-formed initiator. We conclude that although the principle is valid, the double bond in an ideal CT reagent would have to be considerably more reactive than that in a cyclopentene, and/or the catalyst would have to discriminate more efficiently between the double bond in the cyclic olefin and that in the side chain.

In the sixth publication we show that 5,6-dicarbomethoxynorbornadiene or 5,6-bis(trifluoromethyl)norbornadiene can be polymerized by Mo(CH-t-Bu)(NAr)(O-t-Bu)$_2$ in a well-behaved living manner to give essentially monodisperse homopolymers that have a high degree of stereoregularity. Attempts to polymerize these monomers using W(CH-t-Bu)(NAr)(O-t-Bu)$_2$ were unsuccessful.
Technical Reports and Published Articles:

1. "Low Polydispersity Homo- and Block Copolymers by Ring-Opening of 5,6-
 Dicarbomethoxynorbornene"

2. "Controlled Ring-opening Metathesis Polymerization by Molybdenum and Tungsten
 Alkylidene Complexes"

3. "Preparation and Reactions of Tantalum Alkylidene Complexes Containing Bulky Phenoxide
 or Thiolate Ligands. Controlling Metathesis Activity and Mechanism Through Choice of
 Anionic Ligand."
 4964.*

4. "Living Polymerization of 2-Butyne Using a Well-Characterized Tantalum Catalyst"

5. "An Evaluation of Cyclopentene-based Chain Transfer Agents for
 Living Ring Opening Metathesis Polymerization"
Schrock, R. R.; Yap, K. B.; Yang, D. C.; Sitzmann, H.; Sita, L. R.; Bazan, G.

*Support by NSF DMR 84-18718 also acknowledged.

Names of Personnel:
 J. S. Murdzek, R. R. Schrock, S. A. Krouse, K. Knoll, K. C. Wallace, K. B. Yap,
 L. R. Sita, G. Bazan.