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PREFACE

Authority to carry out this study was provided to the US Army Engineer
Waterways Experiment Station (WES) Coastal Engineering Research Center (CERC)
by the US Army Corps of Engineers (USACE), under the Repair, Evaluation,
Maintenance, and Rehabilitation (REMR) Research Program Civil Works Research
Work Unit 32278, "Rehabilitation of Rubble-Mound Structure Toes."

Physical model tests of both toe berm and toe buttressing stone for
rubble-mound coastal structures were conducted under the general direction of
Mr. James E. Crews and Dr. Tony C. Liu, REMR Overview Committee, USACE; and
Messrs. Jesse A Pfeiffer, Jr., Directorate of Research and Development, USACE;
John H. Lockhart, Coastal Technical Monitor, USACE; William F. McCleese, REMR
Program Manager, WES, and D. D. Davidson, REMR Coastal Problem Area Leader,
WES.

The study was conducted by personnel of CERC under the general direction
of Dr. James R. Houston, Chief, and Mr. Charles C. Calhoun, Jr., Assistant
Chief, CERC; and under direct supervision of Mr. C. E. Chatham, Chief, Wave
Dynamics Division and Mr. Davidson, Chief, Wave Research Branch. The study
was designed and planned by Mr. Dennis G. Markle, Research Hydraulic Engineer,
Wave Research Branch. Models were constructed and tests were carried out by
Messrs. Willie G. Dubose, Marshall P. Thomas, and C. Ray Herrington, Engineer-
ing Technicians, assisted by Messrs. Cornelius Lewis, Engineering Technician,
Raymond Reed, Contract Student, and Ernest Galloway, Student Aid, under the
supervision of Mr. Markle. This report was prepared by Mr. Markle.

Commander and Director of WES during publication of this report was

COL Larry B. Fulton, EN, Technical Director was Dr, Robert W. Whalin,
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CONVERSION FACTORS, NON-SI TO SI (METRIC)

UNITS OF MEASUREMENT

Non-SI units of measurement used i

units as follows:

Multiply

feet
pounds (force)

pounds (force) per cubic foot

0.3048
4.448222
157.089467

To Obtain

metres
newtons

newtons per cubic metre




STABILITY OF TOE BERM ARMOR STONE AND TOE BUTTRESSING
STONE ON RUBBLE-MOUND BREAKWATERS AND JETTIES

Physical Model Investigation

PART 1I: INTRODUCTION

Background

1. Failure of rubble-mound breakwater and jetty toes is a problem that
has plagued a majority of US Army Corps of Engineers (CE) divisions and
districts responsible for designing, constructing, and maintaining these
structures. Instability and partial failure of a rubble-mound structure'’s toe
does not become evident until it has resulted in damage to the primary armor
which has progressed up to or above the still-water level (swl).

2. Under the Repair, Evaluation, Maintenance, and Rehabilitation (REMR)
Research Program, the US Army Engineer Waterways Experiment Station’s Ccastal
Engineering Research Center was authorized and funded to conduct a work unit
under the Counstruction, Operation, and Maintenance Research Area entitled
Rehabilitation of Rubble-Mound Structure Toes. The first objective of this
work unit was to gain an understanding of the toe stability problems experi-
enced by field designers and determine what research was needed to develop
adequate guidance for design of stable rubble-mound toes. The results of a
field experience survey, conducted within the CE division and district offices
(Markle 1986), are summarized as follows:

In general, there appear to be three major problem
areas with rubble-mound coastal structure toes. One of
these pertains to the proper sizing and placement of toe
buttressing stone. The purpose of buttressing stone is to
stabilize the slope armor by preventing downslope slippage
of the armor layer. For the buttressing stones to func-
tion properly, they must be of sufficient weight and
placed in such a way that they are stable in the wave and
flow environment to which the structure is subjected. The
second major problem area is with toe berms. A toe berm’s
primary function is to protect a structure placed on an
erodible bottom from being undermined by wave- and/or
flow-induced scour. Resisting downslope slippage of the
primary slope armor is a secondary function of the toe
berm. For a toe berm to function properly, it, like the
toe buttressing stone, must be composed of materials and
constructed in a manner that will be stable in the
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incident wave and flow environment. The third major prob-
lem area deals with failure induced by an eroding founda-
tion. Toe buttressing stones and toe berms are suscepti-
ble to damage and failure when placed on erodible bottom
material. The stones may be sized adequately for the
expected level of energy to which they may be exposed, but
the exposed bottom material at the outer perimeter of the
structure may erode readily under these conditions. Also,
an inadequately designed bedding, or filter, material may
allow foundation material to leach through it and the toe
berm or buttressing armor. Either one or a combination of
both of these factors can result in the undermining and
displacement of stones that were otherwise stable in the
wave and flow environment.

In summary, a toe failure may stem from any one or a
combination of the above. Guidance exists for proper
design of bedding (filter) layers based on soil types, but
very little guidance is available for the sizing and geom-
etries needed for the proper design of toe berms and but-
tressing stone for incident wave environments. Most de-
sign work done in this area by CE districts is based on
field experience and engineering judgment. A scouring
bottom is a problem in itself. No matter how well a toe
is designed, if the local bottom materials (sands, silts,
clays, etc.) are exposed to sufficient energy levels for
scour to occur, the toe of the structure is likely to fail
unless the toe berm is extended to a point where the ener-
gy levels are below that of scour initiation. In most
~acec this is not nractical or feasible. In these
instances, sufficient toe berm material, that in itself is
stable for the wave and/or flow environment, must be
placed so that as the structure toe undermines the berm
and bedding material can slough off into the scour hole.
This occurrence will provide some armoring to reduce the
rate of scour and thus ircrease the usable. or functional,
life of a structure.

3. Based on survey findings, it was concluded that design guidance is
seriously needed on the proper sizing and placement configurations required to
provide adequate buttressing stone and toe berms for rubble-mound coastal
structures. Existing design guidance for toe berms is based on field
experience and engineering judgment (weight of toe armor should be at least

one-tenth the weight of the primary armor (Shore Protection Manual (SPM) 1984)

or on research by Brebner and Donnelly (1962) and Tanimoto, Yagyu, and Goda
(1982) on foundation and toe berm materials lying beneath and/or in front of

vertical structures, i.e. caissons, timber cribs, etc.




Purpose and Approach

4. The purpose of this study was to develop suitable design guidance
for the sizing of toe berm and toe buttressing stone using experimental
results from laboratory physical models. A series of two-dimensiunal (2-D)
and three-dimensional (3-D) stability tests was developed and conducted in
physical models to address the sizing of toe berm and toe buttressing stone in
breaking wave environments. The 2-D tests focussed on toe stone sizing on
rubble-mound structure trunks exposed to 90-deg wave attack, i.e., wave
orthogonals perpendicular to structure crest. Toe berm armor stone sizing for
oblique wave attack on rubble-mound structure heads and trunks was examined in
the 3-D model tests. Guidance for sizing toe berm armor stone was developed
for a range of wave and swl conditions. Guidance for sizing of toe buttress-
ing stone was developed for a limited set of incident wave conditions on

structure trunks.




PART II: MODEL DESIGN AND SETUP

Test Facilities

2-D tests

5. All tests were conducted in concrete flumes equipped with vertical
displacement, monochromatic wave generators. Toe buttressing stone sections
were tested in a 5-ft-wide* flume (Figure 1), while four toe berm stone
sections were tested simultaneously in 5- and 6.75-ft-wide flumes that share a
common generator (Figure 2). Two toe berm test sections were constructed
adjacent to one another in each of the flumes (Photo 1).
3-D tests

6. A majority of the tests were conducted in an L-shaped wave basin
which has overall dimensions of 250 ft long and 50 and 80 ft wide at the top
and bottom of the L, respectively, and 4.5 ft deep in the test area (Fig-
ure 3). The L-shaped basin was equipped with a flap wave generator, and mono-
chromatic waves were gererated for these tests.

7. Some of the tests were conducted in a T-shaped wave basin 164 ft
long, 43 and 15 ft wide at top and bottom of the T, respectively, and 3.3 ft
deep (Figure 4). The basin was equipped with a horizontal displacement wave

generator capable of making both monochromatic and spectral waves.

Test Facility Calibration

8. Prior to construction of the test sections, each test facility was
calibrated for a range of incident wave conditions and water depths. This is
the preferred method of calibration because it eliminates the influence of
reflected waves from the structure so that wave conditions match the design
conditions (defined through prototype wave gaging and/or hindcasting done
prior to prototype design ard construction). Changes in model water surface
elevations as a function of time, i.e., wave heights, were measured by
electrical parallel resistance or capacitance wave gages. Wave gages, or gage
arrays in the case of spectral wave conditions, were placed in each of the

test facilities at the approximate location where the sea-side toe of the

* A table of factors for converting non-SI units of measurement to SI
(metric) units is presented on page 3.
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structure would be situated (Figures 1-4). Unless otherwise mentioned, all

wave heights H and water depths d, defined herein are those measured at

the sea-side toe of the test sections.

Test Sections

9. All rubble-mound test sections were constructed to reproduce as
closely as possible typical results of full-scale construction. The core
material was dumped and compacted to simulate natural consolidation that would
occur during construction due to wave action. Underlayer stone was dumped and
smoothed to grade. Primary armor units--in this case either stone, dolosse,
or tribars--were added to the structure one at a time. The one-layer tribar
armor was constructed using uniform placement. (All vertical tribar legs were
placed normal to structure slope.) Except for the dolos toe where the first
two rows were specially placed to accomplish maximum interlocking, the stone
and dolos armor layers were constructed using random placement. (Random
placement means that the units were randomly selected from a stock pile and
were placed without any special orientation or interlocking with one another.)
Berm armor stones, with weights equal to or greater than one-quarter the
weight of the primary armor stone needed for stability, were added using
random placement. Berm stones with smaller weights were dumped and smoothed
to grade. Toe buttressing stones were placed after the tribar armor and with
a conscious effort of maximizing contact between the buttressing stone and the
bottom row of tribars.

2-D toe berm stone tests

10. Eight toe berm armor stone plans were tested. All cross sections
tested were conventional three-layered stone structures designed for one-sided
breaking wave attack with no solid water overtopping (SPM 1984). Plan details
for model test sections are shown in Figure 5. Side and sea-side views of a
typical test section are shown in Photos 2 and 3.

2-D buttressing stone tests

11. In conjunction with the REMR research work unit "Use of Dissimilar
Armor for Repair and Rehabilitation of Rubble-Mound Coastal Structures,"
limited tests were conducted of toe buttressing stone fronting one-layer,
uniformly placed tribar overlays on 1V on 1.5H slopes (Carver and Wright 1988)

(Figure 6 and Photos 4 and 5). This type of structure exists on a section of

12
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SEA SIDE LEE SIDE

MODEL MATERIAL CHARACTERISTICS

W, = 0.627 LB TRIBARS @ 140.4 PCF (ONE LAYER, UNIFORM PLACEMENT)
W, = 0.860 LB STONE @ 165 PCF (SINGLE ROW OF BUTTRESSING STONE)
W, = 055 LB STONE @ 165 PCF (TWO LAYERS. RANDOM PLACEMENT)
W, = 0.055 LB STONE @ 165 PCF (TWO LAYERS, DUMPED)

W; = 0.003 LB STONE @ 165 PCF (CORE)

Figure 6. Details of 2-D toe buttressing stone test section

the Hilo Breakwater in the US Army Engineer Division, Pacific Ocean
(Figure 7).
3-D toe berm stone tests

12. A two-layer toe berm design similar to the one used in the
tests was incorporated into five different 3-D test sections (Figures

and 9). Unlike the 2-D design, where the berm crest was three stones

Figure 7. Tribar with toe buttressing stone and concrete
rib cap repair section of Hilo Breakwater, Hilo Harbor,
Hawaii
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SEA SIDE PLAN A-gd
2t for Wp ~_fe—>t— 3t for (Wylg0 INCIDENT

Crx HD"}

L

=T

| it for

W, (CORE)

,.v| 2t for (W3)sp
35 5MIN
DOLOSSE OVER ARMOR STONE PRO Yi
(PROTOTYFE) SECTION A-A PROTOTYPE)
3 for (Wilsa

ﬂr‘—g-——:——‘d, L "L,jx for (W55

B 2t for (Wylgo
C,X HD L5 -

ds
W3 W, (CORE} ¢
s/ﬁT‘(l N2t for (W3ls0 t omin > BEDDING
35 5 MIN STONE ARMOR  (PROTOTYPE/
{PROTOTYPE) SECTION A-A

Wp = DOLOS OVERLAY (W = 0276 LB)

W, = PRIMARY ARMOR ((W,}g, = 0.33 OR 0.56 LB STONE)

W, = UNDERLAYER {(Wylgg = 1/10 (W, )gq

W3 = TOE BERM STONE ((W3)50 RANGED FROM 0.58 TO 0.055 LB; WEIGHT
VARIED WITH dg AND Hpy}

W4 - CORE AND BEDDING STONE (W4 - W,/200 TO W,/4000

=Ko w3 WHERE Ka- 10 FOR ROUGH ANGULAR STONE AND 0.94 £ OR DOLOSSE
AND W = W,

** CREST HEIGHT SET AT € XHp, ABOVE MAXIMUM SWL, WHERE Hpy IS DESIGN WAVE HEIGHT
ASSOCIATED WiTH MAXIMUM SWL AND C, IS MAXIMUM RUNUP COEFFICIENT FOR MAXI-
MUM SWL DESIGN CONDITIONS C, : 080 FQR DOLOSSE AND C, = 1.0 FOR STONE ARMOR

Figure 8. Details of 3-D toe berm stone test sections

exposed to 90-deg wave attack
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R
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35
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SECTION A-A (PROTOTYPE)

W, = PRIMARY ARMOR ((W4)gq = (0.38 OR 0.55 LB STONE OR 0.276 LB DOLOS,VARIED
FROM PLAN TO PLAN)
W, = UNDERLAYER STONE ((W5lgq = 1/10(W;)50 FOR STONE ARMOR AND
W3 = TOE BERM STONE {W3)5q RANGED FROM 0.56 TO 0.055 LB;
(WEIGHT VARIED WITH dg AND Hp)
W, = CORE AND BEDDING STONE (W, = W;/200 TO W,/4000)

“t-Ka w3 WHERE Ka: 10 FOR ROUGH ANGULAR STONE AND 0.94 FOR DOLOSSE
AND W = Wgq

* CREST HEIGHT SET AT C,XHp ABOVE MAXIMUM SWL, WHERE Hpy IS DESIGN WAVE HEIGHT
ASSOCIATED WITH MAXIMUM SWL AND ¢, IS MAXIMUM RUNUP COEFFICIENT FOR MAXI-
MUM SWL DESIGN CONDITIONS. C, = 080 FOR DOLOSSE AND C, = 1.0 FOR STONE ARMOR

Figure 9. Details of 3-D toe berm stone test sections
exposed to oblique wave attack
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each berm stone weight tested, the 3-D berm crest kept a fixed length of
approximately 0.4 ft in the model. This difference was the result of testing
several berm armor stone weights in various areas on a given test section.

The remainder of the 3-D test sections consisted of a head and trunk section
of a typical multilayered, nonovertopping design armored with stone or
dolosse. In one instance, the test section represented an old stone structure
that had been overlaid with lolos armor. Photographs 6 and 7 show two

examples of the 3-D test sec.ions.

Test Conditions

2-D and 3-D toe berm stone tests

13. Prototype toe berm armor stones are exposed to various combinations
of wave ronditions and water depths. The weight of individual stones required
for wave stability will vary greatly with incident conditions. A wide range
of toe berm stone weights (from the maximum weight capable of being moved in
the test facility to the minimum weight that can be tested outside of
stability scale effects (Hudson 1975)), were tested to determine the stability
response for toe berm stones exposed to breaking wave conditions over a wide
range of water depths for wave orthogonals approaching both normal (90-deg
angle to structure crest) and oblique (45-deg angle to structure crest) to the
toe berms. The foreslopes used in the 2-D tests in the 5- and 6.75-ft wave
flumes (1V on 10H) and the 3-D tests in the T-shaped wave basin (1V on 10H)
were steeper than the foreslope in the L-shaped wave basin (1V on 35H). This
steepness resulted in some difference in severity of incident wave conditions,
with the steeper foreslope producing more severe plunging waves than those
produced by the milder slope. Thus, the data derived from these tests cover
steep and intermediate foreslopes.

General design guidance

14. Specific model test conditions can be nondimensionalized for use in
developing general design guidance. Relative water depth at the toe d/L,* ,
relative water depth at top of berm d,/L, , relative wave height at the toe
Hp/d; , wave steepness at the toe Hp/L; , relative berm depth d;/d; , and

relative berm length B/L, . were thought to be major parameters influencing

* Symbols and abbreviations are listed in the Notation (Appendix A).
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toe berm armor stability. Some of these parameters are discussed in Brebner
and Donnelly (1962) and Tanimoto, Yagyu, and Goda (1982). Table 1 lists the
ranges for each of these parameters that was capable of being, but was not
necessarily, addressed in each test facility used in this test series.

15. Reflective properties of a structure relative to incident wave
conditions also should have a direct impact on toe berm stability. Unlike
Brebner and Donnelly (1962) and Tanimoto, Yagyu and Goda (1982) who examined
toe berms fronting highly reflective vertical structures, these tests
addressed toe berms fronting less reflective rubble-mound structures. This
decrease in reflectivity should lead to differences in berm stone stability
from that determined by Brebner and Donnelly (1962) and Tanimoto, Yagyu, and
Goda (1982).

16. Other parameters that can influence berm armor stability are stone
shape kA , unit weight v, , gradation and porosity p , stone placement
techniques, and angle relative to horizontal (slope) on which the berm stone
is placed. For the berm stone designs developed and recommended herein, all
these parameters were held constant (i.e., stone with rough angular shape
(kA = 1.0), unit weight of 165 pcf, berm stone weight gradation of #30 percent
of Wy, , and in-place porosity of approximately 37 percent for randomly
placed berm stone on a flat slope). If a proposed design deviates greatly
from these, some difference in berm armor stability response should be
expected.

Buttressing stone tests

17. Using the existing flume calibration, the tribar and toe buttress-
ing stone test section was subjected to wave and water level conditions that
were very close to the design conditions for the tribar rehabilitation work
done on the Hilo Breakwater (Markle (1986) and Sargent, Markle, and Grace
(1988)) as well as some additional conditions. A tabulation of tests is

presented in Table 2.
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PART III: TEST TYPES AND RESULTS
2-D Toe Berm Stone Tests

18. Twenty-one tests were conducted. A test consisted of exposing from
two to four toe berm plans to a range of wave heights at one wave period and
water depth combination. Thirteen tests were conducted using berm armor as
specified in Figure 5 as Plan 1 and Plan 2, and eight tests were completed for
Plans 5 and 6. Plans 3, 4, and 7 were subjected to five tests each, and
Plan 8 was tested for four incident wave ard water level conditions. Table 3
lists the test conditions, nondimensional parameters, design wave height and

toe berm stone stability number N, associated with all tests which showed

S
acceptable toe berm stability (i.e., some stone movement occurred, which
showed that the stone was not over designed but the amount of movement was
minor and acceptable). Tests where the toe berm stone either did not move or
exhibited excessive (i.e., unacceptable) movement could not be used to
formulate design guidance; therefore, these tests are not listed. Stability

number is defined as follows:

"y 1/3 Hy
Ns =(W50> (ST'—I)- )

v, = unit weight of berm stone, pcf

where

Hy = design wave height, ft
W = median weight of individual berm stone, 1b

S, = specific gravity of berm stone relative to the water in which the
structure is situated, i.e., S, = v./7v,

7. = unit weight of water in which structure is situated, pcf
By cubing both sides and rearranging, Equation 1 takes the following form

which can be used to directly calculate median berm stone weight:

7e(Hp)’®
Wso = 7EWF§—22333- (2)

s r

19, Plots of stability number N, versus wave steepness at the toe

s
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Hy/Lg , relative wave height at the toe Hp/d, , relative berm length B/L; ,

relative water depth at the toe d,/L, , relative water depth at top of berm

s
d,/L, , and relative berm depth d;/d, are presented in Plates 1-3.

20. Stability number shows no significant trend with increasing values
of Hp/L, or Hp/d, (Plate 1). For the range of conditions and berm armor
stone weights presented herein, wave conditions representative of nonbreaking
waves at the toe did not cause berm stone damage. Hence, the guidance
developed from this test series is strictly limited to breaking wave design
conditions. From Plate 1 it is seen that all but one data point represented
N, values for Hy/d, greater than 0.7. A similar indication is given by the
narrow band of high Hp/L; values (Plate 1) typical of breaking waves. The
lack of a strong trend in N, with increasing values of wave steepness and
relative wave height is possibly due to the fact that all reported test
conditions are breaking waves. It is very likely that an increase in stabil-
ity number would be realized for relative wave height and wave steepness
values associated with nonbreaking waves.

21. The range of relative berm lengths tested was rather narrow. (For
consistency with Tanimoto, Yagyu, and Goda (1982), what is commonly referred
to by many individuals as berm width is being referred to herein as berm
length and is defined as a horizontal distance measured across the berm crest
and normal to the structure crest.) For all 2-D tests, the berm length B
was equal to 3t , which defines the length of three armor stones set side by
side (Figure 5). Tanimoto, Yagyu, and Goda (1982) showed that berm length
relative to incident wave length (relative berm length B/L; ) to be an
important parameter for stability of berm stone fronting impervious vertical
walls. A fixed crest length of approximately 0.4 ft was used in the 3-D
tests, while the 2-D tests used berm crests which were three stones long,
resulting in a rather narrow range of tested B/L; values. For this range,
no significant correlation between stability number and relative berm length

was noted (Plate 2). This lack of trend, as compared to the one developed by

Tanimoto, Yagyu, and Goda (1982), is possibly due to the lower reflectivity of

rubble as compared to impermeable vertical structures and to the shortness of
the toe berm lengths tested relative to incident wave length.

22. The stability numuver shows a general trend to increase with
increasing values of d, /L, and d,/L, (Plates 2 and 3, respectively). This

phenomenon follows the logic that the longer the wave period the deeper the
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effects of the wave are felt, resulting in decreasing berm stone stability.
23. The stability number exhibits a well defined trend of increasing
with increasing values of d;/d; (Plate 3). This is an expected trend
because as the water depth over the berm decreases the berm stone becomes more
exposed to incident wave energy requiring larger stone weights to ensure wave

stability. This is the same trend shown by Brebner and Donnelly (1962).

3-D Toe Berm Stone Tests

24. Twenty-seven tests were conducted using four different head and
trunk designs exposed to 90-deg and oblique wave attack in the L-shaped wave
basin. Ten tests were conducted on one head and trunk design constructed in
the T-shaped wave basin. As mentioned earlier, the slope fronting the test
sections was steeper in the T-shaped wave basin than in the L-shaped test
facility. The toe berm on each test section was constructed using stones of
various weights in several areas (Figure 10). The selection of stone weights
for testing was based on both incident wave and water level conditions and
placement location on the structure. For example, two to three larger stone
sizes might be used on the trunk which is exposed to 90-deg wave attack, while
berm areas on the head, which experienced less severe wave conditions, were
constructed with several smaller stone sizes. When a test section built in
this manner was exposed to one fixed wave and water level, ii was probable
that some stone sizes would be large enough that no movement or in-place
rocking would be observed {(oversized for the test condition), while areas with
smaller stone would exhibit large amounts of displacement (undersized for the
test condition) - and an intermediate stone size would sustain little or no
displacement but would show some minor movement (correct stone size for the
test condition). By conducting tests in this manner, design data could be
obtained from a larger percentage of tests than would have been possible if
each test section were constructed with only one weight of berm stone.

Tables 4-6 list test conditions, nondimensional parameters, design wave height

and toe berm stone N, associated with trunk tests in the L-shaped wave

s
basin, head tests in the L-shaped wave basin, and trunk and head tests in the
T-shaped wave basin, respectively, from which toe berm design data were

gathered.
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25. Plots of N, , Hp/L, , Hy/d, , B/L, , d,/L,, d,/L, , and d,/d,
for all of the 3-D tests are presented in Plates 4-21. The data plots are
separated based on whether they are for trunks or heads, 90-deg or oblique
wave attack, and the type of facility the tests were conducted in. The last
test was done to see if the steeper foreslope used in the T-shaped basin would
affect the data trends differently from the milder slope in the L-shaped test
facility.

26. The wealth of data points per plot is less for the 3-D tests than
for the 2-D tests addressed earlier; but where sufficient datez exist, the same
trends or lack of data trends as exhibited by the 2-D data are seen in the 3-D
plotted data. Stability number shows no significant trend with increasing
values of wave steepness and relative wave height, but these data do show that
all tests apply to breaking wave test conditions. Stability numbers versus
relative berm length shows no obvious trend, while plots of N, versus d./L
and d,/L; show a trend for stability to increase with increasing values of
relative water depth. A strong trend is shown when N, 1is plotted against
relative berm depth d,;/d, . Stability number shows a definite trend of

increasing with increasing relative berm depth.

2-D and 3-D Toe Berm Stone Tests

27. Figures 11 and 12 present N, plotted against relative water depth
at the toe and relative berm depth, respectively, for all tests. The stabil-
ity number shows a trend with both parameters, but the trend with relative
berm depth appears to be stronger. Contours of equal stability number were
incorporated into a plot of relative berm depth versus relative water depth at
the toe (Figure 13). This plot reveals that within the range of conditions
tested toe berm armor stability shows only a minor overall dependency on
variations in wave length (i.e., wave period) and that the major parameter in
selecting a breaking wave stability number is relative berm depth. A plot of
stability number cubed versus d;/d, for all tests is presented in Figure 14.
This plot allows the direct reading of NJ for use in Equation 2 to calculate
the required berm armor weight W, . As explained in the plot legend, the
data for various test categories are plotted using various symbols. For a
given relative berm depth, there is no great difference in stability asso-

ciated with differing angles of wave attack or location of the berm stone on
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the structure. Some general trends of higher stability on heads and for
oblique wave attack can be seen, but the trends are not well defined. For
this reason, a lower limit line has been incorporated into Figure 14. When
designing for breaking waves and designs are not being verified and/or
optimized with physical model tests, values of Ng equal to or less than
those defined by this line should be used for design. In addition, design for
conditions outside the ranges of d;/d, and d,/L, tested in the model (as
shown in Figures 11 and 12) should be carefully examined. This lower limit
line also has been incorporated into a plot with Brebner’s and Donnelly’s

(1962) data as presented in the SPM (1984) (Figure 15).

3-D Toe Berm Stone Tests Conducted With Spectral Waves

28. All test conditions and test results discussed and reported up to
this point in the report have been relative to monochromatic test wave
conditions. Near the completion of this study, a spectral wave generator was
installed in the L-shaped wave basin; therefore, limited comparative spectral
tests were conducted.

29. Two rubble-mound structure head and trunk plans were exposed to
spectral wave conditions for both 90-deg and oblique wave attack. Joint North
Sea Wave Project (JONSWAP) spectra with vy 3.3, slope parameters o, = 0.07
for f 1less than f; (where f refers to frequency and f, refers to peak
spectral frequency), op;,, = 0.09 for f greater than f;, and the peak
period and water depth combinations shown in Table 7 were selected for testing
(see Figure 16 for a definition sketch). Goda and Suzuki’s (1976) method was

used to resolve incident and reflected spectra at the sea-side toe of the

structures. The zeroth moment wave height H,, 1s defined as follows:

H,, = 4(E)/? (3)

where E 1is a measure of total spectral energy and is equal to the area under
the curve on a spectral energy density versus frequency plot. Both the
measured H , and the theoretical maximum H,, (Vincent 1984 and Hughes 1984)
based on depth limitation, are presented in Table 7. These H_,, values gave
similar toe berm stability to that observed during monochromatic wave tests

conducted at the same wave period and water depth combinations. The H_,
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Figure 16. Five examples of JONSWAP spectra in dimen-

sionless form (Case (a) is a Pierson-Moskowitz spec-

trum; Case (c) 1s the result of the JONSWAP

experiment)
values were substituted for Hy in Equation 1, and respective stability
numbers are presented in Table 7. These stability numbers were cubed and are
plotted against relative berm depth (Figure 17). To make comparison easier,
the stability data for all 2-D and 3-D monochromatic wave toe berm tests were
added to the plot. The spectral data show the same trend, but the use of H_,
in Equation 1 results in lower stability numbers. The use of H_ , in
Equation 1 does not show that the spectral wave conditions were more severe
than the monochromatic breaking waves but instead points out that the magni-
tude of H,, 1is smaller than the monochromatic breaking wave heights that
were measured at the toe of the structures for the same incident wave period
and water depth. Thus, when H,, 1is substituted for Hp, in Equation 1 the
resulting stability number is smaller than those calculated using the breaking
wave height.
30. The limited spectral toe berm stability tests described herein are

by no means intended to represent extensive enough parameters from which
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general spectral design guidance can be developed. The data show that if
shallow-water spectral H_,, values were used in Equation 2 in conjunction
with stability numbers associated with breaking wave height (Figure 14), the
toe berm armor stone would likely be undersized. Thus, once spectral design
conditions are known, an estimate of the maximum breaking wave height asso-

ciated with the spectrum must be used in sizing the toe berm stone.

Buttressing Stone Tests

31. Results of the four stability tests of tribar overlays with toe
buttressing stone are presented in Table 2. For the limited tests conducted,
the stability of the toe buttressing stones seemed to be independent of
d. /L, , d,/d, , and Hp/d, . Average stability numbers for the tribars and
toe buttressing stones were 2.2 and 1.6, respectively, confirming the US Army
Engineer Division, Pacific Ocean, design decision that toe buttressing stones
need to be approximately 1.3 times the weight of tribar needed for stability

in a breaking wave environment.
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PART IV: CONCLUSIONS

Toe Berm Stone Tests

32. Based on the 2-D and 3-D wave stability test conditions and test

results reported herein for two-layer, randomly placed armor stone toe berms

on breakwater and jetty trunks and heads with a length B equal to 5 ft or 3

widths of W,

stone (whichever is greater) and designed for breaking wave

environments where wave crests are either parallel or oblique to the berm, it

is concluded that:

a.

log

0

=%

The stability number N, appears to be relatively insensitive
to changes in wave steepness Hp/L, and relative wave height
Hp/d, for the range of values tested.

For the narrow range of rel-tive berm length B/L; tested, the
stability number shows no well-defined trend.

The stability number shows a minor trend to increase with
increasing values of d, /L., , which indicates a small depend-
ency on wave length, i.e., wave period. The best defined trend
is the one of increasing values of N, with increasing values
of relative berm depth d,/d; . The spread of the data which
defines this trend appears to be a function of wave period,
foreslope fronting structures, angle of wave attack, and
whether the toe berm is on the head or the trunk. These
secondary trends are minor relative to the trend with relative
berm depth, and attempts to develop multiparameter functional
relationships were less than satisfactory. Therefore, for
general design purposes, unless site-specific model tests are
conducted to justify higher values of N, , stability number
should be selected based on the lower limit curve presented in
Figures 14 and 15, and the individual toe berm armor stone
weights should range from a maximum 1.3 Wy, to a minimum of
0.7 Wy

Insufficient spectral stability data are available to recommend
general design guidance relative to spectral H , values. It
is recommended that an estimate of the maximum breaking wave
height associated with the selected design spectrum be used in
Equation 2 when sizing toe berm armor stone.

Buttressing Stone Tests

33. Based on the limited 2-D wave stability test conditions and test

results reported herein for toe buttressing stone fronting one-layer uniformly

rlaced tribars, it is concluded that a stability number N

equal to 1.5

s
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should be used to design toe buttressing stone for a breaking wave

environment.
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PART V: DISCUSSION

34. Both the toe berm stone and buttressing stone addressed herein are
required when designing for a high-energy wave environment. When either toe
buttressing stone or toe berm stone is used on a structure being constructed
on erodible bottom material, adequate thicknesses and gradations of filter or
bedding layers need to be incorporated into the design to prevent the leaching
of foundation material. Failure to prevent leaching could result in the
ultimate failure of the entire structure.

35. During conduct of the 2-D toe berm stone tests, damage measurements
were made by observation for a range of H/H, . During some tests, the toe
berm stone design wave would be reached prior to reaching the maximum wave
that could be created in the test flume with the 1V on 10H foreslope and at
the selected wave period and water depth. By extendimg the tests to condi-
tions which exceeded the design level, general data on damage related to
extreme wave heights (wave heights which exceed the design height) were
obtained. These data are presented in Figures 18-20. Figure 18 presents
percentage of berm armor stone showing in-place rocking as a function of
H/H, . The percentage of toe berm armor stone displaced from its original
position is plotted against H/H, in Figure 19. The percentages of berm
armor stone rocking in place and displaced at a given value of H/H, were
summed for each test and are presented in Figure 20.

36. Although it is not recommended, it is understood that there are
occasions when a designer is forced by economic constraints or other consid-
erations to design for a lower wave environment and accept the damage and
resulting maintenance costs that will occur due to damage accrued at larger
wave conditions. Figures 18-20 have been included to provide some insight
into what has become known as "designing for damage". The "upper limit damage
line" in Figure 20 could be used for making rough predictions of possible
damage that could occur for H/H; range of 1.0 to 1.3. The upper limit
damage line is essential due to the large scatter associated with data points
over this range of H/H, . An example of how to use this upper limit damage
line is in the following paragraph

37. Maximum depth-limited breaking wave height that could occur at the
structure toe equals 13 ft, but economics requires a design wave height of

10 ft be used. Thus, it is possible to get a wave couadition at the site which
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Figure 20. Total perrentage of berm armor stone showing any
type of movement (rocking or displacement) versus relative
wave height (2-D tests)
exceeds the design wave height by 30 percent (H/Hy = 1.3). For H/Hy = 1.3,
total berm armor movement (Figure 20) could be as high as 26 percent. This is
an incrcase of 18 percent in possible damage over the maximum value of 8
percent associated with H/H, = 1.0.

38. The stability numbers recommended herein for toe berms are for use
when designing for breaking waves. For toe berms being designed for nonbreak-
ing waves, the SPM (1984) recommends that the toe berm armor stone weight W,
be no less than one tenth the weight of the primary armor stone that would be
needed for acceptable stability. It is recommended that this guidance
continue to be followed; and for critical structures, the design adequacy

should be checked through site-specific model tests.
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Table 1

Nondimensional Parameter Ranges Included in

the Toe Berm Test Calibrations

Parameter
Name Notation Range
Relative water depth d,/Lg 0.04 - 0.14
at toe
Relative water depth d,/L, 0.019 - 0.12
at top of berm
Relative wave height Hp/d, 0.22 - 1.15
at toe
Wave steepness at toe Hp/L, 0.02 - 0.12
Relative berm depth d,/d, 0.24 - 0.77

Relative berm length B/L, 0.03 - 0.13
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AFTER TESTING
SLOPE 1:1.5
D 065 FT
T:1.13 SEC
H:- 046 FT

"t $25-110 -

Photo 5. Sea-side view of toe buttressing stone
test section after testing




Sea-side view of stone armored, rubble-mound test section after exposure to

Photo 6.

oblique wave attack (3-D toe berm stone tests)
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MHUMBER,
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Ns VS HD/Ls

2—D TESTS, 5- & 6.75-FT WAVE FLUMES
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APPENDIX A: NOTATION

¥ Spectral shape parameter
e Unit weight (saturated surface dry) of individual stone, pcf
Y Unit weight of water in which stone are placed, pcf
6 Angle measured relative to horizontal
O1ow Shape parameter for face of spectral energy density curve for £
less than f
Ohigh Shape parameter for face of spectral energy density curve for f
greater than f

B Berm length

Wave reflection coefficient equal to H,;/H.

Water depth at structure toe, ft

f Frequency, Hz

Peak frequency, Hz

d, Water depth at top of berm stone or buttressing stone, ft
H Test wave height, ft

Hp Design wave height, ft

H; Incident wave height, ft

H. Reflected wave height, ft

kA Armor stone shape coefficient (equal to 1.0 for rough angular stone)

L Wave length in water depth d, , ft

L Wave length in water depth d; , ft

N, Toe berm stone and toe buttressing stone stability number

S: Specific gravity of armor stone relative to water in which it is
placed
Thickness of armor, ft

T Wave period, sec

Weight of individual armor stone, 1b

Wsp Weight of median size armor stone, 1b

B/L, Relative berm length

d,/d, Relative berm stone or buttressing stone depth
d,/L; Relative water depth at top of berm stone or buttressing stone
d./L, Relative water depth at toe
Hp/L, Wave steepness at structure toe
Hp/d, Relative wave height at structure toe
Al




