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A Diffusion Defined on A Fractal State Space

William Bernard Krebs

Abstract: We define a fractal in the plane known as the Vicsek Snowflake by constructing a

skeletal lattice graph and then rescaling spatial dimensions to give a sequence of lattices that

converges to a fractal. By defining a simple random walk on the skeletal lattice and then

rescaling both time and space, we define a sequence of random walks on the approximating

lattices that converge weakly to a limiting process on the snowflake. WImk this

limit has continuous sample paths and the strong Markov property, and that it is the

unique diffusion limit of random walk on the snowflake in a natural sense. ,esh - -ia-

this diffusion has a scaling property reminiscent of Brownian motion, and we introduce

a coupling argument to show that the diffusion has transition densities with respect to

Hausdorff measure on the snowflake.

Keywords: Diffusions, fractals / ,"

1. Introduction:

Construct a figure in the unit square bN the following recursive procedure. Let go denote the unit square.

Construct G, by deleting from go four squares, each i ith edge length 1, centered aiong the four edges of go.

g1 will consist of five squares with edge 1 whose corners overlap. At stage n, Gn will consist of 5" squares,

each with edge length 3- n . To construct Gn+i from Gn, take each square $ composing C,, and delete the

four square centered along the edges of , with edges of length 3- "- '. G,+ then consists of 5'+' squares

with edges of length 3-.- .
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Take 9 = n ,=g,2 . Some easy topology shows that g is a closed connected set, with Lebesgue measure

0. In fact, it is not hard to show that G has finite Hausdorff log3 5-dimensional measure. In the spirit of

Mandelbrot, g is a fractal with starter polygon 91. Extensive treatments of such fractal sets have been gi en

by various authors. (See, for example Hutchinson[12] or Barnsley and Demko[4]).

A number of authors have treated the problem of constructing diffusions on nested fractals. Particular

attention has been paid to diffusions on the Sierpinski gasket, a fractal constructed from a unit equilateral

triangle by successsively deleting "middle" triangles. Goldstein[10] and Kusuoka[13] constructed a Brownian

motion on the Sierpinski gasket, using a decimation-invariance property. Barlow and Perkins[3] have studied

this Brownian motion comprehensively. Browniand motion on the Sierpinski gasket is broadly similar to the

natural diffusion on the Vicsek snowflake, and the results of these authors are generally similar to those in the

present work. I fully acknowledge the priority of their results. More recently, Lindstrom[14] has constructed

a Brownian motion on any fractal set satisfying a general set of nesting axioms from a sequence of random

walks, provided that the distribution of the random walk satisfies a non-degeneracy condition.

The first objective of this paper is to construct a diffuion on the Vicsek snowflake, starting from an non-

degenerate random walk model. In an important respect, the problem of defining diffusions on the snowflake

is more complicated than defining diffusions on the Sierpinski gasket. On the snowflake, one can define a

variety of random walk models that are symmetric under the natural symmetries of the square. A natural

question is whether one can constiuct a diffusion for any such model. Another is whether the diffusion on

the fractal is uiuique such diffusion are unique. The snowflake seems to be the simplest nested fractal %%here

such questions arise. For the snowflake, the answer is that if the random walk is not degenerate then the a

unique diffusion limit exists independent of the underlying random %%alk model. The correspondig problem

Accession Forfor general nested fractals remains unsolved at the time of this writing. NTIS CPA&I
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2. Co'-,Aructing the Diffusion:

Consider the following system of transformations:
Ali: x --,3-lx A,4 :x (3- 1 .- x) + (2, 0)

M2 :x-3-1 .x+(1,1) Ms: x- (3-1 • x) + (0,2) (2.1)

-M3 : x-- 3
- 1 

. x + (2,2)
By inspection, M1, ..,M5 are strict contractions, with fixed points (0,0), (1 , 1 ), (3,3), (3,0) and (0,3),

respectively. For bounded subsets A of R2, define M(A) = U'A,(A). It is well-known to geometers that. the

transformation M has a unique compact invariant set, whose Hausdorff dimension may easil3 be computed

as log 3 5.( See, for example, Barnsley and Demko [4], Dubins and Freedman [6] or Hutchinson [12 ). We

will call this set the bounded Vicsek snowflake, and denote it by Fb.

For future reference, we establish the following definition. Let A, ,...M, be some sequence of the trans-

formations Al1 ...., M5. Let S = Al , o ... o Ai, (rb). We will call S a square of rb. We will also need an

unbounded version of our state space. Let r = uc 0 3,lrb. I also has Hausdorff dimension log 3 5, and has

the property that I = r. We will call F the unbounded Vicsek snouflake.

We wish to construct, a diffusion process on 1 and study its basic properties. We shall do this b defining

random walks on a sequence of lattices that approximate F, which we now construct.

In the unit square, let U denote the complete graph on the corners of [0, 12. Let. V(U) and £(U) denote the

vertices and edges of U, respectively.

Define a new graph UO with vertex set V(Uo) and edge set, £(Uo) by taking
V(Uo) = V(U) U [V(U) + (1,1)] U [V(U) + (0, 2) u [V(U) + (2, 0)] u [V(U) + (2, 2)]

(2.2)
S(Uo) = £(U) u [e(U) + (1, 1)] u [F(U) + (0,2)] U [E(U) + (2,0)] u [£(U) + (2,2)]

where the arithmetic is done componentwise. We cal! UO the unit snoufla c lalticc. Note that Lo lies in the

square [0, 3]2; We will call the points (0, 0), (0, 3),(3,3), and (0,3) the outer corners of U0 .
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Inductively, we construct a sequence of graphs, using same procedure that yielded Uo from U. That. is, if

n > 0, let
V(U.) = V(U.-) U [V(U._I) + (1, 1) U [V(U.- 1) + (0, 2)] U [V(U._ 1 ) + (2, 0)]

u [V(U._.) + (2, 2)]

(2.3)

(U.)= E(U.- 1) u [&(U._l) + (1,1)] u [E(U._.) + (0, 2)] u [c(U._.) + (2, 0)

u [E(U._I) + (2,2)]

As with Uo, say that (0, 0), (0, 3n+1), (37n+1, 3n+1), and (0, 3'+1) are the outer corners of Un.

Let G = G, = U,0oU. Then G is an infinite graph, with vertex set V(G) and edge set C(G), which we shall

call the unbounded snowflake lattice, or, simply, the snowflake lattice. Let 0 denote the point (0,0), and let

1 denote (3,3).

We mention two key properties of G1.First, if we let r, = U' 13-n " V(G), then roo is dense in r. Thus,

we may have some hope that a suitabl) scaled sequence of random walks will converge to some process on

r,,. Second, , 3 V(G) C V(G), and G \ 3. G contains no infinite connected component. We call this the

"branching", "nesting" or self-sirnilarity property of G. property of random walks on the lattices G,,.

Let x be a vertex of G, and suppose our particle is at x at time n. Let N, be the number of points adjacent

to x in G. Suppose our random walk is at x at time n. Then at time n + 1, we choose a vertex adjacent to

y according to the following distribution:

If A7, = 3:

P[ = ] = p if x and y are diagonally adjacent

P += ] = (1 - p)/2 if x and y are vertically or horizontally adjacent

If A, = 6:
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P[X.+, = y] = p/2 if x and y are diagonally adjacent

P[,XY+i = y] = (1 - p)/4 if x and y are vertically or horizontally adjacent

Here, 0 < p < 1 is a fixed but arbitrary parameter. This defines a random walk on G, which we denote by

XP. Thus, if X P 
- (0, 0) then P[Xj = (1, 1)] = p while P[X' = (1,0)] = (1 - p)/2. If X = (1, 1), then

P[XP = (0, 0)] = p/2 and PJX2 = (1, 0)] = (1 - p)/4 = P[XP = (2, 1)]

We begin by studying the special case where p = (1 - p)/2 = , and X P = 0. This will define a simple

random walk on the graph G, starting from 0. We call this discrete-time Markov chain, which we will call

random walk on the snowflake lattice,. For convenience, we will write X 1
1

3 
- X. o

Let T, and T' be the sequences of times between visits by X, to distinct points of 3. G and 32 .G rezpectively.
Since 3 .G C 3.G, T,2 T 1 2" By the nesting property of the lattice, the distribution of b(j)-a(j) is the

same as the distribution of T , and the Markov property of X,, shows that b(j)-a(j) and T, k = a(j),...,b(j)

are independent, are independent random variables, equal in distribution to T. Thus, for each j T' has the

distribution of the second generation of a branching process with offspring distribution equal to that of T.

Similarly, let T' be the times between visits to distinct points of 3" • G. A similar argument shows that. for

each t, P7 has t' "distribution of the nfh generation of a branching process, again with offspring distribution

equal to that of T.

Let f(u) be the generating function of T. By direct calculation, we can show that

U
3

f (3 - 2u)(12 - 12u + Z12 ) (2.4)

(See Section 4 for the details of the computation.) Differentiating f shows that ET = 15 and Var(T) = l14

so the branching process {T") is obviously supercritical. Since T is always strictly greater than 0, {T") has
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extinction probability 0. Since this branching property of the hitting times of X,, plays a key role in the

remainder of this section, we will review some standard theory of branching processes.

Theorem 2.1. Let Z,, be a branching process, with Zo = 1 and let f be the generating function of the

offspring distribution. Suppose that 1 < f'(1-) = m < oo and f"(1-) < oo, Let IV = Za - " . Then

there exists a random variable W with EW = 1 such that W1, -- IV a. s. and in L2 P[W - 0] -

P[Z, = 0 for some n]. Ifre(u) = e- uw , then satisfies Abel's functional equation 0(u) = f(6(u/,n)).

Proof. This is Theorems 1 and 2, and equation (5) in Athreya and Ney [2].

In particular, IV,, -- IV in distribution.

The theorem implies that 15-nT' converges in distribution to some random variable 11', with Ell'= 1.

As T7 can never be 0, T4 is strictly positive almost sure]y, and O(A) = Ee- AHW satisfies p(A) = f(9(15-IA).

For m = 0. 1,..., define a stochastic process on r by Y(t) = 3-t X([15"'ti). ( [x] denotes the greatest

integer less than or equal to x). Observe that for each n, Yn (t) is a random walk on 3 ' .G. Let D[0,oo] be

the set of functions w : R+ -+ r that are right continuous and have left hand limits for all t.

Theorem 2.2. The sequence of processes {Y) (f))>o is tight in D[0, oo]. If)n,(1) is a subsequence of {Y (f))

converging weakly to a process Y, then Y has continuous sample paths.

The theorem follows from an estimate of the moments of the displacements 11)1,,(t) - 7,( )[[, which we state

as a lemma.

Lemma 2.3. Forn=1,2,...,0<s<t<oo,y>0,

Elj),(Q) - )',(s)fl < 2,/2 - + C. (I - s)Pj (2.5)
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where p = log 15 3 and C is a constant independent of n.

Proof: Let Q = {q E Q : q = p. 15-",p,q E Z). Since Y,(t) jumps only at points in Q, it will suffice

to estimate Ell".(q) - Y,(r)II', for arbitrary q, r E Q. We make the following displacement. estimate for

random walk {Xn} on the snowflake lattice:

P[IIX. - X.11 > 2v'. 3'] < P[Tk <n - ,1 (2.6)

To establish this estimate, we observe that 2v"2. 3 k is the diameter of two diagonally adjoining squares in

the 3k • G. If IIXn - XmIl > 2V2. 3k, then between epochs m and n, Xk must visit two distinct points of

3k • G.

To use estimate (6), we write

< (2V)f •.3-""P [llY.(q) - Y.(r)ll < 2V. 3-]

(2)'K • 3"P [2v. 3< IIY,(q) - Y,(r)ll 2V2- .3'+] (7)

<5 (2\2.3-* 3"P [1Y(q) - Y (r/)11 2M2.3-n

00

+(2\/2)" -(1 - 3-1) Z 3"TP [111"n(q) - )".(r)! > 2\/2 -3j(8)

t=-n
< (2vf)'- 3--"P [IIx(15 .q) - X(15n . r)1 < 2V]

+ (2V2)'y ( - 3-). 3k-n)lp [lX(15" .q) - X(15" .,)l> 2V. 3  ] (9)

k=O

_ (2\/2)". 3-'" + (1-3-(). 3k-[).) p 15[" I- (10)
k=0

Inequality (8) comes from substiluting

P[2\/ .3' <IiY-(q) - )n(r)ll < 2v.3+] =

P[2\V-. 3' < !1)I~) - Z1rIJ-P[2\2-. 3'+' < 11)1(q) - d)]



into the estimate and rearranging the terms. (9) follows from the definition of Y,(q), and (10) is from

estimate (6).

To estimate P [15 k T < 1 5-k 15" (q - r)] we first estimate the Laplace transforms of {Tk}. Let Ok and

be the Laplace transforms of T and W, respectively. As Tk has the distributions of a branching process

and 15-kTk -- W, it is not hard to show that Ok T 0. So, it will suffice to estimate .

To estimate 6( 15 k (q - r)-1), let h(u) = - log(O(u)) be the cumulant generating function of W. h satisfies

the functional equation h(u) = log (f (exp (h(15 - 1 • u)))), where f is the generating function of T T' .

Let 1 < s < 15. Since h is non-decreasing, we have,

h(su) (<  ) = h()-' log (f (exp(h(15- ' u)))
h (u) - h (u)

log((u) (3- 2 (u))(12 - 126(u) + O(U)-)/

=3 log((3 - 20(u))(12 - 120(u) + O(U)2))

log(o(u))

The second term goes to 0 as u - oo. Since h is monotone increasing,

limsuph(su)/h(u) _< 3, 1 < s < 15. (2.12)
U -O

This shows that. h is a function of dominated variation, which implies the existence of constants C, and C 2 ,

such that CiuV < h(u) < C2u', where p = logI 5 3. (See Feller[8], de Haan and Stadtmiiller[l1]). Restating

this in terms of 0 shows tha'. 0(t) < exp(-CiIP).

We now apply a standard technical result. on Laplace transforms.

Lemma 2.4. Let U be the distribution function of a random variable, let (u) be its Laplace transform,

and let a > 0. Then, for any I > 0, U(I) < e- •(t

Proof: This is proved in the Corollary to Theorem XIII.5.1 in Feller [9].
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Applying these two lemmas to our series gives

Z(-n),p [151rk < 15-k . 15". (q-r)]
k=O

0o

< e1/15 E 3(k-n)j0(15k-n (q - r)-') (2.13)
k=O

00

<e 111s  y 3 (k-n)0(1 5 k-. (q - r)-) (2.14)
k=oo

< el/15 3 f) + E 3"mf exp (5 .C1(q - r)P,)] (2.15)
ra=1 rrl--

<c00

To complete the proof of the estimate, let j(t) = [log,5t) + 1 for I > 0 and let 17(t) = e'1/ 5 • 37j(,)

;-¢o €3q(15). Substitute inequality (2.14) into the left-hand term in (2.10) and let m = k - n, to get

EIYn(q) - Y(r)I I- (2v"2)'" [3 - 1" + (1 - 3- 7) . el/. " - E 3 0(15m (q - r)-)] (2.16)

00

-(2V2)-y " 3- In + 3' ( - ) 1 - 3- 1) " e l / 1 " . 3 " ' ( 15 ' ' ) ],,- (2.17)

From (15), m 3nv0(15m) = C < oo. Since j(q - r) < logls(q - r) + 1, 37J(q-r) • el/ 15 < (q - r)P .

Subsitituting these expressions into (2.17) gives

EII);,(q) - n(r)[ 7 < [3-In + (q- r)' .(1 - 3-1). 0 0 O(15M) (2.18)
M =-00J

which proves the lemma.

Using our estimate, we can deduce both weak conergence of Y,(t) and sample continuit. of )'. Weak

convergence of {Yn(t)) follows from the standard result, on convergence of stochastic processes.

Theorem 2.5. Suppose that

(X,,(1) .. X.(tk))-D (X'(tl), .X(.))
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holds whenever t1 < < k are points where X(1) is almost surely continuous, and that

E [IIX((t) X-(tl)1I'IIX.Q 2 )- X(I)II] _ (F(12)- F(t ))20

for t1 <1 t t2 , n > 1, y > 0, a > , and F a nondecreasing continuous function. Then X" X.

Proof. This is Theorem 15.6 in Billingsley [5].

Proof of the main theorem: To show that there exists a weakly convergent sequence {Yn,()}, it suffices

to show that {I") is tight. Let s < u < t and consider

E[1,(u) - Y(s)IPII(t) - Z(u)11 ] (2.19)

If is - fj < 15-n then

E [llY,(u) - Y.(s)llIIYllI(t) - 11(u)ll ]= 0 (2.20)

for any s < u < t, because Y (1) jumps only at integral multiples of 15-", and if Is - il < 15-" then there

can be at most one such multiple in (s,t]. So, suppose that. Is - 1 > 15-'. Apply HIldcr's inequality and

the monotonicity of EllY(u) - 1'(s)IIl to see that

E[ II)'n(u) - Yn(s)lllY.Q) (I- Y.(u)II' J

< (2v'F)2 - [3-n2-1 + (1 - 3-21). (1 - s) 2- ] (2.21)

But, since Is - 11 > 15', 3-n2 ' < (s - 1)21p. Substitute this into (2.21) to get.

E [jn(u) - Y, (s)II;,(t) - 1,,(u)1 ] < 2. (2vf)2 (t S)21p (2.22)

This suffices to prove tightness.
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Choose a subsequence n' so that j Yn, (t) -D Yi. To show that the sample paths of Yi are continuous with

probability 1, let n - o in estimate (2.6), giving

Ejt - Y-I- << C . (t - (2.23)

Kolmogorov's criterion for sample path continuity applies, which completes the proof of our main theorem.

Although we have written our proofs for the special case where Y = 0, the proof will also work for Yo = z

for an arbitrary x E ro, with.a minor modification of the sequences Y(t).

For n = 1,2,... and in < n let Slik be the time of the kih visit of the random walk Yn(t) to Gm and let

T",' = S - be7k theh interarrival time for S! Previously, we observed that Yn(Silk)k = 1,2,...

is a random walk on Gi, for all mn < n. We can extend this property to Yt.

Proposition 2.6. Let Yn, -4 Y. TnI,m,k converges in distribution to a random variable Tm,,k for every

0; furthermore, the sequence {,,,k)Ok1 is independent and identical' distributed for all in. '

converges weakly to Y(Sm,k) where {V(S,,k))k=i is a random walk on the lattice Gin.

Proof: We have already shown that Tw,k is distributed as the n'-in generation of a branching process with

offspring generating function f(u). Applying the theorem about branching processes cited at the beginning

of this section shows that 15-"'-mTn,,,,i,k -D 15-m 1o ' also. For each n', and in f' ,Okl is a sequence of

independent, random variables. Thus T",)001 is also an independent sequence.

For any n', the sequence Y,,(Sf, k) is a random walk on Gi,. As for {Y(S,,.)) =, Y(S ) E Gm,k =

1,2 ... with probability 1. It. is straightforward, although tedious, to show that. for sites x i .... x,, E Gi,,

{w : Y(Si",w) = x,, i = 1,...,v) is a continuity set. for the distribution of 3. The second statement of the

proposition follows.
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A consequence of this proposition is

Corollary 2.7. The sample paths of Y, are uniformly continuous in probability.

Proof: The corollary follows from Skorokliod's lemma, upon observing that for u > v

P [lY. - Y,11 2-2-.3-' 1)'$ 0< s < vl>P [Tfl,ic() < u - vll"%o 0 s < v] (2.24)

- P [Tk() < u - (2.25)

> 1 - 15-"/(u - v) (2.26)

where k(v) is the smallest k such that S,,k > v. Inequality (24) follows from the fundamental estimate, (25)

uses the fact. that {Ti,,k) is an i. i. d. sequence of random variables, and (26) is Markov's inequality.

To show that )"( is a diffusion, we must show that it has the strong Markov property. We consider those

stopping times of Yr that are also stopping times of the embedded random walks Y(Sj!), in an appropriate

sense. Let C be the class of stopping times T of Y' such that.

i. For sonic n, Yr E Gn with probability 1.

ii. If m > n and T E A Tn,k, then N,,, is a stopping time for the random walk Y(S,k).

Clearly S,,,. E C for any n and k, so the class C is not vacuous.

Proposition 2.8. Let T E C. Then Yt satisfies the strong Markov property with respect to T. That is for

anY bounded, measurable functions f : Ri R, g : Rk - I, and S1...Sd, 
1

1...1k,

E [g(Y(s, A T), ... , )'(sI A T))f"(Y(, + T) ... , Y(tjk + T))](
(2.27)

= E[g('(s. A T), ... , )Y(sd A T)) : [fO

Proof: By the monotone class theorem, it suffices to prove the results for g(X,,Xd) and f(yj,..., yk)

13



bounded and continuous. For n = 1,2,... let

1n,, = E)I(Sn,1)I[Snj _< t < Sn,1+i] (2.28)

Obviously, supt [Yt - Y ,tl < V2" 3 - - Thus, Yn,, - Yt uniformly with probability 1, as n - o. By the

strong Markov property of random walks on Gn and the independence of Tn,k,

E[g((sl A T),... ,)n(Sd A T))f(Y(T + fi),. . ., Y,(T + tk))]
(2.28)

= E[g(Y,(s, A T),...,Y'n(Sd A T))E T[f(l' (T+ tj),...,Yn(T+ tk))]]

Since T E G1 almost surely,

E[f(Y(T-+l),..., Y, (T+ tk)) ,T] = Z E; [f (Y (t1 ),... , Y(tk))] P[Y.,T = Xp]. (2.29)
P

The distribution of Yn,T is fixed, so, xp and PYn,T = xp] are fixed as n varies. Since f and g are bounded

and continuous,

g(',(sAT),...,Yn(sdAT))-fg(Y(sAT),..., Y(sdAT)) a.s. (2.29)

f(2(T-n-l),...,(T-1)) -f(Y(T tl),.... '(T-tk)) a.s. (2.30)

f(Y( 1 ), .. ,Y-(tk) -f(Y(tl), ...,Y(k)) a.s. (2.31)

As n -o, the dominated convergence theorem gives

E[g(Y,2(sjAT), ... , Y,(sd A T))f(Y (t1 + T), ..., Y,,(tk + T))]

(2.32)

- E[g(Y(s, A T), ... , Y(sd A T))fO'(t + T), ... , Y(Ik + T))]

and

E[g(Zi(sAT), .... (sd A T))E7[f (1(1k), ...,Y (tk))](
L (2.33)

E[g(Y1(sj A T), ... , Y(sd A T))E [/(Y (I ), ... , Y(l.))]

which proves the proposition.

We next use this limited form of the strong Markov propert. to show that the laws P-, x E IrP are uniformly

weakly continuous in x. We do this by studying escape times, the time required for the process to reach Gk,
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starting from G, for n > k. Clearly, escape times are stopping times in the class C, so the limited Markov

property in the preceding proposition applies to them. We begin by proving a lemma for Markov chains

Lemma 2.9. Let P be an N x N stochastic matrix. Let Q be the space of measures on {I, ...,N}, with the

total variation norm. Then, the transformation p - pP is a strict contraction on Q if and only if no rows

of P are mutually singular.

Proof: Let A and p be two distinct measures in Q. Without loss of generality, suppose that Aj - pj >

O,j 1,...,,Aj -pj j = M+ 1,...,N. Let v = '1C(A -pJ) = 1 +!(pJ- Aj). As p and A are

distinct, v > 0. Let vaj = (A -pj),j = 1,...,M and v3j = v-'(p j - Aj),j M 31+ 1,...,N. Then,

d(AP, pP) = - (2.34)

M N 1

p1A -U)P~ E (Pk Ak)Pk,i (2.35)
i j=1 k=kM+

=L' Pi~j - 6k Pk (2.36)
i j=1 k=31+1

EL1 5 j~kE -Pj,i-Pk,iI (2.37)
j=1 k=JM+3

< v max d(Pj, Pk) (2.38)
-- j,k

Inequality (2 37) above follows because f(x,y) = Ix - y] is convex in both x and y; the other relationships

are straightforward. If maxjkd(Pj,Pk) < 1, d(pP, AP) < v = d(p,A). If d(Pi,P) = I for some i ai.d j,

then take p = bi, A = 6j to get d(p, A) = 1 = d(pP, AP).
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Let x E G1. Let, I" denote the continuous process constructed at the beginning of this section, starting

from x. For k < j, let Tk = inf{It : Y" E Gk). Then Tk is a stopping time such that Y(x,Tk) E Gk almost

surely. By the strong Markov property of the embedded Markov chains Y(Tk,,) {Y(x, T.), k < j} form a

discrete time Markov chain.

With probability 1, Y(x, Tk) will be one of the four corners of the square Sk on level k enclosing x. Number

these four corners 1,2,3 and 4, starting with 1 at the Northeast corner and proceeding clockwise around

the square. If Y(x,Tk) = i,i = 1,2,3,4, then the transition probabilities P[Y(x,Tk_1 ) = jlY(x,Tk) = i]

will depend on which of the five level-k squares of Sk-1 x belongs to. Number the four outside squares

I, 11, 111, and IV, starting in the Northeast corner and numbering clockwise around the outer squares. Let

V denote the center square of S;-,. By using the generating functions given in display number, it is not

hard to calculate:

r1 0 0 01; _ 1/12 3/4 1/12 1/12-
3/4 1/12 1/12 1/12  p(11) 0 1 0 0
1/2 1/6 1/6 1/6 - 1/12 3/4 1/12 1/12
3/4 1/12 1/12 1/12 1/6 1/2 1/6 1/6 J

1/6 1/6 1/2 1/6 [1/12 1/12 1/12 3/41
P(111) - 1/12 1/12 3/4 1/12 pCM) 1/6 1/6 1/6 1/2

0 1 0 j1/12 1/12 1/12 3/4
1/12 1/12 3/4 1/12-i 0 0 0 1 J

-1/2 1/6 1/6 1/61
pCI') = 1/6 1/2 1/6 1/6

11/6 1/6 1/2 1/6
.1/6 1/6 1/6 1/2i

Direct calculation shows that

sup d(P"(i), P*(j)) = -!a = 1, 11, 111, 11 and sup d(P(")(i), P(")(j)) _1 (2.39)i~j 2~ -

Let BC(P) denote the bounded, real-valued continuous functions on F. For g E BC(F). x E F, I > 0, let

P,g(x) = E'g( ) .

16



Theorem 2.10. For all t > 0, Pt BC(r) -- Bc(r).

Proof. Fix i > 0. For g E BC(F), we must show that Ptg(') E BC(r). To do this, it. will suffice to show

that Ptg(x), x E Gm is uniformly continuous and observe that a uniformly continuous function on G. has

* a unique uniformly continuous extension to r.

Let x,y YE Gm, choose M sufficiently large that x,y E Gm, and suppose x and y lie within the same square

on level rn of Go,, say the square Sm,. A fortiori, z and y lie in the same square Sa on level n of G¢¢. for

all n < in.

Let c > 0, and let g be a continuous function on r with D[gJ[ < 1. Then

jE'g(Y') Elg(Yt)I

< E'g(I't) - E'g(t+T)1 + E'g()I+T) - EYg()I+T)] (2.40)

+ lEyg(Yt) - E1 g(Yt+T))I.

We estimate the terms separately.

Note that
4 4

E'g(Y(t + T)) = EAiE'g(0'(t)); E-g(Y(t + T,)) = E 4E'go('(1)) (2.41)
j=1 i= 1

where A' and AY are the escape distributions of Y) (f) on the corners of S,, starting from x and y, respectively.

Then,
4 4

IE'g(Y.(t + 7k)) - Eyg(Yn(I + rk))I 1 Z iAF - ,YIE'g(l' (1)) < XFf - AYJ (2.42)
i=1 j=1

Choose 6 > 0 such that Ju- vj < 6 implies Jg(u)-y(v)j < S, and let Ah = SN :sup<-<vYt+h , >

We have shown that the paths of YI are uniformly continuous in probabilitN, thus, choose h > 0 so that

P[Ah] < . Then,

JE'g(Y) - E'g(O't+T)l < EJg9 (Y1) -9('+T)l (2.43)

17



< E g(yt) - g(Yt+T) 1([T > h] U JAIl) (2.44)

+ EIg(Y) - g(Yt+T)I1[T < q, Ah] (2.45)

. 2. +2- (2.46)

= 3c (2.47)

Similarly, we can estimate IExg(Y()) - Exg(Y(i + T,))l _< 3c for suitable n.

To complete the estimate, choose n sufficiently large so that PZ[T, > q/] < 4 Then, if we apply this to the

preceding inequalities, we get

IEgC ,(t)) - E'g0"'(t))I < 3c + c + 3c = 7 (2.48)

If we choose k and m as in the preceding paragraphs, and let Ix - yj < 3 -m then ihere must exist some

z E Fr such that, x and z and y and z each lie within a common square of level 7n of r. So,

IE'g(Y,(t)) - E 'g(Y.(t)l < IExg(Y.(t)) - Eg0,,(t) + jEzg0""(t)) - E'g(Y, n()
(2.49)

< 14c

Let n -4 oo. Then if Ix - yI < 3-", jExg(Yt) - EYg(Y,)I < 14c.

This shows that Exg(Y) is a uniformly continuous function of x, for all x E 17, all 1, and for g an arbitrary

uniformly continuous function.

Proposition 2.11. Yt is a Markov process.

Proof: Fix t > 0 and consider S,,[1 s-1 where [x] denotes the greatest integer less than x. Then. using our

earlier notation,

[ _ - [ 15"fl 5 1 T j) (2.50)s15n [5t



As n 00,
l[15-t]

15n " -T 1 a.s.; - (2.51)

The first limit follows by applying the law of large numbers to the i. i. d. sequence Tnj. The second is

simple analysis. Thus, Sn,[15.t) - almost surely, as n oo.

If g(x, ... , Xd) and f(yl, ..., yk) are bounded continuous functions and s, < ... < Sd < t < tl < ... < tk then,

by Proposition 1.8, for any n,

EDg(Y(s, A S,,i 5 .,J),..., Y(sd A S,[15-t]))f(Y(t1 + S,,({5.,]), ... , Y(tk + S114,5.,]))]

(2.52)

= E[g(Y(s, A S,,jj5.,]),.. ., Y(sd A S, 115- 1]))Ef(Y(t1 ), . . .

Let n oz, apply the continuity of f and g, Theorem 1.10, and the sample continuity of Yt. We get

( .. , f( .. ,+) Eg(Y 1 ,...,Y )E[f(Y ,...,Y)] (2.53)

This proves the proposition.

To show that Yt is a strong Markov process, we will apply the following theorem:

Theorem 2.12. Let Xt be a process satisfying

i. For all f E BC(P), and all i > 0, 0 < f _ 1 implies 0 < Ef(XI)<1.

ii. For all s,I > 0, Ef(X.,+t) = E '(Ef(X)).

iii. For all f E BC(r), E f(Xt) - f(x) -- 0 uniformly in z as t - 0. Let .F"0 = U(X, s < f) and

.F+ = n,>. Then if T is an 't+ stopping time, EP[OTYIIFT+] = EX(T)[1], for any measure p and any

bounded measurable ij.

Proof: This theorem is given in Williams [17], as Theorem 111.15.3.

To apply the theorem, it remains to show that Ef(Y) - f(x) - 0 uniformly in x as t - 0 for any bounded

continuous f.
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Consider the operator P, BC(7) -- BC(r,.) defined by Pg(x) = E'g x), ,t. Since Eg(Y) is

uniformly continuous for x E ro , we can extend Eg(YI) to a uniformly continuous function defined for all

x E r, and all t > 0. Let Pg denote this extension of !tg. To apply the theorem from Williams [17] stated

earlier, we need only prove the following

Proposition 2.13. For all f E BC(F), and all t > 0, 0 < f < 1 implies 0 < Pf :5 1, and Pf(x) - f(x) - 0

uniformly in x as t -? 0.

Proof: Let f E BC(r). If 0 < f _ 1, then 0 < EZf(') < 1 (a. s.), since conditional expectation is a

positive operator. Since F, BC(F), and [0, co) are all separable, we can modify P on a single null set N to

get 0 < E f(Y) < 1.

We apply the following lemma.

Lemma 2.14. Let Pt : BC(r) - BC(F) be a substochastic Markov semigroup. If Ptf(x) - f(x) as I . 0

for all x E r and f E BC(r), then Pif(x) - f(x) - 0 uniformly in x as t 0, for all f E BC(r).

Proof: This paraphrases formula IlI.8.2.iv. in Williams [17].

Let c > 0. Let x E r,, and let g E BC(r). Given c > 0, choose 6 such that Iu - x[ < 6 implies that

Ig() - g(y)l < L. P'[1Y - xj > 6]! 0 as I 10. Choose I sufficiently small that P'[11' - xI > 6] < . Then

< IE'(g(1') - g(x))1[Yq - xl < 6]1 + I'(g( ) - g(x))1[jYj - x1 > 6]1
(2.54)

< 7P[IYt - x1 <6 ] + 2 . P'[I1't - x1 > 6]

This completes the proof of the proposition.
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In terms of Williams [171, this makes P an FD semigroup and Yt an FD process. Applying the theorem that

we stated earlier in this section to Y , we conclude

Corollary 2.15. Y has the strong Markov property.

Henceforth, we will refer to Yt as the snowflake diffusion

In fact we can show that the snowflake diffusion is the unique diffusion limit for any of the random walks

XP, within a constant change of time scale

By Proposition 2.6, random walks on all the lattices G, are embedded in the snowflake diffusion. We also

note in passing that for Y0 = 0, 3Y1t =D Y15t; we will return to this point in the next section at. greater

length. These two facts form the basis for the proof of the following proposition.

Proposition 2.16. Within a non-random change in time scale, Y is the unique limit in distribution of the

processes Yn(t).

Proof. For each n, define the sequence , as in proposition 2.6. for each k, Tk' is the sum of k

independent random variables equal to 15-9I4 in distribution. If Var(H") = a2, then E2k = k • 15" and

Var(Tk") = ko.

For arbitrary n and t,

Y,(t) = 3-X([15"1]) =D 3-"Y(T'([15n))) = Y (1S-"T"([1S"10)). (2.55)

Note that t - 15" < 15' 115t i + 15-n. Now, Tk? is the sum of k independent random variables, with

distribution 15- m 
. 1W. Thus,

E(15-". T([15 m 1])) =15 E(T([15"t])) = 15"'. [15-" t -- (2.56)
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a-2(15 - m
. T([15m t])) = 15- m. C2 (T([15mt])) 15-2m .15

-  a2 15- m 2 -0 (2.57)

as n -- oo, where o-2 = a02 (W). Thus, as n - co, Y') -,p Y.

By the same argument, for any tI < ... < fk and any convergent subsequence Y ,(i) converges in distribution.

Then by the same analysis as in the preceding paragraph,

0Y "-(t1), ... , YJ (tk)) --+D (Y (ti), .. Y (tm )) (2.58)

Thus all limits of {Yn(t)) I have the same finite dimensional distributions. Since the finite dimensional

distributions of a stochastic process determine the process, it follows that Yt is the unique limit of the

processes {f (t))C= 1.

Now we consider again the general model for random walk proposed at the beginning of this section. Let

XP be random walk on the snowflake lattice with parameter p. Let Po = p and for n = 1,2,..., let p, be the

probability that XP starts from 0 and reaches (3n,3) before either (3",0) or-(0,3"). It is not. hard to see

that in general p,, 0 p--. We can find a recurrence relationship by calculating computing p, as a function

of P0 Observe that we can identify vertices of U, that are reflections of one another across diagonals of the

square. Thus, we can identify the following sets of vertices

a= {(0,0)) b= {(0,1),(1,0)) c {(,1))

d= {(1,2),(2, 1)) e= {(0,2),(1,3),(2,0),(3,1)) f = {(2,2)) (2.59)

g= {(2,3), (3,2))

For each i E {a,. ,)g, let q, be the probabilit) that X,, starts from vertex i and reaches (3,3) before either
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(0, 3) or (3, 0). Using the Markov property of X P, we get the following system of equations for q,

q. = (1-P)qb + pq, qb =(1-p)q + pqb + (-P)q

qC = Pq+(1-p)qb+ (1 -p)qd+ pqf qd=-(1-p)qc+ pqd+1(1-p)q + (1-p)q

(2.60)
e, = (1 - p)qd + Ipq, q# =pqc +(1 -p)qd + (-P)q 9 +P

q9 
=  1 P)q + Pq, +  (1 - p)

Applying Cramer's rule, we get

(1)5 1 -p)3 .( + p) 31
-- 2 (2.61)

qO=( )S.(15 p)3 .(I+p) 3 .(4 -3p) 4-3p

Formula (2.61) gives us a recurrrence for p, in terms of po. Furthermore, we see that p = is a fixed point

for this recurrence formula, and that for any P0 < 1, p, . as n -+ o0.

For n = 1,2,..., let T', P = T(n,p) be the number of steps XP requires to pass from 0 to some other vertex in

3" • G. In analogy with the branching property of X 113 , it is not hard to see that T" ,P = T-"',P , where

T;,-l'k = 1,2,... is a sequence of random variables distributed as T"-1 ,P , B is distributed as T(l,p,_-)

and B and Tk-'Pk = 1,2,... are mutually independent.

Let. rn,, = ET(,p,), and let M,, = Im,. Then, ET"'P = M, and an argument analogous to that for

branching processes shows that T"'P k ";' is a positive martingale converging a. s. and in distribution to

some random variable 117.

Lemma 2.17. Within a constant scaling factor, W1' =D W.

Proof: Let

f,(u) EuT ( I'l"', g,(A) - Eexp (-AT(n,p)..M,7") (2.62)

Then from the branching property of T",P outlined in the preceding two paragraphs

g,,(A) = f,, (g,, (A. ')) (2.63)
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Since T P 
. Al;-' -D i1, gn(A) - g(A) = Eexp(-AW1) as n -o o. pn "* 1/3, so fn(u) - f(u), and

in- 15. Substituting these limits in (2.63) gives

g(A) = Ag(A 15-')), (2.64)

the same functional equation satisfied by W. It is well known that. the solution to Abel's functional equation

is unique, except for a constant multiplier of the argument. ( See, for example, Seneta [16], Theorem 3.1.)

This implies that IV =D 1W7 within a constant change of scale.

Let Yf(t) = 3--XP([MA1t]). Arguments analogous to those in Theorem 2.2 , Lemma 2.3, Propositions 2.6,

2.8, 2.11, and 2.13 show that we can find a diffusion kt on r and a subsequence n' such that YP - Y weakly.

Let {T,,) be the sequence of times when Yt visits distinct vertices of G1. Note that T =D T. As p, "- 1/3,

=YT~}D {X113)

Theorem 2.18. Yt =D Yt, within a constant change of time scale.

Proof. As a consequence of Lemma 2.17, we can choose a time scale for k, so that 3k, =D ]PISt. The proof

now proceeds as in Proposition 2.16. Let

= = 3-5(T([15m f))) = (15- -T([15r1t). (2.65)

As Y has continuous sample paths, Y* (t) -Yt almost surely. On the other hand, ],(1) =D Yr(t), and

I'*M(l) -D Y. Thus, i =D I't. This proves the theorem.
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3. Scaling Properties:

In this chapter, ,re will study some of the detailed sample path properties of the snowflake diffusion. Let

n > 0, let x and y be points on Gc,, n [0,3] such that x,y E S for some square S on level n. Let

T= inf{ = y) be the first visit of the diffusion on rb to y; set Ty= oo if this set is empty,

We begin by proving two technical lemmas.

Lemma 3.1. EXT < 369.3' .

Proof: Suppose x,y E S. There exists m > n such that x,y E Gin. We will establish our estimate by

induction on m.

Suppose that r = n. Then x and y are necessarily corners of S. Let T, T2 , ... be the times between successive

visits to G, Then, Ty = T() 2) where

NY, (3.1)

.4! is the number of corners of S that YI visits before T., A, is the number of excursions to G, \ S between

the time YI hits the i - 1" and i~h distinct corners of S, and R,,, the number of points in G,, \ S that )Yt

visits on the j1h such excursion.

The strong Markov property shows that A! has a geometric distribution with parameter . For i= 1,2,...

Ni either is identically 0 or else has a geometric distribution with parameter 1. To estimate ER,,,, note

that each excursion outside of S is a random walk on a finite graph, and R,, is the number of steps the

walk takes to return to its starting point. It is well-known that this expected time is equal to tmice the total

number of edges in the graph divided by the degree of the starting vertex; see Gobel and Jagers [9] for this

and other general results about random walks on finite graphs. Thus, ER,,) is proportional to the number
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of the edges in the graph cut out of G, by S. This number, in turn, is less than the number of edges in G,,.

It is not hard to compute that G, has 6 .5'+' edges, so, ERj,1 < 20 5"

Recall that E2i = 15-', and apply Wald's identity.

E-Ty = EM . (EN(i). ERij + 1). ET

<3. (2.20.5- + 1). 15-- (2.2)

< 41 •3- (n-l)

NA now proceed by induction. Suppose that if x,y E Gm with Ix - yj :. 3-', then E'T <82. 3- +1 .

Let x,y E G.+ , x- yj < 3-'. There exist points v and w in Sn GO such that x and v and y and u,

are adjoining corners of squares on Gm+i. ( x and v may be identical, and so forth. ) The strong Markov

property gives
ETy_ ET,, + EvT,, + E'Ty

rn-1
<41 .3-' + 82. E 3- ' + 41.-3- -<-1 (2.3)

m+
82. E 3- '+'

n

completing the inductive step.

Finally, if x, y E S n -o, then
00

E'T <82 . E 3'' = 369 .3-n (2.4)
n

This completes the proof of the lemma.

Corollary 2.2. Ifx,y E G. n [0,3], such that Ix - y < 3-", then ErT, 738.3-n.

Proof: If Ix - yj < 3-n, then either they lie in a single square S or level n, or else the lie in two such

adjoining squares. In either case, the preceding lemma gives the desired bound.

Recall that 3 G, -G,,-, This fact, and the uniqueness of the snowflake diffusion limit impl the following
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Lemnua 3.3. Let x E r. Then 331' =D 1.*3.

Proof: Let x E r-,. Using the notation of section 2. consider the sequence of processes 3 -)3(x.)_n = 1'.

We have shown that Y,(x,t) - Y" as n - oo, so, trivially, 3 -3" (x,t) - 3 .3'r

On the other hand,

3-)' (x~t) = 3 . 3-X(3' x, [15r't]) = 3-n+'X(3n-'3x, [15n-I(151)]) = 3'Y-(3x, 15t) (3.4)

Thus, 3 -}~(rt) - 3Y3. Since both of these limits are unique, it follows that 31x =D Y , for x E r.

For general x in r choose a sequence x, in ro, converging to x. Then, for each n, 31 " =D 1-3," As ' has

the Feller property,
33'" -D 33" and 3.-3r. -D 3.-3x n -00 (3.5)

Therefore, 33'Y =D 3 1 .

Corollary 3.4. 3)V =D Y °0-

For starting points in Go, other than 0, a result similar to the preceding corollary also holds. Let x e r,.

and define M, : y - 3-' • (y - x) + x. Then .Mf x = x.

Corollary 3.5. Let x E G. Then there exists a stopping time T, > 0 such that M1 =D 3s", 0 < t < T

Proof: Suppose that x E G,j. Then there exists either one or two squares S on level n. such that x is a

corner of S However, if x is a corner of S, then there is some square S' on level n + 1 contained in S such

that x is also a corner of S'. Clearly, Mr : S - SI. Let U' be the union of any squares S' on level n + 1

adjoining x Then, the proof of the fractal scaling law will continue to work if we set T, to be the first, time

the process started from x exits U' and T satisfies the requirements gi en in the statement of the corollary.
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We shall call the scaling property stated in either corollary the unbounded fractal scaling law.

If we restrict our attention to rb, then our scaling properties are not. quite so tidy. However, a closely related

property does apply, which arises from the invariance of rb under a family of contractions. Define

AN :x-3.x Ni (x), x E [0, 1]2

JN: x - -3 . + (6,6) 2(=), x E [1- 2]2

N3 : x - 3- x - (6,6) and N(x) N3(x) x E [2,3]2  (3.6)

M4 : x- 3 -.x - (1- , 4.) | (x), x E [0,] 1× [2,31

:v 5: x-- 3.-= - (41 !) N.5'(x), x E [2..3] x [0, 1]

Note that N is a continuous mapping of r5 onto rb

Lemma. Let x E r. Then, N(I) =D Y'()

Proof: Inspection will verify that if X, is a random %%alk on Gk starting from x, then N(1X,) is a random
k~- strtn fro xthn esay Teno

walk on Gj--j starting from N(x), for any kl. We have shown in Section 2 that Xks YI weakly. Then

A( I = k,"  (3.7)

and since N is continuous, N(Xkl]) - ").

We shall call this scaling property the bounded fractal scaling latu. As an important consequence, note that

for any x E rb and any measurable set. A, PA'()[Y'51 E A] = Pr[)" E N-'(A)].

Our next step is to show that two independent copies of the snowflake diffusion restricted to rb meet in finite

time with probability 1. First we prove two technical lemmas. For x, y E F, let d(x. y) denote the Euclidean

distance between x and y. Let D[O, cc] denote the space of functions w .R.' - F which are right continuous

and have left limits for all t > 0.
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Lemma 3.7. For any 1, c > 0 and any compact set K, let

H(t,c) = fw : inf d(w4u).K) > c,0 < u <I + c).

Then HQ, ) is an open subset in the topology T on DIO. oc) defined by convergence in the Skorokhod metric

on compact intervals [0.p).

Proof: Let w.w: E D[0,co]. For any p > 0, let p;,(p.ii) equal the infimum of those i > 0 for which there

exists a continuous, increasing function A: [0,p] - [0.p] such that

i. sup{0 < < p: IAO) - } < C

ii. supfO < I < p: <((() () _c

It is easy to see that P. is a p-eudo-metric and that the topology T is induc, b- the famil of pseudo-metrics

Suppose w E H(I,c). Let a = inf{d(w(u),K),O < u < t + c) By hypothesis. a - c = 6 > 0. Choose

v E D[0,oo] with p,(w,v) < A. There exists a strictly increasing continuous function A [0,t -0,t]

satistfving i. and ii. By the triangle inequality, for any u E [0,1],

6
d(v(u), K) 2! d(w(A(u)), K) - d(,(X(,u)), v(u)) > c + b - - > c: (3.S)

since A: [0,t] -[ 0,t], d(w(A(u)),K) > c+ 6, for 0 < u < t. Thus, v E H(1. c), so H, is open.

Let T = inf{1 : wQ) E K). For every c > 0, H(1,c) C {,, T(w) > I). Let C[O.oz] denote the continuous

functions from R+ to rb.

Lemna 3.8. {w E C[0,oo : Tcw) > 1) = Uk1 H(tk-1)

Proof: Suppose,." is continuous, and that forevery k > 0, there exists Sk E [0,1] such that d(,(si.). K) < k-l1

As [0,t] is compact, there exists a convergent subsequence Sk' with sk' - s E [0,1]. As w is continuous.
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z(xk,) - -.(x). However, d(w(Xkl):K) - 0, so -(s) E K, and T(G) <s < 1. Thus, if T(w) > t then

inf{d(.(s). K), 0 < s < t} > k-', for some k.

Using the continuity of w again, there must be some m such that d(,.(s),K) > k-',t < s < I + m - 1. If

not. there would exist a sequence x, I such that d(.e(x.,).K) < k-1 . forcing d(w(t),K) < k- 1. Choose

n-rin{k, m) to give w E HxY-:.

To restate the previous result

Corollary 3.9. T: C[O,oo) - [0,oc) is a lower semicontinuous function.

Proof: Since Uk=1 Hk-i is an open set, this follows by definition.

We now proceed to prove the main result of this section.

Theorem 3.10. Let Y and Y7 be twoindependent copies of the diffusion on rb. Let 7:4 = inf{u YU = V).

Then TM <ooa. s.

Proof: In Aldous [1] it. is shown that if X, and X, are two independent copies of a continuous time random

wa!k on a finite graph H, then there exists some constant D such that E. 1i < Dmaxij E 2T. where

the maximum is taken over all pairs of states ij. By Markov's inequality, it follows that P[T.:, > tj _<

- DmaxijE'Tj.

Let )7 (t) be a random walk in continuous time on G,. We have shown in the preceding section that for any

pair of vertices x and y, such that Hix - i1< 3-3 then EiT < 738-3 - . If we regard E(t) as a sequence of

processes on Fb, then P[T(7) > t] < t-1• 738D for all n.

Consider the set , = {(x,x) x E rb}. Clearly, TM is the first hitting time on A for the process (Yt, 17).
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As before, let H, ={ infd(-,-(u); A) > c.0 < u <1 + c. Since H, C {T., < i). it follows that

Pj1;) E H,] < P[T, > ] <t-1 -73SD (3.9)

for all n. As H is open, Prokhorov's theorem and the Lemma 3.1 show that

P[Y E HcJ <liminfP[ I(t) E H] f i - 1 - 73SD (3.9)

n - C o

As Y' has a. s. continuous sample paths, the preceding equation and Lemma 3.8 show that

P[T.:, > 1] = liminf P[ E H- 1] < -1' 738D (3.10)

Letting t - oc gives P[7T.; = co] = 0, which is what we proposed to prove.

We next, consider invariant measures for Yj. For the moment, restrict the random walks ) (t) to rb. (Or,

equivalently, restrict them to [0,3]2). Since each Y, is now a random walk on a finite graph. it has a unique

reversible stationary measure, which we shall call p.. Regard I' as a rb-valued stochastic process. and pn

as a measure on r'b. Since rIb is compact, {p,} has a weakly convergent subsequence {p,}.

Proposition. 3'. has a stationary distribution p, and p,, -D p.

Proof: To show the proposition, we apply weak convergence. We have previously shown that

E [11'(u) - Y. (s)II I ,(t) - );,(u)l'] _< D(I - s)l (3.11)

for any p, > 0 and any s < u < 1. Since rb is compact, the sequence ;I' is weakly precompact. Let n' be

a sequence of integers such that /to converges, say to p. If we let )-, be the stationary version of 3' then

standard results on weak convergence (See, again, Theorem 15.6 in Billingsle. ) show that )' converges

weakly to a process y"", where l'J is a version of Y with stationary distribution P.
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Theorem 3.11. The distribution of Y. converges p in total variation norm

Proof: Let p(y.A) = P7[Yt E A]. Let Y' be an independent, stationary diffusion on rb Couple ) to Y'

by letting Y and Y' move independently prior to T.i but specifying that they move identically afterwards.

Then for any measurable A.,

p:(A) - (-) < P'1" Y'j:_ t -
. 738D (3.12)

and the inequality is uniform over all measurable A. The theorem follows.

Corollary 3.12. p is the unique stationary distribution for Yt.

Theorem 3.13. p is normalized Hausdorff logs 3-dimensional measure., restricted to rb.

Proof: Since p is a stationary measure, we apply the preceding theorem and the bounded fractal scaling

law to get

E N-(A)] - p(N 1 (A)) (3.13)

p0[1.; E NI-(A)] - p0 '1  E A] - p(A) (3.14)

as f - oo. So, p satisfies the equation p(A) = p(N-'(A)). Theorem 4.4.1 in Hutchinson [12),shows that

there is a unique measure on rb that satisfies this equation. Since p-dimensional Hausdorff measure restricted

to rb also satisfies this equation, it follows that p is p-dimensional Hlausdorff measure on rb.

Now consider Yt on r. If we let p be Hausdorff log 3 5-dimensional measure restricted to F, we have the

following

Corollary 3.14. p is an invariant measure for Y.

Proof: Normalize p so that p(rb) = 1, and let. f be a continuous function on I with conpact, support.
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Choose N sufficiently large so that r n [0, 3 "] contains the support off. Then for n > N, p is an invariant

measure for Y . the diffusion process restricted to r n [0, 3 -v]. Thus: as n - oo,

ffdp = E=ff(1 ")]p(dx) - fE [fYr)Jp(dx) (.5

A.s the continuous functions with compact support are dense in LA. the result follows.

We have shown in Theorem 3.11 that p. converges to Hausdorff 1o 3 5-dimensional measure in total variation

norm for Y' restricted to rb. This, together with the scaling law. implies that Y. has a transition density

with respect to Hausdorff measure.

Recall the transformations NI-. -,N, and N defined in (3.6), Let pt(-) =p_[Y E -- and let p(.) denote

Ilausdorff log3 5-dimensional measure, restricted to r.

Theorem 3.15. pr <p for al t> 0.

Proof. We begin by proving the theorem for Yt restricted to rb. Let B C rb be a set with p(B) = 0.

and suppose that pl(B) = q > 0. We observe in passing that p(B) = 0 iff p(N(B)) = 0, and that

-- (N(B)) D B. Let Bo = U Nk(B). Since p(B) = 0,p~(Nk(B)) = 0 for all k, so p(B.) = 0. On the

other hand, B C N-k(B,,) for all k. By the bounded fractal scaling law,

P1 5&(B.) = pt(__(B.))> p,(B) = q (3.16)

Thus. lirnfi. p1 5 k(B ) > q. But this contradicts the fact that p, - p in total %ariation norm as

I - co. By contradiction, p..(B) = 0. Thus, p, < p.

To show absolute continuity for the unbounded process, let )n) denote the diffusion process restricted to

r U [0,3"]. As n - co, )(" -' Y in total variation norm. The proof for 3' restricted to Fb shows that
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Ptl'Y" E I1 is absolutely continuous with respect, to Hlausdorff measure for all n. Therefore, it follows that

MIY E -1is also absolutely continuous with respect to Hausdorff log-,5 3-dimensional measure on IF.
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4. Computing Generating Functions

We can determine the generating function of the distribution of T' by elementary calculations. Let k(u) =

E~u" where r is the time required to cross from Oto (1,1). r has a geometric distribution with p = 1/3, so

k(u) = u/(3 - 2u), trivially.

Suppose Xo = 0, and let or denote the first. hitting time on an outer corner, other than 0. Let f(u) = Eou° .

We calculate the generating functions of some hitting times for corner 1, as a preliminary to calculating the

generating function of a.

Let p denote the first hitting time on 1, on the on the set where lis the first outer corner of U0 that the

walk visits. As the distribution of the random walk is not, affected by symmetries of U0 , the g depends only

on the graph distance between the random walk's starting point and 1. Thus we can identifN %ertices of Fb

by
a = {(0,1), (1,0): (0, 2), (1, 3), (2,),(3, 1)

b ={11), (1, 2), (2. 1)}

(4.1)
c {(2,2))

d= {(2, 3), (3, 2))

For i a vertex in U0 , let gi(u) = Eiu . g then satisfies the following system of equations

go= Utga + -Ugb 9b - -Uga + -tigb + !U c

(4.2)
gC = 2tgb + "Ugd + gd "Ugc + + "U

Direct calculation shows that this system of equations has the solutions:

V 3 ?2(3 - u)
9a = 3(2 - u)(1S - 15U + u 2) 9b = 3(2 - t)(18 - 15u + u 2) (43)

2u(3 - 2u) u(12 - 10u + u2) (

b= ca =us

Now, la A be the first hitting time for any corner other than 0. Again we can use symmetry to identify.
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vertices, in the groups
W {(0, 1), (, 0)}

= {(1,1), (1,2), (2, 1)}
(4.4)

y= {(1.2), (2, 1),(2,2)}

z = {(0, 2), (1,3), (2,0), (3,1), (2,3), (3, 2)}

Then hi(u) = EiuA satisfies

h= -Iuhw + -1uh.,h = 1-uh., + A1uh,
(4.5)

hy = Iuhw + 3uhy-+liuh 2.+ u h,, uhy + 1uh, + -u(45

with solutions

h, = h = - u(3-)
(2-u)(18-15u+u2 ) (2 - u)(18 - 15u + u2)

2u(9 - 3u - u) h - u(36 - 30u + 5u 2 ) (4.6)

hy = 3(2- u)(18- 15u + u 2) 3(2- u)(18- 15u + u 2)

Using the generating functions g, h, and k, we can now calculate f(u). Start at. Oand condition on N, the

number of returns to Obefore hitting a different, outer corner. We use the symmetry of U0 and the generating

functions we have just calculated, to get

Eou o = k(u) E h.(u)[gc(u)k(u)]" = k(u)[I - g:(u)-(u)(

If we substitute the generating functions we have already calculated, we get

U3

Eouc' u (2-uv)(18S- 15U +U2 ) ](4.8)
3 - 2z} 2ui(3 - 2v) 11

I(2- U)( - 15u +u 2) (3 - 2u)-

v (4.6)

(3 - 2u)(12 - 12v U2)

V(u) (4.9)

The symmetry of U0 shows that f(u) is the generating function for the distribution of the time to cross

between any two distinct corners of G.
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