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A Diffusion Defined on A Fractal State Space

William Bernard Krebs

N s dolned

Abstract: We define a fractal in the plane known as the Vicsek Snowflake by constructing a
=z ~

‘]

skeletal lattice graph and then rescaling spatial dimensions to give a sequence of lattices that
converges to a fractal. By defining a simple random walk on the skeletal lattice and then
rescaling both time and space, we define a sequence of random walks on the approximating
lattices that converge weakly to a limiting process on the snowflake. li’e-shew—t-lmeéhis
limit has continuous sample paths and the strong Markov property, and that it is the
unique diffusion limit of random walk on the snowflake in a natural sense. \We-show—that—

this diffusion has a scaling property reminiscent of Brownian motion, and we introduce

~
-

a coupling argument to show that the diffusion has transition densities with respect to

Hausdorfl measure on the snowflake. |

—

-

—
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> Keywords: Diffusions, fractals /; (-c))h;,—*”
1. Introduction:
Construct a figure in the unit square by the following recursive procedure. Let Gy denote the unit square.
Construct G; by deleting from Gy four squares, each with edge length :—‘3, centered aiong the four edges of Go.
Gy will consist of five squares with edge % whose corners overlap. At stage n, G, will consist of 5” squares,
each with edge length 37", To construct Gn4y from G,, take each square S composing G,,, and delete the
four square centered along the edges of & with edges of length 3="='. G, then consists of 5"+! squares

with edges of length 3-"—1,




Take G = NZZ,G,. Some easy topology shows that G is a closed connected set, with Lebesgue measure
0. In fact, it is not hard to show that G has finite Hausdorfl logz 5-dimensional measure. In the spirit of
Mandelbrot, G is a fractal with starter polygon G,. Extensive treatments of such fractal sets have been given

by various authors. (See, for exampie Hutchinson[12] or Barnsley and Demko[4}).

A number of authors have treated the problem of constructing diffusions on nested fractals. Particular
attention has been paid to diffusions on the Sierpinski gasket, a fractal constructed from a unit equilateral
triangle by successsively deleting “middle” triangles. Goldstein[10] and Kusuoka[13] constructed a Brownian
motion on the Sierpinski gasket, using a decimation-invariance property. Barlow and Perkins[3] have studied
this Brownian motion comprehensively. Browniand motion on the Sierpinski gasket is broadly similar to the
natural diffusion on the Vicsek snowflake, and the results of these authors are generally similar to those in the
present work. I fully acknowledge the priority of their results. More recently, Lindstrom[14] has constructed
a Brownian motion on any fractal set satisfying a general set of nesting axioms from a sequence of random

walks, provided that the distribution of the random walk satisfies a non-degeneracy condition.

The first objective of this paper is to construct a diffuion on the Vicsek snowflake, starting from an non-
degenerate random walk model. In an important respect, the problem of defining diffusions on the snowflake
is more complicated thun defining diffusions on the Sierpinski gasket. On the snowflake, one can define a
variety of random walk models that are symmetric under the natural symmetries of the square. A natural
question is whether one can constiuct a diffusion for any such model. Another is whether the diffusion on
the fractal is unique such diffusion are unique. The snowflake seems to be the simplest nested fractal where
such questions arise. For the snowflake, the answer is that if the random walk is not degenerate then the a

unique diffusion limit exists independent of the underlying random walk model. The corresponding problem
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2. Coustructing the Diffusion:

Consider the following system of transformations:
My:z—3"1z Mgz — (371 2)+(2,9)

My:z—381.24(1,1) Ms:z—(3"1.2)+(0,2) (2.1)

Ms:z—31.24(2,2)
By inspection, M, .., M are strict contractions, with fixed points (0,0), (1%, 11), (3,3), (3,0) and (0,3),
respectively. For bounded subsets A of R?, define A(A4) = U}AL,(A). It is well-known to geometers that the
transformation M has a unique compact invariant set, whose Hausdorfl dimension may easily be computed

as logs 5.( See, for example, Barnsley and Demko [4], Dubins and Freedman [6] or Hutchinson [12] ). We

will call this set the bounded Vicsek snowflake, and denote it by T.

For future reference, we establish the following definition. Let MM,,,..., Af; be some sequence of the trans-
formations My .., Ms. Let & = M;, o...o M; (I}). We will call S a square of I';. We will also need an
unbounded version of our state space. Let I' = U3L,3"T;. T also has Hausdorfl dimension logs 3, and has

the property that -};I‘ =T. We will call T' the unbounded Vicsek snowflake.

We wish to construct a diffusion process on I' and study its basic properties. We shall do this by defining

random walks on a sequence of lattices that approximate I', which we new construct.

In the unit square, let U denote the complete graph on the corners of [0,1)%. Let V(L) and £(L’) denote the

vertices and edges of U, respectively.

Define a new graph Up with vertex set V(Up) and edge set. £(Up) by taking
V(Uo) = V(U) L V(U) + (1, DJUP(U) + (0, 2)] U [V(U) + (2,0 u [V(U) +(2,2)]
(2.2)
E(Uo) = E(U)V[EW) + (L, DIVI[EWU) + (0,2)] U [EW) + (2,0)] U[E(V) + (2,2)]
where the arithmetic is done componentwise. We call Uy the unif snouflake lattice. Note that U lies in the

square [0, 3]%; we will call the points (0,0), (0, 3),(3,3), and (0,3) the oufer corners of U.
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Inductively, we construct a sequence of graphs, using same procedure that yielded Up from U'. That is, if

n>0,let
V{Un) = V(Un-1) UV (Un-1) + (1, 1)] U V(Un-1) + (0,2)] U [V(Un-1) + (2,0)]

UV(Un-1)+(2,2)]

(2.3)
E(Un) = E(Un=1) U [EUn-1) + (1, DIV [E(Un-1) + (0,2)] U [E(Un-1) + (2,0)]

U [g(Un-l) + (2: 2)]

As with Uy, say that (0,0), (0,37%1), (3"1?,37+1), and (0,37*?) are the outer corners of U,.

Let G = G; = U3 yUy,. Then G is an infinite graph, with vertex set V(G) and edge set £(G), which we shall
call the unbounded snowflake lattice, or, simply, the snouflake lattice. Let 0 denote the point (0,0), and let

1 denote (3,3).

We mention two key properties of Gy. First, if we let Too = US%,137" . V(G), then T, is dense in T'. Thus,
we may have some hope that a suitably scaled sequence of random walks will converge to some process on
[e. Second, , 3 V(G) € V(G), and G\ 3 G contains no infinite connected component. We call this the

“branching”, “nesting” or self-similarily property of G. property of random walks on the lattices G,.

Let 2 be a vertex of G, and suppose our particle is at z at time n. Let N, be the number of points adjacent
to x in G. Suppose our random walk is at z at time n. Then at time n + 1, we chocse a vertex adjacent to

y according to the following distribution:

If N, = 3:

PXps1=y)l=p if z and y are diagonally adjacent

PXps1=y)l=(~-p)/2 il z and y are vertically or horizontally adjacent

N, =6:

R
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PXpp1=yl=p/2 if £ and y are diagonally adjacent

PXns1=y]=(Q-p)/4 if z and y are vertically or horizontally adjacent

Here, 0 < p < 1 is a fixed but arbitrary parameter. This defines a random walk on G, which we denote by
XP. Thus, if X} = (0,0) then P[X} = (1,1)] = p while P[XT = (1,0)] = (1 - p)/2. If X = (1,1), then

P[X% = (0,0)] = p/2 and P{X} = (1,0)) = (1 — p)/4 = P[XE = (2,1)]

We begin by studying the special case where p = (1—~p)/2 = % , and X3 = 0. This will define a simple
random walk on the graph G, starting from 0. We call this discrete-time Markov chain. which we will call

random walk on the snowflake lattice,. For convenience, we will write X/3 = X. o

Let T and T? be the sequences of times between visits by Xy, to distinct points of 3-G and 32.G respectively.
Since 3*.G C3.G, T = EZ((’,)) T}. By the nesting property of the lattice, the distribution of (j)—a(j) is the
same as the distribution of T3}, and the Markov property of X,, shows that b(j)~a(j) and T}, k = a(j), ..., b(j)
are independent. are independent random variables, equal in distribution to T. Thus, for each j Tj’Z has the

distribution of the second generation of a branching process with offspring distribution equal to that of T.

Similarly, let T be the times between visits to distinct points of 3" - G. A similar argument shows that for
each i, T has t' ~ distribution of the n** generation of a branching process, again with offspring distribution

equal to that of T,

Let f(u) be the generating function of T'. By direct calculation, we can show that

u3

) = Gt

(2.4)

(See Section 4 for the details of the computation.) Differentiating f shows that ET = 15 and Var(T) = 114,

so the branching process {T™} is obviously supercritical. Since T is always strictly greater than 0, {T"} has
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extinction probability 0. Since this branching property of the hitting times of X, plays a key role in the

remainder of this section, we will review some standard theory of branching processes.

Theorem 2.1. Let Z, be a branching process, with Zog = 1 and let f be the generating function of the
offspring distribution. Suppose that 1 < f'(1=) = m < oo and f"(1=) < co. Let W, = Z,m~". Then
there exists a random variable W with EW = 1 such that W, — W a. s. and in L* P[W = 0] =

P[Z, = 0 forsome n]. If §(u) = e~*W, then satisfies Abel’s functional equation ¢(u) = f (é(u/m)).
Proof: This is Theorems 1 and 2, and equation (5) in Athreya and Ney [2].
In particular, W, — W in distribution.

The theorem implies that 15="T™ converges in distribution to some random variable 1}", with EW" = 1.

As T™ can never be 0, W is strictly positive almost surely, and ¢()) = Ee=*W satisfies o()) = f(o(15711).

Form = 0. 1,.., define a stochastic process on T by ¥i(t) = 3=™X([15™1]). ( [z] denotes the greatest
integer less than or equal to ). Observe that for each n, ¥;,(1) is a random walk on 3=" . G. Let D[0, o0} be

the set of functions w : R* — T that are right continuous and have left hand limits for all 1.

Theorem 2.2. The sequence of processes {Yy (t)}:>0 is tight in D[0,0c). If Y5:(1) is a subsequence of {¥, (1)}

converging weakly to a process ¥4, then ¥; has continuous sample paths.

The theorem follows from an estimate of the moments of the displacements [{};, (1) = ¥;,(s)]}, which we state

as a lemumna.

Lemma 2.3, Forn=1,2,...,0<s<{<00,9>0,

E[Ya(t) = Ya() S 22" [37™ + C - (t = 5)] (2.5)

{

.
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where p = log,5 3 and C is a constant independent of n.

Proof: Let @ = {g € Q:q¢=p-15"",p,q € Z}. Since Y,(t) jumps only at points in Q, it will suffice
to estimate E||Y5,(g) — Ya(r)||*, for arbitrary ¢,r € Q. We make the following displacement estimate for

random walk {X;} on the snowflake lattice:
Pll|Xn = Xl > 2V2-8%) < P[T} < n—m) (2.6)

To establish this estimate, we observe that 24/2 - 3% is the diameter of two diagonally adjoining squares in

the 3% . G. If || X, — Xm|| > 2v/2 - 3%, then between epochs m and n, Xj must visit two distinct points of

3. G.
To use estimate (6), we write

E|Ya(a)-Ya(mI"

< @V 5P [[Yalg) - Ya(Oll S 22577

+@VEY - 3 8P VA5 < [a(a) - YOl € 2VE 57 g
< (2v2)7-377P [[¥alg) = Ya(rll < 2v2 37
+ @V (1-37)- 37 3P [I¥ala) = Vo) > 22 -] ®)

< (V3737 P [IX(15 - q) ~ X (15" - 1) £ 2V7]

+(2V2)T - (1-377). ia(k-—n)‘rp [”X(lsn Q)= X(15" 1)) > 2V2 - 31-] 9)
k=0

<(@2V2)"- [3-7" +(1-3"7). i(i("‘")’f’ [18"- T < 25754 (g - r)]] uo
k=0

Inequality (8) comes from substituting

P[22 -3 <|l¥a(e) = Ya(r)ll < 22 -37%] =
P[2V2-3 < [Ya(g) = Ya()l] = P[2VE 37 < [I¥a(g) - Ya ]

8




into the estimate and rearranging the terms. (9) follows from the definition of Y, (g), and (10) is from

estimate (6).

To estimate P [15% . T} < 157% . 157 . (¢ — r)] we first estimate the Laplace transforms of {Ti}. Let ¢; and
é be the Laplace transforms of T and W', respectively. As T} has the distributions of a branching process

and 15~-*T}, — W, it is not hard to show that ¢z 1 ¢. So, it will suffice to estimate ¢.

To estimate ¢(15% - (g~ r)~1), let h(u) = —log(¢(u)) be the cumulant generating function of W'. h satisfies
the functional equation h(u) = log (f (exp (h(15~! - u)))), where f is the generating function of T = T

Let 1 < s < 15. Since h is non-decreasing, we have,

h(su) _ h(15u) _ _ ] _
) < O h(u)~ log (f (exp(h(15-1 - v)))

(L), $(u)°
- (log(é(u») o8 ((3 —26(w))(12 - 126(u) + ¢(U)'-’)) (2.11)
_ 5 log((8 = 26(u))(12 - 126(u) + ¢(x)?)

log(4(u))

The second term goes to 0 as u — oco. Since h is monotone increasing,
limsup h(su)/h(u) <8, 1<s<15. (2.12)
U= OO

This shows that h is a function of dominated variation, which implies the existence of constants Cy and Cy,
such that Cyu® < h(u) < Cou, where p = log,5 3. (See Feller[§], de Haan and Stadtmiller[11]). Restating

this in terms of ¢ shows tha’. ¢(1) < exp(=Cit*).

We now apply a standard technical result on Laplace transforms.

Lemma 2.4. Let U be the distribution function of a random variable, let y(u) be its Laplace transform,

and let a > 0. Then, for any1 >0, U(1) < e~ - ¥(1~?).

Proof: This is proved in the Corollary to Theorem XII1.5.1 in Feller [9].

9
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Applying these two lemmas to our series gives

i k= p [15" T <1575 157 (g - r)]
k=0

o0
<els. E3(k—n)‘)¢(15k-" (g=r)"Y) (2.13)
k=0
o«
<ell1s, Z 3k=mh1g(15%=7 . (g — r)=1) (2.14)
k=00
oo (=]
<el/1s, [Z 3=m7 4 E 3™ exp (=15™ . Cy (g - 7‘)"’)] (2.15)
m=1 m=0
<

To complete the proof of the estimate, let j() = [log)st] + 1 for t > 0 and let F(t) = !/15. 37i(!) .

2i2- 0 3779(15%). Substitute inequality (2.14) into the left-hand term in (2.10) and let m = k — n, to get

m=«0oo

Ell¥n(g) = Ya(nIl” < (2v2)"- [3"“’" +(1=37)- e D7 315 - (g - r)”)] (2.16)

< (2V2). [3-“’" + 3901 = 3=7) . g1/15. i 3m7¢(15"’)] (2.17)

m==oo
From (15), 30 - 3™74(15™) = C < o0. Since j(g - r) < log,s(q — r) + 1, 39(8=r) . ¢1/15 < (g = ).

Subsitituting these expressions into (2.17) gives

Ell¥a(g) = Ya(I" < [3"’" +(g=r)7-(1-377). i 3"”¢(15"‘)J (2.18)

m=-—=00

which proves the lemma.

Using our estimate, we can deduce both weak convergence of ¥, (1) and sample continuity of ¥;. Weak

convergence of {Y,()} follows from the standard result. on convergence of stochastic processes.

Theorem 2.5. Suppose that

(Xn(t1)s s Xa(tr)) —p (X (1), 0 X (11))

10
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holds whenever ty < ... <t} are points where X(t) is almost surely continuous, and that

E[lIXa@) = Xa@I"IXn(t2) = Xa (O] < (F(t2) = F(11))%

forty Kt<t,n>1,v>0,a> -;—, and F a nondecreasing continuous function. Then X, —p X.

Proof: This is Theorem 15.6 in Billingsley [5).

Proof of the main theorem: To show that there exists a weakly convergent sequence {¥a: (1)}, it suffices

to show that {¥,} is tight. Let s < u < { and consider

E{|Ya(u) = Yalo)IMI¥a(t) = Ya(u)I?]

If |s — 1] < 157" then

E[IIYa(w) = Yo IYa(t) = Ya(u)" ] = 0

(2.19)

(2.20)

for any s < u < t, because Y,(f) jumps only at integral multiples of 15", and if |s — {] < 15=" then there

can be at most one such multiple in [s,#]. So, suppose that |s =t} > 15=". Apply Hélder's inequality and

the monotonicity of E|Y,(u) — ¥,(s)||" to see that

E[ %) = Yo (MPIYa(0) ~ Yol |
< ElNa() = Ya(s)|?

S @V2PY 377 4+ (1-37%) (1 - 5)7)
But, since |s - 1] > 157", 3-"2Y < (s — 1)27, Substitute this into (2.21) to get
E{IIYa(u) = Ya ()P I3F0() = Ya () < 2. 2V - (t = 5)®7

This suffices to prove tightness.

11
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Choose a subsequence n’ so that j Yn/(t) =p Y:. To show that the sample paths of ¥; are continuous with

probability 1, let n — oo in estimate (2.6), giving
BYY, - Y.[[" << C - (t~ 57 (2.29)

Kolmogorov’s criterion for sample path continuity applies, which completes the proof of our main theorem.

Although we have written our proofs for the special case where Yy = 0, the proof will also work for ¥y =z

for an arbitrary z € ', with.a minor modification of the sequences Y, (7).

Forn = 1,2,... and m < n let S be the time of the k% visit of the random walk Ya(t) to Gy and let
ke = Pt k= Spix.y be the k** interarrival time for S7,.. Previously, we observed that ¥, (Sq )k = 1,2, ...

is a random walk on G,,, for all m < n. We can extend this property to Y;.

Proposition 2.6. Let Y,: — Y. T x converges in distribution to a random variable Tp, x for every
k > 0; furthermore, the sequence {Tp, x}§%, is independent and identically distributed for all m. Yp+(Sq’,m.k)

converges weakly to Y (Spm,x) where {Y(Smx)}§2, is a random walk on the lattice Gp,.

Proof: We have already shown that T})} , is distributed as the n’—m generation of a branching process with
offspring generating function f(u). Applying the theorem about branching processes cited at the beginning
of this section shows that 15="'=™T}, .+ —p 15~V also. For each n’, and m { w k )iz is a sequence of

independent random variables. Thus {T}"}$2, is alsc an independent sequence.

For any n’, the sequence ¥p/(Sp? ) is a random walk on Gp. As for {Y' (S x)}i%;, Y(SF') € G,k =
1,2,.. with probability 1. It is straightforward, although tedious, to show that for sites 2y,..,2, € Gy,
{w : ¥(SP",w) = 24,i = 1,...,,v} is a continuity set for the distribution of };. The second statement of the
proposition follows.

12




A consequence of this proposition is

Corollary 2.7. The sample paths of ¥ are uniformly continuous in probability.

Proof: The corollary follows from Skorokhod’s lemma, upon observing that for u > v

1ﬂmz-xﬂ52¢i3w>;ogs<v}zphkﬂﬂ<u_vb;ogs<4 (2.24)
= P[T,,‘k(,,) <u-— v] (2.25)
>1-15""/(u-v) (2.26)

where k(v) is the smallest k such that S, ¢ > v. Inequality (24) follows from the fundamental estimate, (25)

uses the fact that {T}, &} is an i. i. d. sequence of random variables, and (26) is Markov's inequality.

To show that Y; is a diffusion, we must show that it has the strong Markov property. We consider those

stopping times of ¥; that are also stopping times of the embedded random walks Y'(Syf'), in an appropriate

sense. Let C be the class of stopping times T of ¥; such that
i. For some n, Yr € G,; with probability 1.

. fm>nand T = Zf;’"l Tinx, then Ny, is a stopping time for the random walk ¥ (Sp 1)

Clearly Sy 1 € C for any n and %, so the class C is not vacuous.

Proposition 2.8. Let T € C. Then Y; satisfies the strong Markov property with respect to T. That is for

any bounded, measurable functions f : RY = R, g : R¥ — R, and sy...s4, 11...1x,

EPWMATLWHwAﬂNWM+TLMWu+ﬂﬂ

(2.27)
= E[g(t"(s1 AT), Y (sa ATDEFISOY (1), Y (1))
Proof: By the monotone class theorem, it suffices to prove the results for g(zy,...,24) and f(¥,.... k)

13
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bounded and continuous. For n = 1,2,... let

Tt = Y (Sp1)1[Sng 1< Spisa) (2.28)
!

Obviously, sup, |Y: = Ya 1| < v2-37". Thus, Y, — ¥; uniformly with probability 1, as n — co. By the

strong Markov property of random walks on G, and the independence of T}, &,

Elg(Ya(s1 AT),....Ya(sa AT))f(Ya(T + 11), ..., Ya(T + 1))

(2.28)
= E[g(a(s1 AT, .., Ya(sa AT) Xz [f(¥a(T +12), ..., Yo(T + )]
Since T € G; almost surely,
E[f(Ya(T+1),-. . Ya(T+)[Yar] = ZE;[f(Yn(t;), ey Yate))) - PlYn 1 = 7). (2.29)
P

The distribution of ¥, r is fixed, so, z, and PYar= :c,,] are fixed as n varies. Since f and g are bounded

and continuous,

IYa(s1 AT), oy Yn(8aAT)) = g(Y (51 AT),...,Y(s4 AT)) as. (2.29)
FaT+ 1), YT+ 1) = fX¥ (T +1),... YT+ ) as. (2.30)
f(yn (tl)r ) Y, (tk) - f(y(tl): "')Y(tk)) a.s. (231)

As n — o0, the dominated convergence theorem gives

Elg(Yna($1AT), ., Ya(sa AT (Yalts + T), ... Yaltx +T)))
(2.32)
— E[g(Y(s1 AT), ., Y(sa ATNS(Y (t1 + T, Yt + 7))

and

E[g(}’,, (S1AT), o, Ya(5a AT) EYT[f(¥n(t1), oy Yo (tk))]]
= o0 (51 AT), Y (sa AT EF[F(Y (1), Y (1))
which proves the proposition.
We next use this limited form of the strong Markov property to show that the laws P”, z € I', are uniformly

weakly continuous in 2. We do this by studying escape times, the time required for the process to reach G,

14
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starting from Gy, for n > k. Clearly, escape times are stopping times in the class C, so the limited Markov

property in the preceding proposition applies to them. We begin by proving a lemma for Markov chains

Lemma 2.9. Let P be an N x N stochastic matrix. Let Q be the space of measures on {1,..., N}, with the

total vartation norm. Then, the transformation p — pP is a strict contraction on @ if and only if no rows

of P are mutually singular.

Proof: Let A and p be two distinct measures in Q. Without loss of generality, suppose that A; — y; >
0,j =1, ,M, A —p; £0,j=M+1,.,N. Let v = f’(,\j —y;) = Z:?;H(/zj ~ ;). As p and X are
distinct, v > 0. Let va; = (Aj — p5),j =1,..., M and v8; = v~ (y; — A;),j = M + 1,..., N. Then,

d(AP,pP) = %Z > — )Py (2.34)
i

=3 Z(A RIS SRPSERIY (235)

i k=M41

N
—U—E ZQJ i E B Prji (2.36)

i k=M41

< I/Z Z OJﬁk Z %IP',; - Pk,il (2.37)

J=lk=M+1
< v max d(Pj, Py) (2.38)
3

Inequality (2 37) above follows because f(z,y) = |z — y| is convex in both « and y; the other relationships
are straightforward. If max;xd(Pj, Py) < 1, d(uP,AP) < v = d(p,)). i d(P;, P} = 1 for some i and j,
then take p = &, A = § to get d(p,A) =1 =d(uP,\P).

15

Liateain S,




Let 2 € G,. Let Y denote the continuous process constructed at the beginning of this section, starting
from z. For k < j, let T} = inf{t : Y7 € Gi}. Then T is a stopping time such that Y(z,T;) € Gy almost
surely. By the strong Markov property of the embedded Markov chains Y(Ten) {Y(2,Tk), k < j} form a

discrete time Markov chain.

With probability 1, ¥(z,Ti) will be one of the four corners of the square Si on level & enclosing z. Number
these four corners 1,2,3 and 4, starting with 1 at the Northeast corner and proceeding clockwise around
the square. If Y(z,Tx) = 4,7 = 1,2,3,4, then the transition probabilities PY(2,Tk-1) = jlY (2, Tx) = i)
will depend on which of the five level-k squares of Sp_; z belongs to. Number the four outside squares
1,11,111, and IV, starting in the Northeast corner and numbering clockwise around the outer squares. Let

V denote the center square of Sx_;. By using the generating functions given in display number, it is not

hard to calculate:

1 0 0 0 r1/12 3/4 1/12 1/12

P = 3/4 1/12 1/12 1/12 . pun - 0 1 0 0
T l1/2 1/6 1/6 1/6 |’ ~11/12 3/4 1/12 1/12

3/4 1/12 1/12 1/12 L1/6 1/2 1/6 1/6

1/6 1/6 1/2 1/6 1/12 1/12 1/12 3/4

pu 1/12 1/12 3/4 1/12 . pUuv) _ 1/6 1/6 1/6 1/2
0 0 1 0 ’ T 11/12 1/12 1/12 3/4

1/12 1/12 3/4 1/12 L 0 0 0 1

1/2 1/6 1/6 1/6
vy - |1/6 1/2 1/6 1/6
“l1/6 1/6 1/2 1/6
1/6 1/6 1/6 1/2

Direct calculation shows that

sup d(P°(i), P°(4)) = 30 = 111,111, 1V and supd(P™(i), P)(5)) = & (2.39)
i, i,J

Let BC(T) denote the bounded, real-valued continuous functions on T'. For g € BC(T). z €T, t > 0, let
Pig(z) = E7g(Y1).
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Theorem 2.10. For allt >0, P, : BC(T') — BC(T).

Proof: Fixt > 0. For g € BC(T'), we must show that P,g(-) € BC(T). To do this, it will suffice to show
that Pig(z),z € Ge is uniformly continuous and observe that a uniformly continuous function on G has

a unique uniformly continuous extension to I'.

Let z,y € Go, choose M sufficiently large that x,y € Gas, and suppose z and y lie within the same square
on level m of Geo, say the square Sy,. A fortiori, z and y lie in the same square S, on level n of G. for

all n < m.

Let € > 0, and let g be a continuous function on I' with ||g|| < 1. Then

|E*g(Y?) — E¥g(Yo)l
<|E*g(Y1) — E*g(Year )| + |E*9(Year) — EV9(Yi47) (2.40)

+|E¥g(Y:y) = E¥g(Yeer))l-

We estimate the terms separately.

Note that

4 4
Efg(Y(t+Tn))= Y NE'g(Yat));  EYg(Y(+T.))=Y MEg(Ya(t) (2.41)

=1 i=1
where A7 and AY are the escape distributions of ¥}, (f) on the corners of S, starting from r and y, respectively.

Then,

4 4
[BZg(¥n(t + 7)) = EYg(Ya(t + 7o)l 3 IV = WIE g0 (1) < 31X = M| (2.42)

=1 =1

Choose 6 > 0 such that Ju—v| < 6 implies [g(u)— g(v)| < §, and let Ay = {w : SUP;cucuran Ve = Yull > 6}
We have shown that the paths of ¥; are uniformly continuous in probability, thus, choose h > 0 so that

P[Ap) £ §. Then,

[ETg(Y:) = E*g(Yeur )l < ET|9(Y?) ~ 9(YeaT)] (2.43)
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< E7|g(Ye) — 9(Yearr)L(IT > A UIA}]) (2.44)

+ E*[g(Ye) = 9(Yes1) 12 [T < 1. An) (2.45)
52-§+2-%+< (2.46)
=3¢ (2.47)

Similarly, we can estimate |[E*g(Y (¢)) — EZg(Y (t + T»))| < 3¢ for suitable n.

To complete the estimate, choose n sufficiently large so that P*[T;, > n} <. § Then, if we apply this to the

preceding inequalities, we get
[EFg(Yn (1)) — E¥g(Yo ()| < Be+ €+ 3¢ =Te¢ (2.48)

If we choose k and m as in the preceding paragraphs, and let |z — y| < 3=™ then there must exist some

z € ', such that z and z and y and z each lie within a common square of level m of T'. So,

|E=g(Yn(t)) — EYg(Ya ()] < |EZg(Ya(t)) — BZg(Ya(t) + |E7g(Yn (1)) — E¥g(Ya(D)]
(2.49)
< 14¢

Let n — oo. Then if [z — y| < 3™, [ET9(¥;) — EYg(Y,)| < 14e.

This shows that EZg(Y;) is a uniformly continuous function of z, for all x € I'«, all , and for g an arbitrary

uniformly continuous function.
Proposition 2.11. ¥} is a Markov process.

Proof: Fix{> 0 and consider S, [15ny) Where [z] denotes the greatest integer less than . Then. using our

earlier notation,
f15™¢)

3 _ [15"1] I 1 [15"1)
Sn,[15n1] = E T,,J = —1511 - 115" ﬁ:')-"_t] E Tn.j (2.50)
j=1 i=1
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As n— o,

[15™1) -
1 [1571]
53— _S. . 1a.s.: —1 5
e = Ty lass S (2:51)

The first limit follows by applying the law of large numbers to the i. i. d. sequence T, ;. The second is

simple analvsis. Thus, S, (15~ — { almost surely, as n — oo.
P 3 » ©n,[1571)

If g(z1,..-,24) and f(y1, ..., yx) are bounded continuous functions and s; < ... < s¢ <1 < #; < ... < # then,

by Proposition 1.8, for any n,
E[g(Y(s1 A Saisng)s -+ -» Y (8 A S pisng)) F (Y (11 4 Saisng)s - - Y (8 + S f15ng))))

(2.52)
= E[g(Y (51 A Sn 15014))5-- -, Y{(sa A Sn,[lsn,]))E[f(Y(tl), e Y@NY (Sn fisng)]
Let n — oc, apply the continuity of f and g, Theorem 1.10, and the sample continuity of ¥;. We get
E[g(},s; PRL] st )f(},h-}-t: oeey }’fr{w!)] = E[g(},s; 3oy }’;g)EY‘ [f(},h 3y ’fk)]] (253)

This proves the proposition.

To show that Y; is a strong Markov process, we will apply the following theorem:

Theorem 2.12. Let X; be a process satisfying
i. Forall f€ BC(T'),and allt > 0,0< f < 1implies0 < Ef(X;) <1.
ii. For all s, > 0, Ef(Xe41) = EX(Ef(XY)).
iti. For all f € BC(T'), E* f(X:) — f(z) — O uniformly in z ast — 0. Let 7 = o(X, : s £1) and
Fip = Nyt F°. Then if T is an F,y stopping time, EF[0rn|Fry) = EXMy), for any measure y and any

bounded measurable 7.

Proof: This theorem is given in Williams [17), as Theorem I11.15.3.

To apply the theorem, it remains to show that ET f(Y;) — f(z) — 0 uniformly in z as ¢ — 0 for any bounded

continuous f.
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Consider the operator P, : BC(I') — BC(T') defined by Pig(z) = E*g(Y:),z € Too. Since E*g(}}) is
uniformly continuous for z € ', We can extend E7g(}}) to a uniformly continuous function defined for all
z € T'es and all { > 0. Let Pyg denote this extension of P,g. To apply the theorem from Williams [17] stated

earlier, we need only prove the following

Proposition 2.13. Forall f € BC(T),and allt > 0,0 < f < 1implies0 < P,f <1, and P, f(z)- f(z) — 0

uniformly in z ast — 0.

Proof: Let f € BC(T). f 0< f <1, then 0 £ E*f(Y;) < 1 (a. s.), since conditional expectation is a
positive operator. Since I', BC(T), and [0, oc) are all separable, we can modify P on a single null set N to

get 0< B f(¥) < 1.

We apply the following lemma.

Lemma 2.14. Let P; : BC(T') — BC(T') be a substochastic Markov semigroup. If P,f(z) — f(z) ast ] 0

for all z € T and f € BC(T), then P,f(z) — f(z) — O uniformly in z ast — 0, for all f € BC(T').

Proof: This paraphrases formula I11.8.2.iv. in Williams [17].

Let ¢ > 0. Let # € I',, and let g € BC(I'). Given € > 0, choose § such that |y — z] < é implies that
lo(z) — 9(y)| < §. P7[[¥Yy —z| > 6] § 0ast | 0. Choose t sufficiently small that P7[|¥; — z| > é] < £. Then
|Prg(x)—g(=)]
< [EF(9(Ye) = g(@N1Yy = 2| < 8)1+ |E*(9(7) ~ 9(2))1[Y: = =] > 6]

(2.54)
SSPYe—2| <61+ 2. PH(IY — 2] > ¢

IA
ol

+

=¢

w2~

This completes the proof of the proposition.
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In terms of Williams [17}, this makes P; an FD semigroup and Y; an FD process. Applying the theorem that

we stated earlier in this section to Y, we conclude

Corollary 2.15. Y; has the strong Markov property.

Henceforth, we will refer to ¥; as the snowflake diffusion .

In fact we can show that the snowflake diffusion is the unique diffusion limit for any of the random walks

XP, within a constant change of time scale

By Proposition 2.6, random walks on all the lattices G, are embedded in the snowflake diffusion. We also
note in passing that for Yo = 0, 3Y; =p ¥js5;; we will return to this point in the next section at greater

length. These two facts form the basis for the proof of the following proposition.

Proposition 2.16. Within a non-random change in time scale, Y; is the unique limit in distribution of the

processes Y (1).

Proof: For each n, define the sequence T7,T3,... as in proposition 2.6. for each k, T is the sum of k

independent random variables equal to 15-"W in distribution. If Var(1¥') = o2, then ETP = k-15~" and

Var(T}) = k2.
For arbitrary n and ¢,
Ya(t) = 37" X([15™])) =p 3"Y(T"([15"1))) = ¥ (15™"T"([15"1))) . (2.55)

Note that 1 — 157" < 157" .[15"1) < ¢+ 157", Now, T} is the sum of k independent random variables, with

distribution 15=™ . . Thus,

E(15~™ . T([15™])) = 15~™ - E(T([15"™1])) = 15~™ - [15~™ - 1] — 1 (2.56)
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o?(15~™ - T([15™1))) = 157> . *(T([15™1))) = 1572 . 15"™ . 0" = 15™™ .0° — 0 (2.57)

as n — oo, where o2 = ¢*(1). Thus, as n — o0, ¥,({) —p Y;.

By the same argument, for any {; < ... < #; and any convergent subsequence Yy« () converges in distribution.

Then by the same analysis as in the preceding paragraph,

(Varlta) s Yar (08)) =D (¥ (), oo ¥ (1)) (2:58)

Thus all limits of {¥,(t)}3%, have the same finite dimensional distributions. Since the finite dimensional
distributions of a stochastic process determine the process, it follows that Y; is the urnique limit of the

processes {¥,,(?)}%,.

Now we consider again the general model for random walk proposed at the beginning of this section. Let
X7? be random walk on the snowflake lattice with parameter p. Let po = pand for n = 1,2,.. ., let p, be the
probability that X7 starts from 0 and reaches (37,3") before either (3",0) or (0,3"). It is not hard to see
that in general p, # po—1. We can find a recurrence relationship by calculating computing p; as a function
of py Observe that we can identify vertices of U; that are reflections of one another across diagonals of the

square. Thus, we can identify the following sets of vertices

a={(0,0)} b={(0,1),(1,0)) c={(1,1)}
d={(1,2),(2,1)} e=1{(0,2),(1,3),(2,0),(3,1)} f={(22)} (2.59)
9=1{(2,3),(3,2)}

Foreach i € {a,...,9}, let ¢; be the probability that X, starts from vertex 7 and reaches (3, 3) before either
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(0,3) or (3,0). Using the Markov property of XT, we get the following system of equations for ¢,
9a = (1 - p)@s + pgc o = (1= p)ga + pgs + 3(1 — p)ge

ge = 3P0+ 5(1=P)p + 3(1 = P)aa+ 3Pty 90 = 3(1 = P)gc + 3pga+ 3(1 = P)ge + 3(1 — P)yy

2.60
¢e = 3(1 - p)ga + 3Pge a5 = 5P + 3(1 = p)aa + 5(1 = p)ag + 3p >0
99 = 5(1~ P} +pge+ 3(1~p)
Applying Cramer’s rule, we get
G- (-pF-(tp) | (2.61)

= BF - (—pP -(1+pF (4-3p) 4-3p

Formula (2.61) gives us a recurrrence for p; in terms of po. Furthermore, we see that p = % is a fixed point

for this recurrence formula, and that for any pp < 1, p, — % 2s n — 00.

Forn=1,2,...,let T*? = T(n,p) be the number of steps X? requires to pass from 0 to some other vertex in
37.G. In analogy with the branching property of X1/3, it is not hard to see that T"F = Ef T7~1P, where
TL'."I"’I: =1,2,... is a sequence of random variables distributed as T"~1?, B is distributed as T(1,p,_1)

and B and Ty~ Pk = 1,2, ... are mutually independent.

Let m, = ET(1,p,), and let M,, = [T_, m,. Then, ET™P = Af, and an argument analogous to that for
branching processes shows that TP . Af! is a positive martingale converging a. s. and in distribution to

some random variable W,
Lemma 2.17. Within a constant scaling factor, W =p W.

Proof: Let

fa(u) = EuTOPel g ()) = Eexp (=AT(n,p) - M7}) (2.62)

Then from the branching property of 7" outlined in the preceding two paragraphs

gn(A) = fa (gn-—l(’\ : "7;])) (2.63)
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Since TP - M7 —p W, go()) — g(A) = Eexp(-AW) as n — 0. pn — 1/3, so fu(u) — f(u), and

mp, — 15. Substituting these limits in (2.63) gives

9(0) = f(g(r-1571)), (2.64)

the same functional equation satisfied by W. It is well known that the solution to Abel’s functional equation
is unique, except for a constant multiplier of the argument. ( See, for example, Seneta [16], Theorem 3.1.)

This implies that ¥ =p W within a constant change of scale.

Let ¥2(t) = 3~ X*([M,1]). Arguments analogous to those in Theorem 2.2 , Lemma 2.3, Propositions 2.6,
2.8, 2.11, and 2.13 show that we can find a diffusion ¥; on T and a subsequence n' such that Y? — ¥ weakly.
Let {7} be the sequence of times when ¥; visits distinct vertices of G;. Note that T =p . As p, — 1/3,

{F(Tn)} =p {x*1%}

Theorem 2.18. ¥, =p Y:, within a constant change of time scale.

Proof: As a consequence of Lemma 2.17, we can choose a time scale for ¥; so that 3¥; =p Yis:. The proof

now proceeds as in Proposition 2.16. Let
Yo (t) = 3~"Y (P(15™1))) = Y (15~™ - T([15™1)). (2.65)

As ¥; has continuous sample paths, Y (t) — ¥; almost surely. On the other hand, Y;5(1) =p ¥m(1), and

Yin(t) —p Yi. Thus, Y; =p Y;. This proves the theorem.
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3. Scaling Properties:

In this chapter, wve will study some of the detailed sample path properties of the snowflake diffusion. Let
n > 0, let £ and y be points on G N [0,3] such that z,y € S for some square S on level n. Let

T, = inf{t : ¥; = y} be the first visit of the diffusion on Ty to y; set T, = oo if this set is empty.

We begin by proving two technical lemmas.

Lemma 3.1. E°Ty < 369-3-",

Proof: Suppose z,y € S. There exists m > n such that z,y € G,,. We will establish our estimate by

induction on m.

Suppose that m = n. Then z and y are necessarily corners of S. Let 71, T», ... be the times between successive

visits to G Then, Ty = S2°®) Tj where

M [N()
Ny= | D Rij+1 (3.1)
i=1 \j=1

M is the number of corners of S that Y} visits before Ty, N, is the number of excursions to G, \ § between

the time Y; hits the i — 1°¢ and i** distinct corners of S, and R,, the number of points in G, \ S that ¥}

visits on the 7' such excursion.

The strong Markov property shows that Af has a geometric distribution with parameter % Fori=1,2,..
N; either is identically O or else has a geometric distribution with parameter % To estimate E'R,,, note
that each excursion outside of S is a random walk on a finite graph, and R, is the number of steps the
walk takes to return to its starting point. It is well-known that this expected time is equal to twice the total
number of edges in the graph divided by the degree of the starting vertex; see Gobel and Jagers [9] for this
and other general results about random walks on finite graphs. Thus, ER,, is proportional to the number
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of the edges in the graph cut out of G,, by S. This number, in turn, is less than the number of edges in Gp,.

It is not hard to compute that G, has 6 -5"+! edges, so, ER; ; < 20-5"

Recall that ET; = 15-", and apply Wald’s identity.
E*Ty=EM-(EN(i)-ER;; + 1)- ET
<3.(2-20-5" + 1)-15°" (2.2)
< 41.3~(=1)
W now proceed by induction. Suppose that if z,y € Gm with |z - y| < 37", then E*T, < 82. 3 7' §~i+1,
Let 2,y € Gpmyy, |z — yl £ 37", There exist points v and w in § NGy such that z and v and y and w
are adjoining corners of squares on Gpmyy. ( 2 and v may be identical, and so forth. ) The strong Markov

property gives
E*T, < E*T, + E'T, + E*T,

m-1
<41.3""+82. Y 371 441.3™™
,;l (2.3)
m+1} .
=8§2. Y 3t
n
completing the inductive step.
Finally, if z,y € S N —o09, then
oo
E°T,<82-) 3 "1 =369.3™" (24)
n

This completes the proof of the lemma.

Corollary 2.2. If 2,y € G, N[0,3], such that |¢ — y| < 3=", then E¥T, < 738.3"n.

Proof: If |z — y| < 3", then either they lie in a single square S or level n, or else they lie in two such

adjoining squares. In either case, the preceding lemma gives the desired bound.

Recall that 3 G, = G,,..1 This fact and the uniqueness of the suowflake diffusion limit imply the following
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Lemma 3.3. Let z € . Then 3¥7 =p Y.
Proof: Let r € T,.. Using the notation of section 2. consider the sequence of processes 3 - };,(z.1).n = 1°.
\We have shown that Y, (z,£) — Y7 as n — oo, so, trivially, 3-Y,(z,1) — 3-}7
On the other hand,

3-Ya(z,1) = 3-37"X(3"z, [1571)) = 37"+ X (37132, [157 "1 (151)]) = ¥,-1(3z,15¢8) (34)
Thus, 3 - ¥, (z,t) — Y{¥. Since both of these limits are unique, it follows that 3} =p Y%, for = € T'eo.

For general r in T choose a sequence z,, in I'ys converging to z. Then, for each n, 3Y;" =p }’,35‘;". AsY has
the Feller property,

3¥7" —p 3¥7 and y‘3=‘n —p )';3’ n—oo (35)

Therefore, 3YF =p Y.

Corollary 3.4. 3¥% =p Y2,.

For starting points in G, other than 0, a result similar to the preceding corollary also holds. Let » € T'.

and define M, : y —3~!. (y—z)+ 2. Then M,z =z.

Corollary 3.5. Let x € G. Then there exists a stopping time Ty > 0 such that M:Y7 =p Y%,,0< 1< T;

Proof: Suppose that = € G,. Then there exists either one or two squares S on level n. such that z is a
corner of S However, if z is a corner of S, then there is some square S’ on level n + 1 contained in S such
that z is also a corner of §’. Clearly, M. : S — S1. Let U’ be the union of any squares &’ on level n + 1
adjoining  Then, the proof of the fractal scaling law will continue to work if we set 7> to be the first time
the process started from x exits U and T} satisfies the requirenients given in the statement of the corollary.
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We shall call the scaling property stated in either corollary the unbounded fractal scaling lew.

If we restrict our attention to I's, then our scaling properties are not quite so tidy. However. a clozely related

property does apply. which arises from the invariance of I's under a family of contractions. Define

N:z—3-z ( Ny(z), z€[0,1)°

Na:z— ~3-z2+(6,6) Na(z), z € 1,2

N3:z—3-z—(6,6) and  N(z)={ Ni3(z), z € [2,3] (3.6)
Ny:z—3.2-(13,43) Ny(z), z€[0,1} x [2,3]
Ns:z—3.z2—-(43.13) L N5(z), z €[2,3] x[0,1]

Ncte that NN is a continuous mapping of I'y onto I'y

Lemma. Let z € T. Then, N(Y7) =p Y.

Proof: Inspection will verify that if X, is a random walk on G; starting from z, then N(X?) is a random

walk on G, starting from N(z), for any k1. We have shown in Section 2 that X[I;skz] — Y; weakly. Then

N(X[’;s*z]) =N (X[lisk-!(lsx)]) — Vst 3.9)

and since N is continuous, N(X[Iiskz]) — N(¥7).

We shall call this scaling property the bounded fractal scaling law. As an important consequence, note that

for any z € Ty and any measurable set 4, PY(*)[Y;s, € A] = P7[Y, € N-1(4)].

Our next step is to show that two independent copies of the snowflake diffusion restricted to I'y meet in finite
time with probability 1. First we prove two technical lemimas. For z,y € T, let d(z.y) denote the Euclidean
distance between z and y. Let D[0, oc] denote the space of functions w . R*¥ — T which are right continuous
and have left limits for all t > 0.
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Lemma 3.7. For any1,¢ > 0 and any compact s=t K, let
H(t,¢0) = {w:infd(=(u). K) > ,0 <u<Il+¢}.

Then H(1.¢) is an open subset in the topology T on D[0. oc) defined by convergence in the Skorokhod metric

on compact intervals [0, p].

Proof: Let w1 € D[0,cc). For any p > 0, let p.(p.v) equal the infimum of those ¢ > 0 for which there
exists a continuous, increasing function A : [0, p} — [0.p) such that
i sup{f0<i<p:|\f)-1f} <e
ii. sup{0 <1 < p:d(u(M1)),v())} <€
It is easy to see that p, is a pseudo-metric and that the topology 7 isinduc. by the family of pseudo-metrics

{l';\}p>0-

Suppose w € H(1,¢). Let a = inf{d(x:(u),K),0 < u < 1+ ¢} By hypothesis. a — ¢ = § > 0. Choose
v € D[0,00] with pe(w,v) < 4. There exists a strictly increasing continuous function X : [0,1] — [0,1]

satistfving i. and ii. By the triangle inequality, for any u € [0,1],
d(v(u), K) > d(w(A(u)), ) — d(w(A(u)), v(u)) > e+ &~ -;— >e€ (3.8)
since A: [0,1) — [0,1], d{w(M(u)), K) > ¢+ 6, for 0 < u < 1. Thus, v € H(1.¢), so H, is open.

Let T = inf{t : w(t) € K'}. Forevery ¢ > 0, H(t,¢) C {w : T() > t}. Let C[0.0c] denote the continuous

functions from R to I}.

Lemma 3.8. {w € C[0,00] : T(w) > 1} = U, H(1,k?)

Proof: Suppose . is continuous, and that for every k > 0, there exists s € [0,7] such that d(w(sr). K) < k1.
As [0,1] is compact, there exists a convergent subsequence s;» with spw — s € [0,1]. As w is continuous.
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(zzr) — =(z). However, d(w(zi/).K) — 0, so w(s) € K, and T(2) < s < 1. Thus, if T(z) > 1 then

inf{d(>(s). ),0 < s < 1} > k™2, for some k.

Using the continuity of w again, there must be some m such that d(=(s).K) > k"I <s<t+m™ ' If
not, there would exist a sequence z,, — 1 such that d(.>(z.), K) < k2. forcing d(=s(f), k') < k~2. Choose

N= min{k, m} to givew € Hy-s.

To restate the previous result
Corollary 3.9. T : C[8,00) — [0,00) is a lower semicontinuous function.

Proof: Since UL, H;-1 is an open set, this follows by definition.

We now proceed to prove the main result of this section.

Theorem 3.10. Let ¥; and Y be twoindependent copies of the diflusion onTy. Let Tyy = inf{u : Y, =Y!}.

Then Ty < o0 a. s.

Proof: In Aldous [1] it is shown that if X; and X are two independent copies of a continuous time random
walk on a finite graph H, then there exists some constant D such that ETy < Dmax;; E"Y}. where

the maximum is taken over all pairs of states 7,j. By Markov’s inequality, it follows that P[{Tasy > {] <

i-1. Dmax;jEiZI}.

Let Y, (1) be a random walk in continuous time on G,. We have shown in the preceding section that for any
pair of vertices z and y, such that |z — y]| < 3= then ET, < 738-3~%. If we regard };,(?) as a sequence of

processes on I'y, then P[TS') >1) <t71. 738D for all n.

Consider the set A = {(z,z) : z € Tp}. Clearly, Tas is the first hitting time on A for the process (3%, ¥Y).
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As before, let H, = {= : infd{=(v), A) > ¢,0 < u <1+ ¢ Since H, C {Ty < 1}. it follows that
PP € H) < P[Thy >t} <171.738D (3.9)
for all n. As H, is open, Prokhorov’s theorem and the Lemma 3.1 show that

PpreH]< ’i,"_‘_ﬁ‘,fp["n(’) €HJ<t}.738D (3.9

As )¥; has a. s. coniinuous sample paths, the preceding equation and Lemma 3.8 show that
P[Ty > 1] = ]inm i‘gf PlY; € H,-] <t} -738D (3.10)
Letting { — oc gives P[Tas = oo] = 0, which is what we proposed to prove.

We next consider invariant measures for ¥;. For the moment, restrict the random walks },(f) to T's. (Or,
equivalently, restrict them to [0,3]*). Since each ¥, is now a random walk on a finite graph. it has a unique
reversible stationary measure, which we shall call y,,. Regard ¥, as a T'j-valued stochastic process, and p,

as a measure on I'y. Since I' is compact, {u,} has a weakly convergent subsequence {u,}.
Proposition. Y; has a stationary distribution u, and p,+ —p p.

Proof: To show the proposition, we apply weak convergence. We have previously shown that
EYa(u) = Ya (I I¥a(®) — Ya(u)i) < D(t - 5)7 (3.13)

for any p,7 > 0 and any s < u < t. Since T is compact, the sequence yr,, is weakly precompact. Let n’ he
a sequence of integers such that 1, converges, say to p. If we let ¥;5, be the stationary version of ¥+ then
standard results on weak convergence (See, again, Theorem 15.6 in Billingsley ) show that Y}, converges
weakly to a process Y#, where Y# is a version of ¥ with stationary distribution p.
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Theorem 3.11. The distribution of Y converges p in total variation norm

Proof: Let g.(y.A) = P?[Y; € A}. Let ¥/ be an independent stationary diffusion on I's Couple }; to0 Y/
by letting ¥ and Y move independently prior to Tas but specifving that they move identically afterwards.

Then for anyv measurable A,
ln:(4) - p(A < P # Y] <™ - 738D ‘ (3.12)

and the inequality is uniform over all measurable A. The theorem follows.
Corollary 3.12. p is the unique stationary distribution for Y;.
Theorem 3.13. pu is normalized Hausdorff logg 3-dimensional measure, restricted to T.

Proof: Since yu is a stationary measure, we apply the preceding theorem and the bounded fractal scaling

Jaw to get
PO, € N-Y(A)] — p(N-Y(4)) (3.13)
PO[y: € N2 (4)] = PUfisc € 4] — w(4) (3.14)

as 1 — o0o. So, p satisfies the equation p(A4) = u(N-1(A4)). Theorem 4.4.1 in Hutchinson [12] shows that
there is a unique measure on I'; that satisfies this equation. Since p-dimensional Hausdorfl measure restricted

to T also satisfies this equation, it follows that u is p-dimensional Hausdorfl measure on T's.

Now consider Y; on T'. If we let i be Hausdorfl log; 5-dimensional measure restricted to T, we have the

following

Corollary 3.14. pu is an invariant measure for Y;.

Proof: Normalize u so that p(I'}) = 1, and let f be a continuous function on T with compact support.
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Choose X sufficiently large so that T'n i0,3“'] contains the support of f. Then for n > N, p is an invariant

measure for }",(”) . the diffusion process restricted to T'n[0,3"]. Thus, as n — oo,

[rau= [ B0 Nutan) — [ E1rlutas) (3.15)
As the continuous functions with compact support are dense in L:, the result follows.

\We have shown in Theorem 3.11 that p; converges to HausdosfT log; 3-dimensional measure in total variation
norm for ¥; resiricted to I's. This, together with the scaling laws, implies that ¥; has a transition density

with respect to Hausdorff measure.

Recall the trazsformations Ny, ..., N5 and N defined in (3.6), Let p,(-) = Pg[}'} € }-and let u(-) denote

HausdorfT log; 5-dimensional measure, restricted to T.
Theorem 3.15. y, K p for allt > 0.

Proof: e begin by proving the theorem for ¥; restricted to I'y. Let B C T be a set with u(B) = 0.
and suppose that y(B) = ¢ > 0. e observe in passing that p(B) = 0 iff g(N(B)) = 0, and that
N=}(N(B)) D B. Let By, = Ji° N*(B). Since p{B) = 0, u(N*(B)) = 0 for all k, so p(Bo,) = 0. On the

other hand, B C N~¥(B;) for all k. By the bounded fractal scaling law,

llls"t(Bm) = u,(N'k(Bw)) 2 I‘t(B) =q (3.16)

Thus. liminfr~o py35:,(B) > ¢- But this contradicts the fact that y, — g in total variation norm as

1 — oco. By contradiction, p:(B) = 0. Thus, y, < p.

To show absolute continuity for the unbounded process, let )}("‘ denote the diffusion process restricted to

ruio,3"]). As n — oo, Y,(") — Y7 in total variation norm. The proof for 17 restricted to I'y shows that
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P[}’,(") € ] is absolutely continuous with respect to Hausdorfl measure for all n. Therefore, it follows that

P[Y; € ] is also absolutely continuous with respect to Hausdorfl log; 3-dimensional measure on T.
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4. Computing Generating Functions

We can determine the generating function of the distribution of T? by elementary calculations. Let k(u) =
E%™ where 7 is the time required to cross from Oto (1,1). 7 has a geometric distribution with p = 1/3, so

k(u) = u/(3 — 2u), trivially.

Suppose X = 0, and let & denote the first hitting time on an outer corner, other than 0. Let f(u) = E%u°.
We calculate the generating functions of some hitting times for corner 1, as a preliminary to calculating the

generating function of o.

Let p denote the first hitting time on 1, on the on the set where 1is the first outer corner of Ly that the
walk visits. As the distribution of the random walk is not. aflected by symmetries of Uy, the ¢ depends only

on the graph distance between the random walk's starting point and 1. Thus we can identify vertices of Ty

by
a={(0,1),(1,0),(0,2),(1,3),(2,0),(3, 1)}

b={(1,1),(1,2),(2.1)}

(4.1)
c={(2,2)}
d ={(2,3),(3,2)}
For i a vertex in Uy, let g;(u) = E'u*. g then satisfies the following system of equations
9a = Suga + 3ug o = $uge + Jugs + Luge
(4.2)
9e = 3ugs -+ 3uga+ U ga = juge + Fuga + ju
Direct calculation shows that this system of equations has the solutions:
_ u® _ u?(3 - u)
9o = 3o _w(is- su+w?) T I2-w)(s- I5u+ &) 43)
_ 2u(3 - 2u) _u(12—=10u + u?) '
e = (2= u)(18 — 15u + ) 9= B - u)(15 - Iou + v%)

Now, let X be the first hitting time for any corner other than 0. Again we can use symmetry to identify
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vertices, in the groups

w= {(0 l)s (1’0)}
r= {(1, 1): (1’2): (2: 1)}

(4.9)
v=1{(1.2),(2,1),(2,2)}
2= {(0’ 2)’ (1’3)’ (2’0)’ (3’ 1); (2’3)7 (3’2)}
Then h;{u) = Eiu* satisfies
hy = %uhw + %uhz hy = %uh, + %uhy
(4.5)
hy = Ltuhy + Suby + Suh; + Lu h: = Luhy + Luh; + $u
with solutions .
b = u’ he = u?(3 - )
Y72 - u)(18 - 15u + u?) £ (2= u)(18 - 15u + u?) (4.6)
b = 2u(9 — 3u — u?) _ u(36 ~ 30u + 5u?) )
Y7 3(2 - u)(18 - 15u + u?) "7 3(2 - u)(18 - 15u + u?)

Using the generating functions g, k, and k, we can now calculate f(u). Start at Oand condition on .\, the
number of returns to Obefore hitting a different outer corner. We use the symmetry of Uy and the generating

functions we have just calculated, to get

S hz(u)
E%° = k(u h k)" = k() s 4.7
( )Zo: I-T(u)[gc(u) (‘ll)] ( )[1 _ gc(u)k(u)] ( )
If we substitute the generating functions we have already calculated, we get
u3
0.0 _ u (2 —u)(18 — 15u + u?)
B = (3 - 211) : 2u(3 — 2) ” (4.8)
(2-u)(18 — 15u + u?) (3 — 2u)
3
T (3 -2u)(12 = 12u + u?) (4.6)
= f(u) (4.9)

The symmetry of U’y shows that f(u) is the generating function for the distribution of the time to cross
between any two distinct. corners of G.
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