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Abstract

The existence of various kinds of connecting orbits is established for the Hamiltonian
system:

(*) + V'(q) =0

as well as its time dependent analogue.
For the autonomous case, our main assumption is that V has a global maximum, e.g.

at x = 0 and we find various kinds of orbits terminating at 0. For the time dependent case
V has a local but not global maximum at x = 0 and we find a homoclinic orbit emanating
from and terminating at 0.
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Som-e results on connecting orbits

for a class of H-amiltonian Systemis

1. Introduction.

This paper concerns the existence of various kinds of connecting orbits for second

order Hamiltonian systems of the form

(HS) 4 -I -'(q) = 0.

Ir wvill always be assumed that V has a global maximum. e.g. at x =0. Therefore qj = 0

is a solution of (HS). WVe are interested in nontrivial solutions of (HS) that termninate at

x 0, 0. i.

(1.1~Iimn q(t) =- q(-)) = 0

If e~.Q C R"~ is bounded. V G C1 (QY.R) and

1. 2' V(.r) < V(0) for all x E Qi\{0}.

Tlieoremi 2.1 shows there is a solution of (HS) such that (0') E 09- q(t ) G 9- for all t > 0.

n(l (11. 1) hioldIs. If (1.2) is replaced by

V )<1V(0) for all x E Q\10}
1.3 j V(x) =V(0) for x E Q

V'() 0 forx EaQ.

tliei Thieoremn 2.22 shows there exists a solution of (HS) as in Theorem 2.1 further satisfying,

q()= 0. Since (HS) is time reversible, extending this solution to R via q(-t) = q(t) yieldls

at homnoclinic solution of (11S) emanating from 0.

These results are proved in §2 by studying the functional

(1.4) 1(q) = [* (t)I2) - 1V(q)] dt

corresponding to (HS) and using elementary minimization arguments. Our arguments wvere

muot lvt ed in part by [1] where" related reasoning was employed to prove the existence ()f

iL(ttero-linic solutio)ns of (I-S) for functions I ( . which are p~eriodic1( ;Ti r

* i~~1. t 0w set ilig of Thleoieml 2.22 is studiedl in more detanil. If oQ2 contains(cni-

nietits. wve show in Theorem 3.1 that (HS5) possesses at least C1, hoioclinic orbits joining 0

to oQ and at least Cp periodiic solutions- joining the components. where C1 + (p C



In §4. we assume Q = R'. Then the methods of §2 show that for each E E R"\{0}.

there is a solution of (HS) satisfying q(0) = { and (1.1) (Theorein 4.1). Moreover the

critical value of I in (1.4) has a variational characterization. The existence assertion of

Theorem 4.1 without this variational characterization was already proved by Bolotin and

KIozlov [2] in a more general setting by a less direct argument. It is also proved in §4 that

under the hypotheses of Theorem 4.1, there is a solution of (HS) emanating from infinity

and terminating at 0.

Lastly in §5, the existence of homnoclinic orbits is studied for

(1.5) q+ I (t. q) = 0

assuming that the potential energy V grows at a superquadratic rate as j.r- c, _. i.e.

(1.I0) -2t -,xj cc as IxI , o.

Such questions have been studied recently by Coti-Zelati, Ekeland. and Sere [3]. and Hofer

and Wysocki [1] for general Hamiltonian systems:

(1.7T) TH(t. Z)

aiil for (1.3) in L51. It is assumed in [3-5] that H (or V) is T-periodic in t. Here (1.5) is

traWe(d, without such an assumption for

1
1.S) V(t. x) -- L(t)x j, t x)

whre L(.) is positive definite and TV satisfies (1.6). Two different settings are studied.

For the first. it is assumed that the smallest eigenvalue of L(t) approaches .x as x. --, X.

For the second. we assume

a T-periodic function. in an appropriate sense as It! - oc. For both cases mimmi.ax

arguments are employed to obtain the existence of the homoclinic solution.

This work was done while the second author was visiting the Center for the Mathe-

matical Sciences. University of Wisconsin - Madison. He would like to thank the Center

for its kind hospitality.
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§2. Autonomous Hamiltonian Systems

This section contains Theorem 2.1 and 2.22 as stated in the Introduction. In this and

the sections that follow, in the proofs of the results, it will be assumed that n > 2. The

proofs for n = I are much simpler.

To begin we have:

Theorem 2.1: Let Q be a bounded neighborhood of 0 in R' and V E C'(Q,R) with

1"(.r) < V(0) for all x E Q\{0}. Then there exists a solution, q, of (HS) such that

q(O) E 09. q(c) = 0 = 4(cc), and q(t) -Q for all t E (0, ).

Proof: Without loss of generality, it can be assumed that V(O) = 0. The proof consists

of several steps and follows the lines of a related situation in (1] involving the existence of

heteroclinic orbits of details.

Let R + = [0. oc) and

(2.2) E {q E TV'-(R +, R-)I 1412dt < D}.(2.2) = {qC oc

E is a Hilbert space under the norm 00
jjq11 2 = j i,12dt + Iq(0)1 2

and E C C(R -, Rn). Let F be the subset of E defined by

(2.3) 1= {q C E I q(0) C 9Q, q(c) = 0, and q(t) C

for all t E R +}.

For q e F., consider the functional

(2.4) I(q) j 4 [12 - V(q ] dt.

Set

(2.5) c = inf I(q).qE:F

Then Theorem 2.1 follows on establishing:

Proposition 2.6: c is a critical value of I with a corresponding critical point q E F where

(2.7) w E= {w I w(t) E 9 for all t E (0, c).
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IMoreovel

(2.S) c = inf 1(w),
wEF

q satisfies (HS), and (oc) = 0.

The first step in proving Proposition 2.6 is a variant of Lemma 3.6 of [1]. Let Bp(')

denote the open ball of radius p about E R'. If { 0, we simply write BP.

Lemma 2.9: Let p > 0 such that Bp C 2. Set

0(p min -v(r).
X Ci\ 13,

Suppose w E E and w(t) E Q\B for t uThen

k

(2.10) 1(w) >: V 2/(p) Z: jw(rj) - w(sj)I.
j=1

Proof: The proof of lemma 2.9 is same as its analogue in [1] so we refer to [1] for details.

An immediate consequence of Lemma 2.9 is

Lemma 2.11: If a, E E. tw(t) G ! for all t E R + , and 1(w,) < cc0, then tv(cc) = 0. If in

addition. w(0) E O)Q. then u E F.

Proof: Let Cw(W) denote the set of limit points of the orbit w(t) as f --+ c. Since

is compact, :A() - 0. Let E u.(w). If 7 w(oc), there is a b > 0 and sequences

(t,,). (7r,) C R+ such that tm - OC, w(tm) --+ , -r, -* oc, and ,(Tm) ' B 6 (c) as

ni -- c. Applying Lemma 2.9 with p 6/4 shows I(w) > k/2'/(6/4) for any k E N, i.e.

1(0) = cc, a contradiction. Therefore { = w(oo). Lastly observe that since V(0) > V(x)

for all x E a\{0}. the only possible value of c for which I(w) < co is { 0.

Now we can prove:

Proposition 2.12: There exists q E F such that I(q) = c.

Proof: Let (q,) be a minimizing sequence for (2.5). Since V < 0 and Q is compact., the

fmirm of I shows (qn) is bounded in E. Hence a subsequence of (q,,) converges weakly in E

and strongly in Lloc(R', R") to q C E satisfying q(0) E 0Q and q(t) E U for all t E R + .

A simple lower sernicontinuity argument - see Proposition 3.12 of [1] - shows I(q) < Oc

and

(2.13) I(q) < inf 1(w).

w(-F
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Consequently q E F via Lemma 2.11 and equality holds in (2.13).

To complete the proof of Proposition 2.6 and Theorem 2.1, it remains to show that

q E F. i.e. q(t) E Q for all t E (0, cc), q satisfies (HS), and q*(cc) = 0. Set

-= {t E (occ) I q(t) E )Q}.

Since qvcc) = 0 and q is continuous, T is compact.

Proposition 2.14: T = and q E F.

Proof: If T $ 9! define r by

(2.15) r -max{t E (0, oc) I t E T}.

Hence r> 0and since q(oc)=0, r< oo. Set Q(t) =q(t+ 7). ThenQE f CF and

(2.10) I(Q) 1 j 12 - V(q(t))] dt < 1(q)

since V(q(t)) 0 and - 0 for t E (0, r). But then (2.13) is violated. Hence T = 5 and

q CF

Proposition 2.17: q satisfies (HS) on (0, oc).

Proof: The proof of this statement is identical to that of Proposition 3.18 of [1] and will

be omitted.

The Proposition implies

Corollary 2.18: '(:c) = 0.

P.roof: Since q satisfies (HS), there is a constant A such that

1

(2.19) :l2(t)l2  ± V(q(t)) --4

for all t G R'. Consequently

(2.20) I(q) = (1412 - A)dt.

Since q E E and I(q) < oc, (2.20) shows A = 0. Finally q(_C) = 0. V(0) = 0, and (2.19)

imply that q( c) = 0.

The proof of Theorem 2.1 is complete.
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Remark 2.21: If V merely belongs to C1 (Q, R), the initial value problem for (HS) need

not have a unique solution. Therefore it is possible that the solution q(t) just constructed

satisfies q(t) = 0 for large t. Of course this cannot happen if V G C,2(?2, R).

As a consequence of Theorem 2.1, we have

Theorem 2.22: Let V E C 1(Rn,R) with V(0) = 0 being a strict local maximum of V.

Let
V {x C Rn V(x) < 0} U {O}

and let Q be the component of I " containing 0. If Q is bounded and V(,r) y 0 for all

x C DQ. then there is a solution, q. of (HS) in f with '(0) = 0 = (oc). Moreover I(q) = c

where c is given by (2.5) and (2.8).

Proof. An approximation argument based on Theorem 2.1 will be employed. For E > 0.

let
Q, = {x G Q I dist(x,aQ) > 6}.

For small e, 2Q, is a neighborhood of 0 for which Theorem 2.1 is valid. Hence there exists

a solution q, of (HS) such that if

r,= {w E E Iw(0) E C)QU,(0o) = 0, and

w(t) E Q, for all t E (0, o)

and
t= {Ew E w(0) E DQ, w(oo) = 0, and

w,(t) C Q, for all t E (0, )},

then

(2.23){ and 4,(o) = 0
(ii) I(q,) = inffr I = infr, I - c ,

Since Q, C Q which is bounded and q, is a solution of (HS), {q,} is bounded in C 2 (R', R").

Hence there is a subsequence Ek - 0 and q E C 2(R+, R') such that q, -- q in C2oc(R+. R").

By (HS) and (2.23) , q is a solution of (HS), q(0) E DQ. q(t) E for all t E (0, -). and
1

(2.24) -Ic(t)1- ± V(q(t)) 0 for t C R + .

Since q(O) E D)V', (2.24) shows q(0) = 0. It remains to show that q E f, 4(x) = 0. and

(2.5) and (2.8) hold. These facts are consequences of the next 3 lemmas. For now let c be

as given by (2.5) and by (2.8) so

(2.25) c <
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Lemma 2.26: q C E and I(q) _ c.

Proof: Note that for 0 < E < 6, if p E T', since p(o) 0, there exists a r > 0 such that

p(7) E ()Q 6 and p(t) E Q6 for all t > r. Hence w(t) = p(t + r) E T6 and 1(w) : I(p). This

implies that for such pairs p and w:

(2.27) inf I(p) > inf I(w) > inf 1(u)
pGF -uEF6 - uEFo

for 0 < e < 3 and therefore

(2.2S) > C > cc > C6.

Since q, -4 q in Cf2 , for all T > 0,

(2.29) cc > a > c > lirmk-I(q,,)

Slimk-,c, 1 T [412 '~() dt7 fI[l - V()] dt.

T being arbitrary, (2.29) shows q E E and I(q) :_ c.

Lemma 2.30: q(c) = 0 = 4(oc).

Proof: If q(-c) = 0. by (2.24), 4(c) 0. To prove that q(.c) = 0, an indirect argument

is employed. If q(oc) # 0. as in the proof of Lemma 2.11. there is a sequence tin o,- and

S-L 0 such that q(tf) -- as m -* oc. A slight modification of the argument of Lemma

2.11 shows that V( ) = 0, i.e. E DQ and therefore V'( ) 7 0. Consequently there is a

neighborhood U of in R' such that

(2.31) jV'(x) - V'()l _ 11'(0)

for all x E U. Since by (2.24), 4 is bounded in L' , there is a 6 > 0 and mr0 C N such that

(2.32) q (mn [tin ,m t±, 6]) C LT.

Hence for t G (tm,t, + 6), by (2.31).

(2.33) kq(t) - t(tl")[ = id
ft

tm )V1'() - J (V"'(&) - V'(q(s)))d.sj

1
> (t - tn)111'( )l
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and

1 (tn +6 2

(2.34) >()jds > - , 1U) j

By (2.24), 1(tm) 0 as m -c. Hence by (2.34),

1 Oc jt +6 1(t)2 d(2.35) I(q) > 1 [ ( (t)12dt = Y ,.
m=rn o

contrary to Lemma 2.26. Hence = 0 and q(o) = 0.

Note that by Lemmas 2.26 and 2.30, q E F.

Lemma 2.36: q satisfies (2.5) and (2.8) and q(t) E Q? for all t E (0, Oc).

Proof: Lemma 2.26 shows I(q) < c < . Since q E F, (2.5) holds. To verify (2.8). it

suffices to prove that q(t) E 2 for all t E (0. oc) and therefore q E '. Let

T = {t E (0, oc)Iq(t) E aQ}.

By Lemma 2.30. T is a bounded set. If T 6 o, set 7 = max{t It E T} and Q(t) q(t+r).

Then Q E F and -(Q) _< I(q) with equality holding if and only if

(2.37) q(t) - q(0) E OQ for t E [0, r].

Butt q(t) is a solution of (HS) for all t > 0 and by hypothesis V'(x) $4 0 on &)Q. Therefore

(2.37) cannot hold. Hence

(2.3S) a < I(Q) < I(q) = c.

contrary to (2.25).

The proof of Theorem 2.22 is complete. As an immediate consequence of the Theorem

we have:

Corollary 2.39: Under the hypotheses of Theorme 2.22, (HS) possesses a homoclinic

solution q with q(+oc) = 0 = 4(±oo) and q(O) E OQ, q(0) = 0.

Proof: Observing that (HS) is time reversible, the solution q obtained in Theorem 2.22

can be extended to R via q(-t) = q(t). Since q(0) = 0, this extension furnishes a solution

of the desired type.
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Remark 2.40: By combining the ideas of Theorem 2.1 and 2.22. one can prove a stronger

version of Tho,,,rem 2.1 where the assumption that IV(rx) < V(0) for all xr E 2\{0} is

replaced by V(,r) < T'(0) for all r E f\{0} and V (x) = V(0) implies I'(x) Z 0 for
.r E 0)_.

Remark 2.41: In Theorem 2.22. the assumption that U'(,r) -4 0 for all ,r E O? can be

elirninmted. However then the c-mclusion becomes: either there exists a hornoclinic orbit

joiriin 0 to O9 (as in Corollary 2.39) or there is an orbit of heteroclinic type joining 0

and 0). i.e. there exists a T* > - and a solution q of (HS) with q (I 2( T , . R ' ).

-'- =z) 0 and

2. 4 2 dist(q(t ). co) - 0 as t -T .

I: IV , 0 at only finitely many point, on 0Q, (2.42) simplifies to q(t) approaches one of

t 10.s pints as t - T*). We will not carry out the details of the proof. which is based on

h, .. u ent, , of Theorem 2.222 and results from [1]. However we will give a quick sketch.
Ari-in as in the proo)f of Theorem .22. . , converges in C to ( E C,2. a soluti Ion of

(HS, with q(t) G S? for all t E R-. q(O) E o. and (2.24) holds. If the functions q ,(t)

a,, fi 1,.i hlborhl)ol of the set

S = {,,- G I U1(X)= 0}.

the argum:,ents of Theorem 2.22 and Corollary 2.39 carry over to show q is a houmocli-ic

,, 'ir )f, HS ). If liow vyer,
dist(q, (t), S) - 0,

I~ appr pria t lv rescalin t'irne and using (2.23) (ii) and arguments from [11. a slI)sequlence

of ,!,, will converge to a heteroclinic or homoclinic orbit of (HSI emanating from 0. Sce

also the proof of Theorem 3.1 for related rescaling arguments.

9



§3. A refined version of Theorem 2.22.

Ret urning to the settiin of Theorem 2.22, note that OD. can have at most finitely many

comipoents, for otherwise there would exist an accumulation point : of these components.

Consequelt z E OQ and I'(z) = 0. Hence I'(z) 0 0. But then the Implicit Function

Theorem shows there is only one component of O&t near z. Let S1 .... ,Sf denote the

components of 0&.. Our main result in this section. Theorem 3.1. refines Theorem 2.22

and gives a lower Dound for the number of -periodic" and "homoclinic'" orbits in the sense

of Corollary 2.39. i.e. the homoclinic orbits begin at 0 at t -- -. bounce off of some S)

a* t = 0 and return to 0 at t = . Likewise the periodic orbits bounce back and forth

V tw-een a pair of components of OQ in finite time.

A result due to Bolotin and KIozlov, related to Theorem 3.1. but when there are no

honoclinic orbits present and involving a rather different proof can be found in [2. Theorem

Theorem 3.1. Under tie hypotheses of Theorem 2.22. let Ch be the number of homoclinic

or,ois of (HS) emanating from 0 and let £p be the number of periodic (after reflection)

urit irs of HS) which have energv 0 and which join components of oQ. Then -± Ck > C.

Proof: Note that F is the union of ( components:

3.21 F, = {q E E Iq(0) S,.q(x:) = 0. and

q(i) for all t C R+}, < i<C.

SimIm1rly for 6 Small. F, consists of ( components:

(3.3) F, = {q E E jq(0) E S,.q(-c) = 0. and

q(t)G-i for all t C R+} 1. < i < C.

where

(3.4) S, = {r E Q I dist(.r. Si) = 6}, 1 < i < .

S,,t rF,. , can be defined similarly.

Lot

(35c) inf /(q). 1 < i <
qE[1,

10



anld

(3.6) c,.f = inf I(q), 1 < i < C.
qEr.,

We fix I and consider c,.,. It follows from the proof of Theorem 2.1 that there is a q, E Fi

such that I q,) = c,.,. .Moreover by the argument of Proposition 3.1S of [1], q, is a solution

of t HS) for t E (0. c \T, where

~3T, I t E (0, -C) I q, t) E U Sr",
r=1

Two possibilities occur: (i) T, # o for all small E > 0 or (ii) T, = for a sequence Em --- 0.

Case (i): 'T# 6 for all small E > 0.

This is the more complicated situation. WVe will show that there is a "chain" which

consists of pieces of periodic and homoclinic orbits of (HS) and which joins S, and 0. More
iV( ('lsey we, have:

Proposition 3.8: If T ) o for all small c > 0., there is ap = p(i) K_ t and a map j•

{1 ..... j,} - {1 ..... } where j(1) = i and j(.s) F j(s') if s # s', numbers TI. ... ,T > 0.

an 1 flin t )Iis 0 1 ..... (),+l such that:

(a' Q, is a 2T, perio(lic solution of (HS), 1 < s < p.

(b)1 Q(O) E SJ( 3 ). Q,(T,) E Sj(,+i), Q,(0) = 0 Q.(Tr,), 1 < s <p.
(c) Q,() C Q for all t E (0.T),

( ( , is a "'homoclinic" orbit of (HS) such that Qp+i G fj(,) and QP+1(0) 0.
(er Sq ttinig fT~ = ..

- dt = inf I inf 1,

(f) 0Q( -t .,(t))=0on [0,T]. 1 <s < p +.

Proof Since T , all small e > 0, numbers

(3.9) 7 f > > 0+l 0

(all be (1hfine(d as follows:

(3.10) 0, sill ft C (0, o,-) I q, (t) G U S", }

r

11



Suppose q c((u) E S,.,, r, depending on E. Clearly ri 5 i via (3.6). Set

(3.11) r' = inf{t E [0, ] I q,(t) E Sr,}

so 21 G (0,o0]. Set

(3.12) = sup{t E [0, -2) 1 q,(t) E U Sr,}
r

If u' = 0, p= and we are through. If not, say q,() E Sr-,. Clearly r, # i or rl. Set

(3.13) 73=inf It E [0, a ] I q (t) E Sr2 ,4

Continuing in this fashion, in at most f steps, we find the a's and r's as in (3.9). Note

that p and the indices rk depend on e as well as i and rp+l = i. However since only at

most f - 1 sets are involved, a subsequence E. --+ 0 can be chosen so that p and r, .... are

independent of 6. We set j(s) = rp_,+I.

Proposition 3.14: For E sufficiently small.
j+l

(i) There is a 6 > 0 (independent of E) such that q,(t) €' B 6 (O) for all t E (0' , 
7)

(ii) q,(t) is a solution of (HS) on (a, T') for each s E {2,...,p+ 1},

(iii) There is an Al > 0 (independent of e) such that la' - rl < M for s E 12 .... p + 1}.

Proof. If (i) is not true. for some s E {2...,p + 1} there is a sequence E,,, 0 and

ji, E ((7 , r') (with E = e,,) such that q(i,) -- 0 as m --+ oo. Set

qj(t), t E (0, fs)

(3.~ ~l Q(t) = (P ± 1 - t)q,(i ) t E [ ,/1' + 1]
0 t > , -F .

Then Q,(t) E F,., and

(3.16) I(Q) - I(q) 1q= [1j(y')12 - V(Q,) dt

12

2 - V(q,(t))] dt.

The first integral on the right hand side of (3.16) approaches 0 as m cc c while Lemma

2.9 shows the second term is bounded away from 0. Hence I(Qm ) < I(q,, ) for n2 large.

contrary to (3.6). To prove (ii), it suffices to show that T, n (al, 7-) = 6. But this is

12



ilnmediate from the definition of the a's and r's and (3.6). Lastly to get (iii), suppose

that -r - o, - oc along some sequence e, - 0. Then by earlier arguments q(t -I

converges in C"oc(R+, R-) to 4 C C 2(R+, R') such that 4 satisfies (HS), (t) G !f for all

t ER+, 4(0) CS,, and

(3.17) I(q) lim I(qE.) < 00.
Mn - Z

The argument of Lemma 2.30 shows o(oo) = 0. But q,(t) _ B (O) for all t -(o.,r') via

(i) so this is impossible and there exists Al as stated.

Now the functions Q, can be constructed. Letting m -- CC, by Proposition 3.14 (iii),

a subsequence em can be chosen so that

lim r-,"' - 0,1-
Mn -OC

exists. Denoting this limit by Tp_,+ 2 , as above along a subsequence,

q - ' - - Qp+l(t) in C2oc(R+, R"),

q,_(t - o."' - Qp(t) in C 2([O.T,.Rn),

q,,(t- u' - I - QI(t) in C, 2([0. T1].R").

By Proposition 3.14 (ii) and our construction. Q, is a solution of (HS) on (0. T.,) with

(2 (0) E Sj( q), Q,(T ) E Sj(.+1). Moreover weaker forms of c ) an( (d) of Proposition 3.S

h1oldl:

( D Qs(t) E Q for all t E [0. T].

(3.1S) (d) Qp+l is a "homoclinic'" orbit of (HS)

such that Qp+1 c Fj(p) and Qp+ 1(0) = 0.

Assune (e) and (f) of Proposition 3.S for the moment. Then the remainder of (b) follows

and extending Q, as an even function about 0 and Ts,

Proof of (e): Clearly

'#' 21d(3.19)z [_1c0 - V(Q81 dt

<lira ElG. 1 V(q,,)] (it

< lir I(q ,) =li inf I(w) < inf I(w),
"1 -o -O wEFi,, uE i

13



the last inequality following as in (2.28). To show triat equality holds in (3.19), note first

that since &Q is C', for any w E Fi with I(w) < oo, there exists a sequence Wk E fi such

that Wk -+ w in E and I(Wk) - I(w). Therefore it suffices to find a family of functions

(Tr(t)) C gi such that

P+ 1  

V(QFl. 1d(3.20) I 1,):-, Q -9[(,)

as r - oc. Let v, E CI([0,1].Sj(,+I)) such that <,(0) = Q,(T,) and v,(1) = Q,+,(0). Let

Vs.r = v,(t/r) E C1 ([0, rj, Sj(,+1)). Finally let 7r(t) be the curve obtained in a natural way

by joining the functions Qi(t), VIr(t), Q2 (t), t/2 ,r(t),..., Q,+(t). Then rr E Fi. Since

(3.21) jr [ 1 / r.,12 - 1(,/r,.)] dt 2 ir I 8(tIr)2 dt -+ 0

as r - oc, (3.20) follows and (e) is proved.

Proof of (f): Since as in Lemma 2.30., Qp+,(oc) = 0 = Q +,(cc), (f) holds for s = p+ 1.

Thus suppose 1 < s < p. Since by the part of (b) already established, V(Q,(0)) = 0. it

suffices to prove Q,(o) = 0. If not. a function w E r'i will be constructed such that

(3.22) 1(w) < inf I.
ri

But (3.22) is contrary to (e) so (f) must hold. To find u,. let a > 0 be small and L > 1.

Set
t

(3.23) (t) = Q1(-), t e (0, La)
L

=Q,(t-La+a), tE [La,T,+La-a].

Then for small a,

T, + La - a( T

(3.24) 1/4.lW - V( ))dt - J [ll2-V(Q I)] dt

L-a [ t 2 _(8~))] dt
[ I (t ) -

- ~f0 [ ,¢t)2 - V(Q,(t))] dt

"(o9(0'2 + ((a)) La - (.'(0)12 + o(a)) a < 0.

14



Introducing a function r;," as in the proof of (e) of Proposition 3.8 with replacing Q3,

(3.24) shows

(3.23) lim I(q,/) < inf I,
r oo Fi

Contrary to (e).

It remains to prove (c) and (d). Thus suppose

(3.26) Q,(O, T.,) n (uSj) ,

If Q,(r) lies in this intersection, V(Q,(r)) = 0 while V'(Q,(r)) 7 0. It follows that the

set of such r's must be isolated. Suppose there are r(s) such points: 0 < 71,, < ." <

7,(,),, < T,. Set Tk,3 = tk,, - tk-l, and

Qk,s(t) = Q,(t - 7k -1,,,) : [0,rk,8] -* R ", 1 < k < rn(s).

Consider the new set of it = I: r(S) functions

Pi(t) = Qi,1(t) . .. , Pm(1)(t) = Qm(1),1(t), Pl+m(1)(t) = Q 1 ,2 (t), etc.

on the associated t intervals. WNe claim ,u< e. Otherwise for some k < k, Pk(Tk) and

Pk(Tk) G DSp for associated Tk, Tk and some p. Then as in the proof of (e), the functions

P1 .  Pk, Pkjl'* . , P, can be made part of a curve R, such that as r -- oc,

(3.27) I(71r) 2 _ X7(p') dt
S=[k 1 2Cri

< -dt,

contrary to (e). Thus (c) and (d) hold and the proof of Proposition 3.8 and analysis of

case (i) are complete.

Now we turn to:

Case (ii): T, = 6 for a sequence Em --+ 0.

Then the arguments of Theorem 2.22, especially Lemmas 2.26 and 2.30, along a sub-

sequence q,, converges on C 2  to a solution q of (HS) with q G Fi and
loc

(3.28) I(q) = inf Uw).
wEFi

15



Hence q reflected about t = 0 provides the homoclinic orbit for this case.

Remark 3.29: For case (ii), it is possible that for some -t > 0, q(-) E S for some j i.

However as in the construction of the o,'s and r's in (3.9), there call be at most e - 1 such

points, each corresponding to a different set Sj. If V is C-, there cannot exist any such

points ^, since the solution to the initial value problem for (HS) with w(7I) = X E Sj and

. ) =0 would have as solutions both a homoclinic orbit joining x and 0 and a periodic

orbit joining x and Si.

Remark 3.30: The case (ii) follows in particular for any 1 such that

ci= min ci.

Completion of the proof of Theorem 3.1: It remains only f,, show that

(3.31) h + CP > e.

Let m be the number of chains of homoclinic and periodic solutions of energy 0 joining

the set of Sj's to 0. We have shown for each Si, there is at least one such chain. Hence

rn > . On the other hand. it is easy to see that m < Ch + CP and (3.31) follows.

Remark 3.32: The hypothesis that V'(x) 7 0 on D-Q can be weakened. See Remark 2.41.

One still gets an analogue of (3.31) where heteroclinic orbits are also included provided

that one has enough regularity, e.g. C', for aQ.

16



§4. Q=RI.

In this section, a variant of Theorem 2.1 will be proved for Q = R 'L. The existence of
an orbit emanating from infinity and terminating at 0 will also be established.

Theorem 4.1: Suppose V E C'(R " ,R), V(0) > 17(x) for all x E Rn\{0}, and

(4.2) lim 1 ~l1 o V(x) < V(0).

Then for each c E Rn\{0}, there is a solution q = q(t) of (HS) such that q(0) = and

q( ,) 0 =4(

Proof: Again. wthout loss of generality, assume V(0) = 0. Set

(4.3) F {wu, E E I w(O) = and w(oo) = 0}

and

(4.4) cc = inf 1(w).

WC, claim c, is a critical value of I and any corresponding critical point qc is the desired

solution of (HS). The proof parallels that of Theorem 2.1 but is a bit simpler so we will

oillit it.

Remark 4.5: A more general result than Theorem 4.1 has been obtained by Bolotin and
,2ozhov using arguments from Riemanian geometry. See e.g-. 2, Theorem 10].

Remark 4.6: Theorem 4.1 shows there is a solution of (HS) of energy 0 joining each

point in R" to 0. Thus it is natural to ask whether there is a 0 energy orbit joining 0

and :c. The next result establishes the existence of such an oribt emanating from Oc and

terminating at 0. Reversing time. we get an "escape orbit" of (HS). Since no assumptions

have been made on the behavior of V(x) as IxI --+ cc, this escape may occur in finite tinie.

More precisely we have:

Theorem 4.7: Under the hypotheses of Theorem 4.1. there is a solution q of (HS) such

that q(-) = 0 = (oc) and jq(t)l - oc as t --+ T* where T* = 0 or -Cc.

Proof: We will find a solution q of (HS) such that q(oc) = 0, q(0) E aBj. and 1q(t)l -.- + CC
as t --- T for some T G [-oc. 0). Rescaling time if T > - yields the statement of the

Theorem.

Two simple preliminary results are needed for the proof of Theorem 4.7.

17



Lenmma 4.8: Let Fr and c be as defined in (4.3)-(4.4). Suppose q E F and I(q:) c .
Let r E (0, oc) and il = q,:(r). Then w(t) =q(t + r) F,, and 1(w) = c.

Proof: Clearly w e F. If I(w) > c = I(q,,), set

Q(t) q (t),t E [0, 7]

= q(t - T),t > -

then Q G F but

(4.9) I(Q) = J2 - V(q) dt + c,

< Jr [14 1 2 - V(q )] dt + Jo [11 p12 V(w)] dt

contrary to (4.4).

Proposition 4.10: Let k -- in R'. Then there is a sequence q,, E F, such that

I(q'k) = c, and q,:, -- q in C2o (R+,R') along a subsequence where q, C F and

I(q,) =cC.

Proof: Since (,k) is a bounded sequence. it is easily verified via (4.4) that the critical

values c% are bounded. e.g. by 11. independently of k. It then follows from Lemma 2.9

that the functions q%. are bounded in L'(R+ , Rn). Hence (HS) implies (qk) is bounded

in C-2 (R+. R). Consequently, as earlier, a subsequence of q% converges in C-oc to a

solution q of (HS) such that q(O) -. Moreover I(q) < 311 implies I(q) < 1. The form

of I shows q C E and a slight variation of Proposition 2.11 gives q(Oc) = 0. Thus q E F.

It remains to prove that I(q) c . If not, by (4.4), I(q) > c . Choose a so that

(4.11) I(q) > a > c .

Hence there is a T > 0 such that

(4.12) J - V(q)] dt > a >

Since q~ - q in C'c along a subsequence, for large such k,

(4.13) 1T [ 12 - V(q) dt > a > c .

18



Therefore
(4.14) Cc (q%) > a > C'

for such k. On the other hand, suppose w E F' and I(w) = c . Let e > 0 and set

(4.15) Qk(t) (1- 1) &. + { t E [0, ]
= W(t- ) t > 6.

Then Qk E F and

(4.1) c, I(Q ) =2E - - J V(Qk(t))dt + c .

Thus (4.15)-(4.16) show

(4.17) limk-0_c~k + -eV() ± c .

Since E is arbitrary, (4.17) is contrary to (4.14). Hence c = I(q).

Now we are ready for the:

Proof of Theorem 4.7: Let (Xk) C Rn satisfy rakj --+ oc as k -- oc. For each k, there

a solution qk = q,, of (HS) given by Theorem 4.1. Since qk() = 0, there is a rk > 0

such that ,= qk(7rk) E DB 1(0) and qk(t) E B 1 (0) for all t > rk. Set 4k(t) = qk(t + r).

Therefore ck(0) E aB 1 and qk is a solution of (HS). In fact, by Lemma 4.8, it can be

aIssumued that ilk = qk . Since ( Ck) C 0B 1 , by choosing a subsequence if necessary, we have

# &--4 s coes. Consequently by Proposition 4.10. a subsequence of l converges in Ci
to cl E F with I(q) = c . This function q is defined for t E R + . We will show there

is a T < 0 such that q extends to a solution of (HS) in such a way that it satisfies the

conclusions of Theorem 4.7.

By the choice of (Xk), there is a rk,1 < Tk such that qk(rk, ) E &B2 and qk(t) E B 2 for

all t > tk,1. Consider the sequence (rk - rTl). We claim this sequence is bounded. If not,

7k - 7k.1 -+ oc along a subsequence. Clearly

(4.1s) j [it'W1 - V(qk)] dt < Cqk(rkl)
k.1 2

< sup{c 0 17 E aB2} < cc.

Since -V is bounded away from 0 in any deleted neighborhood of 0, (4.18) shows for any

e > 0 and for all large k, the orbit qt must enter B,. Therefore there is an sk E (rkl, r)

such that qk(sk) E B,. Set

Qk(t) = qk(t), t E [0,sk]
(4.19) = (Sk + 1 - t)qk(sk), t E [sk,sk + 1]

=0, t>Sk +l
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Then Qk E r,' k and

1 I S+i
(4.20) I(Q&) - I(qk) = jq.(s ,)J2 - V(Qk(t))dt

kk

The first two terms on the right hand side of (4.20) go to 0 as e -- 0. The curve qk joins

B, to B,\B1 to 0 as t varies between Sk and o. Hence

(4.21) j 4 [.IkI- V(qk)] dt

has a positive lower bound independent of e via Lemma 2.9. But then I(Qk) < I(qk),

contrary to the choice of qk. It follows that (7k - Tk,i) is a bounded sequence. Hence along

a subsequence -rk - 7k,1 - il > 0.

By appropriately rescaling time intervals again, a subsequence of 4k (or qk) converges

to an extenion of q (as a solution of (HS)) on [-ti, 0] such that q(-ti) C 0B 2 and q(t) E B 2

fort C (-t 1 , 0). Continuing this constructior. yields an extension of q as a solution of (HS)

to a maximal interval (T, o). Moreover there exists an increasing sequence tk such that

q(-tk) C 0 Bk+l and q(t) E Bk+l for t > -tk. This implies that

T= inf{-tk}
kEN

and q(t) is not bounded as t -* T.

It remains to prove that lq(t)l -- oc as t -- T. Suppose that this is not the case. Then

there is a p > 0 and sequences Sk -T, 
0 k -* T such that

S1 > O"1 > S2 > U2 > " " ,

jq(sk)l . q(Ok)l = it + 1, and p < Iq(t)l < pt + 1 for t E (.k,sk). Now along a

subsequence,

(4.22) q(sk) = lim 4j(sk)
j - _

and by Proposition 4.10,

(4.23) [ - V(q)] dt = inf 1(w) _9 wEr q('A:)

< max{c, 177 E OBIJ7(0)} < M'*.

20



It is clear that AI* is bounded independently of k. Hence letting k :,

(4.24) T [2 - V d(q) < *.

On the other hand, let

(4.23) = min -V(x)
S<1 <+

Then by Lemma 2.0,

(4.26) j [k - V(q)] dt> 7jq(rA) - q(O-k)j > 2
k

so

(4.27) 12 - V(q- dt = oo

contrary to (4.24). Thus Jq(t)l -+ z as t - T and the proof is complete.

For our final result in this section we will given an analogue of Theorem 4.7 for a

potentmil V which is singular.

Theorem 4.28: Suppose there is an x0 E R'\{0} and V G C'(R'\{xo},R) such that

V(0) = 0. V(x) < 0 for x C R" \ {0, xo}

(4.29) limj~l_ cV(x) < 0,

and (,x) - -- oc as x --+ x 0 . Then there is a solution, q, of (HS) such that q(c,) = 0 and

q(t) -- x 0 as t -- * T* where T* = 0 or -oc.

Proof: Since the proof follows lines previously explored, we will only sketch the proof.

Let Ek -+ 0. Let Qk = Rn\Bk(xo). Then by a combination of the proofs of Theorems

2.1 and 4.1. there is an xk c a_,,(xo) and a solution q, of (HS) such that qk(O) = X.,

qk(c) = 0, and qk(t) E Qk for t E (0, oo). Let p E (0, x1). Hence there is a 7k > 0 such
that {k = q,4r,) E OB- and qk(t) E Bp for all t > rk. Now continuing as in the proof of

Theorem 4.7. we get q as a limit of a subsequence of (qk) after rescaling time.
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§5. Some time dependent cases.

In this section the existence of hoinoclinic orbits for some time-dependent Hamiltonian

systems will be studied. Consider

(5.1) + V,'q(t, q) = 0

where V satisfies

V tx) =- L(t)x x +V(t.x),

(V) L(t) E C(R.R ) is a positive definite symmetric matrix for all t E R.

(1'3) TV E C1 (R x R nR) and there is a constant it > 2 such that

0 < P1W(t, x) < X T'q(t, x)

for all x E R"\{0} and t E R,

(1 4 ) ITq(t, x) = o(Ixj) as x -+ 0 uniformly in t E R.

Note that (J3)-(j7) imply

(5.2) W(tX) = o(IX 2)

as x - 0. uniformly for t E R. Hence by (1)-( V4). x = 0 is a local maximumillll for all t C R.

However it is not a global maxinmum since by (173) for each t E R is an a I(t) such that

(3.3) V(t, x) > a, (t)jxlI for large Ix.

WC, do not know if simple minimization arguments in the spirit of §2-4 can be used to

treat (3.1). In [5] assuning (13)-( 17), and that L and TV are T-periodic in t it was shown

that (3.1) possesses a homoclinic orbit emanating from 0. Analogous results for general

Hamiltonian systems were obtained by Coti-Zelati, Ekeland and Sere [3] and Hofer and

Wysocki [4]. We study (5.1) without periodicity assumptions on L and TV. Two results

will be obtained. The first is:

Theorem 5.4: Suppose V satisfies (V)-(1"4) and

(V-) The smallest eigenvalue of L(t) --+ oc as Itl ---+ c, ie.

inf L(t) . - oc as Itl --+ w,,I=

(') There is a I' G C(R",R) such that

IT(t, )l + _Vq(tX)( 5 F(x)l
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for allr Rn, t E R.

Then there exists a (nontrivial) homoclinic orbit q of (5.1) emanating from 0 and such that

0 < 1[2 - V(,q dt <cc

Proof: Let r
E {q G 1' "-(RR') I j [112 + L(t)q q] dt < cc}.

Then k is a Hilbert space and as norm in we can take

(3.,3) Iq2l2  J - + L(t)q -qjdt.

VNote that

(C., £ C j 2(R, R) C LP(R.R")

for all p E [2, ] with the embedding being continuous. For q E £ let

I(q) = ]jqj2 - J V(t, q)dt.

Th,,n I E C1 (k. R) and it is routine to verify that any critical point of f on is a classical

solution of (.5.1) with q(±='c) = 0 = 4(±cc). See e.g. [1]. To establish the existence of a

critical point of I, a variant of a standard ",Mountain Pass" argument will be employed.

The usual Mountain Pass Theorem does not apply here since the Palais-Smale condition

does not hold due to the fact that we are working with functions on the unbounded set R.

However by (5.7) and (5.2), there are constants a, p > 0 such that

{5.S) I(q) > o

for Iq!l - p. Moreover by (1U3 ) - see e.g. [5] - there is a qO G f such that IIqOH > p and

(3.9) I(q0) < 0 = 1(0).

Set
e = {g E C([0, 1],E) g(O) =0 and g(1) = qo}

and

(5.10) c = inf max I(g(s)).
gEK sE[0,1]
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By t 5S -i5.10)

'5.11) c > a.

Now Ekelad's Variational Principle - see e.g. Theorem 4.10 and 4.3 in [G] - implies there

is a se(jnence ('1k) C E such that:

5.12. I(qk) -- c and I'(qk) -+ 0

a- k -c WO will show a subsequence of qk converges to a critical point, q of 1 with

0. Hence by earlier remarks q is a solution of (5.1) of the desired type.

A- a first step. note that (qk) is a bounded sequence. Indeed by (V3i) and (5.12). for
largve /,.

1
(5.13) c + 1 + Ilqki > I(qk)- -I'(qk)qk

I) qk.i q k) -T U(t, qk) qk](lt
-- -- OC ]

ItL

-I) lqklh:

frI(n which the result follows.
Sinc( {q ) is bo)undled, it possesses a weakly convergent subscquence in E. Let q denote

it., xvgk limit. Note that q,. converges to q in L' (R. R"). Hence I(9k) 0 easily implies

I', = 0. i.e. 'q is a critical point of I. It remains only to prove that q 0. Since qk -- q

in L, q in L 2 -A. A.R") for all A < c. Hence it suffices to show there is an

.4 > 0 such that qk. 7 0 in L 2([-A. A], R")

Proposition 5.14: If Ilk - 0 in L 2([-A, A]. R")., there exists an a > 0 and independent

of .4 such thit

9 - a
(5.15) limk--jjqkjjL 2 (RR-) > /3(A)

;3(. ) = inf L(t),.

i )t .

Proof. Set a ,ijp lyk{ 2 . Consequently
k

(1Ik L(RAI)J jqk l 'kl'ct

-'4 +R J[A.4j

Sqk2dt + / L(f)qk qdt
(3.16)~~ RI/ =R.") - \[- -1

qk12dt + -
-1 3(A) ) \[_ ... ]

4aJ +
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Lc:ti'- k -+ c. (3.15) is immediate.

To complete the proof of Theorem 5.4, we show that for A sufciently large qk 0

in L'2 1-.4. .4. R"). Indeed by (5.12) and the boundedness of (qk),

1,
5.17 I(qk)- 1 '(qk)qk

J= -q(t,q) - IT-(t, .k) dt -* c > 0

as v - . By (I) and (1) for each Al > 0. there exists a I. 1 > 0 such that

1
,-. 1 q(t. _ TV(t, X)j < K.i1xl 2

for all .r < AI and t E R. Taking

AM = sup llqkllLz,

k

IV Proposition 5.14.

(5.19! c= rn[lira q(t, qk) -qkI(t, qk) t

- - 3(A4)

By I V ). 3( -41 -- v c as -4 L-c. But then (5.19) contradicts (3.11). The proof is complete.

Remark 5.20: By (5.11) and (5.19). the above argument works whenever there is an .4

such that

a

More careful estimates than those given above show that (J5) can be weakened and (5.21)

still obtains if .3(-4) is large enough relative to

(.5.22) L = inf sup L(t)•
tER 11=1

Indeed (5.13) provides an upper bound for HlkI depending only on [p and c. We assume

L < supc L(t)c. < 2L on the interval [-h, hl. Note that we may assume supp q C

-h. hl without loss of generality. Let g(s) = sqo e K. Then

= max I(g(s))

,E[0,1]
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is an upper bound for c depending only on L. Since there is a constant 6 > 0 dependig

only on L such that

for all , t E, the upper bound for IIqkjI gives an upper bound for Ilqk!LL, and therefore

for 2. We can also easily see that a > 0 depends only on L. Thus we see the right hand

side of (5.21) depends only on L. Therefore (5.21) holds and Theorem 5.4 remains valid if

3(.4) is large enough relative to L.

Our final result is a variant of Theorem 5.4:

Theorem 5.23: Suppose V satisfies (V)-(V4),

(V7) There is a T periodic function L, satisfying (V2) such that

(i) L,(t) > L(t) for all t E R i.e.

L(t).r -r > L(t)x x for all t E R and x C Sn - ,

(ii) L.(T),r, ,r > L(r')x - x for some r C R and all x C Sn- i,

(iii) !L(t) - L (t) , 0 as ItI - oc.

IVS ITV(t. x) is T-periodic in t,

I") the map ,s -. 5 sx) • x is a strictly increasing function of s G (0. cc) for all

t C R and x C R"\f{0).

Then there exists a nontrivial homoclinic orbit of (5.1) emanating from 0.

Remark 5.24: Condition (1'9 ) is related to hypotheses that have been used by Nel'ari

[7-S. Coffman [9], Hempel [10], and others. We suspect that Theorem 5.23 is true without
this hypothesis.

Proof of Theorem 5.23: The proof follows the same lines as that of Theorem 3.4. Now

we work in El W1 '2(R.R"). Note that by (1,2 ) and (j7),

( 1J l + L(t)q , q)dt

an(1
1/2

+ L (t)q q)dt)

ar eouivalent horms in El. Hence I as defined in (5.7) belongs to C (E1.R). Moreover

(5.S)-(5.9) are still valid in El. Defining c by (5.10), with k replaced by E1 in K, (5.11)-
(35.13) still hold and qk . q weakly in Ei (along a subsequence) where I'( q) = 0. It renmains

only to prove that q _ 0. This will take some work.

26



The idea of the proof is to consider the functional

(5.25) I(q) J [v11- + !L.(t)q. q - ItV(t.q) dt.

By (I"), (V3), and (V4), I E C (E 1 ,R) and by earlier remarks, critical points of I' are

homoclinic solutions of

(5.26) 4- L.(t)q + Wq(t, q) = 0

which emanate from 0. We will show: (a) I' also has a "mountain pass" critical value

C' . Moreover by (19), coc can also be characterized as: (b)

c= inf{I'(y) I y C El\{0} and (I')'(y)= 0}.

This enables us to prove: (c) c < c'. Then: (d) an argument related to the one following

Proposition 5.14 implies q * 0.

The steps (a)-(d) will now be carried out in detail.

Step (a): There exists a nontrivial homoclinic solution of (5.26) emanating from 0.

Proof: The existence of such a solution was established in [5]. However we will give

anothicr proof here since we need a minimax characterization of its corresponding critical

value. Note that the constants p. a > 0 and qo E El can be chosen so that the estimates

(5.S)-(5.9) hoM for both I and I". Setting

2 c= inf max I'(g(s)),
gEK -C[u,1]

as in the proof of Theorem 5.4. there is a bounded sequence (Wk) C El such that

(5.2S) I (') -- c (I )'(tck) -+ 0.

Moreover a subsequence of Wk converges weakly in El and also in L o' to w G E such

that (I)'( w) = 0. Hence once we show w ; 0. as earlier it is a nontrivial homoclinic

solution of (5.26) emanating from 0. Note that since L,, and IV are T-periodic in t,

(5.29) I (y(t)) = I'(y(t + CT))

for all y e E1 and C E Z. The functions Uk E El. Hence Wk(t) 0 as Jt) -+ - see e.g.

(20)-(24) in [5]. Consequenctly by (5.29), without loss of generality it can be assume that
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Wk achieves its maxunin in [0, T]. Thus if 1'k - 0 weakly in El and in L' a A-"al OClo

in fact

(3.30) Wk - 0 in L0 (R, R')

as k --+ -c. By (5.2),

(3.31) I Wq(t, x) x - W(t, x)I = o(1)X -12

as Ix -* 0 uniformly for t E R. Hence by (.5.30)-(5.31),

(3.3 w k)- Wk - w(t, Wk) dt = o(1)kI I'w (R, -) 0

as k --+ cc. On the other hand by (5.28),

(3.33) J0 [I'q(t, Wk) Wk- V(t, wk)] dt

- 1_r(wk) - .(I00)'(wk)Wk C ' > a

as - - c. contrary to (3.32). Hence Step (a) is complete.

Remark 5.34: (5.2S). (5.33), Fatou's Lemma and (i0)'t(w) = 0 imply (along our subse-

quence)

C lir q(t. Wk) • Wk- WTL(t, wck) dt

> j c [~i~~tW) - ? - II"(t. w)] dt = I 0 0(w ).

Step (b): c00 = inf{I 0 0 (y) I y E \{0}, (I')'(g) = 0}.

Proof: Let b = inf{ 11(y) I y E E1 \{0}, (I')'(y) = 01. By Remark 5.34,

(3.33) c 00 > b.

We claim for all u G El\{0} such that (I )'(n) 0, there is a g E Ki such that

(5.36) max 1'(g(s)) = 1'(u).
sE[O,I]

Then by (3.27),

(5.37) co < b
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so (5.35) and (5.37) yield Step (b).

To construct g, note that by (V9 ), if y E Ei\{0}, I(sy) achieves its maximum along

the ray {sy I s > 0} at a unique point s0y characterized by (If)'(soy)y = 0. (See e.g. [9]1

[101.) Hence let o cc-nsist of _ segm-nt of the ray through U and u, a circular arc through

Rll/Htl and Rqo/llqo1, and a ray segment joining Rqo/llqoll and qo. Explicitly{3s R- s C [0, -1)3
R "cos 2 - s 1 + II qOh sin 2 '(s - -1) s R [ , 21,(3.3S) gR(GS) 1 1 2- 3O ' Jr-]q0JJ 2 - 3 3 3 5 ]

2 2,
3(1 - s) R + 3(: - 2)qo s ,

Then gz E A: for all R > 0 and for R large. I'(gR(s)) < 0 for all s E [1, 1]. Hence (5.36)

holds and step (b) is verified.

Step (c): c < c-.

Proof: Let g be the path constructed in Step (b) with u = w, w being as determined in

Step (a). By (V ) (i). for all s E [0, 1,

Hence

(5.40) c < max 1(g(s)) < 1'(w) = c.

sE[0,1]

If c = c' , there is an - E (0. 1) such that

(5.41) c =I(()) = I'-(g()) = c'.

But there is a unique s E (0.1) such that I'(g(s)) = c-, na nely s JwJ11/3R and

g(,,) = w. Hence to prove that c < c", it suffices to show that

(5.42) 1(w) < I'(w).

If 1(w) = 1'(w), by (V-') (ii), w(t) = 0 in a neighborhood of t = r. Observe that w' is a

solution of the linear system of equations
TI

(5.43) ij, + Eaij(t)qj = 0, 1 < I <
j=1

where a,j(t) = 0 if w(t) = 0 and if w(t) 7 0,

_ 1 DV
a~i(t) I l" (t, ,(t)) it?,2(t).
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The coefficients aij are continuous via (5.2). Since w(t) = 0 near t = r and satisfies a

linear system with continuous coefficients, w'(t) - 0, a contradication. Thus (5.42) follows

and Step (c) is proved.

Step (d). Completion of the proof of Theorem 5.23.

Recall that (qk) is the "mountain pass" sequence for this problem satisfying (5.12)

and q is the limit (along a subsequence) of q,. We must show q t 0. Due to the LC

convergence of q to q, it suffices to prove for some A > 0,

.4

(5.44) fJjq 12k dt 74 0

along a subsequence. WVe will use a "concentration compactness" type argument. Suppose

A

(5.45) LA jqk 1 dt -4 0

as k -- c for all A > 0. Consider

(5.46) = UP qk(t + tT)12 dt.
tEZ 1

WO claim

(5.47) lim 3 k : 0.

Indeed for any u E El.,s,t E [0.T], and C E Z. we have

(5.4S) kt(t + CT)12 = t(s + CT)12 + -I- Iu(r + CT)12drdo
l,(.5 + T)12± +2 jI,(r, + eT) .- ,(r + T)ldr.

Integrating (5.48) for s over [0, T] and setting I = qk yields:

(5.49) jq,.(t + T)]2 < jqk(s + eT)1Ids

+ T ( [ j qk(.s + CT)2s) / IqkHL (R,Rn)

</3 + 2 01/21
T T k
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where .l is an upper bound for jjqkj. Since C is arbitrary, if 30 - 0. (5.49) shows

(5.30) lim IlqkIlL-(R,R-) = 0.
kB-

But thn the argo.men of (5.30)-(5.33) implies c 0, a contradiction. Hence (.5.47) hold'

Comparing (5.47) to (5.45), we see there must exist a sequence Ck G Z such that

f (i) I0kI --* o as k -+ oc and
(3.31) (ii) fT Iq(t + kT)12dt > - > 0.

Set 4k(t) = qk(t + fkT). By (V-) (iii) and a familiar argument. there is a subsequence of (1k

which converges weakly in E 1 and also in L'lo to 4 E El, a homoclinic solution of (3.26).

Moreover by (3.31) (ii), 4 is a nontrivial solution of (3.26). As in Remark 5.34, using (V),

(5.52) c= lim IVq(t, qk) .qk - V(t, qk) dt

= lira [ IJ [I,(t - 4k) 4k - 1V(t, 4k)] dt

2 . w q~ t , )) -4 - V (t , 4 )] d t = ° ( )

By Step (b),

(..3) 100(4) > c c.

But (3.52)-(3.53) imply c > c' , contrary to Step (c). Hence (5.44) holds and q 0. The

proof of Theorem 5.23 is complete.
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