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Abstract

The existence of various kinds of connecting orbits is established for the Hamiltonian
system:

(*) i+V'(g)=0

as well as its time dependent analogue.

For the autonomous case, our main assumption is that V" has a global maximum, e.g.
at z = 0 and we find various kinds of orbits terminating at 0. For the time dependent case
V" has a local but not global maximum at £ = 0 and we find a homoclinic orbit emanating
from and terminating at 0.
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Some results on connecting orbits

for a class of Hamiltonian Systems

§1. Introduction.

This paper concerns the existence of various kinds of connecting orbits for second

order Hamiltonian systems of the form
(HS) g+ V'(g)=0.

Ir will always be assumed that 17 has a global maximum. e.g. at r = 0. Therefore ¢ = 0
is a solution of (HS). We are interested in nontrivial solutions of (HS) that terminate at
r = 0. 1e.

(1.1} lim g(t) = q(oc) =0 = g{=c).

t—nc

Ife.e. 2 C R"is bounded. 1" € CY(Q.R) and
(1.2 Vir) < V(0) forall ze Q\{0}.

Theorem 2.1 shows there is a solution of (HS) such that ¢(0) € 9Q. q(t) € Q for all + > 0.
and (1.1) holds. If (1.2) is replaced by

Vi(x) < V(0) for all r € Q\{0}
11.3) Vix)=V(0) forredf
V' (r)#0 for z € 092,

then Theorem 2.22 shows there exists a solution of (HS) as in Theorem 2.1 further satisfyving
¢t0) = 0. Since (HS) is time reversible. extending this solution to R via q(—%) = q(#) vields
a homoclinic solution of (HS) emanating from 0.

These results are proved in §2 by studying the functional

=11 9 .
(1.4) Itq) :/ [3|q<t>r —vm] dt
0 -

corresponding to (HS) and using elementary minimization arguments. Our arguments were
notivared in part by [1] where related reasoning was employed to prove the existence of
lieteroelinie solutions of (HS) for functions V(&) which are perindic in ».

T 82 rie sctiing of Theorem 2.22 is studied in more detail. If J€2 contains ¢ compo-

newuts. we show in Theorem 3.1 that (HS) possesses at least €, homoeclinic orbits joining 0

to 92 and at least £, periodic solutions joining the components. where (), + (, 2 .
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In §4. we assume = R". Then the methods of §2 show that for each £ € R"\{0}.
there 1s a solution of (HS) satisfving ¢(0) = € and (1.1) (Theorem 4.1). Moreover the
critical value of I in (1.4) has a variational characterization. The existence assertion of
Theorem 4.1 without this variational characterization was already proved by Bolotin and
Kozlov [2] in a more general setting by a less direct argument. It is also proved in §4 that
under the hypotheses of Theorem 4.1, there is a solution of (HS) emanating frem infinity
and terminating at 0.

Lastly in §3. the existence of homoclinic orbits is studied for
(1.3) ¢+ Tyt.q) =0
assuming that the potential energy 17 grows at a superquadratic rate as || — oc. l.e.
(1.6) V(t,2)x]7? = o as |r| — .

Such questions have been studied recently by Coti-Zelati, Ekeland. and Sere [3], and Hofer

and Wysocki [1] for general Hamiltonian systems:
(1.7) :=JH.(t.z)

and for (1.3) in [3]. It is assumed in [3-3] that H (or V") i1s T-periodic in t. Here (1.3) is

treated without such an assumption for

1
{(1.3) Vit.z) = —3[(#)1‘ ca vt

where L(-) is positive definite and 117 satisfies (1.6). Two different settings are studied.
For the first. it is assumed that the smallest eigenvalue of L(t) approaches x as |t| — x.

For the second. we assume

L(t) — L(t),

a T-periodic function. in an appropriate sense as |t| — oc. For both cases mininax
arguments are emploved to obtain the existence of the homoclinic solution.

This work was done while the second author was visiting the Center for the Mathe-
matical Sciences. University of Wisconsin — Madison. He would like to thank the Center

for irs kind hospitality.
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§2. Autonomous Hamiltonian Systems

This section contains Theorem 2.1 and 2.22 as stated in the Introduction. In this and

the sections that follow, in the proofs of the results, it will Le assumed that n > 2. The

proofs for n =1 are much simpler.
To begin we have:

Theorem 2.1: Let Q be a bounded neighborhood of 0 in R® and V € C}(Q,R) with
V(z) < V(0) for all z € Q\{0}. Then there exists a solution, ¢, of (HS) such that
q(0) € 9Q. gq(=<) =0 = ¢(c0), and ¢(t) € Q2 for all ¢t € (0, 00).

Proof: Without loss of generality, it can be assumed that V(0) = 0. The proof consists
of several steps and follows the lines of a related situation in (1] involving the existence of

heteroclinic orbits of details.
Let RT = {0.cc) and

(2.2) E={ge W 2(R*R")| / ld2dt < oo},
oc 0
E is a Hilbert space under the norm
ol = [ fiPdt + la(o)F
0
and E C C(R*,R"). Let T be the subset of E defined by

(2.3) ={g€ E|q(0) € 09 q(>c)=0, and q(t) €
for all t € R*}.

For ¢ € T', consider the functional

<11 ., .
(2.4) I(g) = / [gsqr-v(q)] dt.
Set
(2.5) c= 32?1(‘1)'

Then Theoremn 2.1 follows on establishing;:
Proposition 2.6: cis a critical vulue of I with a corresponding critical point ¢ € I where
(2.7) I ={wel|wt) e forall te(0,0c)}
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Noreover
(2.8) ¢ = inf I(w),

wef

q satisfles (HS), and ¢(o0) = 0.
The first step in proving Proposition 2.6 is a variant of Lemma 3.6 of [1]. Let B,(£)
denote the open ball of radius p about £ € R". If £ = 0, we simply write B,,.

Lemma 2.9: Let p > 0 such that B, C Q. Set

B(p) = min -V(z).
zCQ\B,

Suppose w € E and w(t) € Q\B, for t € Ule[rj, s;]. Then
k
(2.10) I(w) = v/28(p) D lw(r;) — w(s;)l.
=1

Proof: The proof of lemma 2.9 is same as its analogue in [1] so we refer to {1] for details.
An immediate consequence of Lemma 2.9 is

Lemma 2.11: If w € E. w(t) € Qfor all t € R*, and [(w) < oo, then w(ec) = 0. If in
addition. w(0) € 99Q. then w € T.

Proof: Let w(w) denote the set of limit points of the orbit w(t) as + — oc. Since Q
is compact, w(w) # ¢. Let £ € w(w). If £ # w(oo), there is a § > 0 and sequences
(tm).(tm) C RT such that t,, — oo, w(tnm) — & 7, — oo, and w(r,) € Bs(§) as
m — oc. Applying Lemma 2.9 with p = 6/4 shows I(w) > k\/l’_ﬂ(b—/él—) for any k£ € N, i.e.
I(w) = oc. a contradiction. Therefore £ = w(oo). Lastly observe that since V(0) > V(z)
for all z € Q\{0}. the only possible value of £ for which I(w) < oo is & = 0.

Now we can prove:
Proposition 2.12: There exists ¢ € I such that I(q) = c.

Proof Let (¢,) be a minimizing sequence for (2.5). Since V < 0 and  is compact, the
form of I shows (¢m) is bounded in E. Hence a subsequence of (¢,,) converges weakly in E
and strongly in LfgC(R“L,R”) to ¢ € E satisfying ¢(0) € 9Q and ¢(t) € © for all t € R*.
A simple lower semicontinuity argument - see Proposition 3.12 of [1] - shows I(q) < o

and

(2.13) I(¢q) < inf I(w).
wel
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Consequently ¢ € I’ via Lemma 2.11 and equality holds in (2.13).
To complete the proof of Proposition 2.6 and Theorem 2.1, it remains to show that
q € T.ie. q(t) € Q for all t € (0, >c), ¢ satisfies (HS), and ¢(o0) = 0. Set

T ={te€(0,)|q(t) € ON}.

Since gi>c) = 0 and ¢ is continuous, 7 is compact.
Proposition 2.14: 7 = ¢ and g € [

Proof: If T # ¢, define 7 by
(2.15) T = max{t € (0,00) | t € T}.

Hence 7 > 0 and since g(oc) =0, 7 < co. Set Q(t) = q(t+ 7). Then Q e L' ¢ T and

“ Il .. .
(2.16) 1@ = [ |36 - Vi) @ < 10
since V(q(t)) £ 0 and £ 0 for t € (0,7). But then (2.13) is violated. Hence T = ¢ and
qe I.
Propositioﬁ 2.17: ¢ satisfies (HS) on (0. oc).

Proof: The proof of this statement is identical to that of Proposition 3.18 of [1] and will
be omitted.

The Proposition implies
Corollary 2.18: ¢(x) = 0.

Proof: Since g satisfies (HS), there is a constant 4 such that
Lo 2, 1
(2.19) Sl +V(g(®)) = 4
for all t € R*. Consequently
(2.20) I(q) = / (11> = A)dt.
0
Since q € E and I(q) < 20, (2.20) shows 4 = 0. Finally ¢(=>) = 0. 17(0) = 0, and (2.19)

imply that ¢(oc) = 0.

The proof of Theorem 2.1 is complete.




Remark 2.21: If V" merely belongs to C*($2, R), the initial value problem for (HS) need
not have a unique solution. Therefore it is possible that the solution g(t) just constructed
satisfles ¢(t) = 0 for large ¢. Of course this cannot happen if V € C*(Q,R).

As a consequence of Theorem 2.1, we have

Theorem 2.22: Let V € C'(R",R) with V(0) = 0 being a strict local maximum of 1.
Let
V9={zeR"|V(z) <0}U {0}

and let Q be the component of 170 containing 0. If Q is bounded and V'(r) # 0 for all
z € O0. then there is a solution, ¢. of (HS) in T* with ¢(0) = 0 = ¢{oc). Moreover I(q) = ¢
where ¢ is given by (2.5) and (2.8).

Proof: An approximation argument based on Theorem 2.1 will be employed. For € > 0.

let
Qe = {z € Q| dist(z,002) > €}.

For small ¢, Q. is a neighborhood of 0 for which Theorem 2.1 is valid. Hence there exists
a solution ¢, of (HS) such that if
Fe={we E |w(0) € 00, w(o0) =0, and
w(t) € Q. for all t € (0,00)},

and )
I'e = {w € E |w(0) € 02, w(o0) =0, and
w(t) € Q, for all ¢t € (0,00)},
then
(2.23) ({) q € I and g(oc) =0
T (i1) I(qe):inffe[:infr(I'_—‘_cE

Since Q, C Q which is bounded and ¢, is a solution of (HS), {q.} is bounded in C*(R*,R").
Hence there is a subsequence ¢, — 0 and ¢ € C?2(R*,R") such that ¢, — ¢in CfOC(RJ". R"™).
By (HS) and (2.23) , ¢ is a solution of (HS). ¢(0) € 99, q(t) € Q for all t € (0, o). and

(2.24) él(}(t)}z +V(g(t))=0 for te R,

Since ¢q(0) € 9179, (2.24) shows ¢(0) = 0. It remains to show that ¢ € I, g(>x) = 0. and
(2.5) and (2.8) hold. These facts are consequences of the next 3 lemmas. For now let ¢ be

as given by (2.5) and é by (2.8) so

(2.25) c

IA
(o}

(o]




Lemma 2.26: ¢ € E and I{¢q) < ¢

Proof: Note that for 0 < e < §,if p € .. since p{oc) = 0, there exists a 7 > 0 such that
p(r) € Qs and p(t) € Qs for all t > 7. Hence w(t) = p(t + 1) € T's and I(w) < I(p). This

implies that for such pairs p and w:

2.27 inf I(p) > inf I(w)> inf I
(2.27) inf Ip) 2 inf Iw)2 inf I(w)
for 0 < € < 6 and therefore
(2.28) > c>ce 2 cs.

Since ¢, — ¢ in Cfoc, forall T > 0,

(»2.-29) 00> ¢ > szk—-ool(qfk)

T
_ 1
Z hmk—..oo/ l:;lqek ’2 - "r(qfk )] dt
0 —t

=/OT[1IQI Viq)

T being arbitrary, (2.29) shows ¢ € E and I(q) < ¢

dt.

Lemma 2.30: g(<) =0 = ¢(oc).

Proof: If g(x) = 0. by (2.24), ¢(=c) = 0. To prove that ¢(oc) = 0, an indirect argument

is emploved. If ¢(oc 7:’: 0. as in the proof of Lemma 2.11. there is a sequence t,, — oc and
¢ # 0 such that q(t,n) — € as m — oc. A slight modification of the argument of Lemma
2.11 shows that 17(£) = 0, i.e. € € IQ and thercfore V'(€) # 0. Consequently there is a

neighborhood U of £ in R™ such that

1
(2.31) [V'(z) = V(&) < 51V'(£)|

for all z € U. Since by (2.24), ¢ is bounded in L*, there is a § > 0 and m¢ € N such that

(2.32) q ( U ltmetm +6}> cu.

m>my

Hence for t € (tm,tm + 6), by (2.31).
t

(2.33) i) —dten) = [ V(atshias
tm

==tV - [ (V) = Vg

\Y
(olr——ﬂ

(t — t V(&)

~1




and

On |

tm+6
(2.34) / lg(s)|?ds >

( /m+6 Id(s)lds)2

82 2
(G- slicen) -

2

[SSY Y

By (2.24). ¢(t,n) — 0 as m — oco. Hence by (2.34),

oo tn + 6
(2.35) Hozg > [ k=,
tem

m=my

Lo | —

contrary to Lemma 2.26. Hence £ = 0 and g(o0) = 0.
Note that by Lemmas 2.26 and 2.30, ¢ € T.

Lemma 2.36: ¢ satisfies (2.5) and (2.8) and ¢(¢) € 2 for all ¢ € (0, ).
Proof: Lemma 2.26 shows I(q) < ¢ < é. Since ¢ € T, (2.5) holds. To verify (2.8). it
suffices to prove that ¢(¢) € Q for all ¢ € (0, 20) and therefore ¢ € . Let

T = {t € (0,00) | q(t) € BQ}.

By Lemma 2.30, 7 is a bounded set. If T # ¢, set 7 =max{t |t € T} and Q(t) = q(t + 7).
Then Q € T and I(Q) < I(q) with equality holding if and only if

(2.37) q(t) = q(0) € 9Q for t €0, 7]

But ¢(#) is a solution of (HS) for all + > 0 and by hypothesis V'(z) # 0 on 92. Therefore

(2.37) cannot hold. Hence
(2.38) e<I(Q)< I(g) =c.

coutrary to (2.25).
The proof of Theorem 2.22 is complete. As an immediate consequence of the Theorem

we have:

solution q with g(+oc) = 0 = ¢(£o0) and ¢(0) € 90, ¢(0) =0.

Proof: Observing that (HS) is time reversible, the solution ¢ obtained in Theorem 2.22
can be extended to R via q(—t) = ¢(t). Since ¢(0) = 0, this extension furnishes a solution

of the desired type.




version of Theorem 2.1 where the assumption that 17(z) < 17(0) for all z € Q\{0} is

replaced by V(x) < V(0) for all z € Q\{0} and V(2) = V(0) implies V'(z) # 0 for
€ d0.
Remark 2.41: In Theorem 2.22, the assumption that 17(2) # 0 for all * € JQ can be

eliminated. However then the conclusion becomes: either there exists a homoclinic orbit
joiuing 0 to 99 (as in Corollary 2.39) or there is an orbit of heteroclinic type joining 0

and J9. t.e. there exists a T* > —x and a solution ¢ of (HS) with ¢ € C*((T*. x).R"}.

gix) = q ) =0 and
(2.42) dist(¢(t),0C) =0 as t = T".

(1717 = 0 at only finirely many points on 99, (2.42) simplifies to ¢(t) approaches one of
these poinrs as £ — T7). We will not carry out the details of the proof. which is based on
the arenments of Theorem 2.22 and results from [1]. However we will give a quick sketeh.
ctoq€ C*. a solution of

(HS) with ¢it) € Q for all t € R*. ¢(0) € 9Q. and (2.24) holds. If the functions g¢,(t]

avold a neichborhiood of the set
S={red|Vzr)=0}.

the arguments of Theorem 2.22 and Corollary 2.39 carry over to show ¢ is a homoclinic
orbir of HS). If however,

dist(q.(t).5) — 0.

by appropriately rescaling time and using (2.23) (i1) and arguments from [1]. a subsequenece

of (4, v will converge to a heteroclinic or homoclinic orbit of (HS1 emanating from 0. Sce

also the proof of Theorem 3.1 for related rescaling argunients.




§3. A refined version of Theorem 2.22.

Rerurning to the setting of Theorem 2.22, note that 92 can have at most finitely many
components, for otherwise there would exist an accurnulation point z of these components.
Consequently = € 92 and V(z) = 0. Hence V'(z) # 0. But then the Implicit Function

heorem shows there is only one component of 9 near z. Let S,.....5¢ denote the
components of 9. Our main result in this section. Theorem 3.1. refines Theorem 2.22
and gives a lower vound for the number of “periodic™ and “homoclinic™ orbits in the sense
of Corollary 2.39. i.e. the homoclinic orbits begin at 0 at t = —oc bounce off of some 5,
ar t = 0 and return to 0 at ¢+ = o. Likewise the periodic orbits bounce back and forth
herween a pair of components of 9Q in finite time.

A result due to Bolotin and Kozlov, related to Theorem 3.1. but when there are no

homoelinic orbits present and involving a rather different proof can be found in {2, Theorem

o
S,

orbits of (HS) emanating from 0 and let {, be the number of periodic (after reflection)

orbits of (HS) which have energy 0 and which join components of 92. Then (; 4+ (, > (.

Proof: Note that T is the union of ¢ components:

(3.2 T,={q€E|40)€ Si.qlxc)=0. and

y(i) € forall te R}, 1< < (.
Similarly for e small. T, consists of { components:

(3.3} IF.={q€ E|q0)€ S, q(>c)=0. and

qdt)eq, forall te RT}. 1<i<C
wliere
(3.4) S.e={reQldist(r.S;) =€}, 1<:1<L

Sets T',.T, . can be defined similarly.

Let

(3.3} e, =inf I{q). 1<:<¢
qel’,
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and

(3.6) c;ie= inf I(g), 1<:<LC.

qEF-‘,e
We fix ¢ and consider ¢, .. It follows from the proof of Theorem 2.1 that thereis a ¢, € T;
such that I{¢.) = ¢; . Morecover by the argument of Proposition 3.18 of [1], ¢, is a solution
of {HSY for + € (0. xx)\7: where

14
| T, = {t € (0,) | q(t) € | J Sre)-
r=1

Two possibilities occur: (1) 7, # o for all small € > 0 or (ii) 7. = ¢ for a sequence €,, — 0.

Case (i): 7, # o for all small € > 0.
This is the more complicated situation. We will show that there 1s a “chain™ which
consists of pieces of periodic and homoclinic orbits of (HS) and which joins S; and 0. More

precisely we have:

Proposition 3.8: If T. # o for all small € > 0, there is a p = p(1) < { and a map J :
{1..... pr—{1..... £} where j(1) =i and j(s) # j(s") if s # s', numbers Ty, ..., T, > 0.

and fuuetions Q... .. (2,11 such that:

(at Q. 1s a 2T, periodic solution of (HS), 1 <5 < p.
(b’ Q‘(O) € 5}(3)- Qs(Ts) S Sj(s-é—l)v Qs(o) =0= Qs(Ts)a 1<s<p.
() Q.t) e Qforall t € (0.Ty).

(d) Qp+1 1s a “homoclinic” orbit of (HS) such that Q,1, € fj(p) and Q,,_H(O) = 0.

() Setting Ty = oc.

p+1 T, 1

X 2 e _ o

Z ) [51%1 —1 (Qs)J dt —lp‘_ff—lg_ff,
(f) 1017+ i) =00on[0.T,). 1<s<p+1.
Proof: Since 7, # .« all small € > 0, numbers
(3.9) oy 2Ty >0;2>2 >0, =0
can be defined as follows:
(3.10) oy :sup{tE(O,oo)]q((t)EUS','(}.

11




Suppose ge(05) € S, ... 71 depending on e. Clearly r; # i via (3.6). Set
(3.11) 75 = inf{t € [0.07] | ¢(t) € Sy, ¢}
so 75 € (0,0%]. Set

(3.12) 0§ =sup{t € 0,75) | qe(t) € [ JSr.e}

If 65 =0, p=1 and we are through. If not, say ¢.(c5) € S,, . Clearly ry # ¢ or r;. Set
(3.13) 3 =inf{t € [0.05] | qc(t) € Sry.c}-

Continuing in this fashion, in at most £ steps, we find the ¢’s and 7’s as in (3.9). Note
that p and the indices ry depend on € as well as ¢ and rp41 = i. However since only at
most £ — 1 sets are involved, a subsequence €, — 0 can be chosen so that p and ry.... are
independent of . We set j(s) = rp—g41-
Proposition 3.14: For ¢ sufficiently small.
j+1
(1) There is a & > 0 (independent of €) such that q.(t) & Bs(0) for all ¢t € U(Jj. TS),

s=2

(i1) q.(t) is a solution of (HS) on (o, 7¢) for each s € {2,...,p + 1},
(i1} There is an M > 0 (independent of €) such that o — 78] < A for s € {2..... p+1}.

Proofl If (i) is not true. for some s € {2...., p + 1} there is a sequence €, — 0 and

i € (o5 7)Y (with € = €,,) such that g (u§) — 0 as m — oco. Set

qe(t), t € (0, u5)
(3.15) Qut) = { (ps+1 - 8)qu(us), t€ [t us +1]
0 t>pi+1.
Then Q. (t) €T, and
s+l
(3.16) Qo -1ty = [ FlatuP - viQo)| a
By -

~ [ 3o - viao) a

The first integral on the right hand side of (3.16) approaches 0 as m — oc while Lemma
2.9 shows the second term is bounded away from 0. Hence I(Q.,, ) < I(y.,) for m large.

contrary to (3.6). To prove (ii), it suffices to show that 7, N (0§, 7;) = ¢. But this is

12
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immediate from the definition of the ¢'s and 7's and (3.6). Lastly to get (i), suppose
that 7§ — 0 — oc along some sequence €,, — 0. Then by earlier arguments ¢.,, (¢ — o™)
converges 11 Cizc)c(R+’ R") to § € CHR™,R™) such that § satisfies (HS), §(t) € 9 for all
te R*, ¢(0)€ S,,, and

(3.17) I(¢) < lim I(g,) < co.

m—o0

The argument of Lemma 2.30 shows G(oo) = 0. But ¢.(t) & Bs(0) for all ¢ € (05, 7]) via
(1) so this is impossible and there exists A as stated.
Now the functions Q, can be constructed. Letting m — oo, by Proposition 3.14 (iii).

a subsequence €, can be chosen so that

] € €
lim ;™ —o™
m-—c

exists. Denoting this limit by Tp—s42, as above along a subsequence,
Qen(t =01 ) — Qpsa(t) In Cfoc(R+7R")~
e, (t —a5™) — Qp(t) in C*([0.T,].R"),

Qe (t — o) — Qu(t) in C*([0.Th].R").

By Proposition 3.14 (ii) and our construction. Q. is a solution of (HS) on (0.7,) with
Q.(0) € S;4y. QuT,) € Sjus1). Morcover weaker forms of i) and (d) of Proposition 3.8
Lold:
(?) Qu(t) € Q forallte[0.7,].
(3.18) (d) Qpsr1isa “homoclinic™ orbit of (HS)
such that Qp41 € I'j(p) and Q,,+1 = 0.

Assume (e) and (f) of Proposition 3.8 for the moment. Then the remainder of (b) follows

and extending @, as an even function about 0 and Tj.

Proof of (e): Clearly

p+1

(3.10) / [—IQ |2 — }t

p+1
< lim / [ (de |2 = V(q., )} dt
"l'—'m aﬂm __,

< lim I(qu)zhm inf I(w) < inf I(w),

m-—0oC e—0 wel; . wel;
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the last inequality following as in (2.28). To show that equality holds in (3.19), note first
that since 9Q is C!, for any w € T; with I(w) < oo, there exists a sequence wy € T; such
that wy — w in E and I(wy) — I(w). Therefore it suffices to find a family of functions
(n+(t)) C T such that

p+1

(3.20) I<nr>—»2/ 510.7 - V@) a

as r — oc. Let vy € C([0,1], Sj(s+1)) such that v,(0) = Q4(Ts) and v,(1) = Q,41(0). Let
ver = vs(t/r) € CH[0,7], Sj(s41)). Finally let 77,(7.‘) be the curve obtained in a natural way
by joining the functions Q(¢), vy r(t), Q2(t).v2 r(t),...,Qp41(t). Then n,. € I';. Since

(3.21) /0 [%;z}mﬁ - r(ur,s)} dt = ——/ |04(¢/7)]2dt — 0

as r — oo, (3.20) follows and (e) is proved.

Proof of (f): Since as in Lemma 2.30, @Qp4+1(o0) =0 = Qp+1(oc), (f) holds for s = p+ 1.
Thus suppose 1 < s < p. Since by the part of (b) already established, ¥V (Q,(0)) = 0. it

suffices to prove Q,(O) = 0. If not. a function w € ['; will be constructed such that
(3.22) I(w) < 1{\1f I

But (3.22) is contrary to (e) so (f) must hold. To find w, let a > 0 be small and L > 1.
Set

(3.23) £t)=Qs(5), te(0.La)

= Q.t—-La+a), t€[Lla,T;+ La—a).

Then for small a,

T.+La-a T, [y
(3.24) [ G- v - [ [%!Qsl"‘ Q)|
0 o 12

La . ¢ )
= [ [smieap) I-I/'(Qs(z))]dt

- / [;!Q,(tn?—wczs(t))] dt

= <9L21Q (0)]% + o(a) > La- <;§-[Q.‘,(0)|2 + o(a)> a < 0.

14




Introducing a function 7, as in the proof of (e) of Proposition 3.8 with £ replacing Q,,
(3.24) shows

(3.25) lim I(n,) < 111}f I,

Contrary to (e).

It remains to prove (¢) and {d). Thus suppose
(3.26) Q.(0.T,) N (US;) # 6.

If Q,(7) lies in this intersection, V(Qs(7)) = 0 while V'(Qs(7)) # 0. It follows that the
set of such 7’s must be isolated. Suppose there are m(s) such points: 0 < 7, < -+ <

Tm(as),s < Ts. Set Tk's = tk,s — tk_1’3 and

Qk‘s(t) = Qs(t - Tk—l.s) : [07 Tk,s] - Rn’ 1< k< 777(5)~

k+1

s—; m(s) functions

Consider the new set of =)

Py(t) = Qra(t).-. s Pm)(t) = Qum(1),1(8), Pram(1)(t) = Q1 2(2). ete.

on the associated t intervals. We claim pu < ¢. Otherwise for some &k < l:', Pk('.f’k) and

P, (Ti;) € 05, for associated Tk, Tk and some p. Then as in the proof of (e), the functions

k
P Py, Pk+1' ..., P, can be made part of a curve 7, such that as r — oo,
7 T, 1.
(3.27) HBEEDY / [;lPsl2 - V(Ps)] dt
s=1 0 =

s@[k+1.kINN
M T, 1 .

<> [ e -veea|a,
s=1

contrary to (e). Thus (c) and (d) hold and the proof of Proposition 3.8 and analysis of

case (1) are complete.
Now we turn to:

Case (ii): 7. = ¢ for a sequence e, — 0.
sequence ¢, converges on Cfoc to a solution q of (HS) with ¢ € T'; and
(3.28) I(q) = inf [Mw).
wel;

15




Hence g reflected about t = 0 provides the homoclinic orbit for this case.

Remark 3.29: For case (ii), it is possible that for some v > 0, ¢(v) € S; for some j # i.
However as in the construction of the ¢’s and 7’s in (3.9), there can be at most £ — 1 such
points, each corresponding to a different set S;. If V is C*, there cannot exist any such
points + since the solution to the initial value problem for (HS) with w(y) = z € S; and
w(~) = 0 would have as solutions both a homoclinic orbit joining z and 0 and a periodic

orbit joining r and S;.

Remark 3.30: The case (ii) follows in particular for any ¢ such that

c; = min c;.
1<;<¢

Completion of the proof of Theorem 3.1: It remains only to show that
(3.31) by + 0, 2 L.

Let m be the number of chains of homoclinic and periodic solutions of energy 0 joining
the set of S;’s to 0. We have shown for each §;, there is at least one such chain. Hence

rn > €. On the other hand. it is easy to see that m < ¢, + ¢, and (3.31) follows.

Remark 3.32: The hypothesis that V'(2) # 0 on 99 can be weakened. See Remark 2.41.
One still gets an analogue of (3.31) where heteroclinic orbits are also included provided

that one has enough regularity. e.g. C!, for Q.
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§4. Q = R".

In this section, a variant of Theorem 2.1 will be proved for = R". The existence of

an orbit emanating from infinity and terminating at 0 will also be established.
Theorem 4.1: Suppose 1" € C}(R™ R), V(0) > V(z) for all z € R"\{0}, and
(4.2) lm, o V(z) < V(0).

Then for each £ € R™\{0}, there is a solution ¢ = ¢(t) of (HS) such that ¢(0) = ¢ and
gix)=0=g¢g(x).

Proof: Again. without loss of generality, assume V(0) = 0. Set

(4.3) T'e={weE|w0)=¢ and w(oo) = 0}
and
(4.4) ce = u}Iellﬁg I{(w).

We claim ¢ is a entical value of I and any corresponding critical point g¢ is the desired
solution of (HS). The proof parallels that of Theorem 2.1 but is a bit simpler so we will

onit it.

Remark 4.5: A more general result than Theorem 4.1 has been obtained by Bolotin and

Kozlov using arguments from Riemannian geometry. Sec e.g. {2, Theorem 10].

Remark 4.6: Theorem 4.1 shows there is a solution of (HS) of energy 0 joining each
point in R" to 0. Thus it is natural to ask whether there is a 0 energy orbit joining 0
and o>c. The next result establishes the existence of such an oribt emanating from oc and
terminating at 0. Reversing time. we get an “escape orbit” of (HS). Since no assumptions
have been made on the behavior of V() as x| — oo, this escape may occur in finite time.
More precisely we have:

Theorem 4.7: Under the hypotheses of Theorem 4.1, there is a solution ¢ of (HS) such

that ¢(>x) =0 = ¢(oc) and |q(t)| — oc as t — T* where T* =0 or —oc.

Proof: We will find a solution ¢ of (HS) such that g(oc) = 0, ¢(0) € 8B,. and |q(t)] — o
as t — T for some T € [~oc.0). Rescaling time if T > —oc yields the statement of the

Theorem.

Two simple preliminary results are needed for the proof of Theoremn 4.7.

17
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Lemma 4.8: Let I'¢ and ¢ be as defined in (4.3)-(4.4). Suppose ¢¢ € T¢ and I(¢¢) = Ce.
Let 7 € (0,00) and n = g¢(r). Then w(t) = q¢(t + 7) € Ty and I(w) = c,.

Proof: Clearly w € I',. If I(w) > ¢, = I(g,), set

Q(t) = qf(t)’t € [O’T]
=qu(t~T1),t>T1

then Q € T'¢ but

il

(1.9) I(Q) [%IésIQ - V(Q&)] dt + cq

[z
/E)T {%14512 - V(qf)] dt + /Ooo B,wlz ~ V(w)} »
I(qe

A

2

contrary to (4.4).

Proposition 4.10: Let { — £ in R™. Then there is a sequence g¢, € T¢, such that
I(qe,) = c¢, and qe, — q¢ in CfOC(R'*',R") along a subsequence where ¢¢ € T'¢ and
I(q¢) = ce.

Proof: Since (&) is a bounded sequence, it is easily verified via (4.4) that the critical

values ¢g, are bounded. e.g. by A[. independently of k. It then follows from Lemma 2.9

that the functions ¢¢, are bounded in L>®(R*,R"). Hence (HS) implies (g¢, ) is bounded

in C*(R*T.R"). Consequently, as earlier, a subsequence of g¢, converges in Cl?oc to a

solution ¢ of (HS) such that ¢(0) = £. Moreover I(qe, ) < M implies I(¢) < AL. The form

of I shows q € E and a slight variation of Proposition 2.11 gives ¢(oc) = 0. Thus ¢ € T¢.
It remains to prove that I(q) = c¢. If not, by (4.4), I(q) > c¢. Choose «a so that

(4.11) I(q) > a > ce.

Hence there is a T > 0 such that
b
(4.12) / [;Mlz — V(q)} dt > a > cg.
0 -~
Since q¢, — q¢ in CIQOC along a subsequence, for large such £,

T
1. .
(4.13) / [3|’15k|2—1’(75k)] dt > a > ce.
0 -
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Therefore
(4'14) e = I(‘]fk) > a > ce

for such k. On the other hand, suppose w € I'¢ and I(w) = c¢. Let € > 0 and set
- Qut) =(1-Héa+ie  telo

(+.15) =w(t —¢) t>e

Then Q € I'¢, and

(4.16) ce S10Q) = glen =3 = [ VI@u(tde+ ce.

Thus (4.13)-(4.16) show
(4.17) limy—ooce, < —€V(€) + ce.

Since € is arbitrary, (4.17) is contrary to (4.14). Hence ¢, = I(q).

Now we are ready for the:

Proof of Theorem 4.7: Let {z,) C R" satisfy |rx]| — o0 as ¥ — oo. For each k, there
ic 2 sowution g = q,, of (HS) given by Theorem 4.1. Since gi(>0) = 0, thereisa 7. > 0
such that & = qu(7¢) € 0B1(0) and ¢,(t) € B1(0) for all t > 7. Set qi(t) = qu(t + 71).
Therefore §4(0) € 0B, and §i is a solution of (HS). In fact, by Lemma 4.8, it can be
assumed that §x = g¢, . Since (&) C 9By, by choosing a subsequence if necessary, we have
£ — & € B;. Consequently by Proposition 4.10, a subsequence of §; converges in Cfoc
to ¢ € T¢ with I(g) = c¢¢. This function ¢ is defined for t € R*. We will show there
1s a T < 0 such that q extends to a solution of (HS) in such a way that it satisfies the
conclusions of Theorem 4.7.

By the choice of (z4), thereis a 74 ; < 74 such that gx(7¢,1) € 0B, and ¢(t) € B, for
all t > 74.1. Consider the sequence (T — 7¢.1). We claim this sequence is bounded. If not,

Tk — Tk.1 — o< along a subsequence. Clearly

. ™ 1. N
(4.18) / [§|(Zk|2 - Vigw)

k.1

di S qu(rk,l)

< sup{c, |n € 0B,} < .

Since =V is bounded away from 0 in any deleted neighborhood of 0, (4.18) shows for any
¢ > 0 and for all large k, the orbit ¢; must enter B,. Therefore there is an s € (Tx.1.74)
such that qi(si) € B,. Set

Qi(t) = qi(t), t € [0, sk]
(4.19) = (sk+1—t)qe(sk),  t € [sk,58+ 1]
=0, t>sr+1
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Then Qr € T, and

1 Sr+1
(420 1QW ~ T = glaw(sol = [ V(Quear

Sk

- /j Bmlg - V(‘Zk)] dt.

The first two terms on the right hand side of (4.20) go to 0 as ¢ — 0. The curve g joins

B, to B2\B, to 0 as t varies between s; and co. Hence

Bl I S
(421) [ [t - vao)
R
has a positive lower bound independent of € via Lemma 2.9. But then I(Q) < I(qx),
contrary to the choice of gi. It follows that (74 — 74 1) is a bounded sequence. Hence along
a subsequence 14 — 7,1 — 11 > 0.

By appropriately rescaling time intervals again, a subsequence of i (or qi) converges
to an extension of ¢ (as a solution of (HS)) on [~t,,0] such that ¢(—t,) € 0B and ¢(t) € By
for + € (—t;,0). Continuing this constructior. yields an extension of ¢ as a solution of (HS)
to a maximal interval (T, 00). Moreover there exists an increasing sequence ti such that

q(—tr) € B4, and q(t) € By4, for t > —ty. This implies that
T= ekt

and ¢(t) is not bounded as t — T.
It remains to prove that |q(t)] — oo ast — T. Suppose that this is not the case. Then

there is a 4 > 0 and sequences sy — T, o4 — T such that
S1 >0 >8>0 > -,

lq(si)] = p. lglox)) = w+ 1, and p < |g(t)] < p+ 1 for t € (o4,sr). Now along a

subsequence,

(4.22) q(sr) = lim g;(sk)
Jj—oo

and by Proposition 4.10,

(4.23) /oo qu'[?—V(q)] dt = inf I(w)<

werq(’k)

< max{c, |7 € 0B,(0)} < M™.
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[t is clear that Af* is bounded independently of £. Hence letting & — oc,
y s “Ml.. .
(4.24) slal” = V()| dt < M~
T -~
On the other hand, let

1.25 = i —
(+4:23) b uﬁmlﬁnﬂﬂ (z)

Then by Lemma 2.9,

e I S
(426) [ g v

k

dt > \/2831]q(m) — q(ox)] = /23

SO
(+.27) /OC [%MIZ - V(q)} dt = oo
T -~

contrary to (4.24). Thus [q(¢)] — o0 as t — T and the proof is complete.
For our final result in this section we will given an analogue of Theorem 4.7 for a

potential V7 which is singular.

Theorem 4.28: Suppose there is an zo € R™\{0} and V € C!(R"\{xy},R) such that
1(0) = 0. 17(z) < 0 for € R"\ {0, 0}

(4.20) lim; o V(2) <0,

and V(r) — —-oc as £ — z. Then there is a solution, g, of (HS) such that ¢(oc) = 0 and

¢(t) = rg ast - T* where T* =0 or —oc.

Proof: Since the proof follows lines previously explored, we will only sketch the proof.
Let ¢, — 0. Let Q) = R"\B,,(2¢). Then by a combination of the proofs of Theorems
2.1 and 4.1. there is an zx € 9B, (z¢) and a solution ¢ of (HS) such that ¢x(0) = x4.
gr(oc) = 0. and qx(t) € Qy for t € (0,00). Let p € (0,|zo]|). Hence there is a 7 > 0 such
that £, = qx(7x) € 0B, and qx(t) € B, for all t > 7. Now continuing as in the proof of

Theorem 4.7. we get q as a limit of a subsequence of (gx) after rescaling time.




§5. Some time dependent cases.

In this section the existence of homoclinic orbits for some time-dependent Hamiltonian

systems will be studied. Consider
(5.1) G+ Vyltiq) =0

where 1 satisfies

1) Vta) = —sL(H)e -z + TV (t, z),
5) L(t) € C(R, an) is a positive definite symmetric matrix for all t € R.

{
(1
(13) W e CHR x R*,R) and there is a constant x > 2 such that

0 < plV(t.z) < z-W,(t x)

for all z € R™"\{0} and t € R,

(Vy) Wyt z) = o(lz|) as £ — O uniformly in t € R.

Note that (13)-(V}) imply
(5.2) Wi(t.r) =of|r}?)
as r — 0. uniformly for ¢t € R. Hence by (17)-(Vy), @ = 0 1s a local maximum for all t € R.
However it is not a global maximum since by (13) for each t € R 1s an ay(t) such that
(5.3) W(tiz) > a,(t)|r}* for large |z

We do not know if simple minimization arguments in the spirit of §2-4 can be used to
treat (5.1). In [3) assuming (V})-(V]), and that L and 1}V are T-periodic in ¢, it was shown
that (3.1) possesses a homoclinic orbit emanating from 0. Analogous results for general
Hamiltonian systems were obtained by Coti-Zelati, Ekeland and Sere [3] and Hofer and
Wysocki [4]. We study (5.1) without periodicity assumptions on L and V. Two results
will be obtained. The first is:

Theorem 5.4: Suppose V" satisfies (V7)-(15) and
(V5) The smallest eigenvalue of L(t) — oc as |t] — oc, ie.

inf L(1)g €~ oo as |t] = oo,

(Vs) There is a TV € C(R™, R) such that
(W (¢, )| + [Wo(t.z)] < (W ()|
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forallz e R*".t € R.

Then there exists a (nontrivial) homoclinic orbit ¢ of (5.1) emanating from 0 and such that

0< / [%[q'[f - V(t,q)J dt < oo

oo

Proof: Let o
E={¢geW"R.R")| / [l41* + L(t)g - q) dt < oc}.

Then E 1s a Hilbert space and as norm in E we can take

(5.5 laf* = [ 1al + Ldg - gl

—0c

Note that
(5.6 EcCcW!YR.R") C LP(R.R")

for all p € [2. x] with the embedding being continuous. For q € E let

1 12 i -
> Itg) = Sllqll” - W(t, q)dt.

-~ —0
Then I € CY(E.R) and it is routine to verify that any critical point of I on E is a classical
solution of (5.1) with g(Z>) = 0 = ¢(£>c). See e.g. [1]. To establish the existence of a
critical point of I, a variant of a standard “Mountain Pass™ argument will be emploved.
The usual Mountain Pass Theorem does not apply here since the Palais-Smale condition
does not hold due to the fact that we are working with functions on the unbounded set R.

However by (3.7) and (3.2), there are constants «, p > 0 such that
(5.3) I(q) 2 «

for |4l = p. Moreover by (V3) - see e.g. [5] - there is a ¢y € E such that ||gg|| > p and

(5.9) I(qo) < 0 = I(0).
Set
K={g€C(0.1,E)] g(0) =0 and ¢(1) = go}
and
(5.10) ¢= ;rel{ g[gfglf(g(o*))-
23




By 3.531-(5.10)
(5.11) c2a.

Now Ekeland’s Variational Principle ~ see e.g. Theorem 4.10 and 4.3 in [6] - implies there

15 a sequence (qg) C E such that:
(5.121) I{gy) = ¢ and I'(qx)— 0

as b — oo, We will show a subsequence of ¢, converges to a critical point, ¢ of I with
4 Z 0. Hence by earlier remarks ¢ is a solution of (5.1) of the desired type.

As a first step. note that (gx) is a bounded sequence. Indeed by (13) and (3.12). for

' 1,
(5.13) c+ 1+ llgxll = I(qx) = ;I (q1)qx

— (% _ l) axll® = / 1V (¢, qr) — %Wq(f,%) - qr)dt

T _oo
>

1 2
— =} llaxll
It
from which the result follows.

Sinee (g ) 1s bounded. it possesses a weakly convergent subscquence in E. Let ¢ denote

o[ =

its wealk lmit. Notre that g converges to ¢ in LfgC(R. R"™). Hence I'(g;) — 0 easily implies

'y =0.1e. qisa critical point of I. It remains only to prove that ¢ Z 0. Since g — ¢

LS g — ¢ in L-({-A. A].R") for all 4 < oc. Hence it suffices to show there is an
-

A > 0 such that ¢ 4 0in L3({—-A4. 4].R™\.

Proposition 5.14: If g — 0 in L*([—A, A]. R"), therec exists an a > 0 and independent
of 4 such thar

- R a
(5.15) my~ocllgkll2(r.R) S 304)
“‘h('l‘(’
3(A) = inf  L(t)¢-E.
(El=1.1¢]> A

Proof. Set a = sup J¢il|?. Consequently
k
A .
(5.16) R R
-4 R\[—.4]

A .
< .-’dt+——/ Lit)qx - qudlt
/—A o B(A) Jry[- 4.4 e

A ) a
< Aedt + ———.
_/_A|(]kl +/3(A)
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Letting £ — 2¢. (5.19) i1s immediate.
To complete the proof of Theorem 3.4, we show that for 4 sufficiently large. ¢4 4 0
in L7{[—4. 4].R"). Indeed by (5.12) and the boundedness of (¢y),

i, 1
(3.17) I{qr) — 51 (q1)qe =

> 01, ; .
= / [§Tl'q(t,(u) g =W (t.qr)|dt > ¢c>0

as h — oc. By (13) and (1%) for each M > 0, there exists a \y; > 0 such that
o s 1. . . 9
{(5.137 ,—)—U q(f.;l‘) 'I—Y‘”(t,lf)] < I\;\Ill‘l'
for all {o] < M and t € R. Taking
M = sup o,

by Proposition 5.14.

> 11
(3.19 c= lim / [;)—Uv'q(t, qr) - qe — Wt qu)| dt

k—oc J o

. 5 Lya
< Kylimg—sollgellz2r oy < E(—\fl_)—

Bril5i. 34) — oc as 4 — . But then (5.19) contradicts (5.11). The proof is complete.

Remark 5.20: By (5.11) and (5.19). the above argument works whenever there is an A4

such that

I\:‘\[(l

(5.21) B(4) >

a
More careful estimates than those given above show that (15) can be weakened and (5.21)

<till obtains if 3(4) is large enough relative to

3.22 L = inf sup L{t)¢ - E.
(5.22) L= inf sup (06§

Indeed (5.13) provides an upper bound for ||gi|| depending only on p and c¢. We assume
L < suppg; L(1)E - € < 2L on the interval [—h, h]. Note that we may assume supp gy C
(—h.h| without loss of generality. Let g(s) = sqo € X'. Then

¢ = max I(g(s))
s€[0.1]
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15 an upper bound for ¢ depending only on L. Since there is a constant b > 0 depending

only on L such that

lwl oo (r.R7) < 0]t

for all w € E, the upper bound for ||qx|| gives an upper bound for lgx!l L= and therefore
for M. We can also easily see that a > 0 depends only on L. Thus we see the right hand
side of (3.21) depends only on L. Therefore (5.21) holds and Theorem 5.4 remains valid if
3(4) is large enough relative to L.

Our final result is a variant of Theorem 3.4:

Theorem 5.23: Suppose 17 satisfies (V7)-(17),
(17) There is a T periodic function L, satisfving (1%) such that

(1) Loe(t) > L(t) for all t € R 1.e.

LitYe x> L(t)r-rforallt e Rand r € S771,

(1) Loe(T)z -2 > L(7)r -z for some r € R and all z € S"71,

(i11) |L(t) — L (t)] = 0 as |t| — oc.
(1a) Wit.z) is T-periodic in ¢,
i(15) the map s — s~'TV,(t.s2) - 7 is a strictly increasing function of s € (0.2c) for all

t € R and r € R"\{0}.

Then there exists a nontrivial homoclinic orbit of (5.1} emanating from 0.

Remark 5.24: Condition (173) is related to hypotheses that have been used by Nelari
[7-8]. Coffman [9], Hempel [10], and others. We suspect that Theorem 5.23 is true without

this hypothesis.

Proof of Theorem 5.23: The proof follows the same lines as that of Theorem 3.4. Now
we work in E; = WH(R.R"). Note that by (13) and (V%).

ac 1/2
(/ (14’ +L<t>q-q>dt)

~ 1/2
(/ (1l +Loo(t)(1'f1)dt>

are eouivalent norms in E;. Hence I as defined in (5.7) belongs to C'(E;,R). Moreover
(5.8)-(5.9) are still valid in Ey. Defining ¢ by (5.10), with E replaced by Ey in K, (5.11)-

(5.13) still hold and ¢, — ¢q weakly in E, (along a subsequence) where I'(¢) = 0. It remains

and

only to prove that ¢ # 0. This will take some work.
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The idea of the proof is to consider the functional
- o= . >T1,.., 1 }
(5.25) 1) = [ [5lP + 2Le(t)g-q - W(t.q)] dt.
e 12 2
By (13), (V3), and (V}y), I € CY(E;,R) and by earlier remarks, critical points of I are
homoclinic solutions of

(5.20) §— Loo(t)g + W,(t,q) =0

which emanate from 0. We will show: (a) I™ also has a “mountain pass” critical value

c¢™. Moreover by (15), ¢ can also be characterized as: (b)
™ =inf{I>(y) |y € E;\{0} and (I*)'(y) = 0}.

This enables us to prove: (¢) ¢ < ¢>*. Then: (d) an argument related to the one following
Proposition 5.14 implies g # 0.

The steps (a)-(d) will now be carried out in detail.
Step (a): There exists a nontrivial homoclinic solution of (5.26) emanating from 0.

Proof: The existence of such a solution was established in [3]. However we will give
another proof here since we need a minimax characterization of its corresponding critical
value. Note that the constants p.a > 0 and qo € E| can be chosen so that the estimates

{5.8)-(5.9) hold for both I and I>. Setting

(5.27 ¢ = inf max I™(g(s)).
{D.27) _(;161/\ o] (g( )

as in the proof of Theorem 3.4. there is a bounded sequence (w) C E} such that
(5.28) I*(wy) — ¢, (I™)(wy) — 0.

Moreover a subsequence of wy converges weakly in Ey and also in Ll’gc to w € E; such
that (I>)(«) = 0. Hence once we show w Z 0. as earlier it is a nontrivial homoclinic

solution of (5.26) emanating from 0. Note that since L and 11" are T-periodic in t,
(5.29) I=(y(t) = I(y(t + €T))

for all y € E, and € € Z. The functions wy € Ey. Hence wi(t) — 0 as || = oo - see e.g.

(20)-(24) in [3]. Consequenctly by (5.29), without loss of generality it can be assume that
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w achieves its maximum in [0.T]. Thus if wx — 0 weakly in £} and in I’fgc as b — oc.

in fact
(5.30) wp — 0 in L®(R.R™)

as k — 0o. By (5.2).

(5.31) |%1Vq(t,x) 2= W(t )| =o(1)|z[>

as |z| — 0 uniformly for ¢t € R. Hence by (5.30)-(5.31),
> l1. .. . .
(532) / l:;‘pq(t, LUk) cWE — I’I/(t, UJL):, dt = 0(1)“101\7”22(R,R") — 0
J~—oo L&
as k — oc. On the other hand by (5.28),

>~ I1
(35.33) / [qu(t, wi) - wr — W{(E, wk)] dt

-0

= I®(wg) — %(I‘”)'(wk)wk — > a

as k — oc. contrary to (5.32). Hence Step (a) is complete.

Remark 5.34: (3.28). (5.33), Fatou’s Lemma and (I>)'{w) = 0 imply (along our subse-
quence)

~ 11
¢ = lim / [3”}(1‘. wy) - wg — WL, wk)] dt

k—oc | o

> / [%W’q(l‘., w) - w — TV (¢, u,)] dt = I™(w).

Step (b): ¢= = inf{I™(y) |y € E;\{0}, (I*=)'(y) = 0}.
Proof: Let b= inf{I™(y) |y € E;\{0}, (I™)'(y) = 0}. By Remark 5.34.

(5.35) c*® > b.
We claim for all u € E;\{0} such that (I>®)'(u) = 0, there is a g € K such that

(5.30) max I>(g(s)) = I7°(u).
s€[0,1]

Then by (5.27),

(5.37) c®<b




s0 (5.35) and (3.37) vield Step (b).

To construct ¢, note that by (Vg), if y € E}\{0}, I°(sy) achieves its maximum along
the ray {sy | s > 0} at a unique point soy characterized by (I>°)'(sey)y = 0. (See e.g. [9].
[10].) Hence let o consist of 2 segment of the rayv through U and u, a circular arc through

Ru/llu]| and Rgo/llqol], and a ray segment joining Rqo/llqo|l and go. Explicitly

3¢R”““ s €0, %J,
- oA ] u T Rago .+ T 2
(5.33) gr(s) = ﬁ-ncos%;(o—ﬁwmﬁsm%(o—%) se(3 3,
3(1— )7ty 4 3(s = )0 s€[3.1].

Then gz € K for all R > 0 and for R large. I*(gr(s)) < 0 for all s € [3,1]. Hence (5.30)
holds and step (b) is verified.

Step (c): ¢ <™

Proof: Let g be the path constructed in Step (b) with u = w, w being as determined in

Step (a). By (V%) (i). for all s € [0,1],

(5.30) I(g(s)) < I®(g(s)).
Hence
(5.40) c< rél[a\ Hg(s)) S I™(w) = c™.

If ¢ = ¢>. there is an 3 € (0.1) such that
(5:41) ¢ =I(g(3)) = I*(g(3)) = .

But there is a unique s € (0.1) such that I°*°(g(s)) = ¢, namely s = [jw| /3R and

g(s) = w. Hence to prove that ¢ < ¢*, it suffices to show that
(5.42) I{(w) < I™(w).

If I{w) = I™(w). by (V=) (ii). w(¢) = 0 in a neighborhood of t = 7. Observe that w is a

solution of the linear system of equations

(5.43) i+ Y ai(t)g; =0, 1<i<n
=1
where a,;(t) = 0 if w(t) = 0 and if w(t) # 0
; 1 oV
a;j(t) = (O 37, ——(t, w(t)hw;(t).
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The coeflicients a,; are continuous via (5.2). Since w(t) = 0 near t = 7 and satisfies a
linear system with continuous coefficients, w(t) = 0, a contradication. Thus (5.42) follows

and Step (c) is proved.

Step (d). Completion of the proof of Theorem 5.23.
Recall that (qx) is the “mountain pass” sequence for this problem satisfving (5.12)

and ¢ is the limit (along a subsequence) of gx. We must show ¢ Z 0. Due to the L.

convergence of g; to ¢, it suffices to prove for some 4 > 0,

A
(5.44) f lqi|?dt £+ 0
A

along a subsequence. We will use a “concentration compactness” type argument. Suppose
A

(5.45) / lqe]®dt — 0
—A

as k — oc for all A > 0. Consider

T
(5.40) B = sup/ lqn(t + €T)|%dt.
teZ Jo

We claim

(5.47) lim 3¢ # 0.

k—no

Indeed for any v € E;.s,t € [0.T). and € € Z. we have

t
, 2 d 9
(5.48) lu(t + €T)? = [u(s + €T)|* + / ZE[u(r + (T)|"dr

T
< lu(s +€T)]* + 2/ lu(r +€T) - u(r + £T)|dr.

0

Integrating (5.48) for s over [0,T] and setting u = ¢ yields:
;1 (7 2
5490 It TP 7 [ s+ eI
0
5 T 1/2
+ = (/ lax(s + (’T)lzdb‘> gkl L2 (R R")
0

T

Br 2 172
< = —_—
£+ 28
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‘

where A/ s an upper bound for {|gi||. Since € is arbitrary, if 3, — 0, (5.49) shows

(5:)0) lim ”qk||L°°(R,R") = 0.

k—o0

ut then the argument of (3.20)-(3.33) implies ¢ = 0, a contradiction. Hence (5.47) holds

Comparing (5.47) to (5.45), we see there must exist a sequence ¢), € Z such that

(5.51) {(i) |€] = oc as k — co and

(i) [ lgu(t + &T)2dt > v > 0.

Set §i(t) = qr(t+ 6 T). By (V%) (iii) and a familiar argument, there is a subsequence of §;
which converges weakly in £y and also in L{5. to ¢ € E1, a homoclinic solution of (5.26).

Moreover by (5.51) (ii), ¢ is a nontrivial solution of (5.26). As in Remark 5.34, using (1%),

. . > 11 .
(5.52) c= lim N [gl/Vq(t,Qk) qk — W(t(lk)} dt
< T1
= kljil;lo/;x [gI'Vq(t “qx) - Gr — I'V(t,ljk)] dt
Rl I — o~ . cor ~
> / [5“"q(t,q) g - W(t,q)} dt = I%(q).
, By Step (b).
(5.53) I7(q) = c™.

But (5.52)-(5.533) imply ¢ 2 ¢*°, contrary to Step (c). Hence (5.44) holds and ¢ # 0. The

proof of Theorem 5.23 is complete.
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