T L e el .~ B T B -, .
PR T TR P . . Y- [T
o e ARV . ot . S T
Ca A i RN ak: 2 W LE
g X , Xv 9P
. L3 PR

Course
Course

e

R o r -

DEPARTMENT OF OCEAN ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

CQPUTER STMULATION OF SHIPBOARD
ELECTRICAL DISTRIBUTION SYSTEMS

oy
Norbert E. Doerry

June 1939

XIII--A: Naval Engineer
VI: SIEECS

COMPUTER SIMULATION OF SHIPBOARD
ELECTRICAL DISTRIBUTION SYSTEMS

by /\/ C) <é ,%(‘ é _,Osg
NORBERT HENRY DOERRY

B.S., Electrical Engineering

United States Naval Academy l ‘
(1983)

SUBMITTED IN PARTIAL FULFILLMENT OF THE FLECTE
REQUIREMENTS FOR THE DEGREES OF 0CT 111989
NAVAL ENGINEER

MASTER OF SCIENCE . .

in
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May, 1989

© Norbert H. Doerry, 1989

Signature of Author z @ :ﬁ Z/Q)Q:&.::_? —
Departments of OCean Engineering and

Electrical Engineering and Computer Science

12 May 1989
- T M
Certified by ,»///;W’/(%‘:EQ/ é'/

James L. Kirtley, Thesis Supervisor
Associate Professor of Electrical Engineering

7
Certified by @Z{_Mz\.

Paul E. Sullivan, Thesis Reader
Associate Professor of Naval Architecture

Accepted by

A. Douglas Carmichael, Chairman
o _ Ocean Engineering
Dcp mental@faduate Committee

' | e - ’Q’// ' <
d . < . - L. — _\\
Accepted by (Ay /_1/’1.@ N /
~— TArhurC. Smith, Chaxrm\
Electrical Engineering and Computer Science

Department Committee

S oy ..‘ ’bu:
ot eade;
.

NUMBER

3

oy

TRICANT

AVAILABLE. THE COPY

B

Y

1’ A
A

s

g

4

31

ALIT

3

g

]

A

A

-~

NOT

Fred
procerd]

REPRODUCED FROM
BEST AVAILABLE COPY

COMPUTER SIMULATION OF SHIPBOARD
ELECTRICAL DISTRIBUTION SYSTEMS
by
NORBERT H. DOERRY

Submitted on May 12, 1989 in partial fulfillment of the requirements for the degrees of Naval
Engineer and Master of Science in Electrical Engineering and Computer Science.

ABSTRACT

Shipboard electrical distribution systems are changing significantly with the intro-
duction of solid state frequency converters, introduction of electric propulsion and integrated
electric drive, and the possibility in the future of large combat systems pulsed loads. Existing
computer tools for analyzing power systems have difficulty simulating these changing con-
ditions. To assist in the evaluation and analysis of future shipboard electrical distribution
systems, the Shipboard Electrical Plant SImulation Program (SEPSIP) was developed.

The key feature of SEPSIP is its use of implicitly defined input variables and implicit
variables which allow for every element of the simulation to be mathematically isolated from
every other element. When the constitutive laws of an element are satisfied by an appropriate
set of input variables, all of the implicit variables have zero value. The network description
generates the input variables based on the network topology and the results of a Newton-
Raphson iterative scheme. The key advantage to this method is that the network description
of a riode closely models an actual electrical node.

To demonstrate the abilities of SEPSIP, several simulations involving synchronous
generators, induction motors, and voltage regulator dynamics were conducted. In all simu-
lations, SEPSIP provided results that matched data generated by other simulation methods.

Thesis Supervisor: James L. Kirtley N R
Title: Associate Professor of Electrical Engineering Accesston Yor
CNTIS 6Tl E%
DTIC T..%

Ussevrrre s e ol -
Juy ifl(_::.iﬁ%—
y S
Distribution/ . ___J
’A;Jaii' i D03
- VO L o HEROYN T
Dist Speetal

Al

\

<

(V:A

-4

A

The author hereby grants to the United States Government and the Massachusetts Institute
of Technology permission to reproduce and to distribute copies of this thesis document in
whole or in part.

Norbert Henry Doerry

-

ACKNOWLEDGEMENTS

I am grateful to the Unites States Navy which has afforded me this opportunity to pursue
a post graduate education and complete this thesis.

I am also grateful to my thesis advisor, Professor James Kirtley, for his patience,
encouragement, and timely guidance

I express my thanks to the numerous individuals at the David Taylor Research Center
and Naval Sea Systems Command who provided me with much insight with regards to the
issues involved with shipboard electrical distribution systems.

I would also like to thank the men and women of MIT’s Project ATHENA who often
took time from their busy schedules to answer my questions concerning the UNIX operating
system and the C programming language.

Table of Contents

CHAPTER 1 INTRODUCTIONccvoviniiiininiinienrieiese e s s svassssnass 11
1.1 Thesis ODJECHIVES ...icviiviiiiiiiiiniiiiinineenionrriesesesssesinsssienssesies sovessesssseosane 11
1.2 Modelling Shipboard Electrical Power Systems ..o 12

1.2.1 Elements : Constitutive EQUationsccooenviininiinnnnn, 12
1.2.2 Networks : Nodal EQUationsc.couimniiiiiinne o, 13

1.3 Power System Analysis Computer Tools ..., 14
1.3.1 Desired FEatUIEscoviviiniiiiiiiiiii e seae s e 14
1.3.2 Simulation Programs for Land Based Power Utilitiescccccernennen. 14
L3210 EMTP .ottt crssse s s s s sse s 14
L3.22POSSIM ...t ssne et sn s et sraesssees s 15
1323 MANSTAB ..ot e bbb sresse s 15
1.3.24 MANTRAP ..ottt st ae s snes 16

L3 2.5 LOTDYS Lot esiessssasse snsessrnnsssassnasssns 16

1.3.3 Software Packages for Systems of Nonlinear Equationsccco...e. 16
L33 COMP et s bbb s s s 17
L1332 SIMNON Lot s s e sranbe e 18
L3333 ACSL ot s e e st e ebr e 18

3.4 SEPSIP (Shipboard Electrical Plant SImulation Program) 18

14 Slgmﬁcance OF TRESIS .ooiiiiiiiie it e e e s 19
1.5 Outline of TRESIS ...coviiviiiireiiiiivinrienere s et e srer e ssssses 19

CHAPTER 2 THEORY OF THE COMPUTATIONAL METHODccccovviinnene 21
2.1 General SHAteZYcccocviiiiiiiiiiini e sre s 21
2.2 Device Definitionscccocvviiniiiiiiiisee e e e 23

2.2.1 Input Variables : Interacting with the Networkc.ccocveniiinnin 24
2.2.1.1 Voltage SUbnOdescocovrviiiiiiiiienciiriecie e e 25
2.2.1.2 Reference Voltage Subnodes ..o, 25
2.2.1.3 Current SUbNOAESc.coovviimiiiriicieieicr e 25
2.2.1.4 Reference Current SUubnodesocovivriiiiiiiiinneninincenncnnees 25

2.2 2 PATAIMCIEIS ...ocoviviiiiiiiiriiresrieiensieireestesoseeseessansnesriesssrosessasesunesstessssenseans 26

2.2.3 Implicit Definition of Input Variablescccovrvnniiiiinniincnninene. 26

2.2.4 Implicit Variable Selection : Rotating and Translating Axes 26

2.2.5 Data Storage : State Variablescocovviiviiiienniieini e ceeinens 29

2.2.6 EXternal INPULScooiiiiiiriiiiiiiiee s st atnenneessns e saenaeaesrnseesseassnsnssenes 29

2.2.7 EXternal QUIPULScevivirreiiiniieniniecriiecsiereeresseeie s e ssessnesesseansesnvessasnsas 29

2.2.8 Integration TEChMIQUEScocoerviviiiiiiniiiceincener e e 29

2.2.9 Modelling Transfer FUNCONScccoceevniiriinnieniiicinvnie s eecnesieenens 31

2.2.10 Jacobian ConsStruCtioncceciieeriiersiinesiinceiiesereneenessaessessseesns 31

2.3 ELEMENT DESCRIPTIONScccoiiiiiciirininiciiniecinnesnresseesessesseiesnnssesns 32
2.4 NETWORK DESCIHPHON ...c.overeiirierieeniieineinnieeeresiaressasssnssesssssssssaesensneseas 33
2.4.1 Voltage Subnodescccocniiiiiiiiiiniiiiiier e 33
2.4.2 Current SUBNOAES ...cc.eeiriiiiiiiniiiiiiinie et ettt sr e et 33
2.5 Reference Subnodesoccovceiviiiiiiiiiciin e 34
2.6 Conducting the SIMulationc...cccciiriiiiin it 35

26,1 SEUIUP oottt et et e ebes e 36

2.6.2 INitialiZALION ...oeovvriiiiieiiiieir ettt n e ettt s a et e 37

2.6.3 Updating External Inputsccccoooeiviiiiiinciiiinii e, 37

2.6.4 Balancing the SYStEMcccooiiniiiirineiiniinenr et 38
2.6.4.1 Calculating Implicit Variablescccvveviiovnieiiineivccnaiiie 38
2.6.4.2 Manufacturing System Jacobian Matrixcccooooviveecininneninnnnn, 38
2.6.4.3 Calculating Variable Corrections via Newton-Raphson 41

2.6.5 Printing RESUILScoooviiiiiiieiiiiiiniinies et 4]

.6 Updating State Variables and Time Countercocenvivivenne, e 41
i

Potential Problemsccocoieiiiiiiiiiiiinirenie e seseessnasens 42
2.6.7.1 Numerical InStabilityccciveiiinuinenincernccsiinieseesninnes oo 42
2.6.7.2 Singular Jacobian Matrixcccccivmniniiniino e, 42
2.6.7.3 Non-Unique SOIUtIONScoccvveeeniiiiiieennnnvennricsserssesiessnesensens 42

CHAPTER 3 SEPSIP SHIPBOARD ELECTRICAL PLANT SIMULATION
PROGRAM ..ottt srestsssnnae s stnnes sesvns stene rasstssaasessasansne 4
31 INOAUCHION ...ooiiiiiiiiiiiiiiiinii e e e e sttt es b e teae 4
3.2 Data Entry CONVENTIONSccccoeiiiiiiiiiiienieeinessnessvssesssessssraesssssssassmvsnsessens 44
3.2.1 Acceptabie Charactersccoccceciiviiiienencnieie e snnereres s 45
2 ReServed NAMESccviiiiiiin ittt s s ses 45
.3 Specifying Variables and Subnodesccovvenniiiiiiiininncninene i 45
A Numerical ERtriesccocovviiniiiiiiiiiiniiri s cneesrne e e sensssveses 46
.5 White Charactersccoocemiiiiiiiiiiiiinies e eaeesneessessesssesassesesas 46
.6 Continuation LINeSocciiiiiiiiiciicniiie e snecren e asaree e reene 46
T CaSE SENSILVILY ooiiiiiiiiiiiiir e einee s an 46
8 ComMMENT LIMES ...oiviiiiiiie et sise s sesssvn e e s s nsbeettessen e eanens 46
put File Generationc.ccoviiiiiinnciiiriie e scsrcesenivees e essssesessnesnmnenens 47
.1 Organization -- Using INCLUDE Filescccoovviemnenniiinciennne. 48
.2 ELEMENT DESCIIPION ...ccoviiiiriieriinreineensinrvereiensssinrenesseseseeseesssssssessens 48
3 NETWORK DESCIIPHIONooeivvirieiirieiiirennnieesentiniessressessesressreniessvesnes 49
4 INITIALIZATION DeSCIPtioncccoiveiiiiiininiiiriiiesineneciennene oo 51
3341 INTTTALIZEcooviiiiiiiieeeee et ssviss vt erenressesaeeseseesesnensesnenes 52
3.3.4.2 EXTERNAL [INPUTS INITIALIZATION] ...ccccoovvvieviiirirnnnennns 52
3.3.4.3 NODE VOLTAGE [INITIALIZATION] ...ccoovvveiinemeniniennineennnnens 53
.5 SIMULATION DeSCriptionccocvriviierennnensiinensiinessresiesereneseennes 53
3.3.5.1 CONVERGEcooiiiii it ciie e st et st 53
3.3.5.2DELTA ..ottt sttt e sa e saanre e snas 54
3.3.53 DELTA_MIN L.ttt ts st tsbestre st s se et snaers ssaenas 54
3354 DISPLAY ..ottt et sttt s st saste s seas 54
3.3.5.5 EXTERNAL INPUTSc.occcoiiniiiinininieiiniee e seereasverassnsnnns 55
3.3.5.6 MAX_ITERATION ...cooiiiiiiiiiiiieinniiesnin s setesene e eanaasstaeae s 55
3357 PRINT_STEP ..ottt e rs e s s 55
3.3.58 REFERENCEccccecoiiiiiiiecirrseee ettt et s s 55
3359 TIME_STEP ..ottt st stisisees e easieressnesens 56
33510 TIMIN Lottt resr et etreevaase e te s e sa s e eras e e e sabsanasaesass 56
33501 TMAX oottt sttt sr e sttt e e et s sasras e aten 56
3.4 Running the Simulationccccoiiniiininiiniinic s e crees 57
3.4.1 Starting SEPSIPcccovviiinviniiniiieiiiennie e cssnesesisassiessinssens 57
3.4.2 Command Entry Conventionsccccvceevverriniicninnreneveeneeesiensn seens 57
3.4.2.1 SEPSIP MENUSc.cociiiiriniiiciieneitiiiitiesseisssnssenanarsosesinssesressssesnns 57
3.4.2.2 Concatenating Commandsocceeeeveenerveincerenneceeiensniesnens 58
3.4.2.3 Input Filename Specificationcccovvervcvmvinnicnenrerienivorecnvenees 58
3.4.2.4 Output Filename Specificationc..ccovevvviniieesiniiciiesiinereneens 58
3 Command SUMIMATY ...ccocciiviiie e s 59
AMaIn MEnu ..o e 59
3.4.4.1 C COMUNUE .c.oovvviriiciiiiicrie ittt st esteaaeeseren 60
3.4.42d Display Datacccoovvviieniiieiiiiiiie et 60
3.44.2.1 d ¢ Change Working Directoryccoocvvinniiinnnncnenns 61
3.4.4.2.2dd Display Device Summaryc.ocvvvieiciinniiecnnereniennne 61
34.42.3dD Display Device Datacccovvvveiincicciiinn e, 62
3.4.4.2.4 d e Display Element Summarycccceooveiiiiniiinnccnnnn 62
34.4.2.5dE Display Element Datacccooovviciniiiniiiniienens 63
3.4.4.2.6 dn Display Network Summaryccccocovncininiiiiinerinnne 63

-6 -

34.42.7d q QUIt ..ot e e nes 63
344.28d w Write Device Data Filec.ccovviveiiecininionens sveinens 64
3.4.4.3 e Edit Simulation Parametersccocevevrvreennrvenienineesensnesreens 64
3.4.4.3.1 e d Edit Display Variablescc.cvcvreevnierieniennniineesennens 65
3.4.43.1.1 a Add Display Variableccceeveriverercireernnieecrennens 65
3.4.43.1.2 d Delete Display Variablec.ccovneinniinienienenenne. 66
34.43.1.3 q QUIt .coiiiiiiiiiiiii e e 66
3.4.4.3.2 ¢ j Edit Jacobian Parameterscooeveeiiiniiinnieneneenines 67
34433 e q QUIt oo e e 67
3.4.43.4 e r Edit Reference Voltage Subnodeccccoovevirmnerencen 68
3.4.43.5et Edit Time Parametersccocceerevvmiivererneneernenrensennnes 68
3.4.4.4 f File OPtionsccccoviiiiiniicnnicniiniieienceiies e sens s 69
3.4.4.4.1 fd Dump Simulation Stateceuveinniniinininnennnn 69
3444211 Save INITIALIZATION Sectionccccccevvrverrvreieerennens 70
3444311 Load INITIALIZATION Sectioncc.ccceeeveevnrirenvennees 70
344441fs Save SIMULATION Sectionccccenreercrecrennvnnrrenneens 71
3.44.4.5fS Load SIMULATION SeCtionccccccovumrvervuersrrinersennne 71
3.4.4.5qQ QUIL oottt st e 71
3.4.4.6 s Conduct SIMUlationccceeeeriviierivennnirinireesrineiniensersseeenseeenns 72
3.4.4.7 U UIHIES .oovvvviiiiiiieiinieenireenirirernresstesseesieassesseeesssseesessssasessnesnns 72
3.4.4.7.1ue Editor -> €macscceeeeirirreniinniinecc et 73
3.4.47.2u p Plotting -> NOIPIOtcocceviriininiiinirecniiiinre e neeeee e 73
3.4.47.3u 7 List DIfECIOTY ...ocvvvevririverieeneirieerenineesriesaenseessaanvesasses e 73
3.4.4.7.4u % Execute System Commandccceeevverveeerenenneennn. 74
3.4.47.5u + Screendump to default printercccocvvvinincnincnne, 74
3.5 Special ConSiderationscocceveerrrnrienriesiiiiecsnneneeneeesnnessssessesrsnes sranenss 75
3.5.1 Designing the Networkc.ccociviiiviiiniiiiininneesece 75
3.5.2 Selection of Time INCIEMENLSccoceiviiiiiniieninnieinn e 75
3.5.3 Using the SIMULATION FIl€cccovvinviniiiiiienincinin s enessneie e 77
3.5.4 Using the INITIAL Filecccooiiiiiiiiiiieninninie et snens e senneas 77
3.6 Adding DEVICE DeSCIPtONSccooioiiiiniiiiiintiniiiie i 77
CHAPTER 4 DEVELOPMENT OF SHIPBOARD ELECTRICAL
COMPONENT MODELS ..ottt cesesevesiessissesreesresraesnvesesssnaesas 78
4.1 Transmission Line Modelc..cccccvnininiiniiiin e s 79
4.2 Resistive - Reactive Load Modelcocoviviiiiiniiiiiicece e 82
4.3 Synchronous Machine Modelc..ccccovviiiiiniinieinieiinrrenn e enecn e 85
4.4 Speed GOVEIMOTocciviiiiiiiiiiicniit ettt b a st n e sa e 91
4.5 Voltage Regulator Modelccccoouviiniiimnnieiiicnic e 93
4.6 Induction Motor Modelcccouviniieriiriniinicneiinnenesensseee s sne s e snssseene 97
4.7 Three Phase Switch Modelc.coooiiiiniiiiniin e i02
4.8 Circuit Breaker Modelccooviiriveiiiiececre ettt et e 105
CHAPTER 5 SIMULATION RESULTSccooioiiiiiiiiiiiicesir e e 109
5.1 50 HP Induction Motor Start Upccooivivimiiniiiiceiennccceccenic s 110
5.2 500 HP Induction Motor Start UPccccovrviiiiniiiineineeneie e sreiee e 114
5.3 Synchronous Generator: Switched Loadccooeooiiiic 118
5.4 Synchronous Generator: Two Phase Faultc.cocoeviivvcieneic e, 124
5.5 Synchronous Generator: Three Phase Faultcccccoonviiniiniiniiinne, 130
5.6 Paralleled Synchronous Generators: Switched Loadccocconinnnnnnnnn 133
5.7 Paralleled Synchronous Generators: Switched Loadcoccocveern v 140
CHAPTER 6 CONCLUSIONSoooiiiiieriie ettt it anas 144
6.1 Assessment Of SEPSIPc.ccooviviiiiiiieceet et 144

6.2 Future IMProvementsccoccvueirinruinnnesnnniessiiesnonnes smasaesnosssssiansnnansesiees 145

6.2.1 Variable Time StePcccovviiminriniiiiinin e sessas i 145

6.2.2 Replace Gaussian Elimination ..., 145

6.2.3 Reuse of Jacobian Matrixccevvvminiiiininc i 146

6.2.4 Output Variables and Output Subnodescccovviiviniininiiniininnienn 146

6.2.5 ACtiON FAlesooveiiiiieceee e e 146

6.2.6 Integrated Graphicsccccovniiiiiiiiniin i e 148

6.2.7 Implement external variable "types’ ... 148

6.2.8 Optimization for SPEEdccocvivimiiiiiiiiiii s 149

6.2.9 Check for Recursive INCLLUDE Filescccovuiininicinivninnieiniennnn. 149

6.2.10 Break Keyccocvcieriiiiniiieniieieienine et st ete s s nesns st st s srsn s s es 149

|] 0 (= (1oL - J OO 151
APPENDIX A GLOSSARY ...ooiiiiiiiiirerie et sisne s svesnnesressnassnss s sasnnsrens 153
APPENDIX B INSTRUCTIONS FOR ADDING DEVICESccocoviniininnininnns 157
B.1 Write Device Driver ROUtingscccoceviviiiiiiiiiiiniiiniiiii e e 157
B.L.1 ATZUMENES ..oviivvieeiinieeecie ettt s sastsbas e sb e s st sabssrseamerneaesee s 157

B.1.2 Select number and types of variablescccccoeeiniinni 159

B.1.3 Calculate Implicit variablescccocoveveenvnniiniinsinn e 159

B.1.4 Calculate State Variablescccoovrvcinvniinninniniiinic e e 159

B.1.5 Calculate External Output Variables (optional)ccceeeiniiinn. 160

B.1.6 Calculate Jacobian Matrix (optional)c.ccccivenviniveinininiiieniniinieennnn 160

B.2 Modify Device Input File (three_phase.input)c.coooviiiiinniiniinininan. 160
B.3 Modify penner.hccocooviiiniiiiiiii s 161
B.4 Modify MaKefilecccooeviiieiineiiieniiiiriissi st 162
B.5 Recompile SEPSIPccccccooiiiiiiiiiiiiini e 163
APPENDIX C DEVICE DRIVER CODEc..ccccooviiimiiiiiiiinriinie s 164
Gl f_t_lINE_3P.C it e e 165
Co2 Il _WYE.C i 170
C.3f_synch_mach.C ..o 175
C.Af_SPeed_TER.C ..ot e 183
C.5 f_VOIL_TEG.C oot e 187
C.Of_INA_IMOOL.C ooiviiiieieiiiiiiee e e et esee st e e e st s s sab b s s es e e s b aee s 191
C.7 £ SWICH_3D.C oottt eve e 196
C.8 £ _Dre@Ker_3P.C wiovicriiriiiiiniiiiiiie sttt st 201
C.9f_SPSt_SWILCH.C .ooviiiiiiiiiiiccic it s s e 208
C.10f_gen_synch_3P.C ..ot s 211
C.lL PENNELN oot e e 216
C.12 three_phase.inputccccocrvviveiiiiniiiner e e 220
C.13 0ne_phase.inPutcccovcieriirniiiiiiiii e e e 230
APPENDIX D MENU DRIVER CODEcccoiiiiiiiiiiniicc i 235
DLl MENULC ottt s s e 235
D.2 sepSip_UtLlMENUo.ooiiiiiiiiit i 241
APPENDIX E PORTABILITY CONSIDERATIONS ..o, 242
APPENDIX F SEPSIP SOURCE CODE ettt 243

Table of Figures
2,121 RESISIOL 1oiiiiiiiiireiiiiiiioies reeenseioiirestertearteteesstisatosssrasressssaesennraessssesssssonrannsnsesnons 22
2.2-1 SEPSIP Variablesccccceoiiiiiiiiiniiriieiniieeiencnerreecosestesesessainsesssontnsnsessseans 24
2.2.4-1 DIOAEooeviicecciiiei e et raar e e s b ta e st s sabs s bt e aarbeesesarssnnaesaerns 26
2.6.4.2-1 Manufacturing System Jacobian ..o, 40
3.3-1 Sample SEPSIP Input Filecccccooiiiiiiiiiecieiecin s e siesree sraves esnsenns 47
3.3.1-1 Using the INCLUDE KeyWordcccoceccevnuenniiinnnerineesseneieseersesesseesnseenans 48
3.3.2-1 ELEMENT DESCIIPLIONcoovvirieeirieiniienienueesiaraciensseensesseesessninsssnssssserssnnnens 48
3.3.3-1 NETWORK DeSCHPHONcoeecuiiiieriiniiinirsreeneenirenneesissnessessriessseeressssansanens 49
3.3.3-2 NETWORK Description Exampleccccccniviiniiiiienes 51
3.3.4.2-1 EXTERNAL INPUTS INITIALIZATION Subsectionccccvvevirneens 52
3.3.4.3-1 NODE VOLTAGE INITIALIZATION Subsectionc..cocveeinnverennne 53
4.1-1 TranSmiSSION LINEoccvviiiiiiiiiiiiciiii e es et eeserees s estee e osaeaaessaestsoree e esenares 79
4.2-1 Resistive - Reactive Load Modelccooooeciiiiiiiiiniceieei e ceniecsesreseisasanes 82
4.3-1 Synchronous Machine Modelcccocoiniiiiiiniiniinincc e 85
4.4-1 SPeed GOVEIMOTccoeviiiiirieiiirineetinttenenceeiter e st nesnisss et sreesesuseessenseseesesensas sees 91
4.5-1 Voltage REGUIALOLccoiiiiiiiiriiiii st essenee e st s st niae s 93
4.6-1 Induction Motor MOGE]ovvvviiiiiiiii ittt rreeaetraaassas s benaeeeeas 97
4.7-1 Three Phase SWILCHcoiciiiiiiiiiiiiie et crtseeaestbastee e sesaieeatesaensrsees seennsane 102
4.8-1 CIrCULt BIEAKEToccvvvviiiiiiiiiie i iecritr e e it eeeeceetrs e e e e seae b aesresste e taenssasseesseeeannnnes 105
4.8-2 CIrcuit BreaKer StAESc.ovvieiiiiirieiiiiirieieieieriees e siveasreeieseseae e eeseasstessseeannanee 105
4.8-3 Breaker Transform Table 1 ...t s steeasret vt aste e s e ssaasens 107
4.8-4 Breaker Transform Table 2oooovveiviiiiiiiiieeee ettt s e e 107
4.8-5 Breaker Transform Table 3ccoooviiiiiiiiiiceee ettt 108
5.1-2 t50.elm : Element Description Fileccoocvveveriiinineiinscc e cceneeee e, 110
S5.1-1 50 HP INAUCHION MOLOT ...ooviniiiiiiiiiiiiiieiesctirte e ceortveetsscointesesessannsrssessersesssessesns 111
5.1-3 t50.net : Network Description Fileccccoviiiiiiniieinenineiennecee e, 11
S5.1-4 t50.1nit : INIAlIZAtion File ...c.oeeeeeiiceceei et s r e e 112
S.1-5150.5im : SIMUIALON FILE ..oivivviviiiiiiiiiiie ittt e e ettt seeas 112
5.1-5t50.all : Input File ..o e 112
ST-T RPM VS THIIE .oooiviiiiiiietittsee e et e e et e e e e s e ee st te et et ebe et aateeanstreassensaesssnssstrnsnnnns 113
S8 TE VS RPM oottt nis e e e st etess s sstsanar s b eaesasee s sesbas sacannnnes 113
5.1-9 Stator CurTent VS TIMEocivviiiiiiiiiiiieriiiieeiriii et irrearneessteaeesseseiessssssssssessrnes 113
S5.1-10 RotOr Current VS TIIME ...uviviiviiiiiiiiiieieiieiiee e e ee e e siraseettetartesteseesisensssn sereemanns 113
5.2-1 500 HP INAUCHON MOTOT c.ooiiiioiiiniiiiieeee ettt ctneae s s e s st bt abe e s sane e eeens 114
5.2-2t500.elm : Element Description Fileccccovvinenninneic e, 114
5.2-3 t500.net : Network Description Fileccccovvvvivininnenniniiiinccininnee e, 115
5.2-4 t500.1nit : Initiadization Fileccccooviiririiiiiiiii et 115
5.2-5 t500.51m : Simnulation Fileccocovivviiiiiiiiiniiiirceeee e cs st aes 116
S.2-0RPM V8 TIINE ...ccoovoiiiiiiiieiiiiieteir ettt s s s se s s et veasveneseaaresbtsannssersstesnessees 117
S.2-TTEVSRPM oottt ettt ee e et es s et estesersasetessasresniteessaans 117
5.2-8 Stator CUITENE VS TIIME ..coooiiiiiiiiiiieiiriiieeei e et rtsatrteese st as e aesissseasesseesaemees 117
5.2-0 ROtOr CUITENE VS TIINIE .ovivviieeee ittt ettt ettt e e tb bt s s e e eeeeeseere e eseeenres 117
5.3-1 Synchronous Generator: Switched Loadccoovevviiinccnniciiieiiee e 118
5.3-2 v.elm : Element Description Filec.coccoovviiiinin i 119
5.3-3 v.net : Network Description Filecccooiiiiiiiiiiiiii e 119
5.3-4 v.init : Initialization FIlecc..ccciviiriiiiiiince ettt e veans 120
5.3-5 v.sim : SImulation FIleoooooiiiiir e 120
S0 RPM VS TIITIE .ottt et e e e et e e e s e et aen 122
5.3-7 Terminal Voltage vs TIMEcoccovieiiiiiiie i, 122
5.3-8 Field Voltage vs TiMec.cocoeviiiiiiieiiiiir ittt 122
5.3-9Tepu vS TiME ..o e 122
5.3-10 1d and 1Q VS TIME ..ocovvovieiriiiiie st cie ettt ete ettt e 123

5.3-11 vd and v VS TIME ...cooiiriiiiiiiinenineneieiiiciirs e s sstesssesrercasresssneeransesslenesessssssosss 123
5.4-1 Synchronous Generator: Two Phase Faultcc...ccocoviviiiniininiiiniinnnn 124
5.4-2 w.elm: Element Description Filecccooceiioniiiciennnminneevieinienens 124
5.4-3 w.net: Network Description File ... s enneeeneeens 125
5.4-4 w.init: Initialization File ... 126
5.4-5 w2.sim: Simulation FUe ... s seee e 127
5.4-0 RPM VS TIINE ..ooviiiiiiiiiicn ittt e sseneres s cn s s sabesns s sonesnresans s 128
5.4-7 Torque PU VS TIMEcciiiiriiieiiiiee it eneieieneiinressiersesnessttesne s eseesasessessasssessssenns 128
5.4-8vd and vqQ VS TIME ..c..cooiimiiiiriieiece et ene e sras st s sr e sbssas ssssaasseenae 128
5.4-91d and 1q VS tINE ..eccoovmiiiiiiiiiicici e e s e 125
5.4-10 Lin€ VOIAZE ...ccooviviiiiiiriieeentienteniaiinsire s seesesbessses e sameecstess e sese st asessenaseaee 129
5.4-11 Field VOIAZE ...coveviiciiieciiee ittt st srere s s s esbestes s siebas s b 129
5.5-1 Synchronous Generator: Three Phase Faultcccccooviriiiiinnninniiiiinn, 130
5.5-2 w3.sim: Simulatic s File ..o e 130
5.5-3 RPM VS TIIME .ooiviiiiiiiiiriie sttt sttt en bt s ss s s enre s 131
5.5-4 TOrque PU vS TIINE ...cccooviiiiniiinin et eitreses st eree e sre s sr et se s n e sbesane 131
5.5-5vdand vq vs THME ..o 132
5.5-6 id and 1q VS TIME ...oiviiiiiiiiiieiiiiciie e s 132
5.5-T LiNe VOItAgeoociiiiiiiiiiin ettt s errrcves et st e e e e es e e sbabn e e 132
5.5-8 Field VOIAZEcoiviiiiiiiiiie ettt srae s e sr et 132
5.6-1 Paralleled Synchronous Generatorsc.cccveeveineeencniinennin e e 133
5.6-2 x.elm: Element Description Fileccccoiiiniiii 133
5.6-3 x.net : Network Description FLecccoviiieiiiiniciincn i 135
5.6-4 x.init ; Initialization Filecccooiiiiiiiiiieii e e 136
5.6-5 x2.sim : Simulation File ... 137
5.6-6 RPM VS TIIME ..ottt et s e st b s st 138
5.6-7 Terminal Voltage vs TIMEcccceviiirireriicniieiieniieies ettt erve e 138
5.6-8 Field Voltage vS TIMecccovviiiiiiniieiiiieicsn e et s sene s 138
5.6-9 TePU VS TIME ..oovuiiiiiiiiiieiie ettt eraeeare st sbaaes 138
5.6-10id and iqQ VS TIME ..ooovviieiriiiiiiici e e e e s s s 139
5.6-11 vd and vQ vS TIME ...coovviiiieiiiiiir ettt 139
5.7-1 Paralleled Synchronous Generatorsc..cecevceiivcimniniioninii e 140
5.7-2 x3.sim : Simulation File ..., 140
5.7-3 RPM VS TIME ...ooiiviiiiiiiiiiiiiiecirinc et st st s et sresae e 141
5.7-4 Terminal Voltage vs TIMEc..cccooviviiiiiiiininiiii e 141
5.7-5 Field Voltage vs TIMEc.coecvmiiiiiiiiiiiie i 142
5.7-6 TEPU VS TIHNIE ...oovviiviiiiiiiiiiiii ettt cev sttt ce s bt sasbbe e 142
57-Tid and iq vS TIMEociiiiiiiiiiiiiii 142
5.7-8 vd and vq vs Time e et s ea e b s b e R b er e b b er b e be e 142
B.1-1 Device Driver ROUHNEccocoiiiiiiiiiii it i 157
B.1-2 ELEMENT and CONNECT StUCtaIescccviiievieiviniiniiiie i csieeive i ens 158
B.2-1 Device Input File Entryccccoiviiiiiiiiiiii i it e 160
B.4-1 UNIX Makefile EXamMPLecccccooovviniiiiiiiniie it s 163

-10-

CHAPTER 1
INTRODUCTION
1.1 Thesis Objectives

Shipboard electrical power systems in the U.S. Navy are experiencing a number of

significant changes. These changes include :

- Solid state frequency converters replacing motor generator sets

- The use of switched DC power supplies by many loads

- Centralized and automated power system control

- More frequent use of electronic motor controllers

- Sensitive electronic equipment requiring high quality 60 Hz. power.

- Electric propulsion

- Large combat systems pulse loads.

Considcring the tremendous expense involved with constructing a modern warship, it is
necessary to ensure that the incorporation of these changes into the design of the shipboard
electrical generation and distribution system can be successfully accomplished with no
degradation in the combat capability of the ship. Unfortunately, these changes, along with
the small size of the shipboara generation system make the use of many classical methods
of analyzing power systems inappropriate. A good analysis requires the recognition of the
following properties of the shipboard system:

- The small number of generators (typically only one or two) with the associated small
amount of rotational inertia invalidates any assumption of an ’infinite bus’ operating at a
constant frequency.

- The dynamics of the generator voltage regulators and speed governors have time
constants of an order that are important in the study of most disturbances.

- The dynamics of paralleled generators are coupled through the communication of load

211 -

sharing and bus voltage information.

- Solid state frequency converters and switched power supplies have non-sinusoidal
current characteristics.

- Solid state controllers often greatly modify or even substitute their own dynamics for
the dynamics of the motor they are controlling. The controllers may also have non-sinusoidal
current characteristics.

- High power pulsed loads for advanced combat systems may become a reality in the
near future and deserve study.

- Integrated Electric Drive where propulsien motors and ship’s service power are taken
from the same distribution system can result in large transients from speed changes in the
propulsion system propagating to all of the other loads on the ship.

The purpose of this thesis is to present the theory and design methodology used in the
development of a computer simulation tool (SEPSIP : Shipboard Electrical Plant SImulation
Program) for analyzing both the steady-state and transient behavior of shipboard electrical
power distribution systems.

1.2 Modelling Shipbeard Electrical Power Systems

Electrical Power systems are not unlike any other electrical network in that they are
composed of electrical elements and the topological network connecting the elements. Each
of the elements is defined by a number of constitutive equations that relate the voltages and
currents of its own terminals. The network on the cther hand, is defined by relating the
voltages and terminals of different elements through Kirchhoff’s voltage and current laws.

1.2.1 Elements : Constitutive Equations

The constitutive equations describing an element can be very complicated. In shij.
board electrical power systems, the equations can take on the form of nonlinear differential
equations or even discontinuous functions. Additicnally, elements such as generators and

motors require the mechanical subsystem be described in detail. Other elements, such as

-12 -

switches and circuit breakers, are defined by equations depending on the current state of the
element. All of these factors contribute to make shipboard electrical power systems difficult
to simulate numerically.

1.2.2 Networks : Nodal Equations

The nodal equations are the mathematical expression of Kirchhoff’s voltage and
current laws that define the network topology. Kirchhoff’s current law states that the sum
of the currents entering a node must equal the sum of the currents leaving anode. Kirchhoff’s
voitage law states that the voltage at any node is identical for every element attached to it."
In themselves, the mathematical representation of Kirchhoff’s laws are very simple.
However, the resulting system of nonlinear equations is often stiff which implies that the
eigenvalues of a linearization of the set of nonlinear equations fall in a range spanning
several orders of magnitude.

Stiff systems can be solved nurmerically, but they require special care. The choice of
time increments, integration methods, and simulation time are all affected by how stiff a
system is. If a particular differential equation is known to have a very fast time constant,
one can ignore the dynamics and always use the final value for the variable. If used properly,
the Euler Backward method for integrating differential equations approaches the same
solution. Fast modes can also be eliminated by a host of other model reduction techniques.
(9] [10] [19] [28] (31] In any case, a tool designed to analyze shipboard systems must

incorporate a method for dealing with stiff systems.

1 An expression of Kirchhoff’s Voltage Law that may be more familiar is: The surn of the
voltage drops across the elements of a closed loop is equal to zero. The two definitions are
not exactly identical but are consistent with one another when one accepts the concept of a
voltage being a potential value.

213 -

1.3 Power System Analysis Computer Tools

1.3.1 Desired Features

In light of the characteristics and potential problems associated with modelling
shipboard electrical systems, acomputer analysis tool should have the following capabilities:
* Ability to solve systems of nonlinear differential equations.
* Ability to handle changing network topologies due to the actions of switches and
circuit breakers.
* Ability to handle discontinuous functions.
* Ability to organize the input data into a form that is recognizable as an electrical
network.
* Ability to easily add or subtract elements from the network description.
* Ability to model mechanical subsystems.
* Ability to solve stiff systems.
The requirements on a simulation program that these features impose are not trivial.
In fact, the author is unaware of any commercially available software package that incor-
porate all of the listed capabilities. The software that is available can be split into two
categories: Programs used for analyzing commercial power utilities, and software packages
for solving systems of nonlinear equations.
1.3.2 Simulation Programs for Land Based Power Utilities
There are a number of computer programs which can soive different aspects of the
power systern analysis problem. However none of these programs are optimized for ana-
lyzing shipboard systems. Here is a brief summary of several cxisting programs:
1.3.2.1 EMTP
The Electromagnetic Transients Program (EMTP) [22] is a large-scale retvovk
simulation program originally developed by the Bonneville Power Association in the

1960°s. It is capable of modeling traveling waves on transmission lines, lumpec linear

- 14 -

elements, the saturation of transformers and reactors, the dynamics of synchronous
machines as well as other elements of a power network. EMTP handles stiff systems by
using the Euler Backward method for integration. In general, the program is optimized
for studying the interaction between the dynamics of a number of generators and the
dynamics of the interconnecting transmission lines. The dynamics of the loads are not
considered important. Unfortunately, the dynamics of loads are important in shipboard
systems. Furthermore, EMTP was written in FORTRAN for batch processing and is not
very easy to use interactively.

1.3.2.2 POSSIM

The POwer System SIMulator (POSSIM) [19] is a fifty machine transient stability
program developed by the General Electric Company. POSSIM uses the results of a
network load flow program (LOFYR: LOad Flow and Y-matrix Reduction) as a starting
point for a multi-machine simulatiori. The program allows for dynamics only in the
generators and their associated governors and prime movers. While generators and prime
movers can be modeled in detail, the transmission line and load equations are purely
algebraic. POSSIM also assumes frequency deviations are small. Since load dynamics
are important in shipboard electrical systems and frequency deviations can become large,
P2SSIM’s applicability is limited.

1. X2.3MANSTAB

The M Achine and Network STABility (MANSTAB) [19] program is an extension
of POSSIM which also includes transmission line dynamics. It still does not allow for
dynaizics in any of its loads. Jenerally, MANSTAB is suitable for studying high speed

dynarnics and does not include governor or prime mover models. For this reason,

MANSTARB is nct suitable for simuliting shipboard systems.

-15 -

1.3.2.4 MANTRAP

The MAchine and Network TRAnsient Program (MANTRAP) [4] is a General
Electric Company modification of the Bonneville Power Administration’s Network
Transients Program. It is designed to solve problems concerning the interaction between
a synchronous generator, its excitation system, torsional system, and the power trans-
mission system. MANTRAP has a major drawback in shipboard studies in that its

assumption of an infinite bus does not hold.

1.3.2.5 LOTDYS

The LOng Term DYnamic Simulator (LOTDYS) [21] is designed to study long
term transients of power systems lasting up to 5, 10, or 20 minutes. LOTDYS assumes all
the generators operate at the same speed and the generator transient time constants and
reactances can be ignored. LOTDYS also ignores excitation system dynamics and load
dynamics. Prime mover dynamics, load shedding, and power plant auxiliaries are all
modeled in detail. The constraints on LOTDYS severely limits its usefulness in studying
shipboard systems.

1.3.3 Software Packages for Systems of Nonlinear Equations

Since the models of most electric machines are described as systems of linear or
nonlinear equations, it seems reasonable that a general simulation program could be used
to simulate the shipboard system. On closer examination however, the presently available
software packages are limited in their ability to organize and interconnect several ditferent
machine models into a large network. Writing a shipboard electrical system as one totally
integrated model invites the introduction of numerous programming errors as the input
definition file becomes so large as to be unmanageable. Furthermore, the task of trying to
add or subtract elements from the network becomes formidable. The ability to define ele-
ments in separate blocks is very important in understanding what a simulation is doing, in

debugging an input file, and in making error free changes to the configuration.

-16 -

Many of the nonlinear equation solving packages are unable to solve implicit equations
which is a handicap when trying to interconnect different models. In electrical system
simulations, the variables representing the voltages and currents at the terminals of an
element must be shared with the other elements that connect to the terminals. If implicit
equations are not allowed, one of two methods is nermally used to effect this sharing. The
first method calls for one device explicitly defining the variable while all the remaining
variables implicitly define it. This meihod is very difficult to implement because it forces
one to define variables to be either inputs (implicitly defined) or as outputs (explicitly
defined). Problems arise when one tries to connect two outputs or two inputs together (i.e.
connecting two generators in parallel). Since inreal electrical systems there is no such thing
as an input or an output (voltages and currents depend on the properties of all the elements
attached to a node), this method imposes an artificial constraint on the network definition.
The other method for interconnecting element models is to define the voltages of every
device to be inputs and the currents to be outputs. The voltage at a node is defined as a
separate variable whose derivative is equated to function of the sumn of the currents entering
the ncde. This function should result in the node voltage having a very fast time constant.
Adding the fast time constant however, makes the system stiff and difficult to solve
numerically. It also adds dynamics that are purely fictional and in general, defeats the
purpose of model reduction.
1.3.3.1 CSMP
IBM’s Continuous System Modeling Program (CSMP HI) [24] is a general
purpose program for solving algebraic and differential equations. The program is not
capable of solving implicit equations and is limited in the size of the systems it can model.

Fuor these reasons CSMP should not be used to simulate shipboard systems.

217 -

1.3.3.2 SIMNON

SIMNON is a program for SIMulating NONlinear systems of equations which was
developed by the Lund Institute in Sweden. It is similar in many respects to CSMP and
likewise suffers from its inability to solve implicit equations.

1.3.3.3 ACSL

The Advanced Continuous Simulation Language (ACSL) [1] is another general
purpose simulation program like CSMP and SIMNON. While ACSL does have the ability
to include implicit equations, its execution time slows tremendously when they are
included. ACSL also requires a single input file which can become very large and
unmanageable for even moderately sized power systems.

1.3.4 SEPSIP (Shipboard Electrical Plant SImulation Program)

Since none of the commercially available software was suitable for studying shipboard
electrical distribution systems, the author undertook the task of developing the Shipboard
Electrical Plant SImulation Program (SEPSIP) which incorporates all of the desired
features listed in section 1.3.1. SEPSIP solves the problem of interconnecting device models
by forcing all of the device electrical variables to be input variables. This approach
mathematically isolates all of the elements of the network from one another. A separate
network description specifies how the different input variables relate to one another. The
network description provides values for all of the input variables for every element. The
elements in turn, provide feedback in the form of implicit variables to the network
description as to how well these input variables solve the constitutive equations defining
the element. The manner in which this is accomplished is discussed in chapter 2.

The equations defining an electrical device are subroutines of SEPSIP written in the
C programming Language. This allows for very detailed and complex models to be
incorporated in simulations. It also requires a detailed knowledge of programming in C.

Once a device description has been written however, its inclusion into network descriptions

-18 -

is easy. The concept of using SEPSIP is that initially a number of device descriptions are
written to describe the various elements of a shipboard system. Once this library of devices
has been created, simulations can be conducted by constructing networks interconnecting
the devices models selected from the established library.

1.4 Significance of Thesis

The discussions presented in the previous sections demonstrate the need for a computer
analysis tool for simulating shipboard electrical distribution systems. SEPSIP, the program
written as a part of this thesis, is capable of conducting the desired simulations if time is not
a constraint. The organization and user interface of SEPSIP has been optimized to simulate
electrical distribution systems such as those found onboard warships. SEPSIP still requires
optimization to improve the speed in which it completes simulations. Inthis regard, potential
improvements to SEPSIP are included in chapter 6.

The general nature in which SEPSIP organizes and solves systems of nonlinear equa-
tions has applications outside of electrical power engineering. Any physical system composed
of a topological network interconnecting nonlinear dynamic elements can be modelled with
SEPSIP. The author in fact, has successfully used SEPSIP to conduct a nonlinear dynamic
simulation of the motions of a submarine in response to control surface deflections. For this
simulation devices were created which related the motions of the bare hull and various
appendages to the forces and torques on the center of the submarine. The results of this
simulation correctly predicted dynarmic responses that can not be derived from conventional
linear theory,

1.5 Outline of Thesis

The following chapters are organized to correspond to the four design elements used
to create SEPSIP. The second chapter describes the theory and strategy that define the
requirements and properties of SEPSIP. The third chapter is a "user’s manual" that describes

how the requirements of chapter 2 were impiemented. Chapter four presents eight device

.19 -

descriptions created for SEPSIP to demonstrate its usefulness. Chapter five uses the devices
of chapter four to conduct actual simulations and where possible, to verify the results from
SEPSIP with known responses.

Chapter six provides an assessment of SEPSIP and lists a number of possible
improvements for the program. The appendices provide listings of source code and

instructions for adding new device descriptions to SEPSIP.

=20 -

CHAPTER 2
THEORY OF THE COMPUTATIONAL METHOD

2.1 General Strategy

The principle underlying the organization of SEPSIP is that the constitutive relations
of the elements of a power system should be separated from the nodal equations describing
the network interconnecting the elements. In electrical systems, a node is the electrical
connection between two or more elements. The current entering or leaving a node must
conform to Kirchhoff’s Current Law which states that the sum of the currents entering a node
is equal to the sum of the currents leaving the node. Additionally, the voltage at a node is
the same for every element attached to it. The role of the constitutive relations is to relate
the voltages of the nodes an element is connected to, to the currents resulting from the element
that enter and leave those same nodes. These principles are fulfilled in SEPSIP by implicitly
defining all of the network voltages, currents, and other variables within the constitutive
equations defining the individual elements. During each interval of the time domain sirau -
lation, the network variables are systematically varied so that Kirchhoff’s current law is
always satisfied and until all the implicitly defined constitutive equations are satisfied.

The advantage to this method is that each element can be treated separately from all
the other elements. The element models need not be concemed with the other elements they
are connected to. It is the responsibility of the network equations to provide input variables
that satisfy the element’s consti itive relations, and still satisfy the nodal equations. The
purpose of defining the constitutive relations implicitly is to provide feedback to the network
equations that indicate how far off the input variables provided by the network are from
satisfying the constitutive relations. This feedback is used to make corrections to the input
variables until all of the constitutive relations are satisfied.

To implicitly define the constitutive equations for the element, they are put into the

form:

221 -

F&X)=0) (1]
where

x = Network Variable Vector

F()= A vector operator (potentially nonlinear) that describes the constitutive equations.

If an x is chosen so that the constitutive equations are not fulfilled, then {1] will not be true.
Instead, an implicit vector can be defined:

I=F®x) [2

Each element then, will have its own x and corresponding implicit vector. The role of

the network is to choose appropriate x vectors that satisfy the network nodal equations and

result in the / vectors having zero length.

EXAMPLE:

A resistor is a simple example for illustrating this principle of defining constitutive
equations implicitly. A resistor is a device that connects two nodes and satisfies Ohm’s Law.
If we define the voltages at the two nodes to be v, and v, and the current entering the resistor
from the two nodes to be i, and i,, then the constitutive relations for the resistor are:

Vo= Vi = iR
ih+i,=0
where

R = Resistance

Figure 2.1-1 Resistor

R

v v
LN g

-22 -

Since a resistor is a linear device, the constitutive relation can be expressed as a matrix

equation of the form:

Since a resistor is a linear element, the matrix in the above equation is also the Jacobian
matrix for the device.
2.2 Device Definitions

In the language of SEPSIP, a device is a mathematical model of a piece of electrical
equipment. Examples of devices are models of synchronous generators, transmission lines,
breakers, induction motors, and resistive loads. A device is differentiated from an element
in that an element is a particular example of a device. For example, element GTG1 may
represent the 2000 KW gas turbine generator located in the forward engine room of a
destroyer. Part of GTG1'’s description would be that it is a device of type KY103 which
indicates which equations should be used to model GTG1. There could also be a GTG2 of
type KY103. A device is characterized by the equations which relate the variables that
represent the interaction of the device with everything else external to itself. Examples of
device variables include voltages, currents, speeds, forces, torques, position of switches,
ternperature, and pressure. These variables can be organized into a number of categories
according to the nature of their interaction between the device and the world external to the

device.

.23

Figure 2.2-1 SEPSIP Variables

SEPSIP Variable Interactions

Node Voltug_es

Input Variables > External Output >
Variables
ELEMENT A
§ Implicit Variables DEVICE 1 é External Input
2 State Variables Variables ¥
E £
4 3
a &
x Input Variables External Output L
6 . > &
s Variables 2
;6 ELEMENT B
Implicit Variables DEVICE 2 External Input
State Variables Veriables

2.2.1 Input Variables : Interacting with the Network

Input variables are those variables which interact with other devices through the
network description. The network description consists of a number of nodes each having
one or more subnodes. The node itself has no mathematical significance, it merely organizes
subnodes into easily understood groups. The subnodes on the other hand, specify which
network law should be applied to the input variables attached to it. Every input variable is
assigned to one and only one subnode of a node. Each subnode however, can have an
unlimited number of input variables assigned to it. There are four types of subnodes to
which a variable can be connected to: voltage subnodes, reference voltage subnodes, current
subnodes and reference current subnodes.

As an example, a node connecting a three phase motor to a transmission line would
contain six subnodes: 3 voltage subnodes to relate each of the voltage phases and 3 current

subnodes to relate each of the current phases.

-4 -

2.2.1.1 Voltage Subnodes

All of the input variables attached to a voltage subnode are assigned the same vaiue
at all ttmes. This voltage subnode value becomes one of the system variables that must
be solved for. Although primarily used for communicating voltages, a voltage subnode
can also be used to communicate other information between two devices. Exampies include
load sharing information and load shedding information.

2.2.1.2 Reference Voltage Subnodes

A reference voltage subnode is identical to a voltage subnode with the exception that
the subnode voltage is specified as a fixed value and therefore is not a system variable. A
reference voltage subnode must be used to set the ground potential, and may be used to
set fixed operating points for certain elements.

2.2.1.3 Current Subnodes

A current subnode relates the variables attached to it by a conservation law which in
electrical terms is known as Kirchhoff’s Current Law. This law sta*zs that the sum of the
variables attached to a current subnode is identically zero. In SEPSIP, this is accomplished
by assigning the first variable attached to a current subnode the negative sum of the other
attached variables. All of the input variables after the first one connected to the current
subnode become system variables that must be solved for. The convention for current
direction is that the current always enters the device and leaves a subnode.

2.2.1.4 Reference Current Subnodes

A reference current subnode does not satisfy Kirchhoff’s Current Law. All of the
input variables attached to it become system variables. In most simulations, Kirchhoff’s
Current Law at one subnode is a linear combination of all the Kirchhofi’s Current Law
equations from the other current subnodes. To specify the law again would result in either
a system with too many implicit variables, or one which has a singular system Jacobian

matrix.

.25

2.2.2 Parameters

Parameters are variables that do not change through out a simulation. They are used
when defining an element to customize a device model to fit the properties of a particular
electrical component. Examples of parameters are resistances, inductances, capacitances,
time constants, bias voltages, and saturation points.
2.2.3 Implicit Definition of Input Variables

An important requirement for the equations describing a device is that the input
variables must be implicitly defined. The network balancinr al ,orithms determine the values
the input variables take on. The device description provides information (feedback) as to
how closely the implicit equations are satisfied through implicit variables. Implicit variables
have a value of zero when their corresponding implicit equations are satisfied. One way to
look at this process is to view a device as a transfer function between the input variables
and the implicit variables. The Network then uses the implicit variables to iteratively
generate the input variables until the implicit variables are driven to zero.

2.2.4 Implicit Variable Selection : Rotating and Translating Axes

One has a lot of latitude in defining the implicit variables. The easiest method is to
write the constitutive equatiorns, move everything over to one side, then define this quantity
to be the implicit variable. This is the technique used in the last example which modelled
the resistor, Unfortunately, this methed can result in numerical instability when dealing

with nonlinear devices.

Figure 2.2.4-1 Diode

- 26 -

Take a diode for example. A simple model for a diode is a switch that allows positive
current to flow when the voltage across it 0.6 volts. Once current is flowing through the
diode, the voltage drop across it is maintained at 0.6 volts. As with the resistor, the input
variables are defined: v, and v, for the voltages, and i, and i, for the currents. The constitutive
relations are:

i,=0 P V=, <0.6
Vo—v, =06 : i,>0

iy+i;=0
The easy method of defining the constitutive equations would be to define I; and I, to

I, P Ve—w < 0.6}
I, =

Vo= v, =06 : v,—v,>06
I =iy+1i,

This definition unfortunately, works badly in many circumstances. To begin with, the
definition allows for negative current to flow when the diode is forward biased. Another
problem is that the implicit variable 1, is discontinuous at the boundary where v, - v, = 0.6.
This type of discontinuity will usually cause much difficulty when trying to iteratively solve
equations with most standard techniques (Such as the Newton Raphson method used in
SEPSIP). In general, keeping the highest possible order derivative continuous across a
boundary will help tremendously in achieving a numerically stable solution.

The definition of I, can be greatly improved by defining a new set of axes centered
on the boundary point (v =v,- v, = 0.6 and i, = 0) and rotated 45 degrees. 'The transformation

matrix to the new x and y variables is given by:

X _}f_é— 1 1\[vo—v,—0.6
v)o2l-1 1 i,

The constitutive equation for I, becomes:

-27.

y = Ul
1, can then be defined to be:
I,=y -l

This definition for I is continuous. The discontinuity has been moved to the first
derivative. For simple simulations where the voltage across the diode is not changing very
rapidly compared to the simulation time increment, this definition for I, will normally work.
Normally, one would like to have even higher order derivatives continuous to ensure
numerical stability. This can only truly be done in this case by changing the constitutive
equation to reflect more characteristics of a physical diode.

Even if the constitutive law of the diode is changed to make the slope continuous, the
method outlined above for rotating axes should still be used. This is because most numerical
methods rely on the partial derivatives ot the implicit variables with respect to the input
variables in the form of a Jacobian Matrix to update the last guess for the input variable. A
very steep slope results in a Jacobian element being very large and the potential of having
a floating point overflow when the Jacobian matrix is created or inverted. An overflow can
also occur when the corrections to the input variables cause the recalculated implicit variable
to overflow. In general, when the slope of the v/i characteristic has a section with a very
steep slope, the axes should be rotated so that the maximum slope is minimized.

Another consideration when defining implicit variables is choosing the magnitude
correctly. Since an exact solution which results in all the implicit variables being identically
zero may not be possible due to time constraints or round off error, every iterative scheme
relies on a method for determining when the implicit variables are close enough to zero.
One way is to compare the root mean square of the implicit variables with a preset number.
If this method is used, the order of magnitude of all the implicit variables should be the same

for the same order of magnitude inputs. Otherwise, certain variables would be allowed to

-28 -

vary more than other variables. For example, one voltage may be known to within a 1%
error while another may be known to within a 0.1% error. Of course, if this effect is desired,
one can easily weight an implicit variable by an arbitrary constant.
2.2.5 Data Storage : State Variables

A number of device models require the condition of the device during the last time
increment be known. This information is conveyed to the model through state variables.
Examples of states include the voltage and current of a capacitor or inductor, position of
switches, position of breakers, time since a specific event occurred, and peak values of
specific variables. One could conceivably use the state variables to store the time history
of a variable to determine averages or other statistical or spectral properties.

2.2.6 External Inputs

External Inputs allow the user to interact with device models. The user can create a
queue which contains the values an external input takes on at specified times. Uses for
external inputs include position of switches, control waveforms, reference voltages, input
waveforms from another program, controlling the configuration of an element.

2.2.7 External Qutputs

External Outputs (along with External Inputs and Voliage Subnode voltages) are
variables the user is allowed to monitor during the simulation. Therefore, any quantity that
a user may be interested in should be defined as an external output variable. The user still
has the choice as to which external outputs to see, so there is no problem with defining a
number of output variables. External Output variables can also be stored in files for plotting
at a later time.

2.2.8 Integration Techniques

Constimtive equations for devices often require the integration of a time derivative.

Any textbook on numerical methods will provide a large selection of integration algorithms

along with methods of determining their accuracy and stability. For most simulations

-29.

however, there are three methods that work well. The {irst is the Euler Forward method
which is considered an explicit technique since it requires knowldege only of the values of
the variables during the past time step.

dx

dt
X =x,,+y,,dt

The Euler Forward method is particularly suited for occasions when the differential
equation has a strong mode that is much slower than the simulation time step. For systems
withmany modes, the Euler Forward method can eliminate the need to add additional implicit
variables and associated input variables. The drawback of the Euler Forward method is that
it requires small time steps for fast modes.

The Euler Backward method is similar to the Euler Forward method with the exception
that the variables are evaluated at their present values instead of their old values. The Euler
Backward Method is thus an implicit scheme since it uses present values to specify another
present value. Since most devices will have several implicit variables to offset input vari-
ables, there is usually no extra computational burden in using an implicit scheme.

x=x,,+dty

The Euler Backward method should normally be used where the possibility exists that
the time increment will be longer than the time constant associated with any of the differential
equations.

The implicitly defined Trapezoidal Method combines the Euler Forward and Backward

methods:
dt
x=xald+ _2— (y+yold)

Whenever possible, one should use the trapezoidal rule due to its greater accuracy.
However, when its use requires the addition of input variables to compensate for additional

implicit variables, the Euler forward method should be considered.

230 -

There also exists amodified Trapezoidal method where the weights fory and y,, differ
from0.5. Weighting y slightly more helps prevent instabilities when the time step approaches
the characteristic time constant of the equation.

2.2.9 Modelling Transfer Functions

Many devices have components that are modelled as transfer functions using Laplace

Transforms. A common example has the form:

_As+B
“Cs+D

Since % = Xs, the Trapezoidal Method can be modified to provide an Implicit Variable

d d
I =A(x—x,,) +[Et)5(x + X)) = C (Y = You) = (%)D()’ + Vo)

This equation can be incorporated in the definition of a more complicated device or can be

defined seperately as its own device.
2.2.10 Jacobian Construction

SEPSIP uses a Jacobian Matrix to determine the corrections to the input variables in
order to drive the implicit variables to zero. The elements of the Jacobian Matrix are the
partial derivatives of the implicit variables with respect to all of the input variables. In other
words. the Jacobian Matrix gives the slopes of the implicit surface in the directions of each

of the input variables.

(o1, I, o,)

o, oI, dl,
J=|dx, ox o

or, oI, ol

231 -

SEPSIP allows for the Jacobian to be calculated in two different methods. The device
description can generate the Jacobian, or the network will approximate it. Normally the
device description should create the Jacobian in the interest of speed and control over how
it is created. It usually isn’t too difficult to come up with analytic expressions describing
the partials of the implicit variables. If desired, the network approximates the Jacobian by
varying the input variables a small amount in either direction, and noting how much the
implicit variables change. The change in the implicit variable divided by the change in an
input variable is usually a fair approximation for the partial derivative.

Another advantage to having the device description generate the Jacobian is that the
device description doesn’t have to generate the real Jacobian matrix. If a value larger in
magnitude than the partial derivative is substituted for an element of the Jacobian Matrix,
the corrections to the input variables will result in the implicit variable being driven to zero
more slowly. This can be advantageous near discontinuities of the constitutive equations
and discontinuities in their first derivatives where one may want to retard the transition from
one side of a discontinuity to the other.

Replacing an element of a Jacobian Matrix with a value smaller in magnitude than the
partial derivative will usually result in a numerically unstable simulation. The corrections
to the input variables will be larger than needed to drive the implicit variabie to zero. The
implicit variable will usually oscillate around zero and grow in magnitude with time.

2.3 ELEMENT DESCRIPTIONS

As described earlier, an element is a particular example of a device. A resistor for
example, could be a device, while R11 which is a specific circuit element of type resistor
having a resistance of 47 ohms would be an element. Elements are differentiated from each
other by their names, device type, and parameter specification. The first section of the input

file for SEPSIP contains all of the element definitions and parameter assignments.

2.4 NETWORK Description

The network is described by assigning all of the input variables from all of the elements
to one and only one subnode. The subnodes in turn, are organized into groups called nodes.
The purpose of the subnode is to relate the input variables of one element to the input variables
of another variable. The nature of the relationship is determined by specifying the subnode
to be either a voltage subnode or a current subnode. The relationship is further modified if
the subnode is classified as a reference subnode.

Once the network is specified, system variables can be defined. System variables are
members of the smallest subset of the input variables from which all of the other input variables
can be derived from by using the relational properties of the subnodes. For a well defined
simulation, the number of system variables will equal the total number of implicit variables.
1f the two numbers are not equal, there will either be many solutions to the simulation, or
none at all. SEPSIP will not conduct a simulation unless the number of system variable does

indeed equal the total number of implicit variables.
2.4.1 Voltage Subnodes

The input variables at a voltage subnode are all set equal to the subnode voltage which
is a system variable (unless designated a reference subnode). As its name implies, a voltage
subnode’s purpose is to specify potential values. The potential value need not only be
voltages however. Temperature, pressure, position, deflection, and Boolean states can also
be communicated through voltage subnodes.

2.4.2 Current Subnodes

Input variables assigned to a current subnode satisfy Kirchhoff’s Current Law (unless
designated a reference subnode). The first input variable attached to the current subnode
is set equal to the negative sum of all the remaining input variables attached to the subnode.

All of the remaining input variables are system variables. The current subnode can therefore

-33.

be used where input variables must satisfy a conservation law through the network. Forces,
torques, fluid flow rates and power flow can also be handled in addition to electrical current
by the current subnode.

2.5 Reference Subnodes

To match the number of implicit variables with the number of system variables or to
ensure there is a unique solution, it may be necessary to designate one or more subnodes a
reference subnode. If a voltage subnode is specified to be a reference subnode, its value is
always set to a user selected preset value. The normal usage would be to declare the ground
voltage subnode to be a reference with zero value. Reference voltage subnodes can also be
used to simulate power supply voltage busses.

Reference current subnodes do not satisfy Kirchhoff’s current law. All of the input
variables attached to them are designated system variables. In a closed system (i.e. one where
the conservation law applies at every current subnode and in every element through out the
system), Kirchhoff’s current law at one of the current subnodes will be a linear combination
of all the other Kirchhoff’s current law equations at the other current subnodes. Therefore,
the sum of the currents entering the reference subnode will automatically be zero.

Reference current subnodes also provide a way to leave input variables unterminated.
This property can be used by device descriptions to increase the number of implicit variables
used to represent the relations defining the device. Normally, when modelling electrical
devices, one implicit equation should be provided for each terminal (which corresponds to
two input variables : one voltage, and one current). This can be seen if we define:

m = number of terminals (voltage-current pairs) in the system

n = number of subnodes in the system

r; = number of reference current subnodes

1, = number of reference voltage subnodes

N, = number of system variables due to voltage subnodes

N, = number of system variables due to current subnodes
N, = number of implicit equations

then

34

N,=n-r,
Ni=mn-n+r,
Ne=Ni+N,=m-r, +71

Since electrical devices deal with potential differences, rather than with the absolute
magnitude of the potential, a reference potential is required to fix one of the nodes. As
explained above, a reference current subnode is also required to prevent a singular system.
The total number of implicit variables must therefore equal the number of terminals.

If a device description requires more implicit variables than it has terminals, extra input
variables must be provided for the excess implicit variables. These variables should be
attached to a reference current subnode or to separate voltage subnodes.

2.6 Conducting the Simulation

The simulation of the system described by the network description is carried out by
solving a system of nonlinear equations at each time increment. Each nonlinear equation
corresponds to the definition of an implicit variable which has a value of zero when the system
is balanced. To balance the system, an initial guess is first made for all the system variables.
For the first time step, the user may specify the guess, otherwise the system variables are all
set to zero. For the remaining time steps, the results of the previous time step are used. The
total number of independent system variables is considerably smaller than the total number
of input variables since a number of the input variables are related through the network
definition. For example, all the input variables attached to a voltage subnode are always
given the same value. From the system variables, all of the input variables to each of the
elements is derived from a description of the network topology. Using these values of the
input variables, the implicit variables are calculated for each of the elements. If the mean
square value of all the implicit variables are below a specified threshold, then the system is
considered balanced. If the mean square value is larger than the threshold, then the system

Jacobian matrix is constructed. The system Jacobian matrix consists of the partial derivatives

-35.

of the implicit variables with respect to each of the independent system variables. It is
fabricated by piecing together the Jacobian matrices of all the elements. Inverting and
multiplying the system Jacobian matrix by the vector containing the implicit variables pro-
vides a correction te the independent system variables. Once the corrections are subtracted
from the independent system variables, the implicit variables are recalculated and the
balancing process continues until the system is balanced. Once balanced, results are printed,
state variables and external input variables are updated, and the time counter is incremented.
In this manner, the simulation is stepped through time.

2.6.1 Setup

During the setup stage, two arrays of data structures are created to describe the network
topology in a compact form. The first array describes all of the independent system variables
and how they relate to the input variables of the individual elements. The second array
keeps track of which implicit variable belongs to which element.

Each data structure for the system variable array consists of three subarrays. The
number of entries in all three subarrays is equal to the number of input variables associated
with the system variable. For a non-reference voltage subnode, all of the input variables
attachedto it will be associated with one system variable and will therefore each have entries
in the three subarrays. A reference voltage subnode has a specified value and therefore is
not associated with any of the system variables. For a reference current subnode, all of the
input variables attached to it are separate system variables whose corresponding subarrays
will contain only one entry. A non-reference current subnode’s first input variable is set
equal to the negative sum of the remaining input variables. Each of the remaining input
variables is associated with one system variable whose subarrays have two elements: The
first corresponding to the first input variable; and the second corresponding to the remaining

input variable.

.36 -

The first subarray for each system variable data structure contains integer offsets to
the array of elements. The second subarray contains integer offsets to the input variable list
within the element description. The third subarray contains a multiplier that is used in
constructing the system Jacobian matrix. Normally this multiplier has a value of 1.0, but
for the special case of a system variable corresponding to an input variable attached to a
non-reference current subnode, the first entry has a value of -1.0 to account for the fact that
the first vanable associated with a current subnode is the negative sum of the remaining
variables.

The data structures for the implicit variable structure array contain only two integer
offsets. The first is an offset for the array of elements and the second is the offset in the
array of implicit variables for the element. In this manner, all of the implicit variables can
easily be referenced.

The setup section also creates an implicit variable cross-reference array in the
description of each element that specifies which entry in the implicit variable structure array
to which each of the implicit variables of the element corresponds.

2.6.2 Initialization

Before the simulation starts, all of the input variables, state variables, and external
input variables are initialized. The initial values for the state variables are actually applied
to the time increment immediately before the start of the simulaticn (old state variables).
The input variables are initialized in a two step process. First, an array of system input
variables is initialized. Then from the network description, the input variables for all of the
elements are derived. If a variable is not explicitly initialized by the user, it is set to zero.

2.6.3 Updating External Inputs

The external input variables are updated at each time increment by scanning the
external input queue for variable changes that occur before the present system time. All of

the external input variables scheduled for a change in value are then updated.

-37 -

2.6.4 Balancing the System
The process of finding a set of input variables that simultaneously satisfies all the
network equations and all the implicit equations of the elements is known as balancing the
system. The procedure involves calculating the implicit variables, constructing a system
Jacobian matrix, calculating corrections to the input variables, and repeating the process
until the implicit variables are within tolerable limits of zero.
2.6.4.1 Calculating Implicit Variables

The first step in balancing the system is calculating tne implicit variables. The
functions describing each of the elements are called one at a time and provided with the
appropriate input variables. These functions use the input variables along with the external
input variables and the state variables calculated in the previous time step to generate the
implicit variables.

Once all of the implicit variables have been calculated, they are assembled into an
implict variable array in the order specified in the implicit variable structure array con-
structed in the setup phase. The mean square value of all the implicit variables is also
calculated and if its magnitude is smaller than a predefined amount, the sytem is considered
balanced and the program jumps to printing the results out.

2.6.4.2 Manufacturing System Jacobian Matrix

The system Jacobian matrix is generated by piecing together the Jacobian matrices
for each of the elements. The elemental Jacobian matrix can be generated by the function
which also produces the implicit variables, or it can be approximated numerically. The
function that returns the implicit variables also returns a flag indicating whether or not the
Jacobian matrix was calculated. If the matrix was not constructed, it is manufactured by

varying each of the input variables slightly and approximating the partial derivatives by

-38-

dividing the differences between the resulting implicit variables by the differences of the
input variables. The percentage change and the minimum change in the input variables
can be specified by the operator.

The system Jacobian Matrix is constructed one column at a time. Each column has
its associated structure in the input variable structure array that specifies which elements
and input variables contribute to that column. Knowing the element and the input variable
is enough knowledge to extract the appropriate column from the element Jacobian matrix.
Which row in the system Jacobian matrix to insert each of the entries of the element Jacobian
column is provided by the implicit variable cross reference array. By stepping through
each of the structures of the input variable structure array, the entire system Jacobian matrix
can be constructed.

One result of separating the creation of the system Jacobian matrix from the element
Jacobian matrices is that extra work is done in creating columns in the element Jacobian
matrices that do not contribute anything to the System Jacobian. This arises whenever an
input variable is attached to a reference voltage subnode. Since a reference voltage node

always has a constant voltage, it does not contribute a system variable.

-39.

Figure 2.6.4.2-1
Element Array

Alllelml elm]l Aldelm?2
B2 imp. elm?2 B|6|imp.
Ci3lindex C|?7|index
D4 D8
abedef abecdef

A AW

Bl _Z B U

cL Y C

DX D N

elml Jacobian elm?2 Jacobian
s t uv w xy z

1

21 7 System

3. Y Jacobian

4 -X

5 W

6| U

7

gV

Implicit Arrays

Struct

elml

elml

elm]1

elml

elm?

elm?

elm?2

elm?2

wlelsslt g wleliss

Input Var. Arrays

Data Data ptr

EREERERE

Structures
s| |SP elml/b| 1
t] (tp elm2ic]| 1
u| [Up elmZje| |
v [VP
w{ (WD elmiial -1
x| |XP elm2ial |
yl |\YP
zl 2P

2.6.4.3 Calculating Variable Corrections via Newton-Raphson
Once the system Jacobian matrix J and the implicit variable vector i are created,

correctionsto the input variable vector x car be calculated viathe Newton-Raphson method.
The matrix equationJx =/ is solved using Gaussian Elimination with partial pivoting, If
the Jacobian Matrix is singular, the Gaussian Elimination will fail due to the inability to
get a non-zero number in the pivot element. If this occurs, the simulation halts with an
error message.

After the corrections have been applied to the input variable vector, the implicit
variables are recalculated and the process continues until the mean error of the implict
variables is within tolerable limits of zero, or until a predetermined number of iterations
have been made. If the iteration limit is reached, the simulation has failed to converge on
a solution is halted with an error message.

2.6.5 Printing Results

Since the operator can specify a printing time increment different fromn the simulation
time increment, a test is made to determine whether or not any results should be printed. If
the test is successful, all of the variables designated to be displayed in the simulation section
of the input file are printed to the screen, or to a file if one was specified by the operator.

2.6.6 Updating State Variables and Time Counter

The state variables are produced by the function that also calculates the implicit
variables. Once the system is balanced, these state variables are moved to another array
called the old state variable array which can be used during the next time increment.

The time variable is also updated by adding the specified time increment, If the time
variable exceeds the maximum time of the simulation, the simulation is terminated and

control retumns back to the main menu of SEPSIP.

_41 -

2.6.7 Potential Problems

2.6.7.1 Numerical Instability

The Newton-Raphson method is only guaranteed to converge on a solution if the
initial guess is sufficiently close to the solution. Unfortunately, it is very difficult to
determine how close, ’sufficiently close’ is. If the time increment is small enough, the
i 1put variables should not change appreciably. Hence using the results of the previous
time increment as a first guess usually produces good results. There are two occasions
however, when this may not hold. First, during the initial balancing of the system, the
initial guesses are provided by the user. If these guesses are not safficiently close to the
solution, the system will not converge. Another situation that may occur during the
execution of a simulation is that a discrete event may occur that changes the configuration.
The solution to the new configuration may not be sufficiently ciose to the solution of the
old configuration to guarantee stability.

2.6.7.2 Singular Jacobian Matrix

The simulation can also fail if the System Jacobian Matrix is singular and therefore
uninvertable. This can occur if the network is defined poorly or if a discrete event resuits
in a poorly defined network. Systems incorporating switches or breakers are particularly
susceptible to this problem. (If two switches are connected in series and both opened, their
implicit variables would be set equal to the terminal currents. The current subnode con-
necting the two switches would further equate the two attached currents and thereby
overspecify them. Furthermore, the voltage of the connecting voltage subnode would not
be implicitly defined anywhere.)
2.6.7.3 Non-Unique Solutions

In nonlinear systems, it is often possible for more than one set of wput variables to
satisfy all of the constitutive relations and network equations. For these systems, it is very

important to provide the solution with the best possible intitial guesses in order for the

_472 -

system to converge on the desired solution. Once the simulation has started, using the
results of the previous time step as an initial guess should normally result in convergence
to the proper solution. This method for determing the initial input variables can still fail
during time steps in which system reconfigurations have taken place that result in certain

variables changing considerably over the one time increment.

.43 -

CHAPTER 3
SEPSIP
SHIPBOARD ELECTRICAL PLANT
SIMULATION PROGRAM

3.1 Introduction

SEPSIP is a simulation program optimized for solving lumped parameter systems with
elements that are described by nonlinear constitutive equations. The program is written in
the C programming language and is presently running under the UNIX operating system on
Digital Equipment Corporation VAX WorkstationIT and VAX Workstation 2000 computers.
The files are located in the sepsip subdirectory of the 13.411 Course Locker of MIT’s Project
ATHENA. SEPSIP should be easily adapted to other computers and operating systems since
a minimum of machine specific routines have been used.

Running a simulation with SEPSIP is a three stage process. First, an input file must be
created with a text editor such as EMACS. The simulation is then carried out by the SEPSIP
program with the results printed to an output file. Finally, the output file is printed directly
out or sent to a plotting program such as NORPLOT for viewing.

This chapter describes how to create an input file and lists the commands available
when executing SEPSIP. Actual examples of input files can be found in Chapter 5.

3.2 Data Entry Conventiions

Much effort has been made to ease the task of creating the input files for SEPSIP. The
input files are very loosely structured in the sense that data need not be entered in specific
columns, comments can be inserted anywhere, other files can be referenced through "include"

statements, and to a certain degree, the order of lines is not rigid.

3.2.1 Acceptable Characters

Virtually all of the printing ASCII characters can be u»cd in naming elements, vari-
ables, nodes and subnodes. To prevent confusing the program, in addition to "white"

characters (spaces, tabs, newlines) the following characters should be avoided entirely:

Additionally, the following characters should not be used for the first character:
'#4-0123456789
These characters should not be used for the last character:
A
3.2.2 Reserved Names
The following keywords should not be used for naming elements, variables, nodes or
subnodes:
end
external
include
initial

rode
simulation

All other keywords can be used, but for clarity, should be avoided.

3.2.3 Specifying Variables and Subnodes

Variables are specified in the following format:
element : variable
The colon is used to delimit the element name from the variable name. Tabs and / or spaces
between the element name and the colon and between the variable name and colon are
optional.
Subnodes are similarly described:

node : subnode

-45 -

3.2.4 Numerical Entries

The following formats for entering numbers are valid:

123 integer
-123.456 floating point
123e-4 exponential
+123E3 exponential

3.2.5 White Characters

Spaces and tabs are used to separate data elements. Any nu. nber and combination of
spaces and tabs may be used. A data line is terminated with a "newline" character (also
known as a carriage retumn).
3.2.6 Continuation Lines

In general, each line of the input file must be shorter than 80 characters. This usually
is not a problem since there isn't very much information that must be included on one data
line. Continuation lines are allowed however, in the Network Description section. This
section requires the grouping of a number of variables together. It is therefore quite likely
that more than 80 characters would be required. Consequently, for this section alone, a line
can be terminated with \ or ... to indicate the data continues on the following line.
3.2.7 Case Sensitivity

Keywords are case insensitive (Both upper and lower case letters accepted), all other
entries are case sensitive.
3.2.8 Comment Lines

Any Line beginning with a ! or # is ignored. Hence comment lines can be inserted

anywhere within the file by preceding them with ! or #. Blank lines are also ignored.

- 46 -

3.3 Input File Generation

SEPSIP requires an input file to describe the simulation. This file consists of four
sections: Element Description, Network Description, Initialization, and Simulation

Description. The input file can be created or edited by any text editor.

Figure 3.3-1 Sample SEPSIP Input File

! SEPSIP Input File
1
! Element Description
device 1 elm la
par T 1.0 ~
par 2 3
end
device 2 elm 2
par_T 2.0e6
end

! Network Descriptien

NETWORK

'

NODE gnd
rv:volt = 0,0 = elm la:v0 = elm 2:v0
ri:current = elm la:i0 = elm 2:i0
end

NODE A
v: volt = elm la:vl = elm 2:vl
i: current = :lm_la:il = elm 2:il

end
! Initialization Section
INITIALIZE
elm la : state_ 1 37
elm la : vl 32.2
end”

NODE VOLTAGE INITIALIZATION
A:volt 100.0
and

EXTERNAL INPUTS INITIALIZATION
elm 2 : ext in 24
end -

!Simulation Section
SIMULATION
Display
elm la : ext out 1
A : volt - =
and
TIME_STEP 1
PRINT STEP 5
TMIN — 0.
TMAX 1

.47 -

3.3.1 Organization -- Using INCLUDE Files

A common problem among many simulation programs is the requirement that all the
necessary information be contained in one file. For large simulations, this results in long
input files thart are difficult to manage and edit. SEPSIP addresses this problem with the
include kevword. Outside any data block (A data block begins with a keyword and con-
cludes with the end statement) the keyword include followed by a filename results in the
insertion of the contents of the 'included’ file at the location of the include keyword.
‘Included’ files may also contain include keywords. This feature allows one to organize
the input file in a number of ways. Figure 3.3.1-1 shows one method of using the include
kevword.

Figure 3.3.1-1 Using the INCLUDE Keyword

! t.all
f t.elm containa the element descriptiocns

include t.elm
! t.net contains the network description

include t.net
! t.init contains the initialization section

include t.init
! t.sim contains the simulation section

include t.sim

3.3.2 ELEMENT Description
The first section of the SEPSIP input file is the ELEMENT Description. This section
defines the elements and specifies all of the parameters for the elements. A data block for

defining an element has the following format:

Figure 3.3.2-1 ELEMENT Description

element_name device_name
parameter value
parameter value
parameter value

end

Element_name can be any single word as long as it conforms to the convenuons of

Section 3.2. Device_name is the name of the particular device. A list of available devices

S48 -

cian be obtained by running SEPSIP and entering dd at the first prompt. To obtain more
information on a particular device (including a list of parameters) enter dD device_name.
A listing of all the device descriptions can be written to a file by entering dw filename.

When defining an element, all of the parameters must be specified. An error is gen-
erated whenever an end statement is reached and a'l of the parameters have not been provided
with values.

Elements can be defined that are not used in the network description. This allows for
the creation of a 'junk box’ of parts that can be used when building and modifying the
network description. A warning will be generated when an element is defined but not used.
It is also a good idea not to have too many ’spare elements’ since execution time will slow
down somewhat.

The Element Description section ends when the keyword network is encountered.
3.3.3 NETWORK Description

The keyword network signals the beginning of the network description. This section
consists of data blocks that describe each of the network nodes. All of the lines within the
data block (except the first and last) describe one subnode. Each data block has the format:

Figure 3.3.3-1 NETWORK Description

NODE node_name
subnode_ind : subnode_name = elm : var = elm : var
subnode_ind : subnode_name = elm : var = elm : var
END

Node_name and subnode_narme once again, can be any word following the con-
ventions of section 3.2. Node_name must also be distinct from any of the element names
as well. Subnode_ind specifies the type of subnode and consists of up to three characters,

two of which are optional. The format of the subnode_ind is:

Reference Indicator: {optional] Anr as the first characterof subnode_ind

specifies that subnode to be a reference subnode.

- 49 -

Subnode Type Indicator : [mandatory] The next character must be either
an i or a v to specify the subnode as either a current or voltage subnode.
Grouping Indicator : [optional] Subnode_ind canend with adigit greater

than zero to specify the number of consecutive subnodes that should be created.

If this digit is greater than one. then that number of consecutive subnodes are

created. The first subnode will have subnode_name as its name and include all

of the specified variables. The following subnodes will use subnode_name

appended by _b, _c, etc. and use the next consecutive input variable for each

of the elements. This feature allows one to connect together 'multiple conductor

cables’ with one single entry. Typically, this will be a 3 for three phase systems.

Subnodes can also be designated a reference subnode in the simulation section of the
input file. For clarity it is better to define all of the reference subnodes in the NETWORK
section.

In the special case of a Reference Voltage Subnode, the reference voltage may be
specified immediately following the subnode name as demonstrated in figure 3.3.3-2. This
reference voltage value however, can be overwritten by an entry in the REFERENCE block
of the SIMULATION section of the input file. If a reference voltage subnode’s voltage is
not specified either in the NETWORK or the SIMULATION section, it is set to a value of

ZELT10.

-50 -

Figure 3.3.3-2 NETWORK Description Example

i t.net
! Norbert H. Doerry 12 March 1989

t
NETWORK
! The following node has both reference voltage
! and current asubnodes
'
NODE gnd
rv:v = gen:vOn = load:v0n = meter:v0
ri:i = gen:i0n = load:iOn
end
!

i The next node shows how to mpecify each phase

! independently
'
NODE A
viv_a = gen:vla = sw:vOa = meter:vl
viv b = gen:v0b = sw:v0b
viv_c = gen:v0c = sw:vO0c
i:i"a = gen:ila = sw:i0a
i:i b = gen:i0b = sw:ilb
iii ¢ = gen:ilc = sw:ilc
end

'
! The next node shows how to use the grouping indicator
!

NODE B
v3:v = aw:vlia = load:v0a
i3:i = sw:ila = load:i0Oa
snd

!
! The next node shows how to use reference voltages to set

! cperating points
1

NODE GEN REFS
rv:freq = 60.0 = gen:freq
rv:Vmag = 100.0 = gen:Vmag
end

3.3.4 INITIALIZATION Description

The Initialization Section is the only optional sectional in the input file. If a variable
is not explicitly initialized, its value is set to zero. Therefore, one only needs to initialize
the non-zero variables. The following types of variables may be initialized:

Input Variables attached to Current Nodes

Node Voltages

State Variables
External Input Variables

Input Variables attached to Voltage Nodes may also be initialized, but the Node Voltage

initialization will take precedence and overwrite the Input Variable initialization.

1
n
—

1

The Initialization Section is composed of three subsections that may be entered in any
order. or omitted if not used. These three subsections are: INITIALIZE, EXTERNAL
[INPUTS INITIALIZATION], NODE VOLTAGE [INITIALIZATION].

3.3.4.1 INITIALIZE

The INITIALIZE subsection is used to initialize input and state variables for any
element. The format for this subsection is:
Figure 3.3.4.1-1 INITIALIZE subsection
INITIALIZE
element_name : variable_name value
element_name : variable_name value

element_name : variable_name value
end

Variable_name can be the name of either a state variable or the name of an input
variable. For state variables, value becomes the old state variable for the first time
increment. For input variables, value is the first guess used for input variables attached
to current subnodes. If an input variable is attached to a voltage subnode, value is ignored.

The INITIALIZE subsection ends when the keyword end is encountered.

3.3.4.2 EXTERNAL [INPUTS INITIALIZATION]

The External Inputs Initialization subsection begins with either the keywords
EXTERNAL or EXTERNAL INPUTS INITIALIZATION. Its purpose is to provide
the default values for the external input variables. The default values set in this subsection
can be overwritten by entries in the EXTERNAL INPUTS subsection of the SIMU-
LATION section.

Figure 3.3.4.2-1 EXTERNAL INPUTS INITIALIZATION Subsection

EXTERNAL INPUTS INITIALIZATION

element_name : external_input_name value
element name : external_input_name value

element _name : external_input_name value
end

3.3.4.3 NODE VOLTAGE [INITIALIZATION]

The Node Voltage Initialization subsection begins with either the keywords NODE
VOLTAGE or NODE VOLTAGE INITIALIZATION. Its purpose is to provide the
initial guesses for all the input variables attached to a voltage subnode. The subsection

ends when the keyword END is encountered.
Figure 3.3.4.3-1 NODE VOLTAGE INITIALIZATION Subsection

NODE VOLTAGE INITIALIZATION
node_name : subnode_name value
node_name : subnode_name value
node_name : subnode_name value
end

3.3.5 SIMULATION Description

The SIMULATION section begins with the keyword SIMULATION and continues
until the end of the input file is reached. The Simulation section details the manner in which
a simulation is carried out. The following keywords can be included in the simulation

section:

CONVERGE
DELTA
DELTA_MIN
DISPLAY
EXTERNAL INPUTS
MAX_ITERATION
PRINT STEP
REFERENCE
TIME_STEP

TMAX

TMIN

3.3.5.1 CONVERGE

Format: CONVERGE value

-53 -

Value is the maximum mean square error of all the implicit variables allowed for a
balanced system. Note that since CONVERGE is applied to the average of the implicit
variables, any single implicit variable may have a square magnitude considerably larger
than value.

3.5.2DELTA

Format:. DELTA value

Value is the fractional amount an input variable is changed when the network cal-
culates the Jacobian matrix of an element using the secant method. The input variable are
multiplied by (1 + value) and (1 - value) and if the difference between the two resulting
numbers is greater than twice DELTA_MIN, they are used to recalculate the implicit
variables. The differences between the implicit variables divided by the differences
between the two values of the input variables provide the column of the element Jacobian
matrix corresponding to that input variable. DELTA is only significant if at least one of
the elements used does not calculate the Jacobian matrix within its defining function.
3.3.5.3 DELTA_MIN
Format: DELTA_MIN value

DELTA_MIN is used in conjunction with DELTA. If when calculating an element
Jacoblan matrix by the secant method, the difference between the two offset input variables
is greader than twice DELTA _MIN then DELTA_MIN is added and subtracted from the
input variable for the purpose of calculating the partial derivative.

3.3.5.4 DISPLAY

Format:
DISPLAY
element_name : external _output_variable_name
element_name : external_output_variable_name
node_name : voltage_subnode_name
node_name ; voltage_subnode_name
end

.54 -

DISPLAY specifies which variables are written to the screen or to the specified file
when the simulation is conducted. Only external output variables and voltage subnodes

can be displayed. PRINT_STEP specifies how often the variables are displayed.
3.3.5.5 EXTERNAL INPUTS

Format:
EXTERNAL INPUT
element_name : external_input_variable_name value time
element_name : external_input_variable_name value time
element_name : external_input_variable_name value time
end

EXTERNAL INPUT provides the information needed to produce an external input
queue that tells the simulation when the value of an external input value should be changed.
Time is the sirnulation time at which the specified external input variable should be set to

value.
3.3.5.6 MAX ITERATION

Format: MAX_ITERATION value
Value is the maximum number of iterations that are performed during any single
time interval in an attempt to balance the system. If the system can not be balanced in

fewer iterations, an error message 1s prinied and the simulation is halted.
3.3.5.7 PRINT _STEP

Format: PRINT_STEP value

Value specifies how often the variables listed in DISPLLAY are printed.
3.3.5.8 REFERENCE

Format:
REFERENCE
v : node_name : voltage subnode_name value
v : node_name : voltage subnode_name value
i : node_name : current_subnode_name
end

The REFERENCE subsection can declare subnodes defined in the NETWORK

section to be reference subnodes (whether or not they were defined previously to be ref-

erence subnodes in the NETWORK section). Since the Simulation section may be
modified after an input file has been loaded into SEPSIP, this section can also be used to
vary the voltage of a reference voltage subnode between simulations. Value overrides the
default value provided in the NETWORK description section.

3.35.9TIME STEP

Format: TIME_STEP value

Value is the time step used in calculating the simulation.
3.3.5.10 TMIN

Format: TMIN value

Value is the initial value that the time counter is initialized to. After each time the
system is balanced, the time counter is incremented by the TIME_STEP.
3.3.5.11 TMAX

Format: TMAX value

Value is the largest value that the time counter can take on. If the time counter
exceeds value, the simulation is successfully concluded and control passes back to the

main menu of SEPSIP.

- 56 -

3.4 Running the Simulation
3.4.1 Starting SEPSIP

The methad for executing the SEPSIP program depends on the operating system being
used. On MIT's Project ATHENA, the following procedures should be used:

athena% attach 13.411
athena% /mit/13.411/sepsip/sepsip

or

athena% attach 13.411
athera% /mit/13.411/sepsip/sepsip input_filename

The program starts by printing a welcome message followed by the version number
and date. If input_filename is specified, it is loaded. Any errors detected are listed as well
as the opening of any include files. SEPSIP then enters the main menu and prompts for the
first command.

3.4.2 Command Entry Conventions

3.4.2.1 SEPSIP Menus

SEPSIP is a menu oriented program consisting of one main menu and several sub-
menus. The menus are organized in two columns: The first contains single characters
used to execute the commands listed in the second column. After the menu is displayed,
the user can enter the character corresponding to the desired command followed by a
carriage re'um.

Several of the menus will have a variable number of options depending on the state
of the simulation. If a valid input file has not been loaded for example, the main menu
will not have the Conduct Simulation or Continue commands available since they would
be meaningless.

The Conduct Simulation (option s) and Continue (option ¢) commands from the
main menu can be followed by an output filename. If a filename is specified, output from

the simulation is redirected from the screen to the specified file.

3.4.2.2 Concatenating Commands

SEPSIP allows one to execute an option in a submenu directly from the main menu
by entering the choracter that executes the submenu followed by the desired character from
that submenu. These two characters can be separated by spaces or tabs and can also be
tollowed by whatever input text is required by the seiected command.
Examples:

dd (displays device summary)

fc /mit/yvourname (changes the working directory)

u p t.plot (execuies plotting program with argument t.plot)

3.4.2.3 Input Filename Specification

In several of the options, the user is prompted for an input filename. Any existing
file can be entered, including a path specification if required. If a default filename is
offered, a carriage return will select the default. If no default filenarne is presented, a
carriage return will terminate the command. Should SEPSIP be unable to open the file,
another filename is prompted for. Entering ? as a filename results in the listing of the
current directory. A q terminates the command.
3.4.2.4 Output Filename Specification

An Output filename can be specified for several commands. Any filename recognized
as legal by the operating system may be used. If a default filename is offered, a carriage
return will select the default. If no default filename is presented, or if the filename stdout
1s entered, a carriage return will result in the file being listed on the screen. If for some
rea~on. SEPSIP is unable to open the file, another filename is prompted for. Entering ?

as o filename results in the listing of the current directory. A q terminates the command.

-58 -

3.4.3 Command Summary

This section lists all the commands available in SEPSIP. A more detailed explanation

of the commands is provided in the following sections.

¢ [file] Continue simulation

d Switch to Display Data menu
dc [dir] Change Working Directory
dd Display Device Summary

dD Display Device Data

de Display Element Summary
dE Display Element Data

dn Display Network Summary
dq Quit Display Data menu

dw [file] Write Device Data File
Switch to Edit Simulation Parameters Menu

e
ed Switch to Edit Display Variable list Menu
eda Add Variable to Display Variable list

edd Delete Variable from Display Variable list
edq Quit Edit Display Variable list Menu

ej Edit Jacobian Parameters

€q Quit Edit Simulation Parameters Menu
er Edit Reference Voltage Subnode Voltages
et Edit Time Parameters

f Switch to File Options Menu

fd [file] Dump Simulation State

fi [file] Save INITIALIZATION Section
f1 [file] Load INITIALIZATION Section
fq Quit File Options Menu

fs [file] Save SIMULATION Section

fS [file] Load SIMULATION Section

q Quit : Terminate SEPSIP program
s [file] Conduct Simulation

u Switch to Utility Menu
ue [file] Execute EMACS text editor
up [file] Execute Norplot Plotting Package

u? Display Directory
u% [cmd] Execute System Command
u+ Perform Screendump to the default printer

3.4.4 Main Menu

This section describes all the commands available in SEPSIP. For each command.
the format for executing it from the main menu is presented along with a description of the

command. For executing a command within a submenu, the first letter should be omitted.

3.4.4.1 ¢ Continue

Format:
C

¢ filename

The Continue command is only available if a valid input file has been loaded and a
simulation has already been conducted. Its purpose is to allow the simulation to continue
without reinitializing any of the variables. To use this command though, tmax must be
changed to a higher value that corresponds to the new desired ending time.

If Continue is invoked without a filename, the resulis of the simulation are displayed

on the screen, otherwise the results are written to the specified file.

3.4.4.2 d Display Data

Format:
d

d command

Display Data presents a submenu with the following options:

.60 -

3.44.2.1 d ¢ Change Working Directory

Format:
dc

dc directory

This command changes the working directory for specifying both input and output
files. If a directory name is not specified on the command line, the user is prompted for
orte. For systems operating under the UNIX operating system, this is the only method

available since a cd command executed as a system call will not work.’

3.44.2.2d d Display Device Summary

Format:

dd

Display Device Summary lists the names of all the available devices.

1 Under UNIX, when a system call is made from a program, a new shell is created for the
specified command to be executed in. When the command terminates, the shell disappears.
Therefore, if a cd command is executed, it will change the directory in the new shell and
then terminate. The new shell will immediately disappear and control will pass back to the
old shell whose working directory was never altered.

-6l -

3.4.4.2.3d D Display Device Data

Formar:
dD

dD device_name

Display Device Data provides detailed information about a particular device. If
device_name is not specified, it will be prompted for. All of the variable names associated

with device_name are listed.

3.4.4.2.4 d e Display Element Summary

Formar:

de

Display Element Summary is only available if a valid input file has been loaded.
Al] of the defined elements are listed along with which devices they are associated with.
If an element is not used in the network description, its entry is appended with

"wa% Not Used ***.

.62 -

3.4.4.2.5 d E Display Element Data

Format:
dE

dE element_name

Display Element Data is only available if a valid input file has been loaded. If
element_name is not specified, it is prorpted for. All of the variables associated with

element_name and their values are listed.

3.44.2.6 d n Display Network Summary

Format:

dn

Display Network Summary is only available if a valid input file has been loaded.
Foreach node, the constitutive subnodes and their attached variables are displayed. After
all the data for a node has been presented, the user is prompted to enter a carriage return
to continue. If a q is entered instead, the command is terminated. A b will result in the

previous node being listed.

3.4.4.2.7d q Quit

Format;

dq

Quit retums control back to the main menu.

-63 -

3.4.4.2.8 d w Write Device Data File
Format:
dw

dw device_data_filename

Write Device Data File prints out all of the device data for all of the devices. If
device_data_filename is not specified, the user is prompted for it. For a particular device,

this command presents all the same information as Display Device Data

3.4.4.3 ¢ Edit Simulation Parameters

Format:
e

e command

Edit Simulation Parameters presents a submenu forediting data from the simulation
section of the input file. This command is only available if a valid input file has been

loaded.

-64 -

3.4.43.1cd Edit Display Variables

Format:
ed

ed command

Edit Display Variables presents a submenu for adding and subtracting variables
from the display variable list. In addition to the submenu, all of the variables presently
on the list are displayed. The values of the variables on this list are displayed during the

simulationin increments of print_step as set in the input file or by Edit Time Parameters.

3.4.4.3.1.1 a Add Display Variable

Format:
eda
eda element_name : external_output_variable
eda element_name : external_input_variable

eda node_name : voltage_subnode_name

Add Display Variable adds a variable to the display variable list. External Input,

External Output, and Voltage Subnodes may all be specified.

- 65 -

3.4.4.3.1.2 d Delete Display Variable

Format:
edd
edd element_nar. e : external_output_variable
edd element_name : external_input_variable

edd node_name : voltage subnode_name

Delete Display Variable deletes a variable presently on the display variable list.

3.4.4.3.1.3 q Quit

Format;

edq

Quit retumns to the Edit Simulation Parameters submenu

- 66 -

3.4.4.3.2 e j Edit Jacobian Parameters

Format:

edj

Edit Jacobian Parameters allows the user to change the following simulation
parameters:
CONVERGE
MAX_ITERATION
DELTA
DELTA_MIN
The user is prompted to enter a new value for each of these parameters. If a carriage
return alone is entered, the default value is used. If a q is entered, the command is

terminated. A b allows the previous variable to be changed.

3.44.3.3¢eq Quit

Format:

€q

Quit returns control back to the main menu.

-67 -

4434 ¢ r Edit Reference Voltage Subnode
Fornat

er

er node_name : reference_voltage_subnode_name

er node_name @ reference_voltage_subnode_name value

Fdit Reference Voltage Subnode allows the user to change the value a reference
voltage subnode s set to. 1f the command is executed without specifying the subnode, a
list of the reterence voliage subnodes is provided before the user is prompted for the

subnode nume,

34435 ¢t Edit Time Parameters

Format

et

Edit Time Parameters allows the user to change the following simulation
parameters:
TIME _STEP
TMIN
TMAX
PRINT _STEP
The user is prompted to enter a new value for each of these parameters. If a carriage
return alone is entered, the default value is used. If a q is entered, the command is
rerminated. A b allows the previous variable to be changed.

- 68 -

3.4.4.4 f File Options

Format:
f

f command

File Options presents a submenu for reading and writing several different types of

files.

3.4.4.4.1 fd Dump Simulation State

Format:
fd

fd filename

Dump Simulation State prints to a file, the entire state of the simulation. Every
variable for every element is listed along with the system Jacobian matrix and associated
variables. While the file produced by this command may become very large, it is often

the only way to find the cause of a simulation’s failure to converge.

-69 -

3.4.4.4.2fi Save INITIALIZATION Section

Format:
fi

fi filename

Save INITIALIZATION Section writes to a file, all of the current vaiues of the
input variables, state variables, external input variables, and voltage subnode volt-
ages. This file can then be included in another input file to specify a starting point for
further simulations. This command allows one to run a simulation until steady state has
been achieved, save the initialization section, then conduct simulations to study the effects

of a disturbance on the steady state solution.

3.44.43 f1 Load INITIALIZATION Section

Format:
fi

fI filename

Load INIITIALIZATION Section loads from a file, the initial values of the input
variables. state variables, external input variables, and voltage subnode voltages.
The file must conform to the format specified in section 3.3.4. The easiest way to create

this file is to use or edit a file created by the Save INITIALIZATION Sectien command.

=70 -

3.4.4.4.4 fs Save SIMULATION Section

Format:
fs

fs filename

Save SIMULATION Section writes to a file, the SIMULATION Description
section of the input file as described in section 3.3.5. If stdout is used as a filename, the
SIMULATION Description section is listed on the screen. This is a fast way of seeing

all the simulation variables at once.

3.444.5fS Load SIMULATION Section

Formaz:
fS

fS filename

Load SIMULATION Section reads from a file, the SIMULATION Description
section of the input file as described in section 3.3.5. Files created with the Save SIM-

ULATION Section command can be directly loaded with this command.

3.4.4.5 q Quit
Format:

q

Quit resuits in the termination of SEPSIP. Control is passed back to the operating

system.

271 -

3.4.4.6 s Conduct Simulation

Format:
S

s filename

Conduct Simulation starts the simulation. If a filename is not specified, the values
of all of the variables on the display variables list are printed to the screen. If a filename
is specified, the values of the variables are printed to the designated file. A period (.) is
printed on the screen every time a line is printed to the file. This allows one to see that the

simulation is actually proceeding and the program is not stuck in an infinite loop.

3.4.4.7 u Utilities

Format:
u

u command

Utilities presents a submenu that is fundamentally different from the other menus in
that it is entirely user defined. The file sepsip_util.menu contains all the data required to
create and execute a menu. Appendix D describes how to edit this file to add or delete
menu items. The following commands are presently implemented on MIT’s Project

ATHENA.

-72 -

3.44.7.1 u e Editor -> emacs

Format:
ue

ue filename

This command executes the emacs texi =div -

3.44.7.2 u p Plotting -> Norplot
Format:

up

up filename

Norplot is a simple X-Window oriented plotting package that allows for the input

file to have multiple columns of data.

3.4.4.7.3 u? List Directory
Format:
u?

u? directory_path

This command lists the current directory or the directory specified.

3.4.4.7.4u % Execute System Command

Format:
u%

u % command

This command allows for any system command to be executed (with the exception

of c¢d in UNIX).

3.4.4.7.5 u + Screendump to default printer
Format:

u+

u+ -h

u+ -Pprinter

u+ -Pprinter -h

This commmand produces hardcopy of an X-Window on the default printer or on

the printer specified by the -P option. The -h option suppresses the printing of the header

274 -

3.5 Special Considerations
3.5.1 Designing the Network
Intelligently designing the network can improve the quality and numerical stability of
the simulations performed. One must always remember that the mathematical repre-
sentations for devices like inductors and capacitors are only idealized approximations of
the phvsical devices. Consequently, while we can physically stop the current in an inductor
instantaneously, a simulation using an ideal inductor will fail because the voltage drop across
it will become infinite. Here are a few techniques that can eliminate many of the problems
of this sort:
* All inductors should have a parallei resistance 1o provide a path for the flyback current to
flow and thereby limit the maximum voltage drop across the inductor
* Similarly, all capacitors should have a series resistance to limit the maximum current flow.
* A node connecting two switches in series should also have a resistance going to ground
(or across one of the switches) to prevent a floating voltage.

3.5.2 Selection of Time Increments

Choosing an appropriate time increment is very important fo: ensuring an accurate
simulation. If trapezoidal integration is used, a time increment that is much greater than
the associated time consant for a variable will result in that variable oscillating and probably
going unstable. For this case, the Euler Backward method works better since the mode is
assumed to have been driven to zero for the entire time incremeni.

DX ia=0
dr 1

Trapezoidal Integration

X =X, +(%‘J(<}c)(x‘ +x,)+A(d)=0

dr»t
X+x,,+241=0
X =y, - 247

Euler Backwards

X=Xt dt(% +A)

dt»1
X =—TA

If the time step is made extremely small, the amount of computer time required to
conduct the simulation becomes intolerably long with the undesired side effect of a loss of
accuracy. When the time step is extremely small, round off error in the numerical calculations
become a significant proportion of the corrections applied to the input variables. Over time,
these errors can grow and give incorrect results.

When making the time step smaller, the CONVERGE limit must also be decreased.
Otherwise. the solution for the first time increment when applied to the second time
increment will result in an implicit error that remains within the CONVERGE limit. Thus,
the result of the first time increment becomes the solution for the second time increment.
This process is repeated for the following time increments with the net result that none of
the variables deviate from their initial values.

For systems of nonlinear equations, choosing the optimal time incre:aent is not easy
to do in the general case. Usually one can get an acceptable value by trying to identify the
fastest mode and using a time increment somewhat smaller than the associated time constant,

Some experimentation is usually required to determine if a given choice is appropriate.

=76 -

3.5.3 Using the SIMULATION File

Since virtually all of the SIMULATION Section of the input file can be edited from
within SEPSIP. it is a good idea to inake the entire SIMULATION section an include file.
This aliows one to directly save any edited paramecters with the Save SIMULATION
Section (fs) command. The next time the input file is loaded, all of the edited simulation
parameters will also be loaded.

3.5.4 Using the INITIAL File

Properly using INITIAL files can greatly reduce the computational time required to
conduct a simulation under certain circumstances. A typical problem may be to study the
transient response of a system originally in a steady state condition that experiences some
disturbance. Achieving the initial steady state condition may require a lot of simulation
time due to slow "start up" time constants. To eliminate the overhead time required by the
system to achieve steady state in each simulation, the INTTTIAL file allows one to conduct
an undisturbed simulation once, save the steady state solution in the INITIAL file, and use
that INITIAL file as the starting point for all further simulation work.

3.6 Adding DEVICE Descriptions

Adding a Device description to the list of available devices requires a fair amount of
effort. One or mere functions must be written and compiled in the C programming language
and linked with the other SEPSIP routines. Additionally, one include file (penner.h) and a

device data file must be edited. Details for this procedure are contained in Appendix B.

CHAPTER 4
DEVELOPMENT OF SHIPBOARD
ELECTRICAL COMPONENT MODELS

-78 -

4.1 Transmission Line Model

The transmission line model included in SEPSIP consists of a series combination of a
resistor (R) and an inductor (L). The inductor also has another resistor (R,) in parallel with
it to account for leakage resistance. R, also helps numerically when the transmission line is
attached to a switch that opens. If R, were not included and the inductor current were forced
to zere immediately, the voltage drop across the inductor would be infinite. R, provides a
path for the inductor current to flow and thereby allow a finite voltage drop. Since all physical
inductors have an associated leakage resistance, the inclusion of R, better reflects the actual

transmission line characteristics.

Figure 4.1-1 Transmission Line

R,
gLM/: Ledn
v VAV g0V

R L
R,
; A
Im NN i
3 A = q_lb
v WAL
R L

Ri
ioc SAYAYS iy,
SR
° R L

If the transmission line 1s excited with a sinusoidal current, the effective resistance and

inductance of the transmission line is given by:

1
R =R+R(_m 2 1
ol
1
Ly=L| (Y 2]
S U

The Mode! contains the following definitions

-79 .

<
o

Parameters

Resistance
Inductance

Parallel Resistance for Inductor
Input Variables

Terminal 0 Phase A Voltage
Terminal O Phase B Voltage
Terminal 0 Phase C Voltage
Terminal 1 Phase A Voltage
Terminal 1 Phase B Voltage
Terminal 1 Phaxe C Voltage
Terminal 0 Phase A Current
Terminal 0 Phase B Current
Terminal 0 Phase C Current
Terminal 1 Phase A Current
Terminal 1 Phase B Current
Terminal 1 Phase C Current

State Variables

Phase A Voltage
Phase B Voltage
Phase C Voltage
Phase A Current
Phase B Current
Phase C Current

Implicit Variables

Phase A Integrator
Phase B Integrator
Phase C Integrator

Equations
va = ‘Ila - v()a

Vo =V = Vi

=V

e ™ Vo

(hg = loa)

N —

i = 3 (i = Ip)

. .
I, :i(ln —Iy.)

. 80 -

(8]

If R, and L are both not zero, the following equations hold:

v=(v,~iR) [9]
Vi, =(v,—,R) (10]
\’L(‘ = (\'(- irR) [1 1]
Vi,
i, =1,—- [12]
La R,
Vis
I, =0, ——— [13]
b=l R,
A
N . "Le
L. =1, —'E [14]
] _ l‘ 1 _ g{ vl.a + vLa_,ald\ [15']
a " tLa La_old L 2 L
dr v, + v,
Ibzilb_ilb_old— — || === [16]

L2 L

. . dri(v +v.,)
=0, ~t, =) = LLC_M [17]

if R, or L are either zero, the following equations are used:

I,=v,-iR [18]
I,=v,-i,R (19]
I =v,-iR (20]
Comments

The implementation of the transmission line model is contained inthe file f_t_line_3p.c

listed in APPENDIX C.

-81 -

S0 Resistive - Reactive Load Model

Phevesistive reacine load model metuded in SEPSTE consists of athree phise wye
connedted impedance Bach phase of the Joad consists of aoresistor (R i parallel wath a
seties cambinganon ob anothet te o or tRand aninductanee (8 Ry helps tomerically when
the dosd s atached o swach by proviching e path tor the inductive current o flow and
thereby preveat the voltare drap across the mductor beconung infinite,

Figure 4.2-1 Resistis ¢ Reactive Lond Model

N ;
., '

Purmneters

N Resistanee (ohimes)
| Inductanee thenties)
R, Paratlel Resistanve tolunsg

laput Variables

. Phase A Temunal Voltage

\ L Phase B Terminal Voltage

L Phase C Teminal Voltage

‘o Center Pomnt Terminal Volage

b Phase A Current

. Phase B Current

b Phase O Current

. Center Point Current
State Vaciables

v, Prase A Voltage

v Phase B Voltage

v Plhase C Veluge

Phase A Current
Phase B Current
Phase C Current

Implicit Variables

Phase A Integrator

Phase B Integrator

Phase C Integrator
Sum of Currents

Defining .. ‘tons

! = ,l)u + z(n

la
JH‘ = ‘()n + l(k + I(M

b = o, Hg T

vy

o (v

=1

'
tin

\.(- = \‘()h - \‘Un

\‘(= \(h \‘(m
C e ha
i, = -
N "R
="

C e
L=

,}_ S TV o TV o P o PO

1T L = 0 or Ry = 0 the tollowing Equations are used:

R\R
“R 4R

}

l,=v, - iR,

v »
l'l T \" ""\‘

(therwise, the following Equations are used:

N3

(1
(2]
(3]
(4]
5]

6]

7]

[8]

9]

[10]

(1]

(12

(1]

L =y -{R [15]
di !
[,
(l\l), - A;'
,) .
L d! =V, I,,R I 16'
[,)
1(1\’7”“7-‘- =y =R 117)
dr C ‘
. R Vo = Ve dt v, + \'u‘ old .)
lu =)u - Iu od T Rl' - L . " T Rlﬂ ohd llhl
, . VAoV dr LY ol VRS)
Il‘ - ‘I‘) I\I‘ i - R ' - L]) - Rllv_ oid [I()l
l R -
\‘(- \‘([n 1’ \'l'+ \‘l [
T S o MR 1200
[t ¢ oud Rl l. 2 ¢ old
Comments

The implementation of the resistive - reactive load model is contained in the file

t_rl_wye.clisted in APPENDIX C.

4.3 Svachronous Machine Model

Synchronous machines are used as both generators and motors onbourd ships. The
syuchronous machine device included in SEPSIP is based on the shielding constraint model
provided in [16]. This model uses the standard per unit parameters normally provided by
generator manufacturers. All caleulations are performed in the per unit svstem and employ

Park s transtformation to remove many of the tme dependencies and thereby improve the

. - 1
numerical solution.

Figure 4.3-1 Synchronous Machine Model

Te

io{ T Y
\'Or O'i""""“ }:‘ie)d e __f"- h
V”G‘j_f__ Transform | __f | Sy?gagginnoéls
— 8 | model 9__| Mechanical
l— : Tepu | Equations |
i d ¥d
V()E:C";‘QiL Park's iq vq
VOboy *H Transform o Vo
Yo @
o ...TW-___ tm “m
é’VOn L%i lvﬁ
Parameters
X, Synchronous Reactance (PUD
Xy Negative Sequence Reactance (PLU)
Ay Transient Reactance (PL)
Ny D-axis Subtransient Reactance (PL)
X, Q-uxis Subtransient Reactance (PPU)
Ny Armature Leakage Reactance (PU)
T, Transient Open Circuit Time Constant (sec)
T D-axis Subtransient OC Tume Constant (sec¢)
T, Q-axis Subtransient OC Time Constant (sec)
'IL.‘, Armmature Time Constant
Ly Field Current tor no load rated voliage Guaps)
H Inertia Constant (se¢)
Py Pole Pairs

I Park s Transtormation expresses all of the voltages and currents inthe reference friune ot
the rotor The stahionary reference trame s relerred toas the abe frame while the trans-
tormed reterence trame is catled the dqo frame

Ae ot a tunciion ol dhe rotor an

vle,

SRS

Uinder normsd operition, the dygo variables

"

m

(V)

ms

W),

ms

ed”

l

ALY

LASHIS

Base frequency (rad/sec)
Base Phase Voltage (0 to peak)
Base Power (watts)

Input Variables

Phase A voltage
Phase B voltage
Phase C voltage
Neutral voliage
Phase A current
Phase B current
Phase C current
Terminal 0 Field winding voltage
Terminal 1 Field winding voltage
Terminal 0 Field winding currem
Terminal 1 Field winding current
Electrical rotor angle (radians)
Mechanical frequency (rad/sec)
Mechanical acceleration (rad/sec”)
Torque [turbine +] (Nm)
Internal Variable : g axis flux

Internal Variable : d axis flux

State Variables

Electrical Angle state (rad)
Mechanical frequency state (rad/sec)

Mechanical acceleration state (rad/sec’)

D axis flux [PU]
Q axis flux [PU]

Voltage behind transient reactance [PU)
Voltage behind Q axis subtransient reactance [PU]
Voltage behind D axis subtransient reactance {PU

Derivative of D axis flux
Derivative of Q axis flux
Derivative of voltage behind transient reactance
Derivative of voltage behind Q subtransient reactance
Derivative of voltage behind D subtransient reactance

Implicit Variables

Sum of input phase currents
Sum of field currents
neutral voltage
1 axis flux egaution
Q axis flux equation
Q axis subtransient equation
D> axis subtransient equation
transient equation

RN

oy

MWw

to

-

Torg balance
integrating frequency
integrating frequency acceleration

Equations

Calculate Base Quantities

; P hs
\ =
I

L PrPu
hs (.l)m

Calculate Phase voltages
Ya = You = Vo
Vo = Von = Vou

Y=y

4 [T '

»
On

Perform Park’s Transformation

‘ I { n
cos(8) c,oz\(e)) LOSLG + 3
- : 2) . n
~sin(d) - sm(@ - J - sm(@+ ; j
1 1
2 2 2]

l.l l ll)u
l‘l = 1 7‘ l(k‘-
. n .
!, Ly,
1 .
! \ 13V}
Vv l Ty
q = L
, \ dh l ,
)) . ! 4N

(]

8]

9]

[10)

Culculate other varinbles

Iy = b
=) “ ”
! 2]/'"
"u - \'n/
Vg = ‘,~ |]2]
I
7
T '.‘..f‘. T 13
wg oot ald l .]
Xy
Nad =X 4y (14]
‘\.uzsl
o 18]
oAy

X5 ,
W= e i17)
Xy — Xy
v e x”
Xy Xy :
[18)
Xy = Ay

’\'ﬂll\./.‘“
= 19
T

R 4) \Js i
ES RO [20]
N X 31
e, ==x,", + ¥, [21]

. - . y . "

o r ol T Xl + gy 22
|’ -

Xy
W, =W, [23]
g, =, [24]

Calculate Derivatives

- BN -

; d Wy - :‘-(- W

v

- u)mpl-\ll.l + U)Iu“q

D,
" i wl
e Y
1)\‘, = (l.. - 1
a Ih{
_ 1/('_{” B 1 { ~ ..\" !
W Td.-' .\'.,
de 1 2
D .= s o= ¢
g dr T, " " ¢
de)’ 1
N .= 1= o (- !
. d’ [‘[! Y

1
W, P, 0,1,

Perform Modified Trapezoidal Integration

To determine L, L, L Ly and L

I. 1B Sl (dt) (0-6.\’ + OAy«-Id)

Calculate Current Implicit Variables

] e

Jaum

i

o

tor iy

m T

].ﬂl

C.iculate Mechanical Variables

Tepu = Wdlq - ‘\Uq l:.l

-89 -

[25]

[20]

[27]

[28]

[29)

[30)

{31

132]

(33}

8, =0 (37

0, = 0, 138
Dy, = O, [39]
dt
In = e.l - 9,\ old = (-2~)(pp(’onu + p/‘(‘onu" (:l.l) [4()]
I =, =W, = @) 06w, +040,,) [41]
Comments

The implementation of the synchroncus machine model is contained in the file
f_syrch_mach.c which is listed in APPENDIX C.
The following parameters describe a 2000 KW generator typical of those found on U.S.

Navy destroyers: [10]

Xq 1.38 PU
Xq 0.26 PU
Xg 0.25 PU
X" 0.171 PU
X, 0.171 PU
Xy 0.1 PU
Te' 29 sec
Ty 0.0 sec
T, 0.0 sec
T, 0.09954 sec
Loy 385 amps
H 0.651 sec
Py 2
W, 376.99 rad/sec
Va 367.4235 volts
Py, 2500000 watts

The subtransient time constants are set to zero becuase the author was unable to obtain
their true valves from unclassified sources. The time constants are typically fast and

approximating them as zero does not introduce serious errors.

- 90 -

4.4 Speed Governor

The speed governor model included in SEPSIP is based on the mechanical speed
governor on the 2000 KW synchronous steam turbine generator found on an older U.S. Navy
submarine. This model is based on one developed by the author as part of a term project for
anelectrical engineering machinery course [10] and is a greatly reduced version of the model
developed by Dalton [6].

Figure 4.4-1 Speed Governor

G4 Droop
s | Equation
-2
Tm_ord-r
Transfer | Ie
Function ©
Parameters
W0 Zero Order Frequency (rad/sec)
y, Droop Factor Coefficient (rad/sec-inch)
Ot e PU Torque Coefficient (rad/sec)
Tys Base Torque (Nm)
T, Time Constant (sec)
Input Variables
w,, Mechanical frequency (rad/sec)
T. Torque (Nm)
3 Droop Factor (inches)
State Variables
T order Ordered Torque (PU)
mpu Actual Torque (PU)
Implicit Variables
I Implicit Variable

- 91 -

Equations

1
= e -, = 1
m_order (Dw,{fepu ((Dm Nl d.cs) []
Tmm = Tm + B w’" 2]
T Lom 13]

"lph - THS s
dTmpu 1 ,T T [4]
dt - TR { m_order mpu)
I,\' = ‘T‘((Tnx;»u - Tmpu_,n{u') - (df) (Tm_order‘ald - O'STmpu - O‘STmpu_uld) [5]
Comments

Equation [1] provides the steady state value for the torque corresponding to the present
rotor speed. Equations [2] and [3] calculate the actual torque being delivered in the present
time increment. Equation [4] describes the dynamics of the speed governor as a simple first
order system. The differential equation is solved using trapezoidal integration. While this
is a simple model, it does provide results consistent with the data provided in ref {6].

The Droop Factor s is in reality the Primary Amplifier Fulcrum Displacement. On older
submarines. a stepper motor attached to a set screw is used to adjust this displacement until
the desired frequency is obtained for a desired load. A normal range for s falls between 0
and .5 inches. The parameter values are:

,, =374.72
w,, = 63.38
O, ==20.15

T, = 0.328

The above values are for a single pole pair generator, for a two pole pair machine, the

first three parameters should be halved.

4.5 Voltage Regulator Model

The voltage regulator model included in SEPSIP is a simple first order transfer function
between the terminal voltage error and field voltage of a synchronous machine., The terminal
voltage 1s measured by subtracting the mean value of all three phases from the voltages of
phases A and B, These values are fitted to two cosine voltages that are phase shifted by 120°.
The derived terminal voltage is divided by the desired terminal voltage and subtracted from
1. This error voltage 1s subjected to a first order transfer function that produces a signal
voltage that is added to 1 and multiplied by the nominal field winding voltage.

If the field voltage is driven above or below specified clipping levels, the regulator
muauintains the field at the clipping voltage. Typically the lower limit for the field voltage is
about () volts while the maximum s around 1.5 to 2 times the field voltage required to maintain
the terminal voltage under full load.

This model does not reprcsent any specific voltage regulator. However, since the
response of many voltage regulators is dominated by one eigenvalue, approximating the
dynamics by a first order lag is not a bad assumption. The clipping action of the regulator
ensures that the ficld voltage does not exceed reasonable bounds.

Figure 4.5-1 Voltage Regulator

Oe
—)®

1 1
Voo A + + gy
v Moter Vy, — Voo | Transfer [Vam_. Field | Vor
ob - % i
. 3-_‘ Function _/ Egtn by v,
Oc

-93 .

Parameters

Nominal Field winding Voltage
Per Unit Error Gain
Voltage Regulator Time Constant (sec)
Maximum limit for field voltage
Minimum limit for field voltage (¢ ning)

Input Variables

Phase A voltage
Phase B voltage
Phase C voltage
Field Winding Terminal 0 voltage
Field Winding Terminal 1 voltage
Field Winding Terminal 0 current
Field Winding Terminal 1 current
Desired Voitage (neutral to line peak)
Reference Frequency (rad/sec)
Measured Voltage (internal variable)
Measured Phase (internal variable)

State Variables

Per unit error in voltage
Per unit correction to field voltage

Phase (radians)
Clipping State

Implicit Variables
voltmeter Phase A equation
voltmeter Phase B equation

Sum of Currents
Transfer Function Equation

Equations

Calculate the terminal voltage

1
v, = "3 (Vog + Yoy + Vo)

vn = vOa - vn

Ve = Vo =V
Vo= v

LI
¢4 n

‘Y = Yold + (‘obs(dr)

.04 .

(2]
(3]
(4]

[4a]

_ (y", - v, cos(0+7))

1I - e
"b:
o Lemveodory=5)
) Vbs

Calculate the input and output to the transfer function

L ‘,'
Vo, =1 -
bs
VT Yy 1
e V fdbs

If ¢yp_oa = 0, the regulator is not clipping:

dv,
8
vr *Jr + vsig = chrr
1n = T\'r(v:ig - "sig_old) + dt(‘6(‘l.rig - Kverr) + '4(":1'g__old = Kverr_o/d))

vfd - VU-" \’of
otherwise the regulator is clipping

Vinin = (V1= Vy)

fcy, 40 =-1thenl, =

Vbs
Vi — (V1= Vo))
: . _ Ve = Oy = Yoy
¢, g =1thenl, = V.
Tw ‘f’s:g,nld - df [’4(\'51}; old — K"/zrr_old) - 6K ‘/err]
U
E T, +.6dt

V= (v,; .+ 1)vfdb5
The sum of the field currents should be zero
I = i0/+ i Yy

Ssum

See if should clip during the next time increment

(5]

(6]

7l

(8]

(9

(14]

(15]

[16]

if vy 2v, thenc,, =1 (17]

else if v <v, . thenc,, =-1 (18]
else ¢, =0 [19]
Comments

The implementation of the voltage regulator model is contained in the file f_volt_reg.c

listed in APPENDIX C.

-96 -

4.6 Induction Motor Model

The Induction Motor Device included in SEPSIP is based on a model of a "squirrel
cage" motor presented by Krause [17]). This model assumes the stator consists of three

windings and that the rotor can be represented by three additional windings.

Figure 4.6-1 Induction Motor

Nig

Vob

Mutual Inductances Not Shown

Parameters
R, Stator Resistance (ohms)
X Stator Inductance (ohms)
X, Rotor Inductance (reflected to Stator) (ochms)
R/ Rotor Resistance (reflected to Stator) (ohms)
J Moment of Inertia (Kg-m?)
W, Base Frequency (rad/sec)
Py Pole Pairs
B Windage Torque Factor (Nm-sec)

.97 .

Vl)n
Voo
Ve
i
Lo
L

Von

i,

>

“
1~

Hy '4>)
] &

tdelele

>

]

o
~

o
~

El

]

mU&QU?’

“

£ E

S

Input Variables

Phase A voltage

Phase B voltage

Phase C voltage

Phase A current

Phase B current

Phase C current
Electrical Rotor Angle (radians)
Mechanical Frequency (rad/sec)

Mechanical Acceleration (rad/sec)
Neutral voltage
Phase A rotor current
Phase B rotor current
Phase C rotor current

State Variables

Phase A stator flux
Phase B stator flux

Phase C stator flux
Phase A stator flux derivative
Phase B stator flux derivative
Phase C stator flux derivative

Phase A rotor flux

Phase B rotor flux
Phase C rotor flux

Phase A rotor flux derivative
Phase B rotor flux derivative
Phase C rotor flux derivative

Electrical Roior Angle (rad)
Mechanical Speed (rad/sec)
Mechanical Acceleration (rad/sec)

Implicit Variables

Phase A stator flux equation
Phase B stator flux equation
Phase C stator flux equation
Phase A rotor flux equation
Phase B rotor flux equation
Phase C rotor flux equation
Sum of Stator Currents
Frequency Integration
Acceleration Integration
Torque equarion

- 08 -

Equations

Calculate Inductances

X
Ll: = —li
wb.»
Llr’ = l—
mbs
Xy
- mb:
L,=-M
L,=L,+L,,
LM = Llr, + Lms
L Lns
21 2

L, =L, cos(O)

2r
Ly, =L, cos(G + —;)

Lg,=L_, cos(e - %n)

Calculate Fluxes
Ao = Ly iog + Layigy + Lyl + Ly, + Ly 1, 4 L,
Ay = Lyiog + Lyl + Loty + Lty + Loyl + Ly,
A = Lyjio, + Loy, + Lyyig, + Layi,, + Loydy + Ly,

7 B .
}‘:u =L, + Loy + Loty ++L.d +Loyi + L0

;'w,’ = Lyl + Loyioy + Loy ++Ly0, + Loyl +Loy0

210

>\'r'1 ’ = L(ll I'(la + Lﬁli()b + L4|i()(+ +L L, + L: 1 irb + Luir(

21 ra

-99.

(1]

(2]

(3]

[4]

(5]
(6]

(7]

(8]

(9

(10]

[11]
(12)
(13}
(14]
[15]

[16]

Calculate Flux Derivatives

D,, =vy, = vy, — Ry,
D, = vy, = Vo, = Ry,
D, =v, vy, =Ry,
D,=-Ri,
D,=-R'i,
DI‘C‘ = —R"'ifl‘

Perform Trapezoidal Integration

dr
Ila = x'm - ;".m__ald - 5 (D.m +Dm_old)
\ </
Ilb = ;\’:b - k:b_old - E (D.tb + D.rb_cld)
\
Il:=lsc A'.u' old T | & (DM.’+D.I'C old)
\ 2/ -

Ilra = }"m, - }\'ra_nld’ - (%)(Dm +Dr¢_old)

1, = krb' - }‘rb_old)(Drb + Drb_ald)

11r(= }'r(’ - }"

rc_old

.
2

, [dt

- (;—)(Drc +Drr_old)

=g, +iy +ig

Calculate Torque and Mechanical variables
. . irb ir(, . irt ira\' . ' ira irb s
T¢ = -pmes{\IOa 1, _—2-- —--—2— +l()h I,b—‘z———z' J+10c 1. ——2’—5 sm(9)+

—)(l‘lu(l.'h - Iu) + I(li-(ll¢ - l/a) + I(M (Ila - Il‘h)) Cos(e)}

- 100 -

(17]
(18]
(19]

(20)
(21]

(22]

(23]

[24])

(25]

(26)

[27)

(28]

(29]

[30)

dr
W= es - es_old B (E)pp(w: + w:_old) [35]

ay . .
WD = 0): - (D:_old - (3) ((‘o.r + (‘os__old) [36.|

Comments
The implemenitation of the induction motor model is contained inthe file f_ind_motor.c

listed in APPENDIX C.

- 101 -

4.7 Three Phase Switch Model

The Three Phase Switch model allows the user to control switches for all three phases
with one external input variable. When the external input variable commands the switches

to close, all three phase switches close at once. When commanded to open however, the

individual phase switches remain closed until a zero crossing occurs.

Since a switch changes the configuration of the network, one must ensure that both
configurations are defined properly and have a voltage reference. In particular, switches

should not be connected in series without providing some means (such as a resistor) to define

the voltage of the node connecting the two switches.

Figure 4.7-1 Three Phase Switch

10l
P 4

O/% <.

VD-

im: (_in,
2o G—ovV,

io::
P .4

Oc

4 i
1¢c
O/Z') é'ovlc

Input Variables

Terminal 0 Phase A Voltage
Terminal 0 Phase B Voltage
Terminal 0 Phase C Voltage
Terminal 1 Phase A Voltage
Temminal 1 Phase B Voltage
Terminal 1 Phase C Voltage
Terminal 0 Phase A Current
Terminal 0 Phase B Current
Termminal 0 Phase C Current
Terminal 1 Phase A Current
Temninal 1 Phase B Current
Terminal 1 Phase C Current

- 102 -

State Variables

Phase A state

Phase B state

Phase C state
Phase A current
Phase B current
Phase C current

g g; vw

Implicit

1 Phase A switch

I, Phase B switch

I Phase C switch
Phase A current sum

L, Phase B current sum
Phase C current sum

External Input

S Switch Condition
0=on
1 = off

Equations

(ilr - iOc)

If the Switch is commanded closed:
s, =8,=5 =1

If the Switch is commanded opened:

- 103 -

[1]
[2]
(3]

(4]

(5]

(6]

[7]

sa = Sa_old [8]
Sp = Sp ol 9]

sc = sr_ald [l 0]

Calculate the implicit variables:

ifs,=1then/_=v elsel =i, [11]
ifs,=1thenl, =v, elsel, =1, [12]
ifs, =1then/ =v_ elsel =1 [13]
I, =i,+1i, (14]
Iy =iy +iy, [15]
I.=1y +i,, [16]

If the Switch is commanded opened, Check for Zero Crossing:

ifii, ,;,S0thens,=0eclses, =1 [17]

if i1, ,,<0thens,=0elses, =1 (18]

ifii ,,£0thens =0elses =1 [19]
Comments

The implementation of the three phase switch is contained in the file f_switch_3p.c
contained in APPENDIX C.

Note that the switch does not open until a zero crossing has occurred. This may lead
to problems when the derivative of the current is very large and the current overshoots zero

by a large amount.

- 104 -

4.8 Circuit Breaker Model

The circuit breaker modr. ‘ncluded in SEFSIP simulates a three phase circuit breaker
that is tripped either by an overcurrent or ‘'manually’ by the operator. The square of the
magnitude of the current is determined through a forgetting factor £ which is multiplied by
the square of the old value of the current magnitude and added to (1 - f) times the square of
the present current value. The magnitude of the current is compared to a specified limit, if
the limit has been exceeded for a certain amount of time, the breaker is commanded to open.
The breaker can also be commanded to open by an external input. Once commanded to open,
the switch for each phase remains closed until a zero crossing occurs.

Figure 4.8-1 Circuit Breaker

e
\
It
:<

ioc / e
Jom —%%y,

Each phase of the circuit breaker is modelled as a state machine having seven states

defined by:
Figure 4.8-2 Circuit Breaker States
State Switch External Cmd Current Trip
0 open open open
1 closed open open
2 open open closed
3 closed open closed
4 open closed open
5 closed closed open
7 closed closed closed

- 105 -

g

%bave

Parameters
RMS Forgetting Factor
Current Trip value (amps rms)
Current Trip Minimum Time (sec)

Input Variables
Terminal O Phase A Voltage
Terminal 0 Phase B Voltage
Terminal 0 Phase C Voltage
Terminal 1 Phase A Voltage
Terminal 1 Phase B Voltage
Terminal 1 Phase C Voltage
Terminal O Phase A Current
Terminal 0 Phase B Current
Terminal 0 Phase C Current
Terminal 1 Phase A Current
Terminal 1 Phase B Current
Terminal 1 Phase C Current

States
Phase A switch state
Phase B switch state
Phase C switch state
Phase A current
Phase B current
Phase C current
Phase A rms current
Phase B rms current
Phase C rms current
Phase A overcurrent time
Phase B overcurrent time
Phase C overcurrent time

External Input Variables
External Switch

Implicit Variables
Phase A switch equation
Phase B switch equation
Phase C switch equation
Phase A current sum
Phase B current sum
Phase C current sum

Equations
vﬂ = vlﬂ - vOa [1]
Vo = Vip = Vou [2]

“(= \‘l(- “(h

- 106 -

i =:2-(i,,, —iy,) [4]

D ST

1y =§(1]b—lob) [5]
1 . .

I = E(llc ~ip,) (6]

Perform the following State Transformation:

Figure 4.8-3 Breaker Transform Table 1
Old State Switch on Switch off
0 7 0
1 7 1
2 7 2
3 7 3
4 4 0
5 5 1
7 7 3
If t, oig tip_ias OF tic o 1S greater than t,,

use the following transition table

Figure 4.84 Breaker Transform Table 2

Old State New State

U bW —=O
nNhnph —O—O

The Implicit variables are defined by

ifs,isoddthen/_=v elsel =i, (7]
if 5, isodd then I, =v, else 1, =i, (8]
ifs,isoddthen/ _=v elsel =i [9]

-107 -

Im = i()a + ila [10]

L, =i, +i (11]
ib 0b 1h
I =i, +i, [12]

Look For Zero Crossing

It the product of a phase current's present and old values
is less than or equal to zero, perform this transformation:

Figure 4.8-5 Breaker Transform Table 3
Old State New State
0 0
1 0
2 2
3 2
4 4
5 4
7 7
Calculate RMS Currents
iaave = '\/(T—f)l: +fia2av¢,_old [13]
fpave = N =i + ke (14
focve = NA =102+ Fidue i [15]
Update Overcurrent Time counters
if Iy, 210, thent, =1, , +drelser, =0 [16]
if iy, 21, thent, =1, ,+drelser, =0 (17]
ifi,, 21, thent, =1, +drelser, =0 (18]
Comments

The implementation of the three phasc circuit breaker model is contained in the file

f_breaker_3p.clisted in APPENDIX C.

- 108 -,

CHAPTER 5
SIMULATION RESULTS

A description of SEPSIP would be incomplete without several examples of simulations
conducted with the program. This chapter contains the input files and results of seven sim-
ulations that demenstrate the features and capabilities of SEPSIP. The first two simulations
show the start up transients for two different induction motors. Because the simulations are
very similar, only slight modifications to the input files of the first simula.:or were required
to generate the second simulation. The remaining simulations involve the response of one or
two synchronous generators to changing loads. The third simulationloads a single synchronous
generator with a .4 Per Unit load for a4 second period and then removes the load. The response
of the voltage regulator and speed governor to the application and removal of the load are
clearly shown. The next two simulations use identical network topologies to study a generator’s
response to two and three phase shorts. The input files for these simulations were modified
from the third simulation in a very short time. The final two simulations demonstrate the

ability of SEPSIP to simulate the dynamics of multiple generator systems.

- 109 -

5.1 50 HP Induction Motor Start Up

This simulation shows the startup transients for a 50 HP Induction motor. The network
consists of a simple three phase generator directly attached to the induction motor. Each
phase of the generator consists of a sinusoidal source in series with a parallel combination
of aresistor and an inductor. Figure 5.1-1 shows the structure of the network.

Figure 5.1-1 50 HP Induction Motor

ref:Vref C:v i Mech:theta
‘——jgen_synch_3p |c.v_b ind_motor Mech:wm
ref:freq gen Cv c motor hewmn. dt
rg [’; ERE
a |/ Sy isa i ey
xR ® ©S3 g

The parameters for the induction motor are from Krause {17]. The Element description
include file for this simulation is shown in figure 5.1-2

Figure 5.1-2 t50.elm : Element Description File

t5C.elm
Norbert H. [Doerry

This file defines the elements for a simple 3 phase generator attached
tc an induction motor.

Qe e e e oo

1

! The following are the characteristics of a 50 HP motor

! descriked on page 190 cf Krause’s ANALYSIS OF ELECTKIC MACHINERY
!

ind motor motor

Fs L0ECT
Mle Ko
pridd 13.0E
NAr yrims 2
Fr rrime LlE
J lLE€Z

-110 -

Note that the series induction for the generator is very small. This was done to simulate
a voltage bus that was almost infinite in nature. (The voltage drop due to the synchronous
reactance is negligible).

The effect of setting B to zero for the induction motor is to ignore the windage losses.
Since Krause also ignored windage losses in his analysis, the results from this simulation can
be directly compared.

> Figure 5.1-3 t50.net : Network Description File

! £50.net

! Norbert H. Doerry
!

BETWCEK
1
NOLE gnd
rviig = 0 = gen:i0n
rvivg = 0 = gen:vOn
end
NODE C
v3:v = gen:v0a = motor:v0a
i3:1 = gen:i0a = moter:iCa
end
NCODE Mech
v:theta = motor:theta
Viwm = motor:wm
viwm_dt = motor:wm_dt
end
NODE ref
viira = mctor:ira
viirb = motor:irb
viirce = motor:irc
v:vO0 = motor:vOn
rv:Vref = gen:Vmag
rv:freg = 60.0 = gen:freq
end

Figure 5.1-4 t50.init : Initialization File

kert H. Doerry

ITIRLIZE
END
NCCDE VOLTASE INITIALIZATION
Civ 375.6
C:v b -187.8
C:v ¢ -187.8
END
EYTEERNARL INPUTE INITIALIZARTION
mcteor:Tmech 0.0

ZND

-111-

! £50.si
! Norber
'

SIMULATI
t

DISPLAY
motor:
motor:
motcr:
gen
gen
gen
ref
ref
ref
END

TIME S
TMIN
TMAX
PRINT
DELTA™
DELTA
CONVER
MAX_IT
REFERE
I:
Vire
END
1
EXTERNAL

END
!

Figure 5.1-5 t50.sim : Simulation File

m
t H. Doerry

ON
RPM

HP

Te

:Ta
:Ib
tlc
rvVa
rira
tirb
itire

TEP

MIN
GE
ERATION 50

NCE

C:i

f:Vref 375.6

0
0
1
STEF 0.0010
0
0
le

INPUTS

The above files are synthesized into a single input file with the following format:

! £50.al
! Norber
!
inciude
include
include
inciude
L}

Figure 5.1-6 t50.all : Input File

1
t H. Doerry

+£50.elm
t50.net
t50.1init

Is 4
tE0.sim

The above format for the input file was used for all the simulations conducted for this

thesis. In the following sections, the include files will be referred to as separate entities even

though they only have meaning when organized in the manner shown in figure 5.1-6. SEPSIP

does not

eases the

require the organization of the input file in this manner, but this convention greatly

iask of creating and running simulations.

The results of the simulation are shown in figures 5.1-7 through 5.1-10. Note that for

this motor, the machine reaches its steady state speed after only .6 seconds. Astypically seen

in many induction machines of this size, the transient currents during the startup are con-
siderably greater than the final no load current. The rotor current also shows the expected
characteristic decreasing frequency as the rotor approaches synchronous speed. These results
are all identical to the figures shown in reference {17].

Fig 5.1-7 RPM vs Time Fig 5.1-8 Te vs RPM

50 8P Induction Motor: RPM vs t 30 &P Induction Motor: Te vs RFM
- 1 A Fl 1 1 1 i WO W 1800 NS VY N W VU S W UV N WIS IS D S S YU U | 16800
« . 1700
L | 1600 - I 1400
4 | 1800 § | 1200
< | 1400
g 1 1300 § L. 1000
- L1200
- L1100 - I 800
< L1600 '\
| 600 -
4 / L 990 1 i
b - 8oc E - L 400 -
g L 700 :
- | 600 - L 200
5 | s00
~ . €00 k| . ©
] 300 4 L -z00
B | 200
. p 100 b L - 400
g)
T T Y T T X T v =100 LR T T T 1 1 71 T T 7 T 1 L) Y 1 T =600
2, f, [/ [4 4 ¢ 4 4
O 0, 0,850,050 Py 0y 0,y 0 90 0o “00 “0c “0g, ‘%0, ‘%o, ‘%0, "4,
time (seci APH
. . . .
Fig 5.1-9 Stator Current vs Time Fig 5.1-10 Rotor Current vs Time
80 RF Induction Motor: Ia vs t S0 8P Induction Motor: Ire vs t
PIDE Il 1 1 L " i H 00 4 i Y X WIS Y ! L Y i 100
I %00 e 600
| 400 L 800
L 300 | 40C
L 300
b | 200
L[[| 200 '
1 i‘ 1] ‘ ' i r_lOO o .
i
AR iR AR AR RERY t 100 '
DRI A 0 . r |
TR ”) N "
il TN -
‘!r!:‘! lr‘(| : I o100 & | -100 E
1l =200 3]
I v | -200 U
| ~300 ‘ L -300
| -400 | - 400
| ~s0¢C] . - %0C
Mants Semes S S A e Sa—— __P__J_-G'JC T T A T mann el | T hg +- ~60C
e <
4 4 ¢ B ¢, c ‘ [¢ . ¢ ¢ < 5 7] o g ¢ B [3 ¢ ‘ « ¢ § [a « [9
time (sec: tine irec)

- 113 -

5.2 500 HP Induction Motor Start Up

This simulation shows the startup transients for a 500 HP Induction motor. The network

consists of a simple three phase generater directly attached to the induction motor and is

identical to the network used for the 50 HP Induction motor in the previous section. Figure

5.2-1 shows the structure of the network.

Figure 5.2-1 500 HP Induction Motor

ref:Vref;

ref:freq|

| gen_synch_3p
gen

g
e o
5 &

| Mech:theta
| Mech:wim:

| Mech:wm_dt

C:v
C:v b ind_motor
Cv o motor
R R lw
o (ool
ol ind indls)
& Ay
0o oop

The parameters for the induction motor are from Krause [17]. The Element description

include file for this simulation is shown in figure 5.2-2

Figure 5.2-2 t500.elm : Element Description File

£5C0.elm

Nerbert H. Doerry

This file defines the
©“> an induacticn motcr.
gen_synch _2p gen
grhase_a 0.0
D N R
10U
end
!
! The fcllewing are the
! descriked cn rage 196
!
inz motsr moior
Fe Z€2
Kls 1.20¢
w24 £4.02
Dlr prime 1.20¢
rr_prime L1ET
Z 11.0¢€

114 -

characteristics of a 500 HP motor
¢f Frause’'s AWALYSIS CF ELECTRIC MACHINERY

elements for a simple 3 phase generator attached

Note that the series induction for the generator is very small. This was done for the
same reasons discussed in the 50 HP induction motor example.

Setting B to zero results once again with the induction motor dynamics ignoring the
windage losses. Since Krause also ignored windage losses in his analysis, the results from
this simulation can be directly compared.

Figure 5.2-3 t500.net : Network Description File

' £500.net

! Norbert H. Dcerry
'

NETWOFRK
1
NCCE and
rviig = 0 = gen:iln
rvivg = 0 = gen:viL
end
NJDE C
vIaw = gen:v0a = motor:v0a
SICR S} = gen:ila = motor:iGa
end
NOCE Mezh
vithe.a = motor:theta
1V IWTh = mcToriwm
viwm_dt = motor:wm_dt
end
NODE ref
viira = motor:ira
viirb = motor:irb
viirce = motor:irc
viv0 = motor:vOn
rviVref = gen:Vmag
rvifreq = 60.0 = gen:freq
end
!
Figure 5.2-4 t500.init : Initialization File
' £50C.1init
! Norkert H. Doerrv
1
INITIRLIZE
END
NODE VOLTAGE INITIARLIZATION
Civ 1877.9
Siv_k ~%38.95
Civ = -93£.95
ENL
EXTERNAL INPUTS INITIALIZATION
mctcr:Toezh 0.0
END

- 115 -

Figure 5.2-5 t500.sim : Simulation File

motor: PPN
mztcr: KHF
metcr:Te
Jern la
qeq Ir
aer. Ic
Jern 1Va
ref 1ira
ref irk
ref irc
END
TIME STEP 0.00025
THMIN <
THIY z.0
TFINT ETEF (.0C1C
CELTH ¢.01
DELTAR MIN (.01
CONVERGE ie=10
MEX ITERATICON EO
REFERENCE
I: C:ii
Viref:Vref 1877.9
END

EXTERNAL INPUTS
END

The results of the simulation are shown in figures 5.2-6 through 5.2-9. Note that for
tiis motor, the machine reaches its steady state speed after about 1.4 seconds. As typically
seen in many induction machines of this size, the transient currents during the startup are
considerably larger than the final no load current. The large startup currents indicate that a
motor controller should be used during start up. The rotor current also shows the expected
characteristic decreasing frequency as the rotor approaches synchronous speed. Another
typical characteristic of large induction motors is the speed overshoot shown in figures 5.2-6

and 5.2-7. Note that the 50 HP machine did not have an overshoot. These results are all

identical to the figures shown in reference [17].

-116 -

300 ®P Induction Motor:
A d)

Fig 5.2-6 RPM vs Time

RPN ve ¢t

) WS D SO D S NS S S SN U A N R G S | 1900

Lo

o

. 1000
{1700
| 1600
| 1500
. 1400
| 1300
| 1200
| 1100
| 1000
L v00
| 800
| 100
600
. s00
| 400
| 200
| 200
100

time (smc)

Fig 5.2-8 Stator Current vs Time

1a ve ¢t

8F Induction Motor:

tine (sec)

Current {amps)

-117 -

P S S |

Fig 52-7 Te vs RPM

300 EP Induction Motor:
) N W W N T W ¢

Te vs RPM
W T S N Y |

3000

s

. 4000
. 3000
L. 2000
| 1000
.o
#-xooo
. -2000
. =3000

-4000

LI S B
4 1’00 Yo, %o, Oac Jacc 1300 J’ao J‘o

T 1T T 7y Y

PFM

T T

(4

T

'I’D

(4

Te (Mm)

Fig 5.2-9 Rotor Current vs Time

500 WP Induction Motor: lra vs t

) U U T TN S S T |

ol 1.1t 1t 1 1 1

1

200

| oo
L 700
. 600
L soo
| 400
| 300
. 200
. 100
Lo

L ~100
| -200
L -300
| -400
| ~s00
L -600
b -100
-800

-
. a 4

time (sec)

i

Vg d

T T T Y

X4

@

amps)

Current

5.3 Synchronous Generator: Switched Load

This simulation demonstrates the transients associated with loading an initially
unloaded synchronous generator to forty percent of its rated load. The synchronous generator
ismodelled on a 2000 KW unit found on recent construction guided missile destroyers (DDG).
Speed regulation is performed by a droop governor based on the type used on an older
submarine.! The voltage regulator is modelled as a first order lag transfer function with
output clipping. While most voltage regulators have more compiicated transfer functions,
this mode] provides reasonable results under normal operating conditions. The load is a wye
connected impedance with a .999 power factor. Figure 5.3-1 shows the structure of the
network:

Figure 5.3-1 Synchronous Generator: Switched Load

speed_reg Nech:
gov S
o B i % 5 A
- q]
EEEDEE
Cv By
synch_mach |cx.b switch_3p Biv b rl_wye
sgen Cv c sw Bv_¢ load
K‘ ref:v0 ref:lon l
&
EJ E Mech:whs
| Vreg:vbe
volt_reg Vregvt
v-reg [y

I A droop govemnor has a torque speed characteristic that has a negative sloop. This
implies that as the load on the generator increases, the frequency decreases. Another tvpe
of speed regulator, the isosynchronous governor, maintains a constant speed regardless of
the load. In isolated operation, most modern generators operate in the isosynchronous
mode. When two or more generators are paralleled however, the droop mode provides a
inherently stable method for sharing the load. Paralleled isosynchronous generators require
special circuitry to ensure one generator does not take all of the load.

- 118 -

The parameters for the generator were obtained from reference [10]. The voltage
regulator dynamics were extracted from data provided by references [2] and [18]. Speed
governor dynamics are from references [6] and [10]. The parameters are all listed in figure
5.3-2

Figure 5.3-2 v.elm : Element Description File

'vLelm
'Norkert H. Doerry
t

synch _mach sgen

=d 1.38
g 0.2€
=d p 0.25
zd_pp 0.171
&< C.171
zal c.1 ! This is an approzimation
Tdc p 2.9
Tdc_rr 0.0 ! No data for subtransient T.C.
Tgc_pp (.0
Tad ©.09954
Ifnl 3.5 ! Field Current for no locad rated terminal voltage
H 0.€51
F? 2
wESs 37€.99
Vde 3€7.4235 ! 450 volts rms line tec line
Pbe 2.5e6 ! 2000 KW at .8 Power Factor
end
1
rl_wye load
K C.2
L 2Ze-€
FE1l 100¢C
end

wrilt 1£7.36
wds 3..6%
wiTepu -1C.07
TES LZZ€L.€
T C.327¢%
B c ! damping is ignored
end
1
vclt reg v_reg
Vidks £2.5€ ! Field Voltage for rated nolcad terminal voltage
¥ 26.0 ! Transfer function gain
Twrx U.15 ! Principle time constant
VEmin 0 ! Minimum field vecltage
FEma 120.0 ! Maxzimum field voltage (clipping)
end
Figure 5.3-3 v.net : Network Description File
' O T vy
lirkarc Duerry
[N
= cgen:vla = swivla = v _reg:v0a
= suen:ila = sw:iila

- 119 -

v = swivia = load:vOa
i = swiila = locad:i0a
Mech
r:theta = sgen:theta
twbs = 377 = Vv _reg:wbs
ciwm = sgen:wm = gov:wm
viwm _dt = sgen:wm dt
ris = 0.04 = gov:s
ref
:Te = sgen:Te = gov:iTm
kel g = sgen:ifsi g
“:Fsi d = sgen:Psi d
rviv0o T = 0.0 = sgen:vOn
ri:il = load:iOn
rviicen = 0.0 = vOn
end
NODE field
rv:fagv = 0.0 = v_reg:v0f = sgen:v0f
vifv = v _reg:vlf = sgen:vlf
ri:fgl = v reg:i0f = sgen:iOf
isfi = v_reg:ilf = sgen:il
end
NODE Vreg
rvivks = 367.42 = v reg:vbks
TiIive = v:reg:vt
*iph = v_reg:phase
end
!
Figure 5.3-4 v.init : Initialization File
tv.init

!Norbert H. Doerry
!

INITIALIZE

v_reg:i0f -38.499
v_reg:ilf 38.499
sgen:idf ~38.499
sgen:ilf 38.499
sgen:psi_d 1
sgen:s_wm 188.5
sgen:eq_p 1
sgen:eq_pp 1
END

t

NODE VOLTAGE INITIALIZATIN
Civ 3€7.4
v b -183.7
Ziv ¢ -1£2.7
Mech:theta 0
Mech:wm dt 0
ref:Te C
ref:Fsi g 0
ref:Psi:d 1
field:fv 52.56
Vreg:vt 3€7.4
Vreg:iph 0
END

Figure 5.3-5 v.sim : Simulation File

-120-

]
[

qen:T

sJentv

1]

Q

)

ol
[T

NGO £ (L
1 .

ref:Te
Mech :twm
load: Iz
end
!
TIME STEFP O
TMIN 0
TMA 8
PRINT STEFP O
DELTA 0
DELTA MIN O
CONVERGE ie-10
MAY ITEWATION 50
PEFERENCE
T Tl
END
EXTERNAL INPUTS
sw:Switch 0 0
swi:Switzh 1 0.01
sw:Switch 0 4.0
ENE

The results of the simulation are shown in figures 5.3-6 through 5.3-11. Figure 5.3-6
shows the speed regulation of the governor. Notice the droop in frequency caused by the
addirion of the load (2.2% in this case). The frequency transient dies o~ within 4 seconds
on both the application and removal of the load. The terminal voltage has interesting char-
acteristics on both the addition and the removal of the load. On the application of the load,
the terminal voltage experiences a negative voltage spike as the current builds up in the load
inductance. On removal of the load, the netwark is in asymmetrical operation as each phase
switch opens on the zero crossing of the current. Notice that the relatively high gain on the
voltage regulator results in a small steady state error in the terminal voltage magnitude. Figure
5.3-8 shows the field voltage as generated by the voltage regulator. Even with the large
change in load and large voltage regulator gain, the field voltage magnitude remains within

the clipping limits.

-121 -

AL g

L

Figure 5.3-6 RPM vs Time

{EN-N NATHNINEY
TS OO U W |

RPN ve Time
1 i (! 1 i i

1

1

I

1060

| 1080
| 1940
| 1000
1820
1810

et 1 800

| 1190
| 1780
1770
| 1760
L 1790
L 1740
L 1730
| 1720
1710
1700

T
0 ¢ L7

~r
-8) °.

T

RN

1 17

$

tine {(dec)

T

v 9 s e,

Figure 5.3-8 Field Voltage vs Time

I3YNZR MAZHINE)
lod A1

Fiald Voltage
U W R U G

l

1

1

85

| so

| as

time (sac)

Figure 5.3-7 Terminai Voltage vs Time

vId

-122 -

{JYNCA MACHINT)

1 A A

J.

A

Terminal Voltaqs (mms line)

-

l_i_ 2 L

11

1

A

800

I~ A IZ

. 479

| a23
| 400
R
| 380
| 32s
| 300
| 278
| 290
| 228
| 200
178
180

Figure 5.3-9 Tepu vs Time

time (sec)

{SYNCE MACHINE) Torque ¥T vs Tinme

1 1

1

A

1

S W B)

V|

il

x\/\/§___

L =0.1%

| 0.2

0.3

| -0.3s

T
o o0

LR L ¥
ERR R)

3

T
ERE)

T

T
'-J

time (sec)

T
s s

T

3

T
f £ .2
)

>A

Torque

Figure 5.3-10 id and iq vs Time

({SYNCTR MACRINE)

N D S G W Y

id and iq va Tine

S W T N S S S

time (sec)

id and tq

-123 -

Figure 5.3-11 vd and vq vs Time

{SYNCR MACRINT)

vd and vq vs Time

W WU W SN R S N SN SO WU B S N 1.1
“Mv~——y\/w~rx
- .0.9
. L.o.8
B 0.7
- . 0. ¢
o 0.9
4 Lo.4¢
4 .0.)
B Lo.2
i L 0.1
- T °

-0.1

LN B B S S R O SR B Sl B

0 0 4.2 R 20 0.8 5 Ky
time (sec)

vd and vg

5.4 Synchronous Generator: Two Phase Fault

An electrical system casualty that can easily occur on shipboard systems is a two phase
fault where two of the three lines of the distribution system are shorted together. This problem
is difficult to solve analytically due to the asymmetrical nature of the resulting network.
Figure 5.4-1 shows the SEPSIP network congifuration used to solve this problem numerically.
The network is a modification of the network used in section 5.3. The transmission line
element was added to prevent potential problems with the voltage regulator model. The
voltage regulator model calculates the terminal voltage of the synchronous machine assuming
a nonzero balanced voltage. If the terminal voltage of all three phases goes to zero, there is
the possibity of the voltage regulator generating a singular Jacobian matrix. The transmission
line assures a slightly positive voltage magnitude.

Figure 5.4-1 Synchronous Generator: Two Phase Fault

speed_reg Mechi
gov S

A
K
4R 1 g - % %
C:v >_B:\r
synch_mach [¢cvb t_line_3p By b
sgen Cv e tline Bv_e
3 L_M__ switch switch
3 .;- sw_be ¢ G sw-edb
] E r Mech-wbs
Vreg:-vbe
volt_reg Vregvt ri_wye
v_reg Vreg'nh load
ref:lon I

Figure 5.4-2 w.elm: Element Description File

iq_pp 0.171
wal 0.1
Tdo_p 2.9
Tdo_pp 0.0
Tqo_pp 0.0
Tad 0.09954
Ifnl 38.5
H 0.€51
PP 2.0
wbs 37€.29
Vvdb 367.4235
Pks 2.5e6
end

rl wye load
R 0.2
L 25e-6
Rl 1000
end

t_line 3p tline
R .00001
L 0.0
R1 1000.0
end

switch sw ab
end -

switch sw_bec
end

speed reg gov
wnlo 187.36
wds 31.69
wdTepu -10.07
TBS 13262.6
Tg 0.3275
B 0
end

volt reg v_reg
vidbs B2.56
K 20.0
Tvr 0.15
Vimin 0
VEmazx 120
end

!

! w.net

! Ncrbert H. Doerry

tline:;v0a = v_reg:v0a

NODE C
w3:v = sgen:via =
i3:1i = sgen:ila = tline:i0a
end
NODE B
viv = tlineivia = load:v0Qa
viv_b = tline:vlib = load:v0b
viv_c = tline:vlic = load:vOc
i:di = tline:ila = load:i0a
i:i b = tline:ilb = load:i0Ob
iii_e¢ = tline:ilc = lcoad:ilc
end
N7ZDE Mech
vitheta = sgen:theta
rviwke = 277 = v orezivbs
W = sgeniwm = gcviwm
wiwm_dt o= osgeniwm_dt
rv:s = .04 = govis
end
NZIE ref
viTe = sgen:Te = gov:Tm
Fei g = sgen:Fsi_g

sw_ab:v0
sw_ab:vl
sw_bc:vl
sw_ab:i0
sw ab:il
sw_be:il

Figure 5.4-3 w.net: Network Description File

= sw _bc:v0

= sw bc:il

- 125 -

Figure 5.4-4 w.init: Initialization File

viFei d = sgen:Psi_d
rviv0 = 0 = sgen:vOn
ri:il = load:i0n
rv:lon = 0 = load:vOn
end
NODE field
rvifgv = 0.0 = v_reg:v0f = sgen:vOf
vifv = v_reg:vlf = sgen:vlf
ri:fgl = v_reg:iCf = sgen:iOf
i:fi = v_reg:ilf = sgen:ilf
end
NODE Vreg
rvivks = 3€7.42 = v_reg:vbs
vivt = v _reg:ivt
viph = v_reg:phase
end
!
! w.init

! Norbert H. Doerry

1
INITIALIZE
1

v_reg:iCf
v_reg:ilf
v_reg:vt
v_reg:Verr
v_reg:Vsig
v_reg:theta
gov:Tm_order
gov:Tmpu
sgen:ila
sgen:ilb
sgen:ilc
sgen:iof
sgen:ilf
sgen:s theta
sgeri:s_wm
sgen:wm dt
sgen:psI_d
sgen:psi_gq
sgenieq_p
sgen:eq pp
sgen:ed pp
sger.:d_psi_d
sgen:d _psi_gq
sger.:d_eq_p
sgeri;d_eq pp
sgen:d ed pp
tline:i0a
tline:i0b
tline:ilc
tline:ila
tline:ildb
tline:ilc
tline:ia

tline:ik
tline:ic
load:ila
leoad:i0b
locad:i
s

lo

lec

lo

END
t

41.26
-41.26
366.15

0.0034541
0.069814
0.12889
0.4110¢€
0.41204
-1687.5
1442.6
254.8
-41.26

41.26

~0.3839¢6
184.49

0.048494
1.0147
~0.20438
1.025
1.0218
0.035732
~-0.00067673
2.29021e~05
~-0.00066281

N W

—
)}
0
~J
PR - . . « & e < a
OARNWNHDRARNDRBO N DR
~1

- 126 -

NODE VOLTAGE INITIALIZATION

Tiv 3392.49
liv_ b -288.53
Civ ¢ -50.957
B:v 335.49
B:v b -288,53
B:v ¢ -50.957
Mech:theta -0.3839¢6
Mech:wm 184.49
Mech:wm dt 0.048494
ref:Te 5464.7
ref:Psi g -0.10438
refibzi_d 1.0147
field:fv 56.229
Vreg:vt 366.15
Vreg:ph -.51287

END

1

EXTERNAL INPUTS INITIALIZATION
sw_ab:switch 0
sw bciswitch 0
ENT

[}

Figure 5.4-5 w2.sim: Simulation File

'w2.8im
'

SIMULATION
1

DISPLAY
C:v
C:v_b
C:v_c
sgen:Tepu
sgen:vd
sgen:vqg
sgen:id
sgen:iq
sgen:ifd
Vreag:vt
field: fv
ref:Te
Mech :wm
lcad:Ia
END
[}
TIME_STEF 0.00025
THMIN 0
THRX 4.5
PRINT_STEP 0.002
DTLTA 0.01
DELTA MIN 0.01
CONVERGE le-10
MAX ITERATION 50
FEEFERENCE
I:C:i
END
EXTERNARL INPUTS
sw_ab:switch 1
sw_ak:switch 0
ERD

t

0.5
1.5

The results of the simulation are shown in figures 5.4-6 through 5.4-11. Notice that
the terminal voltage oscillates during the fault due to the method by which the voltage regulator

determines the rms voltage. Figure 5.4-6 shows a high frequency oscillation of the generator

-127 -

rotor during the fault. The field voltage clips at the maximum level which causes the terminal

voltage to drop in magnitude during the fault. After the fault clears, the generator retumns to

the steady state condition within about three seconds.

Figure 5.4-6 RPM vs Time

(SYNCE MACHINT) RPM ve Time

i L 1 A A 1 b l

1008

| 1800
| 1798
L 1190
L 1708
L 1700
L1113
L 1170
| 1768
L 1760
| 1983
L 1750

1748

tine (sec)

Figure 5.4-8 vd and vq vs Time

{SYNCE MACRINE; vd snd vq ve Time

i i ' A A i i s

[
I

D N T S U S S 1

T
- N e e e 4 e e

A4 4 2

Y
]
o
L

tire feec

vd and vq

-128 -

Figure 5.4-7 Torque PU vs Time

{SYNCE MACRINE) Totque PU vs Time
L i i A i i i i 2

Torque

. -1.8

tine (sec)

Figure 5.4-9 id and iq vs Time

{BYNCE MACOINT) id and iq vs Time
i A . —t ol ke - | A 2

id amd iqg

tine (rac)

Figure 5.4-10 Line Voltage Figure 5.4-11 Field Voltage

{BYNCR MACBINE) Terminal Voltage (ms 1ine) (SYNCH MACRINT) Field Voltage

1 L. 1 A i i d A 300 A i A A 4) i i 120
450

- rl?@
400

8 4 L 110
L. 3%0

- . 100
LJOO

L L. 90
. 290

12 o . 00
L. 200

o . 70
. 180

100 . -0

. 80 - . 80

] 40

L] T L8 T T A 1 L Al Ll L) A
?_: 3 2, f . 4 oJ J J.JJ "J 2 JJ v L
tine (sec) tine (sec)

-129 -

vea

5.5 Synchronous Generator: Three Phase Fault

The previous section simulated a two phase fault. This simulation shows the transient
response of the synchronous generator due to a symmetrical three phase fault. The network
is identical 1o the one used in section 5.4. The only change in the input file was the addition
of two entries in the external input queue of the Simulation File.

Figure 5.5-1 Synchronous Generator: Three Phase Fault

speed_reg Mech:a

. g .13
= sl)
SRR
(] . 1]
synch_mach [Cv.b t_line_3p Bv,b
sgen Cvoe tline | A]
ref:v0 switch switch
1i Sv—be o ey O wab
Yregvbs
volt_reg Vregvt ri_wye
v_reg Vreg:pn load
ootion |

Figure 5.5-2 w3.sim: Simulation File

<
i
: -
t "
i
9

1
1
.
&£
]
1

-1
+
’
+
(

re
(X1
Ty
‘o1
0

EEEL LI IV U O T [e SN RIS

Coie

- 130 -

PRINT_STEP 0.002
DELTA 0.01
DELTA_MIN 0.01
CONVERGE le-10
MAX_ITERATION 50
REFERENCE

I:C:i

END
EXTERNAL INPUTS

sw_ab:switch 1 0.5
sw_bc:i:switch 1 0.5
sw_ab:switch 0 1.5
sw bc:switech 0 1.5

END

The results of the simulation are shown in figures 5.5-3 through 5.5-8. Inidally, the
speed of the generator increases due to the sudden loss of load. This speed is controlled
however, by the dynamics of the speed governor. During the short, the line voltage drops
almost to zero. The voltage regulator responds to this by increasing the field voltage until
clipping occurs at the preset value of 120 volts. The field voltage stays at this level well after
the fault clears and until the line voltage approaches its reference. The torque characteristic
is the typical response expected during a three phase fault.

Figure 5.5-3 RPM vs Time Figure 5.5-4 Torque PU vs Time

(SYNCN MAZRINT) PPM ve Time (BYNCE MACRINT) Torque PU vs Tine
"y i i A 4 1 L F\ 1850 A Y i A i I i 1 4

| 1040
d L 1030
L 1820
L 1010 . L1

| 1000

e L. 1790
E - L -1

Torque

v
Fl 0

[1770 - | -2

1760
3
- -3

L 1780

. 1740

1730 -5

tine (sec) time iFec)

-131-

Figure 5.5-5 vd and vq vs Time

{SYNCR MAZRINE) vd and vq v Time

'

'y

A

A

4.

v

|1

L 0.9
Lo.e
TR
L o.¢
Lo.s
Lo.4
Fo.s
L 0.2

0.1

time (sec)

Figure 5.5-7 Line Voltage

(EYNTR MACHINE) Terminal Veltaye (rms line)

y -

i

.

'l

A

-

i

so¢

L 450

L 400
| aso
L 300

. 250

L 150

e LIOO

. 50

time (sac)

vd amnd vq

-132-

Figure 5.5-6 id and iq vs Time

{SYNCR MACRINT)

S

id and iq v» Tine

A

A

L2
L1

L~-1
=2
=23
| -4
L ~$
. . -¢
L -7

o
9
“
A
“
A
DS
“
“
“
-
-
(%%

time (rect

Figure 5.5-8 Field Voltage

{SYNCE MACRINL)

rield voltage

A

-

Il

- |

4

I

L

130

. 120

110

L 100

b 90

80

L 70

. 0

L. 50

40

tine (mec)

id aad iq

ved

5.6 Paralleled Synchronous Generators: Switched Load

Shipboard generators often operate paralleled with one another. This simulation shows
the transient effects on two identical generators that are connected in parallel and subjected
to a .4 per unit load for 4 seconds. The generators and load are identical to those used in
section 5.3. Figure 5.6-1 shows the network structure. The transmission line element was
inserted in parallel with the generator paralleling switch to prevent a singular system Jacobian
matrix when the switch is opened. Without the transmission line, there would be two
independent circuits when the switches are open and only one independent circuit with the
switches closed. The problem stemns from the requirement for one reference voltage subnode
and one reference current subnode for each independent circuit. Adding a transmission line
ensures there is always only one independent circuit. By assigning a large resistance to the
transmission line, its effect on the solution is negligible.

Figure 5.6-1 Paralleled Synchronous Generators

el Ll F— it
-
A

ﬂ.ﬁ_ﬁ_

wynch_mach t;l L[Sl swhen.9) vol.reg
agenia F 3 v pen v_reg b
4 [—mee (

1] e

| .0)
volLres [vmam rrien_Sp [y rvre
-re-s [epen ol [T
ot]

Figure 5.6-2 x.elm : Element Description File

"

Lo M.eom
&

Nerbert H. Doerry

t
t
!
synch_mack sgen_a

wd 1.3¢8
et .27
:::5_4{~ c.z%
3_TE C.271
~9_FF c.171
zal 0.1
Tdc p z.¢
Td:z _cp c.0
Tac_tw c.0

-133 -

Tad 0.09954

Ifrni 38.5

H 0.651
123 2

wks 376.99
Vdb 367.4235
Pkse 2.5e6
end

!

synch_mach sgen_b
=d
xq
nd_p
id_pr
“4q_PP
zal
Tdo_p
Tdo_pp
Tqo_pp
Tad
Ifnl
H
PF
wks 276,92
Vdb 367.4235
Pbs 2.5e¢6
end

!

speed reg gov_a
wnlo 187.36

< ~J oy oof
o

T

¥
0
wn
o

W
NODMOOONOOOOO

AL OOOCOWHRFERNNDW

T
[

wds 31.69
wdTepu =10.07
TBS 13262.6
Tg 0.3275
B 0.0
end

1
speed_reg gov_b
wnlo 187.36

wds 31.69
wdTepu =10.07
TBS 13262.6
Tg 0.3275
B 0.0
end

i
volt reg v_reg_a

Vidbs £2.56
K 20.0
Tr 0.15
Vimaz 120
VEmin 0
end

i
volt_reg v_reg b

vidbs £52.56
K 20.0
Tvr 0.15
Vimaz 120
VEmin 0
end

switch 3p sw_yen
end

-134 -

Figure 5.6-3 x.net : Network Description File

tline:v0a
tline:i0a

sw_genivla
sw_gen:ila

v3:v = sgen_b:v0a = sw_gen:vla =
i3:1i = sgen_b:i0a = sw_gen:ila =
end
NODE B
v3:v = sw _ld:vla = load:v0a
i3:i = sw_ld:ila = load:ila
end
NODE A
v3:v = sgen_a:vl0a = sw_ld:v0a =
i3:i = sgen_a:i0a = sw_ld:i0a =
end
NCODE Mech_a
vitheta = sgen_a:theta
rviwbs = 377 = v_reg_a:wbs
viwm = sgen_aiwm = gov_a:iwm
viwm_dt = sgen_atwm dt
rvis = 0.04 = gov_a:s
end
NODE Mech b
vitheta = sgen_b:theta
rv:wbs = 377 = v reg b:wbs
viwm = sgen D:wm = gov_a:wm
viwm_dt = sgen_b:wm_dt
rvis = 0.04 = gov_b:s
end
NODE ref_a
v:Te = sgen_a:Te = gov_a:Tm
v:Psi_g = sgen_a:Psi q
viPsi d = sgen_a:Psi_d
rviv0 = 0.0 = sger_a:vO0n
end
NODE ref b
v:Te = sgen biTe = gov_k:Im
viPsi_q = sgen_b:Psi g
viPsi_d = sgen_b:Psi d
rviv) = 0.0 = sgen_b:vOn
end

NODE ref_ld
ri:il = load:iOn

rvileon = 0.0 = load:vn

end
NODE field _a
rvifgv
vifv
risfgi
i:£i

H B wn

U B | e

0.0 = v_reg_a:v0f =
v_reg_a:vlf =
v_reg a:i0f = sgen_a:iOf
v_reg_atilf =

G.0 = v _rec bivCE
v_reg bivif
v_reg b:iOf
v_reg b:ilf

nauan
[N]

. = 2€7.42 = v_reg_a:ivbs

sgen_a:vOf
sgen_a:vlf

sgen_a:ilf

n biwOf
r_bivis
n b:i0f
n b:ilf

-135 -

v_rey b:vOa

tline:vla = v_reg _a:v0a
tline:ila

vivet wm v reg aivt
viph = v_reg_a:iphase
erd
NODE Vreg b
rvivbs = 367.42 = v_reg b:vbs
vivt = v _rey bk:ve
viph = v_reg b phase
end

Figure 5.6-4 x.init : Initialization File

!osainit
INITIALICE
1

v_reg a:iof 3g8.49¢2
v _reg aiilf ~36.499
saen a:ifa 0
saen_a 1i0b 0
sgen_a:ilc 0
sgen_a:iof -38.498
sqer_a:ilf 38.499
sgen _a:s theta 0.0
s7en_ais_wm 188.5
syern _a:s wm dt 0
sqen Ta: ps 1
sgen_a:psi q o]
sjen_a:eq P 1
sgen_a:eq pp 1
sgen_a:ed_pp 1
gov_a:Tm_order o]
gev_a:iTmpu 0
!

v_reg b:iCf 38.499
v_reg b:iilf -38.499
sgen S.iOa ¢
sgen_ “b:i0b 0
sgen_| “biilc 0
sgen b:iOf -38.499
sgen b:ilf 38.49¢
sgen b s_theta 0.0
sgen_| “bis” “wm 188.5

sgen “b:s “wm_dt 0
sgen_| b psz d 1
sgen b: ipsi_gq 0
sgen bieq p 1
sgen_tieg pp 3
sgen Tk ed _EP 1
Jeov E:Tm crder 0
anv_ “k:Tmpu c
END

!

NODE VOLTAGE INITIALIZATON
Criv 367.4
Civ b -183.7
Tiv_c -183.7
Arv 367.4
A:v_ b -183.7
A:v ¢ -182.7
Mech a: theta 0
Mech dt 0
Mech_ - 188.5
ref 0
ref 3 C
ref d 1
fiel w £z.56
Vre 367.4
Vre 0.0
lec eta O
Mez dt 0
Mec 1€8.5

-136 -

ref b:Te

ref b:Fel g
ref biEsi d
field b:fv 5
Vreg b:vt 36
Vreg b:ph

END

!

EXTERNAL INPUTS INITIALIZATION
sw l1d:Switch O
sw_gen:Switch 0
END

Figure 5.6-5 x2.sim : Simulation File

s
Lt
Arv
v
sger_a:Tepu
sger_a:vd
sgen_a:vqg
sger_a:id
sgen_a:ig
sgen_a:ifd
reg_a:vt
field a:fv
ref a:Te
Mech_a:wm
lcad:Ia
sgen_b:Tepu
sger_b:vd
sgen_b:vg
sgen b:id
sger_b:ig
sger._k:ifd
Vreg_b:vt
field b:fv

ref kiTe

Mech b:wm

END T
1
TIME_STEP 0.00025
THMIN 0
THAY]
FEINT_STEF 0.062
DELTA 0.C1
DELTE MIN 0.61
CONVEEGE le-10
MAYX ITERATION 50
KEFERENCE

T:h:ed

END

EXTEPKZL INPUTS

sw gen:Switch 1 0.004

sw 1d:Switzh

-
-

0 G
zwzh 1 O,
¢ a

137 -

The results of the simulation are shown in figures 5.6-6 through 5.6-11, Since the
generators are always in parallel when the load switches on and off, the response is similar
to the results in section 5.3 but with smaller deviations due to the addition of the second

generator.

Figure 5.6-6 RPM vs Time Figure 5.6-7 Terminal Voltage vs Time

{SYNZQ MACHINE) RPH Vs Tine (SYNCE MACAINE) Terminal Veltage (rms line)
+ I WUV W S WS U WU U SR WIS (VNN R DU SN S N 1830 o) | WU S o | U WS S U NN SO N R | «n
- L 1623 - - 459
- | 1020 L FGSO
o L 487
d r.xus] p g6
E r.xno § | sy
ﬁ L1008 B L 454
o | 1800 - %)
- 1798 - . 492
4 L 1790 s : :::; g
B L1788 i L 449
d L1700 J | 640
- L1778 r L 44?7
R 1770 . [448
- | 17¢8 -J . 448
o L 444
s L1780] [143
B | 1788 R L 442
o F Ll mr T T 1 T T T L] T L 1780 T T T v T 1§ T A T T T T v "
o 0, JJ 4, Jé e 3" J\‘i < _,5 J.:O‘ ‘-3> 2 :o o 0 3” J‘.’.’ L 4'.I J_‘,v [J.' 4, P 3> b _,0
tine (sec) time (zec)

Figure 5.6-8 Field Voltage vs Time Figure 5.6-9 Tepu vs Time

{SYNTE MATHINE) Fleld Voltage (SYNCE MACBINE} Torque PU vs Time
N W WS WY VA WU VU G U U NS S W S 1] S SDUU VNN TR S TR S W SN WS SO S SO S S 0.02
. E“ 4 0.00
[7]
e d L ~0.02
-4 |62
- FOO - l.=0.04
N -1 T L -0.0¢
i . 8¢ 4 L. ~0.08
B . 54 .
«0.1
- L s2 § 1 5 E_
80 < L-0.12 8
E L. 48 - L <0.14
e f'“ d | -0.16
-4 4"
F - L. -0.1e
.1 } 42
4 L“’ o, l.=0.2
38 -¢.22
i T LA Y 1 1 T T T T Al T LI 4 T T L T T T T T 1 T T T T T
0 0.0 {2 i d NS e 0 0 4y 23 0wt e e
time (wec) tire ir2ec)

-138 -

Figure 5.6-10 id and iq vs Time Figure 5.6-11 vd and vq vs Time

({EYNCE MACRINE) id and iq v Time (YNGR MACEINE) vd and vq ve Tinme

A 'S A Sed i i) N W T} 4 b d 0.02 I3 Aood Aol I i I L Il 'l i L Ld 1.1
» 0.00 _r./\' N~ 1
. . =0.02 - 0.9
. | ~0.0¢ N Lo.e
r . =0.0¢ o Lo.?
d L-0.00 - J L o.¢

-’

4 L-0.1 ! J Lo.s
- . -0.12 ° p LO. ¢
-l
J L -0.14 J 0.3
o . ~0.16 o . 0.2
. .~0.180 e Lo.1

-0. L
L @ P . -~0.2 1 °
“0.22 «0.1
T Ll Y‘ ‘\ l\ R T T A L T T T l‘ LR T T L] LN B B | LER | " '; '
AR N A AN AU SR 0 04 12 22 20 03 30 €2 2
time (sec) time (sec)

- 139 -

vd aad vq

5.7 Paralleled Synchronous Generators: Switched Load

Shipboard generators often operate paralleled with one another. This simulation shows
the transient effects on two identical generators that are connected in parallel and subjected
to a .4 per unit load for 4 seconds. After the 4 seconds, one of the generators is detached
from the load. The generators and load are identical to those used in section 5.6. Figure
5.7-1 shows the network structure which is identical te the structure in the previous section.

Figure 5.7-1 Paralleled Synchronous Generators

speed_ reg [
gov_s at.ae et tine

oo on |3 lei
_pex

\ A

wyneh_mash [y}

) Tl T

[.1] o >
{4 e
1] e

NI
volreg (mpm evian.Sp (maa | L
Y-Te-S |ware oM L

e]

The input file for this simulation is identical to the input file described in section 5.6
with the exception of minor changes to the simulation file.

Figure 5.7-2 x3.sim : Simulation File

LC IR T T I 7 T o i e IR s)
aw
[TR
a
(oIS

[Y
k
«Q

wib bbb

g
g
g
g
g
g

M b)

‘‘‘‘‘‘

wowm o

g

- 140 -

sgen_b:ifd
Vreg b:vt
field b:fv
ref b:Te
Mech_b:wm
END

'

TIME STEP 0.00025

T™IN™)
TMAX]
PRINT_STEP 0.002
DELTA 0.01

DELTA_MIN .01
CONVERGE le~-10
MAX_ITERATION 50
REFERENCE

I:A:3

END
]

EXTERNAL INPUTS
1

sw_gen:Switch 0 0.0
sw_gen:Switch 1 0.004
sw_ld:Switch 0 0.0
sw_ld:Switch 1 0.01
sw_gen:Switch 0 4.0

END

The results of the simulation are shown in figures 5.7-3 through 5.7-8. For the first
four seconds, the simulation is identical to the previous simulation. When the switch con-
necting the two generators opens however, the two generators have different transient
responses as they attain their new steady state conditions. Figure 5.7-3 clearly shows the

effect of the droop characteristic of the speed govemnor.

3 . & [*
Figure 5.7-3 RPM vs Time Figure 5.7-4 Terminal Voltage vs Time
{EYNCS MACSINE) RPM vs Tine (BYNCE MACEINE) Temminal Voltage {(rms line)
A 'l A J Lo i 2 1 1 . | i Il A 1830 A 1 1 ') Al Il 'l A A L A 439
. iy
- . 1820 - L 457
- . 48¢
4 L1010 4 [11)
- | 484
Jd 1800 - 14
P . 452
- . 17%0 - . 491
. L 450
4 L17ec 4 L aay
' 5 4 R0 3
. - 1770 . | €47
f | 446
4 - 1762 . b 445
- ST
4 L 170 4 L 442
- L 442
<4 L1740 4 L aas
. | ae0
429
LIRS T A B S S A T T T 17 U °f7 L l"]o L] Ll T v T Al LR R A LA T "T"~
00, 4@ 20 T 0 rS S e 0 0.0 442 20 Q0 08 30 0 08

time (sec) time isecC)

- 141 .-

Figure 5.7-5 Ficld Voltage vs Time

(SYNCH MATAINE)

field Velitage

PRI U GHES UK VR TR WS SR T SN SN S S U s
- 70
E L. 45
. . 60
o L. 88
o L. 80
- . 43
o |, 40
s
T T Tt T T T T T Y
0 0 1@ 2 NS S e
tine isec)
. . . .
Figure 5.7-7 id and iq vs Time
{SYNCE MATRINT) id and iq vs Time
| SO O S W U T WUUN SO NS S T N R N | 0.05%
- ¢.00
<4 | -0.0%
- L -0.1
= l.~0.18
e e o | -0.2
B . -0.28
- L-C.23
J L 0.5
- ”\‘,—-—_——-———————.-'°-‘
-0. 43
LA v 1 T T T T T T T
$. o
AR AR N AR AR A A A P
time ivecH

ved

id and iq

- 142 -

Figure 5.7-6 Tepu vs Time

{SYNCE MACRINE) Torque #T vs Time

F SO SO SN WY T S T VA WA S W VORS SO W | 0.08

- 0.00
e l.=0.0%
g L-0.1
-4 L.=0.1%
- [-0.2
< . -0.29
e L. -0.23
- L ~0. 38
A L=-0.4

'\/\,——————.

-0.43%

i T r L] TOT T T AR | A 1 T
>N
0 00 4@ 20 20 2.5 5.6 €, 20
tine f(sec)

Figure 5.7-8 vd and vq vs Time

(SYNCE MACNINE} vd and vq vs Tinme

F WU WU U UV WA S WU WS A TS SN SN WUNS T |
b O
- -
- -
- -
- -
- 8
4 o
- -
P
—
-
R Al L T T T rorr T 7 LS L
[r s -
PO ACER N A B R
tine f(rec}

0.8
0.4

Torque

vd and vq

- 143 -

CHAPTER 6
CONCLUSIONS
6.1 Assessment of SEPSIP

In its present form, SEPSIP is useful for analyzing simple and moderately complex
electrical networks. Since the time required for a simulation is proportional to the cubic of
the order of the system (Gaussian Elimination), large simulations require an unreasonable
amount of time. Careful design of the network to minimize the system order can help tre-
mendously in reducing the execution time of SEPSIP. Other possible methods of improving
the speed of SEPSIP include running the program on a faster computer and making simple
changes to the program. The following section provides details on several options for
increasing SEPSIP’s speed.

The decision to use SEPSIP or a general simulation language such as ACSL for the
simulation of shipboard systems depends on what exactly is desired to be modeled. If the
desire is to simulate the respose of a new type of device, ACSL may be superior. Writing
robust device driver routines for SEPSIP that are fast, stable and accurate can be difficult
and time intensive. Creating the device models on ACSL should normally require less time
since physically writing and compiling code is not required. Once the device models have
been created however, the advantage shifts greatly to SEPSIP. SEPSIP’s built in provisions
for organizing and interconnecting a number of devices into a network are far superior to the
capabilities resident in ACSL. ACSL is not really designed to handle network architectures
and forcing it to do so results in large unmanageable input files that are hard to debug. In
short, ACSL is better at modeling individual devices while SEPSIP is far superior in orga-

nizing models into networks.

- 144 -

6.2 Future Improvements

SEPSIP, like any other computer program, will never be completed. There will always
be a number of possible improvements that only take time and effort to impliment. The
following sections detail some of the possible improvements to the present version of SEPSIP
that would greatly extend its utility.

6.2.1 Variable Time Step

Many simulations would run much faster if a variable time step were incorporated.
Presently, the time step must be small enough to capture the transient response of the fastest
time constant of interest. However, since the fast time constant is only important for a small
time period after a disturbance, using the small time step for the remaining time is very
inefficient. When only slow time constants are important, larger time steps can be used.

One way of implementing variable time steps in SEPSIP would be to include the option
of adding the time step variable to the EXTERNAL INPUT subsection of the SIMU-
LATION section. In this manner the time step variable, its new value, and the time that
the new value takes effect can all be specified.

6.2.2 Replace Gaussian Elimination

The Newton-Raphson method used to solve the system of nonlinear equations requires
the solution of the linear equation Jx =¥, Presently, SEPSIP uses Gaussian Elimination
with partial pivoting to solve for x. For an nth order system, the number of floating point
multiplication operations is proportional to n®. Since X is only used to produce a correction
for the Newton-Raphson method, there is no need to solve exactly forit. An iterative method
for solving for x can cut down the computation time considerably. The Gauss-Seidel method
for example, requires on the order of only n® multiplication operations for each iterations.
If the number of iterations can be held well below the order of the system. a speed gain will

be realized.

- 145 -

Giving the operator the choice of which method to use would be easy to implement
and would not add any extra time to the execution of the simulation. This way the operator
can experiment to determine which is the better method for the simulation under study.

6.2.3 Reuse of Jacobian Matrix

SEPSIP presently recalculates and inverts the Jacobian matrix for each iteration of
every time step. If the Jacobian matrix does not change very fast, there is no need to
recalculate it for each iteration. Allowing the user to specify how many times the Jacobian
matrix is used before it is recalculated would greatly increase the speed of the program for
certain simulations.

6.2.4 Output Variables and Output Subnodes

One way to increase the speed of a simulation is to decrease the order of the system
by incorporating output variables and output subnodes. An output variable would be
explicitly defined by an element and connected to one or more input variables through the
output subnode. The output subnode would equate all of the input variables to the output
variable. For this reason, there would not be a system variable associated with the output
subnode. Presently, all the variables would have to be implicitly defined and connected
with a voltage subnode that adds a system variable.

6.2.5 Action Files

Action Files are text files that contain a list of SEPSIP commands. When an Action
File is called from within SEPSIP, control would pass from keyboard entry to the commands
contained in the file. Once all of the commands have been executed, control shifts back to
ke yboard entries. This feature allows one to run a number of long simulations sequentially
without reamaining at the computer terminal.

Modifyving SEPSIP to accomodate Action Files would require replacing all calls to
the system function gets with a call to another routine that would determine which input

stream to use. The code would look similar to:

- 146 -

#include <stdioc.h>
#tinclude "doerry.h"

/* structure for keeping track of the present stream */
typedef struet Strm

FILE *in;
struct Strm *last;

}
STRM;

/* This is the initialization code which sets the
stream to stdin */

static STRM *strm;

init_stzrm()
{

char *calloc();

strm = (STRM *) calloc((unsigned) 1 , sizeof (STRM)):
strm->in = stdin;
strm~>last = NULL;

}

/* edit_strm sets the current stream to the value passed
to it */

edit_strm(stm)
FILE *stm;
{

char *calloc():
STRM *temp;

temp = (STRM *) calloc({(unsigned) 1, sizeof(STRM)):;
temp~>in = stm;
temp->last = strm;
strm = temp;
}
/* gets_in() replaces gets() as the routine for reading in a
line from stdin */

char *gets_in(string)
char *string;
{
int i;
i = fgets(string,MAXCHAR, strm->in);

S * see if read to the end of the file */
while (i == NULL && strm->last != NULL)
{

-

trm = strm->last;
i = fgets(string,MAXCHAR, strm->in);
}
/* get rid of trailing carriage return */
i = strlen(string) - 1;
if (L >= 0 && string(i) == '\n’) string[i] = NULL;

return string;

6.2.6 Integrated Graphics

SEPSIP was intentionally written without any graphics to improve the portability of
the code. In general, graphic subroutines tend to be machine specific and therefore require
muchrevision when transferred to another computer. SEPSIP has circumvented this problem
somewhat by using a totally separate plotting program (Norplot) to display the data.
Unfortunately, the data can only be plotted once the simulation is totally finished. It would
at times be beneficial to observe the display variables in a graphical form as the simulation
progresses. If the simulation goes unstable, the program can immediately be halted instead
of waiting for its completion.

Portability could still be maintained to a degree by using only a few general routines
that could be easily modified for whatever system SEPSIP is installed on. These routines

would include

terminit() Initialize the Graphics Screen
clrsern() Clear the Graphics Screen
move(x,y) Move to (x,y)

draw(x,y) Draw to (x,y)

windset(xmn,xmx,ymn,ymx) Set the coordinates of the corners
windget(xmn,xmx,ymn,ymx) Get the coordinates of the corners
g_puts(str,height,rot) Print a string on the Graphics Screen
termend() End the Graphics Screen

These routines should all be contained in one file that can rewritten to conform to the
graphics interface of each particular machine.

6.2.7 Implement external variable ’types’

The original concept for SEPSIP was to be able to specify the external input and output
variables to be one of four types: floating point, integer, Boolean, and Switch. Presently,
only the floating point type is truly implemented. Adding the capability to recognize and
print out the four types would improve the ability of the user to specify his or her desires
and to understand the results of the simulation. A switch being on is more informative than
aswitchhaving a value of 1.0. Likewise a variable called overspeed_sensor having a value

of false is more informative than having a value of 0.0.

- 148 -

6.2.8 Optimization for speed

While a conscious effort was made to write efficient code, there is still plenty of room
for improvement. There are a number of places where speed was sacrificed for clarity in
reading the source code. In any software project, there is always the conflict between writing
fast routines, and routines that can be easily understood. Usually it is a good idea to initially
write understandable code that can easily be debugged. If the resulting code runs too slowly,
the code can always be optimized. SEPSIP is presently at this state and requires some
optimization to improve its performance.

6.2.9 Check for Recursive INCLUDE Files

The present version of SEPSIP does not check for recursive INCLUDE statements
where a file tries to include itself or a file above itself in the stack of include files. Con-
sequently, it possible to construct an input file that will cause SEPSIP to enter an infinite
loop as it recursively opens the same files over and over again. Normally this is not a
problem since for clarity the input file structure should not be very complex and any recursion
would therefore be easdy noticed. However, this condition should not be allowed to exist
and SEPSIP should check for it.

6.2.10 Break Key

Once a simulation begins in the present version of SEPSIP, the only way to terminate
the simulation before it is completed is to terminate the execution of the program with a
“control ¢". Since a simulation can take some time to complete, it would be useful at times
to be able to stop a simulation in the middle by depressing a specific key, observe some of

the internal variables, and possibly continue the simulation. Unfortunately, there is no

- 149 -

standard way in the C programming language to determine if a key has been depressed
without the user entering a carriage return'. Most systems do provide a way ot accomplishing

such "unbuffered 10" but the implementations are very system dependent.

I C normally emplovs buffered input where the characters a person types in from the key-
beard are not available to the program until the return key is depressed. This allows the
user to edit the input line before the program has access to it. A consequence of buffered
input is that when a program requests input from the keyboard, the program waits until a
return is entered. In this case, we do not want the prograin to wait for a return because
the operator would have to hit the return key every time the program checks for a charac-
ter.

- 150 -

References

[1] Advanced Continuous Simulation Language (ACSL) User Guide / Reference Manual,
Mitchell and Gauthier Associates, Concord, MA 1975.

[2] Basler Electric Company, Instruction Manual for Voltage Regulator Models SR4A &
SR8A. Publication 9 0177 00 990, Revision B of July 1986.

[3] Calovic,M. S. and V. C. Strezoski, "Calculation of Steady-State Load Flows Incorporating
System Control Effects and Consumer Self-Regulation Characteristics”, Electrical
Power & Energy Systems, Vol 3 No 2, April 1981, pages 65-74.

[4] Carlsen, K., E. H. Lenfest, J. J. LaForest, '"MANTRAP Machine and Network Transients
Program”, 1976 Power Industry Computer Applications Conference, pages 144-150.

[5] Crandall, Stephen H., Engineering Analysis, A Survey of Numerical Procedures, Robert
E. Krieger Publlshmg Company, Malabar, FL, 1986.

(6] Dalton, R.C., Turbine rator Simulations for DD-692 Class 450 KW Machine and
SSN-637 Class 200 KW Machine, Naval Ship System Engineering Station, Philadelphia,
(NAVSSES Project C-267), March 1984.

[7) DD-963 Class Propulsion Plant Manual, Volume II, Chapter 11, Naval Sea Systems
Command, United States Navy.

[8] Del Toro, Vincent, Electric Machines and Power Systems, Prentice-Hall, Inc., Englewood
CLiffs, NJ, 1985.

[9] Diao, Yi-min, O. Wasynczuk, P. C. Krause, "Solution of State Equations in Terms of
Separated Modes with Applications to Synchronous Machines", IEEE report 85-SM
346-2.

[10] Doerry, Norbert H., "Shipboard Electrical Generator Simulation”, Term paper for 6.238,
MIT, May 1988.

{11] Dommel, H. W., and N. Sato, "Fast Transient Stability Solutions", paper T72 137-3
presented at the IEEE Winter Meeting, New York, NY, January 30 - February 4, 1972.

[12] Fitzgerald, A. E., Charles Kingsley Jr., and Stephen D. Umans, Electric Machinery, 4th
Edition, McGraw-Hill, Inc., 1983.

[13] Froberg, Carl-Eric, Numerical Mathematics, Theory and Computer Applications, The
Benjamin / Cummings Publishing Company, Inc., 1985.

[14] Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hall, Inc., 1956.

[15]) Kernighan, Brian W., and Dennis M. Ritchie, The C Programming Language, 2nd ed.,
Prentice Hall, Englewood Cliffs, NJ, 1988.

{16] Kirtley, J. L., Synchronous Machine Dynamic Models, LEES Technical Report TR-87-
008, Massachusetts Institute of Technology, June 5, 1987.

[17] Krause, Paul C., Analysis of Electric Machinery, McGraw-Hill, Inc., 1986.

[18] Krause, Paul C., "Modeling of Shipboard Electric Power Distribution System", SBIR
Phase I Final Report, P. C. Krause and Associates, Inc., West Lafayette, IN, July 1988.

[19] Larsen, E. V., and W. W. Price, "MANSTAB/POSSIM Power System Dynamic Analysis
Programs - A New Approach Combining Nonlinear Simulation and Linearized State-

Space/Frequency Domain Capabilities”, 1977 Power Industry Computer Applications
Conference, pages 350-357.

[20] Leonhard, W., Control of Electrical Drives, Springer-Verlag, Berlin, Heidelberg, 1985.
- 151 -

[21] Luini, James F., Richard P. Shulz and Anne E. Tumer, "A Digital Computer Program for
Analyzing Long Term Dynamic Response of Power Systems".

[22] Meyer, W. Scott, "Machine Translation of an blectromagnenc Transients Program
(EMTP) Among Different Digital Computer Systems”, 1977 Power Industry Computer
Applications Conference, pages 272-277.

[23] Okamura, M., Y. O-oura, S. Hayashi, K. Uemura, and F. Ishiguro, "A New Power Flow
Model and Solution Method - Including Load and Generator Characteristics and Effects
of System Contorl Devices", IEEE Transactions of Power Apparatus and Systems, Vol.
PAS-94 No. 3, May/June 1975, pages 1042-1049.

[24] Prasad, N. R., and R. D. Dunlop, "Three Phase Simulation of the Dynamic Interaction
Between Synch:onous Generators and Power Systems Using the Continuous Systems

Modelling Program (CSMP III)", 1979 Power Industry Computer Applications Con-
ference, pages 29-36.

[25] Rabinowitz, Philip, Numerical Methods for Nonlinear Algebraic Equations, Gordon and
Breach Science Publishers, Londoon, 1970.

[26] Rowen, W. L., "Simplified Mathematical Representations of Heavy-Duty Gas Turbines",
Journal of Engineering for Power, October 1983, Vol 105., pages 865-869.

[27] Sarma, Mulukutla, Synchronous Machines (Their Theory, Stability, and Excitation
Systems), Gordon and Breach Science Publishers, New York, 1979.

[28] Sauer, P. W, and M. A. Pai, Course Guide and Notes for Powet System Dynamics and
Stability, Department of Electrical and Computer Engineering, University of Illinois at

Urbana-Champaign, Urbana, Il1.

[29] Student Guide for DD-963 Engineering Division Officer, A-4H-0033, Surface Warfare
Officers Schooi Command, U.S. Navy, Newport, RI, April 1983.

[30] Stypulkowski, A., and E. Pollak, "Microprocessor Based Real-Time Simulation of a
Multiple Gas Turbine Generator Electric Plant for Embedded Training", presented at
the Society of Naval Architecture and Marine Engineers Spring Meeting STAR Sym-
posium, Norfolk, VA May 21-24 1985.

[31] Velez-Reyes, Miguel and George C. Verghese, "Developing Reduced Order Electrical
Machine Models Using Participation Factors", 12thIMACS World Congress, Paris, July
1988.

[32] Wood, AllenJ., and Bruce F. Wollenberg, Power Generation Operation & Control, John
Wiley and Sons, 1984.

[33] Woodson, Herbert H. and James R. Melcher, Electromechanical Dynamics, John Wiley
and Sons, 1968.

[34] Woodward Governor Company, The Control of Prime Mover Speed, Manual 25031,
1981.

[35} Woodward Governor Company, Electrical Generating Systems, Synchronizing and
Methods of Controlling Output, Manual 25104B, 1985.

[36] Woodward Govemor Company, 9900-326 System, 9900-323 Electronic Govemn ..Qr
Control, 9900-322 Interface Panel includes 9900-305 Temperature Sensor, Part 2,
Theory of Qperation and Calibration Procedures for Allison S01K-17 Gas-Turbine
Engines, Manual 83029 Part 2B.

- 152 -

APPENDIX A
GLOSSARY

BALANCING THE SYSTEM

Balancing the System refers to the process of varying the input variables until all of the
implicit variables for all of the elements are within tolerable limits of zero. When the Mean
Square error of the implicit variables are less than the CONVERGE limit, the system is
considered balanced.
CONSTITUTIVE EQUATIONS

Constitutive equations describe the relationships between the input variables, state
variables, parameters, and external input variables of a device. For many devices, the con-
stitutive equations are used to define implicit variables that have a value of zero when the
constitutive laws are satisfied.
DEVICE

A Device is a type of electrical or mechanical machinery that can be included in a network
description. The device is described by a number of constitutive equations that relate input
variables to state variables, parameters, and external input variables. Examples of devices
include resistors, synchronous generators, reduction gears, turbines and switches.
ELEMENT

An Elemesit is a specific example of a device that has its own name and parameter values
associated with it. A resistor for example, would be a device while R2 which has a value of
10 K ohms would be an element.
EXTERNAL INPUT VARIABLE

An External Input Variable allows the operator to specify an input to an element
externally from the network description. The external input variables are specified in a Queue
that is specified in the Simulation section of the input file. External input variables can also

be initialized in the Initialize section.

- 153 -

EXTERNAL OUTPUT VARIABLE

External Output Variables are variables generated by an clement that the operator may
chose to display during the simulation. Only external output variables, external input variables,
and voltage subnode voltages can be displayed.
IMPLICIT VARIABLE

Implicit Variables are calculated by each element from the input variables, parameters,
state variables, and external input variables. The implicit variables have a value of zero when
the constitutive laws governing the element are satisfied.
INPUT VARIABLE

Input Variables are used by the device descriptions to generate the implicit variables.
Within the device description, the input variables are implicitly defined. Values are assigned
to input variables by the network description.
JACOBIAN MATRIX

A Jacobian Matrix contains the partial derivatives of the implicit variables with respect
to the input variables. In SEPSIP each element generates its own Jacobian Matrix. From the
elemental Jacobian Matrices, a system Jacobina Matrix is generated that contains the partial
derivatives of all the implicit variables with respect to all of the system variables.
KEYWORD

A Keyword is a word that is used by SEPSIP to delimit sections of the input file.
Keywords are case insensitive and should not be used as Element names or Node names.
KIRCHHOFF’s LAWS

Kirchhoff’s Voltage and Current Laws determine the relation of currents and voltages
at an electrical node. For a number of elements that are attached to a node, the sum of all the
currents entering the node must equal zere. Furthermore, the voltage at a node is the same
for each of the elements.

NETWORK

- 154 -

A Network specifies the interconnection of elements within a simulation. In SEPSIP,
the Network is defined by assigning input variables to one of four types of subnodes that are
in turn grouped into nodes.

NODAL EQUATIONS

Nodal Equations are the mathematical representations of Kirchhoff’s L.aws. The nodal
equations are used to relate the input variables of all the elements of the system to the system
variables.

NODE

A Node in electrical terms is a connection between terminals of two or more electrical
elements. Associated with each node are two expressions which are mathematical statements
of Kirchhoff’s voltage and current laws. In SEPSIP, these mathematical relations are assigned
to subnodes. A SEPSIP Node is used to group subnodes into easily understood groups. An
Electrical Node is represented in SEPSIP by a SEPSIP Node having a voltage subnode and a
current subnode.

PARAMETER

A Parameter is used to define an element as a specific example of a device. Parameters
are assigned values in the first section of the SEPSIP input file and can not be changed during
the simulation.

STATE VARIABLE

State Variables are variables internal to an element whose value at the end of the last
time increment are saved and available. State variables are normally used for integration and
differentiation. For elements that are described by state machines (such as circuit breakers),
state variable can also be used to indicate the present state of the element.

SUBNODE

A subnode is used in SEPSIP to define the relation between the element input variables

attached to it. There are four types of subnodes each of which specify a different relation for

the attached variables.

- 155 -,

SYSTEM JACOBIAN MATRIX

The system Jacobian matrix contains the partial derivatives of the implicit variables
with respect to the system variables. This matrix is used to create corrections to the sytem
variables which in tumn are used to generate input variables that satisfy the constitutive relations
of each element.

SYSTEM VARIABLE

The system variables are a set of independent variables from which all of the input
variables of the elements can be derived from. The number of system variables must equal

the total number of implicit variables. The system variables are defined by the four types of

subnodes.

- 156 -

APPENDIX B
INSTRUCTIONS FOR ADDING DEVICES

Adding a device to SEPSIP is a five part process. First, a device driver routine must be
written inthe C programming language that calculates the implicit and external output variables
along with the Jacobian matrix. The second stepis to modify a special input file which SEPSIP
uses to assign the number and variable names for each type of variable (state, input, etc.). The
third step modifies an include file which notifies SEPSIP of the existence of the device and
the name of the routine written in the first step. The fourth step involves adding the device

driver file name to the Makefile. The Makefile assists in the recompilation procedure
accomplished in the final step.
B.1 Write Device Driver Routines
The major role of the device driver routine is to calculate implicit variables based on
the values of input, external input, state, old_state, and parameter variables in addition to the
current simulation time increment. The routine can also calculate external output variables
and a Jacobian matrix. The device driver routine may change the values of the implicit,
external output, and state variables. Parameter, input, old_state, and external input variables
should not normally be changed by device driver routines.
B.1.1 Arguments

A device driver routine should have the format shown in Figure B.1-1
Figure B.1-1 Device Driver Routine

/% £ dev a.c */
#include <stdio.h>
#include <math.h>
finclude "doerry.h"

/* The variakles should be defined here using the define directive */

gdefine 0 e-»con.in{0)
sidzfine vl e=dzon,inill
gdeiine 17 e-bzzn.in{l]

sdzfine 11 e=rzzn.in i)

$define -a e->con,.cstate (0]
$#define va_cld e->con.cld state(0]
¢define F e->con.param{0]

- 157 -

#define I1 e

kd=fine
$define

ir_a

dev_ale, dt)
ELEMENT v*e;

»oen.implicit [0)

e-bcon.ext_in(0)

cut_a e->con.ext_out (0)

douklie dt;

1
‘w

3

the code

should be located hasre */

The define directives are optional but their use greatly eases the readability of the

program. The ELEMENT structure along with the CONNECT structure are defined in

doerry.h.

* entracted from doerry.h */

Figure B.1-2 ELEMENT and CONNECT structures

/* These are the external input and external output types used
in the type_eut_in and type_ext_ocut arrays of the Connect
structure. These types are presently unimplemented in SEPSIP

=/

¥define
#define
tdefine
#define

BOOLEAN 0
SWITCK 1
INTEGER 2
FLOAT 3

/* The CONNECT structure holds arrays of variables associated

with each element */

typedef struct Connect

{

int nbr inputs; /* Number of input variables */
int nbr:states; /* Number of internal states *x/
int nbr implicit: /* Number of implicit equations */
int nbr_ext_in; /* Number of external input variables */
int nbr_ext out; /* Number of external output variables */
int nkr_param; /* Number of parameters */
double *in; /* pointer to array of input variables */
double *state; /* pointer to array of state variables */
doukle *cld state; /* pointer to array of old state variables */
dcuble *implicit; /* pointer to array of implicit variables */
double *ext in; /* pointer to array of external input
variables */
doukle *ext out; /* pointer to array ¢f external output
- variables */
double *param; /* pointer to array of parameters */
dcuble *init state; /* pointer to array of initial values for
state variables */
double *init_ext_in; /* pointer to array of initial values for
external input variables */
double *init_in; /* pointer to array of initial values for
input variables */
double *jaccb_in; /* pointer to Jaccbian matrix of implicit
variables with respect to input
variables */
int jaccb_switch; /* = 1 if Jacokian calculated by function
= 0 {f Jaczkian calculated enternally A
irt vtyvre ent H /* peinter to array cf externzl input types */
int Ttype ent oub; /* pointer to array of external cutput types*/
int *imp indeX; /* pointer to array ¢f indexzes for itab
- array */
1
CTHRNECT;

- 158 -

typedef struct Element
{

int serial; /* serial number of element (unused) */
char *name; /* pointer to name of element */
struct Connect con; /* Connect structure */

struct Device *device; /* Pcinter to DEVICE structure which contains
the names of all the variables along with
the starting address of the device routine

if element is used in the network

:
int flag:; /* =1
= 0 if element is not used in the neatwork */

}
ELEMENT;

B.1.2 Select number and types of variables

One of the first choices one must make when writing a device driver is the number of
each type of variable. SEPSIP allocates only enough memory for each array to hold the
number of variables specified in the Device Input File (see section B.2). The size of the
allocated arrays are specified by the nbr_* variables in the CONNECT structure. Changing
the nbr_* values will not reallocate the arrays and therefore should not be done.

Using the define directive as discussed in the previous section is a good way of
assigning understandable labels to the memebers of the variable arrays. It is also a good
idea to use the same name with both the define statement and the Device Input File (Section
B.2).

B.1.3 Calculate Implicit variables

The heart of the device driver routine is the calculation of the implict varizbles. The
calculations can involve any of the variables contained in the ELEMENT structure and the
time incremnt dt. Generally, one should always check and write appropriate code for divide
by zero situations.

B.1.4 Calculate State Variables
The state variables that are specified in the current time step are moved to the old_state
variable array once the system is balanced. In this manner, one can store information that

will be required in the following time increment.

- 159 -

B.1.5 Calcuiate External Output Variables (optional)

External Output variables allow the generation of variables that are not directly used
in calculations but may be of interest to the user in monitoring the simulation. The original
concept for SEPSIP was to be able to specify the external output variable to be one of four
tvpes. but presently only the FLOAT type is implemented. The typing refers only to the
manner in which the variables are displayed and not to the way in which they are stored.
B.1.6 Calculate Jacobian Matrix (optional)

Calculating the Jacobian matrix within the device driver routine can greatly increase
the speed of the simulations. The variable e->con.jacob_switch is used to indicate whether
or not the Jacobian is calculated. if e->con.jacob_switch is zero, the Jacobian is pot cal-
culated by the routine. Otherwise, the Jacobian is calculated by the driver routine.

Each element of the Jacobian array is the partial derivative of an implicit variable with
respect to one of the input variables. e->con.jacob_infi + N * j] refers to the partial of
e->con.implicit[i] with respect to e->con.in[j] where N = e->con.nbr_implicit is the total
number of implicit variables.

B.2 Modify Device Input File (three_phase.input)

SEPSIP uses in input file to determine how many variables of each type should be
allocated and the names of those variables. Each device must have an entry of the form
shown in figure B.2-1. Appendix C includes two examples of input files.

Figure B.2-1 Device Input File Entry

HAME device_name

INPUTS 3
input_name_1
input name 2
input_ rame 3

STRTES 2
state_name_ 1l
state name 2

IMELIZIT 2
implicic name 1
implicit name 2

EXTEZRNEL IN 2
float ext in_1
switch ext in 2
integer ext in 3

EXTERNEL OUT 2

float ext_osut_1

- 160 -

float ext_out_2
PARAMETERS 2
param riame_1
param name 2
END - -

The number following the variable type indicates how many variables of that type are
listed.

For the external input and external output variables, a type indicator must be specified
before the name of the variable. Legal types are BOOLEAN, SWITCH, INTEGER, and
FLOAT. In the present version of SEPSIP, this indicator is ignored.

The variable names should all be unique within a device description. This means that
one should not give an implicit variable the same name as an input variable. Some reuse of

variable names is possible, but doing so can lead to much confusion.
B.3 Modify penner.h

The penner.h include file has two purposes. The first is to specify the names of the
device input files and the number of devices described in these files. The second purpose is
to associate device names with the device driver routines. Appendix C contains the current
version of penner.h. Figure B.3-1 shows a simplified version of penner.h

Figure B.3-1 penner.h exampie

/* penner.h */
typedef int (*FUNCTION_PTR) {):
#define NBR_DEV_FILES 2 /* number of device input files */
/* specify the names and paths of the d: vice input files */
static char *device file[] =

"/mit/13.411/sepsip/three_phase.input",
"/mit/13.411/sepsip/one_phase.input"
};

/* specify the number of devices described in each of the
/

above files */
static int nbr_device_file[] =
{

[

[Y]

/* specify the names of the devices as declared in the
the device input files */

- 161 -

static char *device_name(] =
{

"t_line 3p",
"rl_wye" ,
"gen_synch_ 3p",
"switech"

/* specify the device driver routine corresponding to each of
the above named devices */

#define FO t_line_3p
tdefine Fi rl_wye
#define F2 gen_synch_3p
#define F3 spst_switch

/* daclare functions */

int FO
int F1
int F2
int F3

~e ve ~

)
)
)
)

-~

/* declare function pointer arxray */

static FUNCTION_PTR dev_fnctnl] =
{
FO,
Fl,
F2,
F3
}
The order of the device names in the device_name array should be the same as the

order of the corresponding device driver routines in the dev_fnctn array.
B.4 Modify Makefile

Most computer systems include a Make utility for assisting in the management of
software projects. The Make utiltity operates on a data file which in UNIX is usually named
Makefile. The Makefile contains instructions as to which files should be compiled and linked
in order to create an executable program. The Make utility uses these instructions to compile
only those files that have changed since the last compilation. If only one file is edited, only
that one file is recompiled and linked to the other object files. For this reason, Make can
considerably reduce the compilation time of a large program. Figure B.4-1 shows an example

of a Makefile,

-162 -

Figure B.4-1 UNIX Makefile Example

FUNZO= £ _t _line_3p.o f_xl_wye.o f_gen_synch_3p.o f_spst_switch.o
ObJb= check name .o commands.o dump data.o edit simulate © elm jacob.o \
file options.o gauss_ eliminate.o integ.o ioliba.o load device.o \
load_element.q load_initial.o load_network.o load_simulation.o \
make _Jjacokian.o prlnt network.o read device.o reaa element.o A\
read network.o sepsip.o setup_ simulation.o simulate.o \
dump data.o
INCLUDEFILES = penner.h doerry.h
sepsip: $(OBJB) $(FUNCO)
cc =¢ sepsip $(OBJB) $(FUNCO) =-1m
load_device.c: $(INCLUDEFILES)
c¢ =¢ load_device.c
read device.c: §$(INCLUDEFILES)
T cec -c read_device.c
sepsip.¢: $(INCLUDEFILES)
ec -c sepsip.c
clobber:
m *.,0

B.5 Recompile SEPSIP

The final step to add a device to SEPSIP is to recompile the program. Using the above
Makefile, the recompilation is accomplished in UNIX by entering the command make -k at
a UNIX prompt. For other systems, one must read the instruction manual for the system C

compiler.

APPENDIX C
DEVICE DRIVER CODE

- 164 -

C.1f_t line_3p.c

f t _line_3p.c

/* £_t_line_3p.c */
/* Norbert H. Doerry
11 March 1989

This routine simulates & 3 phase transmission line as a series
combination of a resistance and reactance. The reactance alao
has a parallel leakage resistance

*
#include <stdio.h>
#include <math.h>

#include "dcerry.h"

#define v0a e->con.in{0)

#define vOb e->con.in{1]

#define v0c e->con.in(2]

#define vlia e=->con.in[3]

#define vlb e->con.in[4)

#define vic e->con.in(5)

#define i0a e->con.in{6]

#define i0b e->con.in(7]

#define i0c e->con.in[8)

#define 1la e->con.in(9)]

#define ilb e->con.in{10)

#define ilc e->con.in[11]

#define va e->con.state[0]

#define vb e=->con.state[l]

#define vc e->con.state[2]

#define ia e->con.state(3)

¥define ib e->con.state(4]

#define ic e->con.state(5)

#define va_old e->con.old_state(0]
#define vb_old e->con.old_state(l]
#define vc_old e->con.old state(2)
#define ia_old e->con.old state(3]
#tdefine ib_old e->con.cld state[4]
tdefine ic_old e->con.old state(5)
tdefine R e->con.param(0])

¥define L e->con.param(l]

#¢define Rl e->con.param|2]

t#define vO0a_ O

#define vOb_
tdefine vOc_
#define vla_
fdefine vlb_
#define vilc_
#define iOa_

oyt s W N

$define 10k
¥define ilc¢c
#define ila

= w0 m

tdefine ilb_

o
- O

fdefine ilc

t_line 3p(e,dt)

- 166 -

f t_line_3p.c

ELEMENT *e;
doukie dt;

{

doukle fta, ftb,ftc,fta_old, ftb_old, ftc_old;
double ila,ilb,ilc,ila_old,ilb_old,ilc_old;

int i, 93;
/* initialize the jacobian matrix to zerces if dt w=m 0 */
for (i = 0 ; dt == 0,0 && 1 < 6 ; i+4)
for (3 = 0 ; j < 12 ; Jj++)
e->con.jacob_4in{i + € * j] = 0.0;
va = vla - vl0a;
ve = vie - vOb;
ve = vie - v0¢;
ia = (ila - 1i0a) / 2.0;
ib = (ilk - i0b) / 2.0;
ic = (ile - i0e) / 2.0;
/* see if the inductance is zero or the leakage resistance is zero*/
if (L==0 || Rl == 0)
{
/* pure resistance */
e->con.implicit (0] = va - ia * R;
e->con.implicit{l] = vb - ib * R;
e->con.implicit{2] = ve - ie * R;
e->con.jacob_in[C + 6 * vOa_] = =~1.0;
e->con. jacok_in[0 + 6 * vla_] = 1.0;
e->con.jacob_in{0 + 6 * i0a_] = R/ 2.0;
e->con.jacokb_in(C + 6 * ila_] = =R / 2.0;
e->con.jacob_in[l + € * vOb_]) = =-1.0;
e->con.jacob_in(l + 6 * vlb] = 1.0;
e->con.jacob_in[l + 6 * i0b_] = R/ 2.0;
e->con.jacob_in[l + 6 * ilb] = =R / 2.0;
e->con.jacob_in(2 + € * vOc_] = <-1.0;
e->con.jacob_in([2 + €6 * viec_] = 1.0;
e~>con, jacob_in[2 + 6 * i0c_] = R/ 2.0;
e->»cen.jacck_in[2 + 6 * ile_] = =R/ 2.0;
}
else
{
/* inductance present */
- 167 ~

£t

’

/

e
€
€

~->con.implicit (4]}

_line_3p.c

/* induateor voltage

fra = (va - R * ia) / L;
ftb = (vb - R * ib) / L;
fte = (ve = R * i¢) / L,

/* f£ind inductor current */

ila = ia - fta * L / R1l;
ilk = ik - £tk * L / R1l;
ile = ie - fte * L / R1;

/* £ind old values */

fta_old =
ftb_old =
frc_old =

ila_old =
ilb_old =
ile_old =

divided by inductance */

(va_old - R * ia_old) / L;
(vb_eold = R * ib old) / L;
(ve_old = R * ic _old) / L;

ia_old - fta_old * L / RIl;
ib_old - ftb old * L / Ri;
ic_old - ftc_old * L / R1;

/* calculate implicit variables using trapezoidal integeration */

e->con.implicit[0] = integ(ila,ila_old, fta,fta_old,dt):
e->con.implicit{l] = integ(ilb,ilb nld, ftb,ftb_old,dt);
e->con.implicit[2]) = integ(ile,ilc_old, ftc,fte_old, dt);

/* calculate Jacobian
e->con.jacob_in[0 + 6 * v0a_]
via_]
i0a_]

e->con. jacob_in{0 + 6 *

e->corn.jacob_in[0 + € *

e->con.jacob_in(0 + ila_]

e->con.jacok_in[l + € *
e->con.jacok_in{l + 6 *
e->con.jacob_in[l + 6 *

e~>con.jacob_in(l + 6 *
e->con.jacob_in[2 + 6 *
.jacob_in(2 + € *
e->corn.jacocb_in[2 +

e~>con

e->con.jacob_in[2 + 6 *

* current sums are the fclliowing

iGa + ila;
i0b + ilb;
i0c + ilc;

"

->con.implicit[3]

->con.implicit[5] =

Matrix */

1.0 / Rl - dt / (2.0 * L);
e->con. jacob_in{0 + 6 * vO0a_];
(1.0 + R/ Rl +

(dt * R) / (2.0 * L)) / 2.0;
e->con.jacob_in[0 + 6 * vOa };

1.0 / Rl = dt / (2.0 * L);
e->con, jacob_in([l + 6 * vOb_];
(1.0 + R / Rl +

(dt * R) / (2.0 * 1)) / 2.0;
e->con.jacob_in[l + 6 * v0b_];

1.0 / Rl = dt / (2.0 * L);
e->con.jacob_in(2 + €6 * vOc_};
(1.0 + R/ Rl +

(dt * R) / (2.0 * L)) / 2.0;
e->con.jacob_in{2 + 6 * vOc_};

three implicit equations */

- 168 -

£ t_line_3p.c

e~>con,jacek_in(3 + 6 * ila_) = 1.0;
e->con.jacok_in[3 + 6 * ila_) = 1.0;
e->con.jacok_in(4 + 6 * i0b_] = 1.0;
e->corn.jacob_in[4 + 6 * ilb] = 1.0;
e~>con.jaccb_in(5 + € * i0c_] = 1.0;
e->con, jacok_in[5 + € * ilc_] = 1.0;

/* turn the jacob switch on */
e->con.jacob_switch = 1;
/* store external output variables */

for (1 = 0 ; 1 < 6 ; i++4)
e->con.ext_out[i] = e->con.state[i);

- 169 -

C.2f rl_wye.c

- 170 -

f rl_wywe.c

Sr £ rl wye.o v
'* Norbert H Doerry

12 March 1898
This file simulates a three phase rl load connected in a wye fashion.

The center point, or ground, can be connected to a reference current
subnode if it is desired tc leave the line floating. The neutral
veltage can alternately be set tc a specific value by using a reference
voltage subnode.

L

#include <stdic.h>

#include <math.h>

#include "doerry.h"

#define via e->con.in(0]

tdefine vOb e->con.in(l)

$define vOc¢ e=->con.inl(2)

$define vOn e->con.in!3)

#define i0a e->con.in(4)

tdefine i0Ob e->con.in{5)

tdefine i0c e->con.in(6)

#define i0n e->con.in{7)

¥define va e->con.state(0]

$#define vb e->con.state(l)

#define vc e->con.state(2)

$define ia we->con.state[3)

#define ib e->con.state(4]

fdefine ic e->con.state(5])

tdefine va_ocld e->con.old_state(O]
#aefine vb_old e->con.old_state([l]
#define vc_old e->con.old_state[2)
#define ia_old e->con.cld_state(3]
*#define ib_old e->con.ocld _state(4]
tdefine ic_cid e->con.old state(5]
¥define vOa_
#define vOb_
#define vOc_
#define vOn_
*#define iOa_
#define iOb_
tdefine ilc_

2 A s W N O

#define iOrn_
#define R e->con.param[0)
¥define L e=>con.param{l]

#define FI e-scon.param l)

ri_wyele,dt)
ELEMENT *e;
doukle dt;

{

int i,73;

f rl wye.c

double fta,ftb,ftc,fta_old, ftb_old, fte_old;

doukle ila,ilb,ile;
double Re;

/* initialize the jacobian matrix to zeroces */

for (i = 0 ; dt == 0.0 && i < ¢
fer (9 = 0 3 5 < 8 ; j++)
e->cor. jacok_in(i + 4 * J] =

f* calculate states */
ila = i0On + iOb + i0c;

ilb = i0n + i0c + i0a;
ile = i0n + i0a + iOb;

7 oi++)

0.0;

va
vk
ve
ia
ib
c

= v0a
= v0b
= v0c

- v0n;
- v0n;
- vOn;

= (i0a =- ila) /
= (i0k ~ ilb) /
a (i0¢ -~ ile) /

sum of c¢urrents

N RPN
o o o

should be zero */

e->con.implicit (3] = i0a + i0b + i0c + iOn;

e->ccri.jacob_in[3 + 4 * ilOa_] =
e->con.jacob_in{3 + 4 * iOb_] =
e->con.jacok_in{3 + 4 * il0c_] =
e->con.jacob_in(3 + 4 * iln_] =

/* see if inductance is neglible

/* pure resistance */

= e
o O O O

~ v

*/

Re = (Rl == 0 || R==0) ? 0.0 : Rl * R/ (Rl + R);

e->cen.implicit [(0) = va - ia * Re;

e=->con.implicit (1] = vb - ib * Re;

e~>con.implicit (2] = ve = ic * Re;

if (dt == 0Q)
e—>ccn.ja:ch_i:{0 4+ 4 * vOa_] 1.0;
e->con.jacok_in[0 + 4 * vOn_] -1.0;
e->con.jacok _in[0 + 4 * iCa_] ~Re / 2.0;
e->con.Jjacok_in{0 + 4 * 1i0b_] Re / 2.0;
e->con.jacok_in(0 + 4 * i0c_] ke / 2.0;
e->con.jacok_in[0 + 4 * iOn_) Re / 2.0;

£ rl_wye.,c

7
/ >

else

e->con.jacck_in|1l
e=->con.jacob_in(l
e->con.jacob_in[l
e->con.jacob_in[l
e->con.jaszob_din(l
e->con. jacob_in(1

e->con.jacokb_in{2
e->con.jacok_in[2
e~>con.jacob_in(2
e->con.jacob_in(2
e~>con.jacob_in{2
e->con.jacob_in{2

* vOb_)
* vOn_)
* i0b_]
i0c_)
* ila_]
* i0On_)

+ + + + + +
L - - S -
t 3

* v0e_]
* vOn_]
* i0c_}
i0a_)
* i0b_]
* i0n_)

+ 4+ 4+ + + o+
b dy D BB N
*

/* inductance present

*/

- 1.0;
= =1.,0;
= -Re / 2.0;
- Re / 2.0;
= Re / 2.0;
- Re / 2.0;
- 1.0;
= -1.0;
= =Re / 2.0;
= Re / 2.0;
- Re / 2.0;
= Re / 2.0;

e->con.implicit(0) = ia - ia_old - (dt / L) *

((va + va_old) / 2.0 = R * ia_old) -~ (va - va_old) / Rl;
e->con.implicit(l] = ib - ib_old - (dt / L) *

({vb + vb_old) / 2.0 - R * ib old) - (vb - vb_old) / RIl;
e=->con.implicit[2] = ic =~ ic_old = (dt / L) *

((ve + ve_old) / 2.0 -~ R * ic_old) - (ve - vc_old) / Rl;

e->con.jaceb_in|[0
e->con.jacok_in[0
e->con.jacob_in{0
e->con.jaccb_in[0
e->con.jacob_in[0
e->con.jacob_in(0

e->con.jacob_in|l
e~>con.jacob_in(l
e~>con.jacokb_in{l
e->con. jacob_injl
e->con.jacob_in|l
e->con.jacob_in(l

e->con.Jjacob_in(2
e->con.jacob_in{2
e~>con. jacob_in[2
e->con.jacob_in[2
e->con. jacob_in{2
e->con. jacok _in|(2

+ 4+ + + + 4+
- -G O S

+ + + + + +

+ 4+ + o+ o+
[N N S SN

L= - S N -

* vOa_] = =~

* vOn_]
* ila_]
* i0b_]
* i0c_]
* i0On_]

* vOb]
* vOn_]
* i0b_]
* i0c]
* i0a_])
* i0n_]

*

vOc_]
vOn_]

* %

i0c]

*

i0a_]
* i0b]
* i0n_])

/* turn the Jjacob switch on */

e->con.jacob_switch = 1;

e->con.jacob_switch = ©; */

0.

dt / (2.0 * L) - 1.0 / Rl;
e~>con.jacob_in[0 + 4 * vOa_);
5;

e->con.jacob_in{0 + 4 * i0a_]:
e->con.jacob_in([0 + 4 * iCa_];
e->con.jacob_in[0 + 4 * ila_]:;

dt / (2.0 * L) - 1.0 / R1;
e->con.jacob_in[l + 4 * vOb_];

.5;

e->con.jacob_in{l + 4 * i0b_);
e->con.jacob_in[l + 4 * i0b_];
e->con.jacob_in[l + 4 * iob_J;

dt / (2.0 » L) - 1.0 / R1;
e->con.jacob_in[2 + 4 * vOc_);

.5;

e->con.jacob_in[2 + 4 * i0c_]:
e->con.jacob_in[2 + 4 * i0c_);
e->con.jacob_in[2 + 4 * i0Oc_];

f rl wye.c

J/* store external output variables */

for (3 = 0 ; 1 < 6 ; i++4)
e->con.ext _out{i] = e->con.state(i];

-~ 174

=1

C.3f_synch_mach.c

- 175 -

]

‘* £_synch_mach.c */
/* Norbert H. Doerry

20 April 1989

This file contains the driver routine for simulating a generic
synchronous machine as modelled in:

Synchronous Machine Dynamic Models

J. L. Kirtley Jr.
LEES Technical Report TR-87-008

June 5, 1987,

*xx+ Modified 29 april **whx«x
Changed to use modified trapezoidal integration =-nhd
*/

#include <stdio.h>
#include <math.h>
#include "doerry.h"

/* terminal voltages and currents */

¥define v0a e->con.in(0)
#define vOb e->con.in[1l}
#define v0c e->con.in(2]
¥define vOn e=>con.in[3]
#define i0a e->con.in(4]
#define i0Ob e->con.in[5]}
¥define iNc e->con.in|6]

J* field wvoltages and currents */

#define vOf e->con.in(7]
#define v1f e->con.in(8]
#define i0f e->con.in|[9]
#define ilf e->con.in{l0]

/* rotational properties */
/* Theta is eleccrical radians, wm and wm_dot are mechanical */

#define theta e->con.in{1l1
#defire wm e=>con.inflz
tdefine wm_dt e->con.in(13

/* sum of rotational inertia and electrical torque */

/* Loads are a negative Te, prime movers provide a positive Te */
#define Te e->con.in[14]

- 176 -

f_synch_mach.c

/* internal variable */

#define Psi_q e->con.in(15)
#define Psi_d e->con.in(l6)

/* define offsets */

#define vOa_ 0
#define vOb_ 1
#define vlc_ 2
#define vOn_ 3
#define i0a_ 4
#define i0b_ 5
#define il0c_ 6
#define vOf_ 7
#define v1f_ 8
#define i0f _ 9
#define ilf 10
#define Theta_ 11
#define wm_ 12
#define wm_dt_ 13
#define Te_ 14

/* define parameters */

#define xd e->con.param(0)
#define xq e~->con.param[l)
#define xd p e~>con.param(2]
#define xd_pp e->con.param{3)
#define xq pp e->con.param(4]
#define xzal e->con.param(5)
#define Tde_p e->con.param|é]
#define Tdo_pp e->con.param[7)
#define Tgo_pp e->con.param(8]

#define Tad e->con.param{9]

#define Ifnl e->con.parami{l10]
#define H e~>con.param{ll]
#define pp e->con.param{12]
¥#define wbs e->con.param{13]
#define Vdb e->con.param(14]
#define Pbs e->con.parami{l15]

/* define states */

#define s_theta e->con.state [0]

tdefine s_wrm e-»con.state [1)
#define s_wm_dt e->con.state (2]
#define si d e-»con.state [2]
#define psi g e->con.state [4]
#define eq ¢ e->con.state (5]
#define eg pp e->con.state [6]
#define ed_pp e~>con.state [7]

- 177

ToaNis) B o,y

§dufinm 3 ey d wradeh, ptale |6
LELE FYIL NN B W e oadoh BLate (8]

fderinhe 4 ey} wriiop, state |1o)

tastine 4 sy eniaapn, stave 1)

PAaFiine 4 ed iy wniasap. stately)

§duliie B Lhela <id B -oehye o tate|d)
LELESFIUIERR IR Bracok Sdn LAte[]l)
#leline & wh dt .. a a~-.:q,.;-1.'i‘ sta‘el])
s8N FEY J <4 w-aaup,old_scate|3)
tasfine joay g ola e-roop,sld state(d]
pasfine sq }p i s 2aondld_avate($)
tdefine e pj o21d sxrpen.eld_astate |¢)
tdefine -dfp;>eld e-»ocen.old_atate|?)

vaefine d 1 a ol e-auop,old stare|B)
vasfine A ps. g v.d erixcon,cld_atate(s)
piefine d eg 3 34 e-00h, 3d_state [}0)
fdsline & _eg by e~ason,old_stute)

eid
$asfine d_ed_pp_cid evauug 0id_state|12)

* asfine IMpiiTat variables ©

bdafine 1mum e roon.ampliest [0)
tdefine afsun emagon, amEiiocit i)
tdefane Vo evroon.imglacit [3)

fdefine 1 _pay_d e=doon.implieit|(d)
btdef:ne 1_psi_q e->2o0n.impilcat (4)

tdefane 3 e3 pp s~noon, amplicit ()
tdefine 2 ed_pf e=nzon. anplicit|€)
tdeline 1 e § e-bron, ipplicat)
tinfine loiry e-ncopnamp licae]8)
tdefine W e=nasnoamplicie)
sderinu Wict e-con.amplicat [1C)
tiefine 1. 0 AT KN

taerine J. 3 Vo freddreoee”
siefiie TW. 1D ey X AR

tdefaine nad ®-s00n, e _out (o)
tdefine xkd u-:-cc:r..o::l_-_cut.{l}
sdefine N7 e-xoon.,ent_cutrl?
#aefine rf a-hcon.ext_out (3}
sael e I.db n~3con.nxt_out{4}
tae’1ne lth e-ncon.ent _autllh)
sdafine ik B=0005, 830004 [E)
Bl lie The . Y
eaviine a.phin e o L eNt DUt i)
tdefine 104 e=socn,eNt our Ty
drefine v @-soon ekt tut [lo)
$isliiw waf e-aonp,ent out i)

Yi6fine e-vronh,ent our 1)

Ioeynah

tawlihie
dastie
tiaefane

tieflr e

Plafine
[TS
riafine

tlefine

tiwfine
tiedine
ddefine

mach

v
id
14

Tepu

RPN
LY
be

Lig -
L. R

et bq ma
™ >

¢]

2ynoh _machie, gt

ELEMERT

L'y

dovrle de:

!

dout se temp?
deuwtb le va, vk, ve;

int 3,

i

dzuble 15}

doukle costy, costp, coatm, salnt, sintp, sintm;

douklie laq

la = i0ay
Ih w i0b;

*

e =

"

[VFe

e=roonent_eut (1)
e=pon.ent _out (14}
s=aan. et sug (18)

e=wcon.ent out|lé)

e=raoh.ent _our (17)
e~hqon.eut out [18)
e~roon.eut out [16)
o-ﬁ:oh‘cutueut(RC)

e-»o0n.ext_out {I})
e-hcan.ext out (o)
o-hcnn.ﬁxtwouL(ZJJ

* ensure theta i1s in range *.'

* while (theta

whilie

[A

i

© e 7
P T L)
TS e oW
[o o SG
o~ 3 =

"
-
o
-
=

Pousitog Whe shoe.daing constraint moded

(vheta «

=TWOF I

» TWOFI) theta == TWOPI,
theta += TWOP!,

& ccs(thetal;

eis(thera « FIJ 3)
cca(theta = PIJ 3);

= sin(theva);

2

wi, * e

sir{theta + FPI2 3)
sin(theta - PIs %)

Ny

!
!

lculate REM +/

TWOF 1

* calri.ate baze guantities *

¥ otwL e ma ()

vVl one)

whoe » TWRFLT * 60,0

1
D

A - 1,0y

.t
‘

t _eynel mach,e

{ (Fhy == O)
! apr 0

.

FPF

ca_ 3

-
v
.

Idk = Ple * 3
tud

b v lfng

Pbas « 1.0y
w 1,07

J Vdb:
- nal)y

if (1fBF wa 0) JfR =» 1,0}
VEB w b Ith;
Tre e opp v T wbe:

,* calaulate the phase voltages

w vla = vOny
» vOb - vOny
w vl - oving

va
vk

v

‘* zaloulate instantanecus power */

w va * 2lp « vk ¢

0k + ve ¢

ile;

,* de the Parks transformation for both the current and voltages */

sd = C2_3 * (comt * ita + costm * jOb + costp * i0c) / IdB)
m = CR_Y * (sint * i0a + sintm * i0b + sintp * 3i0c¢) / IdBy

3¢ » C2_3 % (ita /2.0 + dub/ 2.0 + 40c / 2.0) / ldB;

vd = €2_3 * (cost * va + costm * vb + coatp * vao) / Vdb,

vg @ = C2_3 * taint * va + sintm * vb + sintp * ve) / Vdb;

ve m T2 3% (va/ 2,0 + wb /2.0 + ve/ 2.0) / Vdy

-

.* convert the field variables to per umit */

Jfd w (13 - 108) [{2.C * 1£B)}
vid = (v1f - v0f) S VIR
Tag = (xd_pp !'= €.0) ? Tad * xg_pp

wd_pp Tad:

J* ensure Xd_py and Ng_pp are non zero */

0.0)
.0

L (xd_pp <=
1! ANY_FP =

J* calculate

xd_pp = .01
xq_pp =

01

parameteza */

nf e (nd e ond_p) ? (xd - xal) * (xd - xal) / (xd - xd_p) 1 1002.0;
1t w» (Tde p !'= 0.0) ? xf 7 (wbs * Tdo_p) 1 1000.0;

e s ool taly

Lkd e oqud cw o paopp) 7 onad f oxnad o (ud - oxd_pp) 1 10000y

a.pla = (ud_p !'w xd pp) T nd - Rd_pp) / {nd_p - xd_pp) 1 1000.0;

*oralrulate varialiwes

[T34

= (rf '= O, Q)

7 Nad * vfd

vt 1000,0;

f_aynch_mazh.o

ed_pr = u_pp * ig - Pel_q

ey pr = Fsi_d - xed_pp * id;

ey L (nf = Q,0) ?
Nad * ifdy

pei_d = Pasa_d;

ped g = Pol_q:

* sJalvulate derivatives

(Tacd '» O3 7

4 par dw

(xg - Nq_pp) * pai_q / xq_pp) / Tqo_pp t 0.0

C.Gy
d psi_q w (Tag !'m Q) 7
(AN AN)
d_es pp = (Tdc_pp !w 0) ? (=
g p +
4 _ed_pp = (Tye _pp != 0) 27 (-
d_eq p = (Tde_p !'m» 0) 7
t~alpha

(xad

(nd = xkd) * ifd + xkd * eq_pp) / xf 1

xd_p " eq pp / xd_pp +

(xd_p = xd_pp) * pai_d / xd_pp) / Tdo_pp t 0.0y

xq * ed_pp / Xq_pp =

* eq p + (alpha « 1.0) * eq pp + eaf) / Tdo_p t 0.0y

J* caleulate assoziated implicit variables (trapezoidal integeration)
/* changed 29 april to use modified trapexcoidal method */

i_psi_d = (Tad !'w 0) 7
pei_d -~ psi_d_old =
oq_pp =~ pai_d;
i_pa1 g = (Tag != 0) ?

pai_q ~ pei_q_eld - (dr) *
pai_q + ed_Fp:
i_eq_pp = (Tdo_pp != 0) 2
oq_pp - e3_pp_cld - (dv) *
=~ xd_p * esq_pp . Nd_pp +
i_ed pr = (Ifqe_pp !+« 0) 7
ed_pp - ed_pp old - (dv) *
- x3 * ed pp / uq_pp -

(dt) »

i eq p = (Tde_p !'= O 7
sq_p - eg_r_cld = (dt) *
-alpha * e3 1 + (alpla =

* the zerc ssquence current
must gc to zere 1f there is

isum = i¢;

(0.6 * d pai d + 0.4 *» d pai_d_old) 1
(0.6 * d psi q + 0.4 * d_psi_q old}

(0. € =
*q_p +

d_eq pp + 0.4 * d _ag_pp_old) 1
(xd_p ~ xd_pp) " pai_d / xd_pp 1

(0.6 * d ed_pp + 0.4 * d_ed_pp_cld) 1

(xq = xq_pp) " psi_q / xq_pp!

(.6 * d eq p + 0.4 * d_eq p_cid) 1
1.0 * eq pp + eaf;

should go to terc asince sum of currents
no leakage to ground */

* the sum of the field currents should be rero */

sfpurn = (L0F + L1€) ' IfE;

VI &LRI Dles to

gerc since the rery seguence current is

always zere

and thervfcre the zero sequence flux can never builid up *.

. ® aalcuiate per unit torque

¢f eluctraical crigin °*.

- 181 -

(@g_pp = psi_d) / Tad + wm * pp * pai_q + wbx * vd

’
1

s
H}

{-pal_q - «d_pp) / Taq = wm * pp * pai_d + wbs * vq

f_aynch_mach. o

Tepu = pai _d * iq - pal_q * id; /59 =/

‘v aaloulate the mechanical Powar */

Emeal, » Tepu * wm * Thay

J* calzaulate load torgue */

Tace = 2,0 * R * pp * wm_dt . wke:

’* The Ta variable is Nm of the torque coming out of the machine */
Torq = Tace = Tepu = Te / Tbs;

/* integrate the fraquency *’/

s _theta = theta;

B W= owmg

2w dy ow wn_dt:

W » 35 _theta - s_theta_old - (dt / 2.0) * (a_wm * pp + 3_wm_old * pp);
/* modified the trapezcidal integraticn to weight the 'Euler Backward’

contributien. This prevents the acueleration from osuillating
should the frequuncy be held at a constant

i/'
Wdot = 3 _wm - 3_wm old - (dt) * (0,6 * s_wm dt + 0.4 * s wm dt_old);
7% turn Jacobian switch off */

e->con.jacck_switch = 0,07

- 18c -

C.4f_speed_reg.c

- 183 -

{ speed req.¢

'* {_speed reg.v *

* Norbert K. Doerry
14 April L9ey

This aeviae desvribes & prime mover controlled by a mechancial
governcr and attached te a ahaft that has windage loases (B).

The govarney i1s bamed on the type found on the SSN=-€YT Class
submarine and describea it

R.C. Dalten

Turkine Generator Simulations for DD-630 Claszs 450 KW Machine

and SSN-637 Class 2000 KW Machine, NAVSSES Philadelphia Project C-267,
£ March 1984,

This particuiar mcdel was developed in:

Nervkert K, Doerry

Shipboaxd Electrical Generator Simulation

Semester Frciect Report for €.238, MIT

17 May 1988

w*wv Modified i May 1989 wRERwN

changed the control from speed to torgue

LA R AR RS BJ

Input variakles

s = Frimary Amplifier Fulcrum Displacement (inches) (0 to .%)
Tm = Terque on shaft (Nm)
wm = Mechariza. spead (rad/sec)

Farameters

wnle = 374.72 (rad./sec) base setting for apeed
wds = €2,38 (rad/sec-in) Coefficient for s

wdTepu w =20,15 (rad/sec) Coeffizient for Tmm / TBS
TBS = Base Torque

Tg = 3275 (;ec) Regulator time conatant

B = (Nmsec) Damping Coeffient

External Cutput ariakles

T = Torque seern by prime mover
W3 = (HI) lroop frequency
Fslafe = power seen at shaft

Pdel.ver « power delivered by the prime mover

- 184 -

f_speed reg,v

tinvlude <atdic hn
tinnlude <math, b
finclude “"doerxy.h"

tdefine wr

e->aon.inlo)

ddefine Tm o=>aon.in{l)
bdafine s a=>con,in{)
tdefine Tm_crder e->con.state ()

tdefine Tmpu

e=>con.state|l)

tdofine Tm_order_cold e->con.old state[(]

tdefine Tmpu

#define wnlw
#define wds

old e->con.old_statel])

e=>con.param|0])
e=>con.param{l)

#deafine wdTepu e=>oon.param(2}
#tcdefine TBS e-rcon.param(d)
tdefine Ty e->con.paramid]
#define B e->con.param!&]
#dofine Trun e->con.ext_out|0)
tdefine Tm_ e=>anon.ext_out (1]
tdefine Fahaft e->con.ext_out|2)
#define Pdeliver e->con.ext_out(3)

#define DEG_RAD $7.29578
#define RAD_HI €.28219

ddefine WBS

377.0

speec_reg(e, dt)

ELEMENT *e;

doukle dt;

{
Tmm = Tm
if (TBS mnu

Tmpu = Tmn

if (wdTepu
{

B * wm;

0) TBS = 1.0;

/* find the desired torque */

Tm_order = (wm = wnlv - was * s) / wdTepu;

e=->Con
dt *

vimplizit[d) = (Tmpu = Tmpu_eld) * Tg -

(Im_crder_cld = .> * Tmpyu - .5 * Tmpu_cld);

e->con.jacob_in{0) = (b / TBS) * (Tg - de * .5);

e=-COor.

jacob_din{l) =« (1.0 / TBS) * (Tg - dt * .%);

e->zcon, jacek_inl2) = 0.0;

- 185 -

* pel Lhe speed tc the crdered speed %/

eeorinAmpaiaat [= (we = wpnleo - wds * 8) / WBS;

¥

1.0) WHS;

.
o
1w L0

e dacel dn
wecsinodarol an
ceocttadaccl_Aboy . r - wds U WBS:

o inraslh _switshe v LG

- l86 -

C.5 f_volt_reg.c

- 187 -

£_velt_reg.c

/* $_volt_reg.c *'

/* Norbert H. Dcarry
15 April 1989

#include <stdic.h>
#inclucde <mathli.h>
#include "doerry.h"

#define vOa e->con.in(0)

tdefine vOk e->con.in{l)

#define vOc e=->con.in[2)

#define vOf e->con.in{3)

#define vif e->con.in(4)

#define 10£ e=->con.in(5)

#define ilf e->con.in (6]

f#define Vbs e->con.in{7] /* This is the desired voltage */
#define wbs e~>con.in(8)

#define phase e->con.in(9)

#define vt e~>con.in{10)

#define VEdbs e->con.param(0]) /* This is nominal field voltage */
#define K e->con.param|[1l] /* This is forward DC gain of error */
#define Tvr e->con.param[2] /* This if voltage regulator Time const */
#define Vimax e->con.param(3) /* maximum limit for field voltage */
#define Vimin e->con.param(4] /* minimum limit for field voltage */
#define I1 e->con.implicit (Q)

fdefine I2 e->con.implicit (1)

#define Isum e->con.implicit (2]

#define Integrate e->con.implicit(3]

¥define Verr e->con.state[0)
tdefine Vsig e->con,.state (1)
#define theta e=>con.state[2]
#define <ilip e->con.state (3]

#define Verr old e->con.old_state|0]
#define Vsig _old e->con.old_state(l)
#define theta_old e->con.old_state(2]
#define clip old e->con.old state[3]

#define PI2 3 2.0943951

#define TWIFI €.28318LE2

volt _req(e,dt)
ELEMENT *e;
doukle dt;

{

- 188 -

dzukle va,vk,ve,vn,vsig, vE;
dzuk le cost, costm!

vn = (v0a + vOb + vOe) / 3.0;
va = vla = wvn;
vk = vO0b = vn;
ve = ov0s - vny
L5 vt oW 0)
T *= ~1,0;
phase ~-= FI;

/* calculate phase */

while (theta old > TWOPI) theta_old -= TWOFI;
wiiile (theta_cld < =TWOFI) theta_old += TWOPI;

/* keep the phase¢ angle in a good range */

while (phase > TWOPI) phase -= TWOPI:;
while (phase < -TWOPI) phase += TWOPI:

theta = thets_nrld + wbs * dt; /* euler backwards method */

cost = cos(theta + phase);

costm = cos(theta - PI2_3 + phase);
Tl = (va - vt * cost) / Vbs;
I2 = (vk - vt * costm) / Vbs;

Vverr = 1.0 = vt / Vbs;
Vsig = (v1f - v0f) / Vfdbs -~ 1.0;

if (clip_old == 0)
{

/* use a mcdified trapezoidal integration scheme (weight euler back)*/

Integrate = Tvr * (Vsig - Vsig old) +
dt * (.6 * Vsig + .4 * Vsig_old - .6 * K* Verr - .4 * K * Verr_old);

vEf = v1f - v0f;
}
else if (clip_old ==])
{

integrate = (Vfmax -~ (vif - v0f)) / Vbs;

vsig = (Tvr * Vsig old =~

- 189 -

dt * (.4 * Vsig_old - .6 * K * Verr - .4 * K * Verr_old)) /

(Tvr + dt * 0.6);
vE a (vasig + 1.0) * Vfdbs;

}

else

I

{
Inteqrate = (Vimin - (v1f - v0f)) / Vbs:
vsig = (Tvr * Vsig_old -

dt * (.4 * Veig old - .6 * K * Verr - .4 * K * Verr_oid)) /

(Tvr + dt * 0.6);

vi = (vsig + 1.0) * Vfdbs:;

Isum = i0f + ilf;

/* update the state */

if (v >= Vimax) clip = 1.0;

else if (vf <= Vimin) clip = -1.0;
else clip = 0.0;

/* let the system calculate the jacobian for now */

e->con, jacob_switch = 0.0;

-~ 190 -

C.6 f_ind_motor.c

-191 -

{_ind_miter.e

't f_dnd_motor.e %

J* Nerbert H. Doerry
1t April 1989

tinclude <stdie.h>»
#include <math.h>
#include “"doerry.h"

#define vla a=>con.in{0)
#define vOb e=>con.inf{l)
#define vOc e=>con.in{2)
tdefine ila e->con.in(3)
dtdefine ilb e=->con.in(4)
tdefine iOc e->con.in[%)
#define theta e->con.in(¢€)
#define wm e=>con.in{?)
#defire wm_dt e->con.in{8)
{define vOn e->con.in{9)
#define irs e=->con.in{10)
#define irk e->con.in[ll]
#define irc e->con.in{l2)
#define Ila e->con.implicit{0]
#define Ilb e->con.implicit{l]
#define Ilc e->con.implicit(2}
#define Ilra e->con.implicit[3}
#define Ilrb e->con.implicit(4]
#define Ilrc e->con.implicit(5)
#define Isum e=->con.implicit([6]
#define W e->con.implicit (7}
#define Wdot e~->con.implicit (8]

#define Torque e->con.implicit(9]

#define Rs
#define Xls
#define XM
#define Xlr_prime
#define Rr_prime
#define J

#define wbs
#define pp
#define B

t#define Tmech

#define lam_sa
#define lam_ sb
#define lam sc
#define dlam_sa

e->con.param{0]
e->con.param([l]
e->con.param[2]
e->con.param[3]
e->con.param[4]
e~->con.param(5]
e->con.param[6]
e->con.param[7]
e->con.param|[B8]

e->con.ext _in(0]

e->con.state[0]
e->con.state(l]
e->con.state (2]
e->con.state[3]

- 192 -

P and e

tdstine
tiefine
$dafine
tdefine
tdefine
tdetine
tdefine
tdefine
tdnfine
$define
tdefine

tdefine
ddefine
tdafine
tdefine
tdefane
tdefine
édsfane
ftdefine
tdatine
ddefine
tdefine
tdefine
tdefine
tdefine
ddefine

#define
ddefine
#define
$define
#define
#define
#define
#define
#define

#define

ind_moto
ELEMENT
douk ie
{

int i,

Lay, ¢

4. am_al
doap_ar
LAR_Ea_p
lak_ vk R
st Fo_p
dlam_ra_§
diam_¥p_p
diam_vo_p
theta »

w &
w_dat_»

lam_sa eld
iam_ab old
lam_so _eld
diam_ta_old
doam sk _cld
doan _ac old
larm_ra f old
lam_kb p _oaid
lam_re_p_old
dlam_ra_p_eld
dlam_rb_p_old
diam_ro p old
theta_s_old
w_s_old

w dot s _old

RPM
Te

Td

Tl
WATTS
Hp

Ia

Ib

la

TWOPI 6.2831¢%

r (e, dt)

*G,'

de;

-
N

e 2z2oh. atateld)
enhoon, state k)
e=2aan . atate)
*=>@an . Abate(7)
em2uan . BLabe (B
e=vaan. atate(d)
e=rash. skake {10)
e=haen.atate{ll)
e=raap.atace ()
e=Raof AtAate]!}
e=>a0R . BEALO |1 4]

e=2aan.0ld_state|0)
e=2aon.aid_atate(l)
ewrgen.old _atate|2)
s=>gen,old _atate|}]
e=>aon.old_state(d)
swxaen.old svate(5)
s=rgen.ald _statveld)
e-raon.0ld_atate[?)
e 3uon.eld_state(#)
e=>rqon.cld_state(9)
e=>oen.old _atate(10)
e=>aen.old_state({ll)
e=>uon.uld_atate(l3)
e=>gon.eld_state{l)y)
e~>gon.old_state{ld)

e=>00n. . ext_out (0]
e->con.ext_out (1)
s->gon.ext_out (2]
e->con.ext_out (3]
e->aon.ext_out (4)
e->con,ext_out (3]
e=>con,ext_out [6)
e->con.ext_out (7]
e->con,.ext_out (8)

double Lls, Liz_p, M, Lms;

double
double

la = i
Ib = i

Lll, L21 ,

Oa;
Ok ;

L41,
cost, costp, costm;

L51,

LEL, L44:

~ 193 -~

T b fabep, =

s = 3oy

RPN » wan v €08, 0 YWaRY,

@opt & aapibthevs)

seaup o sapitheta v TWORY . 3,0),

aaptip & aapithesy = TWORY . 23,0},
't opat the default base frequensy ve 40 HE 4 f sere ¥/

3t twby we 0) whp » TWORY * 40,6,
bt eaiaulete LRdustanaep ¢,

Hie = Xilp wba

Wi_y s Xiv_prime ' wbs!

N = XN . wha:

ng = ¢, ¢ * N)\{-\‘

L
L

Lis » Lmay
w = l@ms ¢ 0.0y

PPN
%

) e~

Led Liv_p + Lmsy

L4} » Lms * caav)
LEY w Lma * cestp
LEYl = Lma * asswum

‘* oaloulate atator flunes *°

XAm“au w L1} ¢ j0a + L&y * 40b + L2) * 00 +
Ldl * ira « L5) * 4pb + L€ * iro)

iam_sb = LZl * j0a ¢+ L1l * i0b + L21 * 00 +
Lé: * ira + L&Y * ixb + LB * iroy

iam_sc = L21 * ita + L2} * 40b ¢ L1) * i0c
iV o ira v L€l ' arb ¢ L4l iyey

lam_ra p = L4) * j0a + L6l * i0b + L&l * 40c +
144 * drva + L21 * irb + L2) * irey

lam_rb_p = L31 * i0a ¢ L4l * i0b + L6l * 100 +
L2l * ira + L44 * irb + L21 * {ro;

lam _re_p = LEL * j0a + L31 * i0b + L4l * Q0o +
<l v dira + L21 * ixrb + l44 * iroy

‘* calculate the deyxivatives cf the stator fluxes */
dlam_sa = vOa = vOn -~ Rs * iQa;

dlam_st = vOb = vOn =~ Rs * i0k;
lam_sc = vO0c - vOn - Rs * i0c;

- 194 -~

fodnd_ moted .

alar _Ka_| ® ohi_prims * L1a)
diam ¥} _§ v “Ry_prime * k)
diam_re p * ~RE_PEimMe * Lr@)

* de the Integrations af the fluxea %/
o = lam aa = lam_as_old = (dv / 2,0)
b= Jam_ab = lam_uk_¢id = (dt) 2.0)
ieow law 8¢ o« lam ae_eold = (dv [2.0)

“d e me

llra = lam ra p = lam_¥ra_p_eold = (dc /
drr = Jam tk p o« lam b p_oldd = (dv /
llve » lam_ra p = lam re g _o)d = (dv /

'* 4 vhe 2urrent sum *.

Isupm B 3w v UL + 310

‘* saloulate the terque *,

Te = = pp * Lve v ((iCa * (ava = irb /
10 * (irk = ire /
ite * (are = ira /

(agqre(3.0) 7 2.0) *» qo
(i0a * (ixk = ira) ¢
10b * (irc = iram) +
i0¢ * (ira - irb)))

WATTS » Te * wmy
RE = WATTS . 46,0y

Td = B " wm;

Ti ® Tmech + Td;

Torque = Te = I * wm dt « Tl
theta_s = theta;

W s = wm;

w_dot_s - wm_dc;

’* do the integration of the fraguency

W = theta_s = theta_» cid - (dt)/ 2.0)

Wdot = w_8 ~ w_s_old - (dt ./ 2.0) * (w_

* (dlam_sa + dlam_aa_old):
* (dlam_sb + dlam_abk_old);
* (dlam_sc ¢+ dlam_sec_old);

24.0) % (dlam_ra p + dlam _ra_p old);
2.0) * (dlsm_rb _p + dlam rb_p old);
2.0) * (dlam_reo_p + dlam _rc_p _old)y

2.0 = axe / 2.0) +
2.0 - ira / 2.0) +

2.0 = irb / 2.0)) * sin(theta) +

s(theta) *

!

and acceleration */

*pp * (w_2 + w_r_cld);
dot_s + w_dot_s_old);

195 -

C.7f_switch_3p.c

- 196 -

£ switeh_3p.c

/* f£_switch 3p.c */
/* Norbert H. Doerry

12 March 1989

This routine simulates a 3 phase switch.
the switch is left closed until the current has a zero-crossing.

to open,

This means that each phase will open at a slightly different time.
Closing the switch happens instantaneously

*/

#include <stdio.h>
#include <math.h>
#include "doerry.h"

#define v0a e->con.in[0])

#define
#define
#define
#define
#define
#define
¥define
tdefine
#define
#define
tdefine
#define
¢define
¥define
¥define
#define
#define
f#define
#define
#define
fdefine
#define
#define
#define
#define
#define
#define
#define
¥define
#define
#define
sdefine
tdefine
#define
#define
¥define

vOb
v0e
vla
vlb
vle
i.0a
i0b
i0c
ila
ilb
ile
sa
sk
sc
ia
ib
ie
sa o
sb o
sc_o
ia_o
ib_o
ic o
vOa_
vOb

vlc

vla:
vib_
viec_
iOa_
i0b_
ilc_
ila_
ile_
ilc_

Swit

e->con.in[1l]
e~->con.in(2)
e=->con.in[3])
e=->con.in{4)
e->con.in(5)
e->con.in[6]
e->con.in([7)
e->con.in([B]
e->con.in[9)
e->con.in{10]
e->¢con.in{1l)
e->con.state [0]
e->con.state 1]
e->con.state (2]
e->con.state (3]
e->con.state (4]
e~>con.state (5]

ld e->con.old_state[0)
ld e->con.cld_state([l]
ld e->con.old _state ("]
ld e->con.old_state(3]
ld e->con.old_state (4]
ld e->con.old_state([5]

M ~J ;bW RO

=
- oo

4
-

ch e->con.ext_in{0]

switch_Z3p (e, dt)

When a switch is commanded

t_switah_Jp.¢

ELEMENT e
doukle dt%;

{

int 4, 3y
double va,vb,ve;

J* initialize the jacobian matrix to zeroces if dt

for (i w € ; dt am 0,0 && i < € ; i++)
fer () = 0 ;3 3 <12} J+ee)
e=>con.jacob_in(i + € * 3] w 0.0

va = via = vOa;
vhb = vilbh « vOb;
ve s vie = v0c;

ia = (ila - i0a) / 2.0;
ib = (ilb = i0b) / 2.0;
ie = (ile = i0e) / 2.0;

/* see if switch is closed */

if (Switch == 1,0)
{
sa » 1.0;
sb = 1,0;
sc = 1.0;

else /* if switch is orderad open, use results from last time */

sa = sa old;
sb = sb old;
sc = sc_old;

/* if the switch is closed, the voltage should go to zero, otharwise

the current should go to zero */

= 1.0) ? va ¢ ia;
= 1.0) ? vb ib;
= 1.0) ? ve ic;

e~>con.implicit{0) = (sa
e->zon.implicit[l] = (sb
e=>con.implicit (2] = (sc

if (sa == 1,0)
{

e->con.jacob_in[0 + 6 * vOa] = -~ 1,0;
e->con.jacok_in[0 + € * vla_] = 1.0;
e->con.jacob_in[0 + € * iCa_] = 0.0;
e->con.jaceb_in[0 + € * ila_] = 0.0;
}
else
e=->con.jacob_in[C + 6 * v0a] = 0.0;
e->con.jacob_in{[0 + € * via_] = 0.0;
e->con.jacob _in[0 + 6 * iCa_] = - 0.5;

- 198 -

ua O W/

¢ _switch _3p.c

e->con,jacob_in{0 + 6

if (sb == 1.0)
{
e~>con.jacek_inl[l + 6
e->con.jacob_in(l + €
e->cor.jacok_in(l + €
e~>con.jacob_in[l + 6
slse
{
e->con.jacok_in(l + €
e->con.jacob_in[l + €
e->con.jacob_in[l + €
e->con.jacob_in([l + €
}
if (sc == 1.0)
{
e->con.jacob_in[2 + 6
e~>con.jacob_in(2 + €
e->con.jacob_in(2 + 6
e->con.jacob_in{2 + 6
}
else
{
e->con.jacob_in(2 + 6
e~>con.jacob_in[2 + €
e->con.jacob_in[2 + €
+ &

e~>con. jacok_in(2

/* the last three implicit

ila_] = 0.5;
vOb_] = - 1.,0;
Vlb_] = 1-0;
ik] = 0.0;
ilb 1 = 0.0;
vOb_] = 0.0;
Vlb_] = 0.0;
i0b_] = - 0.5;
ilk] = 0.5;
voe_] = = 1.0;
vie] = 1.0;
i0c_] = 0.0;
ilC‘-_] = 0.0;
voc_] = 0.0;
vie] = 0.0;
i0c_] = - 0.5;
ile_] = 0.5;

variables assure currents are the same */

e->con.implicit{3] = i0a + ila;
e->con.implicit[4] = i0b + ilbk;
e=>con.implicit (5] = i0c + ilc;
e->con.jacob_in{3 + €6 * i0a_] = 1.0;
e->con.jaccb_in{3 + € * ila] = 1.0;
e->con.jacob_in(4 + 6 * iOb_] = 1.0;
e->con.jacob_in{4 + & * ilb] = 1.0;
e->con.jacob_in(5 + € * i0c_] = 1.0;
e->con.jacob_in(5 + 6 * ilc_] = 1.0;

/* see if should open

if (Switch == 0)

{
sa = (ia * ia_old
st = (ib * ib_old
sc = (ic * ic_old

the switches

<= 0,
<= 0,
<= 0.

*/

(loock for zerc crossing)

0) 7 0.¢C 1.0;
0) 2 C.C 1.0;
0) 7 C.¢C 1.0;

r

_switech_3p.c

/* turn the jacok_switch on */
e->con.jacok_switch = 1;
/* save the external output variables */

for (i = 0 ; 1 < € ; i++)
e->con.ext_out[i] = e->con.state[i];

- 200 -

C.8f_breaker_3p.c

- 201 -

f_breaker_ 3p.c

/* £ _breaker 3p.c */
/* Norbert H. Doerry

8 April 1989

This routine simulates a 3 phase breaker. When a breaker is commanded
to open, the switch is left closed until the current has a zero-crossing.
This means that each phase will open at a slightly different time.
Closing the switch happens instantanecusly.

The overcurrent switch is based on a psuedo~rms value for the current

*/

#include <stdio.h>
#include <math.h>
#include "doerry.h"

#define vO0a e->con.in(0)

#define vOb e->con.in{l]

#define vOc e=>con.in[2]

fdefine via e->con.in[3]

#define vlib e->con.in[4]

#define vlic e~>con.in[5])

fdefine iOa e~>con.in(§6)

#define i0Ob e->con.in(7)

#define i0c e->con.in(8)

#define ila e->con.in(9)

#define ilb e->con.in[10])

#define ilc e->con.in{l1)

$define sa e-~>con.state[0]

#define sb e->con.state(l)

#define sc e=->con.state(2]

#define ia e->con.state[3)

#define ib e->con.state[4]

#define ic e->con.atate([5)

#define ave_ia e->con.statel€]

#define ave ib e->con.state{7]

#define ave_ic e->con.state(8]

#define t_ia e->con,.state[9]

#define t_ib e->con,.state[10]
#define t_ic e->con.state[11])
#define sa_old e->con.old_state[0]
#define sb_old e->con.old state(l)
#define sc_old e->con.old_state(2]
#define ia_old e->con.old_state([3]
#define ib_old e->con.old state(4]
#define ic_old e->con.old_state(5]
#define ave_ia old e->con.old_statel[6)
tdefine ave ib old e~>con.old~state[7]
#define ave_ic _old e->con.old state(8)
#define t_ia_old e~>con.old state|9]
#define t_ib old e->con.old state[10)
$define t_ic_old e->con.old state[1l1)

- 202 -

f_preaker 3p.c

#define vOa

#define vOb

#define vOc

#define vla_
#define vib

#define vlc_
#define iOa

#define 10b

#define i0c_
#define ila
#define ilb_ 10

#define ilc_ 11

@ 1 ;s W N O

©

#define Switch e->con.ext_in[0]

$define £
#define I trip
#define time_trip

/* The following are the states of the switches */

#define ALL ON
#define WRONG
#define TRIPPED_C
#define TRIPPED_ O
#define SW_OFF_C
#define SW_OFF_O
#define ALL OFF_C
#define ALL_OFF_O

breaker 3p(e,dt)
ELEMENT *e;
double dt;
{
int 1i,3;
double va,vb,vec;

/* initialize the jacobian matrix to zeroces if dt

for (i = 0 ;
for (j = 0 ;

vOa;
vOb:
vOc;

va = vlia -
vb = vlb -

ve = vic -

(ila - iCa)
(ilb - iOb)
(ilc - 10c¢)

ia =

ic =

e->con.param[0)
e->con.param[1l]
e~->con.param(2]

O O 0O 0O 0O 0O O O

O = N W H oy)

dt == 0.0 && i < 6
j <12 ;
e->con.jacob_in[i + 6 * j] = 0.0;

i+

P
2.
2

/* see if modes are illegal */

£ _breaker_ 3p.c

if (sa > 7 |) sa < 0 || sa == WRONG) sa = ALL_ON;
if (ab » 7 || sb < 0 || ab == WRONG) sb = ALL ON;
if (e > 7 |} 80 < 0 |{ sc == WRONG) sc = ALL ON;

if (Switch == 1,0)
{
£ _awitoh_on(ésa);
f_switch_on(asb):
£ _switch_on(&sc):

elae
{
£ _switch_off (&sa);
£ _switch_off (&sb);
£_switch _off (&sc);
}

/* see if breaker should open */

if (t_ia_old >= time_trip || t_ib_old »= time_trip || t_ic_old »= time_trip)
{
f_breaker off(&sa);
f breaker off (&sb);
f breaker off(&sc);
}

/* if the switch is closed, the voltage should go to zero, otherwise
the current should go to zero */

e->con.implicit([0) = ((int) sa % 2 == 1.0) ? va : ia;
e->con.implicit[1l] = ((int) sb % 2 == 1.0) ? vb : ib:
e->con.implicit{2) = ((int) sc % 2 == 1.0) ? ve : ic;
if {(int) sa % 2 == 1,0)
{
e->con.jacob_in[0 + 6 * v0a_] = - 1.0;
e->con.jacob_in[0 + €6 * via] = 1.0;
e->con.jacck_in[0 + 6 * i0a] = 0.0;
e->con.jacob_in(0 + 6 * ila_] = 0.0;
}
elss
{
e->con.jacob_in(0 + 6 * v0a_]) = 0.0;
e->con.jacob_in[0 + 6 * vl1a_] = 0.0;
e->con.jacob_in(0 + 6 * i0a_} = - 0.5;
e->con.jacob_in(0 + 6 * ila] = 0.5;
}
if ((int) sb « 2 == 1.0)
{
e->con.jacob_in{l + 6 * vOb_] = - 1.0;

f _breaker 3p.c

e~>con.jacob_in(l + € * vib_] = 1.0;
e->con.jacob_in{l + 6 * i0b_] = 0.0;
e->con.jacob_in[l + 6 * ilb] = 0.0;
)
else
{
e->con.jacob_in{l + €6 * vOb_] = 0.0;
e->con.jacob_in(l + 6 * vlb] = 0.0;
e->con.jacob_in[l 4+ 6 * i0b] = - 0.5;
e->con,jacob_in[l + 6 * ilb] = 0.5;
}
if ((int) sc % 2 == 1.0)
{
e->con.jacob_in{2 + 6 * vOc_] = - 1.0;
e->con.jacob_in([2 + 6 * vic_] = 1.0;
e->con.jacob_in[2 + 6 * i0c] = 0.0;
e->con.jacob_in[2 + 6 * ilc_] = 0.0;

else

e->con.jacob_in{2 + 6 * v0c_] = 0.0;
e->con.jacob_in[2 + 6 * vic_] = 0.0:
e->con.jacob_in(2 + 6 * i0c_] = - 0.5;
e->con.jacob_in[2 + 6 * ilc] = 0.5;

/* the last three implicit variables assure currents are the same */

e->con.implicit({3) = i0a + ila;
e->con.implicit{4) = i0Ob + ilb;
e->con.implicit[S5] = i0ec + ilc;

e~>con.jacob_in([3 + €6 * i0a_] = 1.0;
e->con.jacob_in([3 + 6 * ila] = 1.0y
e->con.jacob_in(4 + 6 * i0b_] = 1.0;
e->con.jacob_in(4 + 6 * ilb) = 1,0;
e->con.jacob_in(5 + 6 * i0c_] = 1.0;
e->con.jacob_in[5 + 6 * ilc] = 1.0;

/* see if should open the switches (look for zero crossing) */
if (ia * ia_old <= 0.0) f_zero_cross(&sa):

if (ib * ib_old <= 0.0) £ zero_cross(&sb);

if (ic * ic_old «= 0.0) f_zero_cross(&sc);

/* update the current timers */

/* calculate the rms currenta */

if (£ » 1.0) £ = 1,0;
if (£ < 0) £ = 0,0;

/* compute new average */

- 205 -

f_breaker_3p.c

ave_ia = aqrt(
ave_ib = agrt(
ave_ic = sqrt(

t_ia = (ave_ia
t_ib = (ave_ib
t_ic = (ave_ic

/* turn the jacob_switch on */

(1.0 -~ £) * ia * ia + £ * ave_ia_old * ave_ia_old);
(1.0 - £) * ib * ib + £ * ave_ib_old * ave_ib_ old);
(1.0 - £) * ic * ic + £ * ave_ic_old * ave_ic_old);

> I trip) ? t_ia_old 4= dt : 0;

> I trip) ? t_ib_old 4= dt : 0;
7t t

>= I trip)

e->con.jacob_switch = 1;

ic_old += dt

/* save the external output variables */

for (i = 0 ;
e~>con.ext_out([i] = e~>con.state[i];

i

< 12 ; i++)

/* f_switch _on performs the transformation of states for the
external input variable turning on */

f_switch_on(x)

double *x;

{

if

else
else
else
else
else
else
else

f switch_off (x)
double *x:

{
if

elze
alse
else
else
else
else
else

if
if
if
if
if
if

if
if
if
if
if
if

(*x
(*x
(*x
(*x
(*x
(*x
(*x

*X

(*%
(*x
(*z
(*x
(*x
(*=
(*x

*x

f _breaker off (x)

ALL_OFF_O)
ALL_OFF_C)
SW_OFF_0)
SW_OFF_C)
TRIPPED_O)
TRIPPED_C)

ALL_ON;

ALL_OFF_O)
ALL_OFF_C)
SW_OFF_0)
SW_OFF_C)
TRIPPED_O)
TRIPPED_C)
ALL_ON)
SW_OFF_C;

*x
*x
*x
*x

= ALL_ON;
= ALL_ON;
= ALL_ON;
= ALL_ON;

return;

return;
ALL ON) return;

*x
*x
"3
L4
*
*x
*x

= ALL_OFF_0;
= ALL_OFF_C;
= SW_OFF_O;
= SW_OFF_C;
= ALL_OFF O:
= ALL_OFF_C;
= SW_OFF_C;

- 206 -

f_breaker 3p.o

double "x;
{
ie
alse it
elae if
elae if
else if
else if
elae if
else

f_zero_cross(x)

double *x;
{
if
alse if
else if
else if
alse if
else if
else if
alse

(*x
{(*x
(*x
(*x
("
(*=x
(*x

ALL_OFF_0)
ALL_OFF_C)
$W_OFF_0)
SW_OFF_C)
TRIPPED_O)
TRIPPED C)
ALL_ON)

*x = TRIPPED_C;

(*x == ALL_OFF_O)
(*x == ALL_OFF_C)
(*x == SW_OFF_O)
(* == SW_OFF_C)
(*x mw TRIPPED_O)
(*x we TRIPPED_C)
(*x == ALL ON)

*x = ALL_ON;

i
LF

hb 3
*x
Lt 3
bk

*x
X
X
¥
*x
*
*x

ALL_OFF_O;
ALL_OFF_C;
ALL_OFF_0;
ALL_OFF_C
TRIPPED_O;
TRIPPED_C;
TRIPPED_C;

ALL_OFF_O:
ALL_OFF_O;
SW_OFF_0;
SW_OFF_0O;
TRIPPED_O;
TRIPPED_O;
ALL_ON;

- 207 -

C.9 [_spat_switch.c

LTS TN YL S

SR RpRY_AMitah .3 ¢t
v Rsyppept B, Laosyvry

1% Narah isde

Thia file dessyihes a avwitah

Si5 lude wBtaLs W
sinsivude smath . b
tino,ude “doerry . h"

tdefine VO e=32apn, inll}
tdetine v} e=>a0on . Anll)
tdefins 10 e-Roen . anie)
sdsfine 1) e=2uan,Anld)
tiefine v _ T
tdefine v}
tdefine 10 ¢
fdeafane a1 3

sdafine Switoh e=>een.exr_in(0)
¢deline v sr=voon,eNt_ aut {l)
$define *=2aon. unt_outil]

apst_switch(e, dt)
ELENERT re}
douk le duy
\
deuble integ ()

(UL IR R 2 ¥
1= (iC -« 41y /2.0y

.* seccnd amplicit variable is sum of ourrvents */

e->con.implicit {1} » 10 + id;

/* set up the jacobian matrix */
e->con.jaceb_awitch = 1; /* turn
if (Switch == 0) /* open */

{

e-rsen.implicat [(CY = o

e->cen.jacob_in(0 + 2 * vO_) =
e->con,jacok_in{0 + 2 v vl] =
e->con.jacob_in[0 + 2 * i0_) =
e-»cer, jacok_in[0 + 2 * il] =

jacobian switoh on */

0.0;
0.0¢
0.5;
~0.%;

- 209 -

t_wpar_awiteoh.o

wise '* aleaed *

{

e=raon.implicit|[Q) = v,

e=»oon . Jawok_anlo
ev»aon, jagek_inl0
e=>aon, Jaook_in(0
e=>oon, jagek_an{0

e->con, Jageb_an{l
e=ra0n, jacek_in{l
w->o0on. Jacek_inf{l
e=>con, jacek inil

+ 4+ 4 +
LA 3 3 N N]

+ 4 4+ 4+

) B
-

N W
-

vo_)
vi)
10)

1)

vo_}
vi_l
ie_)
11)

0.0;
0.0;
1.0¢
1.0:

1.0;
- 1.0;
0.0,
0.0,

- 210 -

C.10 f_gen_synch_3p.c

-211 -

f_gen_synch_3f.c¢

/% £_gen_synch_3p.c */
/* Norbert H. Doerry */
/* 12 March 1989%

This file simulates a synchronous generator that iv modelled as
a three phase scurce with a series inductance.
the frequency of the generator are input variables.
of phase a along with the inductance are parametera.

.

‘

#include

<st

dio.h>

#include <math.h>
#include "doerry.h"

#define
#define
#define
#define
¥define

#define
#define
#define
#define
#define
#define
#define
¥define
#define
#define
#define
¥define
#define
#define
#define
#define
#define
#define
#define
#define
#¢define
#define
#define
kdefine
fdefine
¥define
¥define
#define
kdefine
#define
#define
pdefine
#define

RAD_
DEG_

DEG 0.017453293
RAD 57.29578

HZ_RADSEC 0.15915494

RADS
PHAS

vOa
vOb
vOc
vOn
iCa
io0b
i0c¢
iOn
Vmag
freq
va
vb
ve
ia
ib
ic

t
vga
vgb
vge
va_o
vb_o
ve_o
ia_o
ib_o
ic_o
t_cl
vaa_
vgk_|
vge_
vO0a _
vOk_
vOe_

EC_H2 6.2831853
E_SHIFT 2.09439351

e->con.in{0]}
e->ceon.in(l])
e~>con.in(2]
e=->con.in(3)
e->con.in[4)
e->con.in([5])
e->con.in[6)
e->con.in[7)
e=->con.in (8]
e=>con.in{9])
e->con.state(0)
e->con.state[l]
e->con.state (2]
e->con.state (3]
e~->con.state(4)
e->con.state (5]
e~>con.state[6)
e->con.state(7)
e->con.state (8]
e->con.state (9]
ld e~->con.old_state[0]
ld e->con.old_state(l]
ld e->con.old_state[2]
ld e->con.old state[3]
ld e->con,old state(4)
ld e->con.cld_state[5]
4 e->con.cld_state (€]
cld e->con.old state(7]
cld e->con.old_state{8]
old e->con.old_state[9]
0

Y b

- 212 -

The magnitude and
The phase angle

£ _gen_synch_3p.c

s¢dafine vOn_
tdefine i0a_

#define i0c
#define iOn_
$define Vmag_ 8
#define freq_ 9
#define phase_a e->con.param[0)
#define L e=->con.param(l)
tdefine F e->con.param(2]

3
4
#define i0b 5
[
-

gen_synch_3p(e,dt)
ELEMENT *e;
druble dt:

{

int

double fta, ftb, ftc, fta_old, ftk_old, frte_cld;

i, 3

double pa,pb,pc;

/* initialize the jaccbian matriz to zerces if dt

for
£

/*

va
vb
ve
ia
ib
ic

(1 =0 ; dt == 0.0
or (J =0 ; 3 < 10 ;
e~>con. jacob_in[i +

calculate states */

= vO0a - vOn;
e vOb -~ v0On;
= v0¢c -~ vOn;
= (i0a - iOn - iOb -
= (i0b - i0n - iQe¢ =
= (i0c - iOn - iCa -

&& 1 < 4 ;
J++) '

4 * §) = 0.0;

i0e) / 2.0;
ioa) / 2.0;
i0b) / 2.0;

/* update the time counter */

Tt =

/*

pa = (freq * t * RADSEC_uZ + phase_a * RAD DEG);

rb
pc

/%
’

at + t_old;

calculate phases */

= pa - PHASE_SHIFT;
= pa + PHASE_SHIFT;

calculate phase generator

= Vmag * cos(pa);
= Ymag * cos(pb);
= Vmag * cos(pc);

/* sum cf currents should be zero */

e->

con.implicit[3] = i0a + i0b + i0ec + iOn;

voltages */

w«=corn, jacob_in(3 + 4 % i0a_] = 1.0;

e--zon.jacok_in(3 + 4 * i0b_] = 1.0;

e->con.jaceb_in[3 + 4 * i0c_] = 1.0;

e->con.jacob_in[3 + 4 * i0n_] = 1.0;

"> see 1f inductance is zero */

if (L == 0)
e->con.implicit[0] = va - vga;
e->con.implicit({l] = vb - vgb;
e->con.implicit[2) = ve - vge;
e->con.jacob_in[0 + 4 * vO0a_] = 1.0;
e->con.jacok_in[0 + 4 * vOn_] = -1.0;
e->con.jacob_in[0 + 4 * freq_] = Vmag * t * RADSEC_HZ
e->con.jacob_in(0 + 4 * Vmag_] = - cos(pa);
e->con.jacob_in(l + 4 * vOb_] = 1.0;
e->con.jacob_in[l + 4 * vOn_] = -1.0;
e->cen.jacob_in([l + 4 * freq] = Vmag * t * RADSEC_HZ
e->con.jacob_in[l + 4 * Vmag_] = - cos(pb):

e~>con.jacob_in{2
.jacob_in{2

.jacob_in(2

e->con
e=->con

+ + + +
S Y
* * * %

e->con.jacob_in(2 Vmag_] = - cos(pe);
}
else if (R == 0) /* if leakage resistance is zero, output
{
e->con.implicit{0) = va;
e->con.implicit[l] = vb;
e->con.implicit(2] = ve;
e->con.jacob_in[0 + 4 * v0a] = 1.0;
e->con.jacob_in[0 + 4 * vOn_] = -1.0;
e->con.jacob_in[l + 4 * vOb_] = 1.0;
e->con.jacob_in[l + 4 * vOn_] = -1.0;
e->con.jacob_in[2 + 4 * v0ec_] = 1.0;
e->con.jaccb_in{2 + 4 * vOn_] = =1.0;
}
else
{
e->cen.implicit[0] = ia -~ ia_old - (dt/2.0) *
((va - vga) + (va_old - vga_old)) / L - (va
e->con.implicit([l] = ib - ib_old ~ (dt/2.0) *
((ve - vgb) + (vb_old - vgb_old)) / L - (va
e->con.implicit(2) = ic - ic_old - (dt/2.0) *
({ve - vge) + (ve_old = vge _old)) / L - (va - va_old)

vOe_] = 1.0;
vOn_] = -1.0;

freq_] = Vmag * t * RADSEC_HZ

- 214 -

* sin(pa);

* sin(pb):

* sin(pc):

voltages are 0 */

- va_old) / R;

- va_old) / R;

/ R;

f _gen_synch_3p.c

e->con.jacek_in(0
e->con.jaceb_in(0
e->con.jacob_in[0
e->con.jacob_in(0
e->con.jacob_in[0
e->con.jacob_in(0

+ 4+ + + + 4+ o+
[S Y N S SO G N
*

e~>cori.jacob_in(0
e->con.jacob_in[0 + 4 *
~ dt * Vmag * sin(pa)

»*

e~>con.jacob_in(1l
e->con. jacob_in(l
e->con.jacob_in[1l
e=>con.jacob_in{1l

*

*

e->con.jacob_in(l *

e->con.jacob_inll *

+ 4+ + + + o+ o+
B B B B S
*

e->con. jacob_in(l *

e->con.jacob_inll + 4 *
= dt * Vmag * sin(pb)

e->con. jacob_in(2
e=>con.jacob_in|2
e=>con.jacob_in|(2
e->con.jacob_in|[2
e->con.jaceob_in|(2
e~>con.jacob_in(2

+ F + + + + o+
[~ - O S O

e->con.jacob_in|2
e->con.jacob_in(2 + 4

*
%*
*
*
*
*
*
»
- dt * Vmag * sin(pc)

/* turn the jacob switch on

e->con. jacob_switch = 1;

iCa_) = 0.5;

iok_] = -0.5;

i0c_] = -0.5;

i0On_) = =0.5;

vOa] = - dt / (2.0 * L) - 1.0/ R;
von] = - e=->con.jacob_in[0 + 4 * vOa_];
Vmag _]= cos(pa) * dt / (2.0 * L) ;
freq_J=

* ¢ * RADSEC_HZ / (2.0 * L);

i0b_] = 0.5;

i0c_] = =0.5;

ila_] = =0.5;

iOn_] = =0.5;

vOb_} = - dt / (2.0 * L) - 1.0 / R;
vOn_] = - e->con.jacob_in[l + 4 * vOb_];
Vmag_J]= cos(pb) * dt / (2.0 * L) ;
freg =

* t * RADSEC_HZ / (2.0 * L);

iCc_) = 0.5;

if0a_] = =0.5;

iob_} -0.5;

iOn_] -0.5;

vOe_] -dt / (2.0 * L) - 1.0 / R;
vOn_] = - e->con.jacob_in[2 + 4 * vDe_]:
Vmag_J]= cos(pc) * dt / (2.0 * L) ;
freqg_]=

* t * RADSEC_HZ / (2.0 * L);

*/

/* store external output variables */

for (i =0 ; 1 < 6 ; i4+4)

e->con.ext out|i] = e->con.state[il;

- 215 =~

C.11 penner.h

- 216 -

penner.h

/* penner.h */
/* Norbert H. Doerry

14 March 1989

This is an include file which tells the main program where to get
the proper information for the devices

*** Modified 11 April 1989 by nhd ****
added breaker_3p
x**x Modified 15 April 1989 by nhd *x*x

added synch mach, speed reg, volt_rey, ind_motor,gas_turbine, source
integrator

*** Modified 27 April 1989 by nhd ***x

added volt_meter

typedef int (*FUNCTIOR_PTR) ():
#define NBR DEV_FILES 2 /* number of device description files */

static char *device_file[] = /* names of the device description files */

{
"/mit/13.411/sepsip/three_phase.input",
"/mit/13.411/sepsip/one phase.input"

be

static int nkr_device_file[] =

{

1z, /* number of devices per file */
0
¥;
static char *device_name[] = /* names of devicss */
{
"t_line_3p",
"rl_wye",

"gen_synch_Bp",
"switch_Zp"

" "

rme",
"treaker_Ip",
"eynch_mach",
"speed reg",
"welt_reg",

"ind_motor",

"gas_turkine",

- 217 -

jenner b

"velt _mater',

"inductor"™,
“capaciter",

“resistor",
"veltage source",
"current_source",
"diode",
"switch".

"Fulse _switch",
"source”,
"intearator"

b2

;/* device functions for the above device names */

¥define
¥define
#define
tdefine
ddefine
#define
#define
tdefine
#define
fdefine
#define
#define

¥define
#define
#define
¥define
$#define
#define
#define
tdefine
#define
#define

int FO
int F1
int F2
int F3
int F4
int F4a
int F4b
int F4c
int F4d
int Fde
int F4f
int Fdg
int FS

int F6

FO t_line_3p

Fl rl wye

F2 gen_synch_3p
F3 switch_3p

F4 rms

F4a breaker 3p
F4b synch_mach
F4c speed_reg
F4d volt_rey
F4e ind motor
F4f gas_turbine
F4g volt_meter

F5 inductor

Fé capaciter

F7 resistor

F8 voltage_source
F9 current_source
Fl0 diode

Fll spst_switch
Fl2 pulse_switch
Fl3 scurce

Fi4 integrator

():
()
(N
()
()
(O
():
O
()
(O

static FUNCTION_PTR dev_fnctn[]

FC,
F1,
F2,
F3,
F4,
F4a,
F4b,
F4c,
F4d,
Fde,
F4£,
F491
FZ,
Fé,
7,
F8,

1
©w

]
o o~

bio IR B B |
L S Y

B e O ke

/* addresses of device functions */

C.12 three_phase.input

-220 -

vOa
vOb
v0c
vlia
vlb
vile
iCa
i0b
i0c
ila
ilb
ile
states €

va

vk

ve

ia

ib

ic

implicit

integ_
I _=ur

i sum

externa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>