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Dynamics of Electron Transfer for a Nonsuperexchange
Coherent Mechanism. I.

R. A. Marcus and R. Almeidat
Noyes Laboratory of Chemical Physics*

California Institute of Technology
Pasadena, California 91125

Abstract

In addition to mechanisms such as superexchange and a chemical intermediate

mechanism for electron transfer from a donor D* to an acceptor A via a molecular

bridge B, a third possibility occurs when the I lectronic coupling is very strong

and the D*B and D B- states have energies moderately close to each other. This

mechanism is discussed here. Like superexchange, it is a coherent one, in contrast to

the chemical intermediate mechanism, where the transfer is sequential and

incoherent. The dynamics of the mechanism are discussed, particularly the

maximum population of "B-" and the question of whether an effective rate constant

for its disappearance can be considerably larger than the maximum adiabatic rate

constant. There are, as yet, no experimental data on the mechanism, though the

synthesis of suitable D*BA's may permit its observation.

In the treatment three collective nuclear coordinates are introduced, permitting

independent reorganization energies for each reactive center. With certain

approximations, namely, equal vibration frequencies and a nonadiabatic first step,

the problem is reduced analytically to a one-coordinate one, which can be readily

treated numerically. One rough but simple analytical result for the latter is also

given.

tPresent address: Departmento de Quimica, Facultad de Ciencias, Universidad de

Los Andes, Merida, Edo. Merida 5101, Venezuela

* Contribution No. 8000



I. Introduction

Electron transfers from a donor D* to an acceptor A via a bridge B may occur by

one of several mechanisms. The most common one is that of superexchange, in which

the transferring electron makes use of a virtual state, an orbital quite different in

energy from that of the donor D* or the acceptor A. A second mechanism, which could

occur when the relevant bridge orbital is close enough in energy to the D* one, is for

the electron transfer to occur via a chemical intermediate B-, whose presence could

be detected experimentally. The kinetics of this transfer can be treated

straightforwardly using two consecutive steps.

A third possibility is considered in the present paper, one for which there are as

yet no experiments, but for which suitable D*BA systems might be synthesized. In

this mechanism the relevant B orbital is readily accessible energetically, as in the

second mechanism above, but B and A are so strongly coupled electronically that the

entire transfer occurs coherently, rather than incoherently in two successive steps.

One question which arises concerns the maximum population of "B" in this third

mechanism. In the case of the second (sequential) mechanism this maximum

population B-, is given by'

k2

B- I 2- 4

2

where k, and k2 are the rate constants of the D*.+B and the B---*A electron transfers,

respectively. The question which arises is whether or not for the third mechanism eq.

(1.1) can still approximately represent the data but with a considerably enhanced

value of k2 , a value substantially greater than the maximum k2 for an adiabatic

electron transfer. (In this case B-,M would be much smaller than for a sequential



mechanism.) The answer, as we shall see in a subsequent article on numerical

results, is in the affirmative. Presumably by a suitable choice of D*BA systems, e.g.,

a D* weakly coupled to B, a suitable choice of B with an energy level close to or far

above that of D* and a suitable choice of the electronic coupling between B and A

(e.g., an aromatic or other appropriate group provides strong coupling, a nonbornyl

group relatively weaker coupling) it may be possible to construct a series of systems,

different members of which proceed by one or the other of the three mechanisms.

In the present paper we set up a model for performing calculations of B- and

other properties. In this model there should preferably, for the purpose cited, be at

least three collective coordinates,2 each having its own reorganization parameter and

each associated with an equilibrium vibrational displacement in a reactive center, D,

B and A. There should also be, in a quantum mechanical treatment of the dynamics

of this coherent transfer, some mechanism for dissipation, at least towards the end of

the transfer process, so that a wavepacket describing the dynamics is not spuriously

reflected back and forth. In practice, this dissipation is provided by the many

coordinates in the actual system, which permit the reaction products to become

thermalized before any reverse reaction occurs. (To design a theory which in one

limit would yield two incoherently connected consecutive steps, a dissipative term

accompanying the motion in the D+B-A stage would also be included.)

Rather than solve the Schr6dinger equation with these three collective

coordinates purely numerically, although that would be useful, we introduce in the

present paper some approximations such that the coherent problem can be reduced

analytically from three coordinates to one. Then the latter can then either be treated

numerically (e.g., using a one-dimensional Fast Fourier Transform3 ) or, in a more

approximate way, analytically. A rather rough estimate is given in Section V.

A coordinate system and the Hamiltonian is set up in Section'II and an

approximation is introduced (all three vibrational frequencies equal) which, when



followed by a rotation of the coordinates, permits a reduction to a two-coordinate

problem. In section Im the transfer from D* to the BA coupled system is treated

nonadiabatically (Golden Rule). To calculate the time evolution of B-, B-(t), the

subsequent dynamics are investigated (section IV) in which the nonadiabatic step

deposits a wavepacket on the BA potential energy surface. This wavepacket,

continuously replenished from the decreasing concentration of D*, evolves in time on

the BA surface, and has a nuclear motion on BA which is seen in section IV to be

separable. The treatment of the coherent dynamics has thereby been reduced to a

one-coordinate problem. The energy partitioning and its effect on B-(t) are discussed

in section V. Numerical results are given in a subsequent paper.4

II. Coordinates and Hamiltonian

Diabatic electronic wavefunctions iyj are introduced to describe the three

electronic configurations D*BA, D 4 B-A, and D+BA-, corresponding to the

transferring electron being on D(i= 1), B(i=2) and A(i=3). We let (P denote the

corresponding time-dependent nuclear wavefunctions, to be determined by solution of

the Schrodinger equation. The electronic-nuclear wavefunction w(T) at time T is now

given by

3
()= (0) (2.1)

i=l

The Hamiltonian contains a nuclear kinetic energy operator K and several

nuclear-electronic terms, HL. Introduction of q() into the Schr6dinger equation

Hy = th 8w/ax, multiplication by qr' and integration over the electronic coordinates

yields a standard result for the nuclear motion:

-4-



3
Kfi+ H+Y .ij = ati/a4./a (2.2)

j=1

where H.. denotes the matrix element

Hij = ),I H", j) (2.3)

We next introduce three collective vibrational coordinates, 4, 2, q3, one

collective vibration per center.2 For simplicity, a common vibration frequency c/2n is

assumed for these vibrations (ca = (k i / pi) I, where k, is the force constant and pi a

reduced mass), and dimensionless coordinates q=(pp/h) 4i are introduced.

Equation (2.2) now becomes

a2  (2.4)
j aq(i i a

where t is a dimensionless time variable &t and H. denotes the H. in eq. (2.2) divided

by Ahc. In actual fact, these three vibrational frequencies (a will not be equal, but we

are more interested here in obtaining some insight into what magnitudes to expect

for B-(t) for this mechanism, rather than in an accurate numerical solution.

For each of the three electronic configurations D*BA, D + B -A and D BA-, a set of

three equilibrium values of the q,'s is defined. When the electron is on D, namely

when 4j is large, the equilibrium values of (qj, q2, q3) are denoted by (al,0,0), while

when the electron is on B, they are taken to be (O,a2,O) and, when on A, (0,0,a 3) (Fig.

1). Thus, with this choice we have, for example, q, =a, at the equilibrium position for

the vibration q, in the D* system, and q, =0 at the equilibrium position for q, when

the D is in the form D+ . Using a harmonic approximation the diagonal matrix

elements H,, are now



HI1 = (q1-a,) 2 + +q22 + jq3

H22 = +q1
2 + I(%2-a2)2 + jq 3

2 + &E2 (2.5)

H33 = q1
2 + 1q 2

2 + +(q 3 -a 3 )2 + AE13

where the AEU's denote the (equilibrium) energy differences of the first and the ith

diabatic electronic configurations, divided by Aw. The off-diagonal Hi, s will be taken

to be independent of the q's.

To solve eqs. (2.4) - (2.5) we first introduce a new Cartesian coordinate system (x,

y, z), which permits a separation of the variable x from the (y, z) pair. The new axes

are obtained by a rotation of the (qj, q2, q3) axes, as in Fig. 1. Customarily, three

rotations are used for rotating the axes, as in the definition of the Euler angles.5

However, for our purposes it suffices to introduce only two: The rotations are such

that the final x-axis is perpendicular to the ala 2a3 plane and the final z-axis is

parallel to the a2a 3 line.

We first rotate the axes through an angle 4 about the ql-axis, such that the new

q3-coordinate (z in Fig. 1) is parallel to the line a2a3, and then rotate the axes through

an angle 0 about this z-axis, such that the new q,-axis (x) is perpendicular to the

plane ala 2a3. We thus have

X cos 0 sin 0 0 1 0 0

y = -sin 0 cos 0 0 0 cos P sin 4 q2 (2.6)

z 0 0 1 0 -sin P cos 4 q3

where in Fig. 1 cos p = OP/a2, sin (P = OP/a 3, cos 0= OQ/a1 and sin =OQIOP. From the

latter results we have OP=A 2 and OQ =A I, where

-6-



3

Al aT 2)- , A2 = (a 2 +a 2)-f (2.7)

Upon multiplying the two matrices in eq. (2.6) and taking the transpose so as to

express the q column vector in terms of the x one we have

q2 A /a2  A1A2/aja 2  -A 2/a3  y (2.8)

q3 A 1/a3  A 1A2/ala3  A2/a 2  z /
Applying this transformation to eqs. (2.4)-(2.5) we have

a2 + j atG + 2 2 at(2.9)

where

Hi -- (x-A) 2 +-y+aA/A2)2 + Jz 2

H 22 = (x -A) 2 + H 22 (y) +H 22 (z) (2.10)

H33 =z-(x--A) 2 + a3( )+H 3'(z)

and 
6

H 22(y) = H33(y) = Yy - A Aa,) 2

H 22(z) = +(z + a2A21a 3 )2 + AE 12  (2.11)

H 3 3(z) = +(z - a3A2 /a2 )2 + &E13

-7-



With the change of coordinates from (q,, q21, q3) to (x, y, z) it is seen from eqs. (2.9)

- (2.11) that the x-motion is identical for all H,'s and so is now separable from that of

y and z, an anticipated result since the coordinate x was defined so as to be

perpendicular to the plane containing all the geometrical changes. The calculation of

the dynamics of the electron transfer starting from electronic configuration 1, i.e.,

from D*BA, now involves only the two coordinates y and z.

While eqs. (2.10) and (2.11) follow from (2.5) and the coordinate transformation

(2.8), the equilibrium values in the (x, y, z) system for the points a1 , a2 , a3, evident

from eqs. (2.10)-(2.11), are also easily inferred from Fig. 1.7

III. The Rate Constant

For the loss of the electron from D* we use a nonadiabatic description (weak

interaction of D* with BA). A Golden Rule approximation can then be used for a first-

order rate constant hr for the disappearance of electronic configuration 1. For

reactant from a particular vibrational state N, of D* this hr is given by s .9

kr =2njH 2  ( ZN (y, z)2 S(,z) 28EN -E 4 ) (3.1)

r' 12 23 1( YZ'N23

using the separability of the X from the (y, z) motion. In eq. (3.1), H12 is the

dimensionless H12 in (2.4), EN, denotes the energy, divided by Aca, for a system whose

electronic configuration is 1 and whose vibrational wavefunction is 4ON(y, z). The

vibrational wavefunction for the motion on a potential energy surface based on the

pair of electronic configurations (2,3) is denoted by (PN 23(y, z), and the correspondi.ng

vibrational energy, divided by Aw, is EN23 .

The stationary-state Schr6dinger equation for (N,, obtained from (2.9) - (2.1.1 ,

is

-8-



- - 1 2 + 1(Y+aIAI/A)2 + 1z 2 ]NV(Y,z) = EN N,(Y,z) , (3.2)
C~ z1 1 1

Equation (3.2) is separable, and we have

di"N I(y, z) = (,y)4F (z) ,EN =E +E (3.3)

where n and m are the respective quantum numbers for the y- and z-vibrational

motions in electronic configuration 1, N thus denoting the pair (n, m). 4P(y) and

.(z) are the corresponding wavefunctions.

When the eigenfunctions 4)N23 (y, z) in eq. (3.1) are approximated by being taken

to be the solutions of the diabatic equation,

a2 a )+H (z)), O,(y,z)=E Nmy,z) (34)
(-2 2 22- 22 N + (Y'Y +) (3.=4)

(N 2 3(Y, z) becomes
SN23 (Y, Z) = (. 2) (Y4)(z) EN 23=E. + E

where 
(3-5)

-- + (-A j2a )21d. 2) (Y) W H (2) () E'(n 2 Y

and

j82- +H a(Z) d~,z dm(),(3.7)

where H 22 (z) is defined in (2.11). The first half of eq. (3.6) defines H '

To obtain a thermally averaged rqte constant, eq. (3.1) is multiplied by the

Boltzmann factor exp( - 1'EN,)/Qxy and summed over N,. Here, 3' denotes h/kjT, k,

being Boltzmann's constant and T the temperature; and QY, is the yz-vibrational

partition function when the electronic configuration is that of 1. Since the y and z

vibrations for the initial electronic configuration 1 are treated as harmonic, Q,, is

-9-



given by a standard expression. When the y- motion is that of a harmonic oscillator

in the diabatic electronic states 1 and 2, and when the harmonic H 22(z) potential is

used instead of an adiabatic potential E(z) discussed later, eq. (3.1) yields the

standard result for the thermally-averaged rate constant kr(T) 0

kr(T) = (kr) = 2nwIH 2J
2 (exp [- X 12 coth (0/2) -- 1 'p/2 1 ) Ip [X12 co sech (132)] (3.8)

where I(u) is a modified Bessel function of order p and argument u, and where

2 2)
12' 12 =(a +a 2  (3.9)

K12 is the usual "reorganization term in electron transfers, divided by hw, namely in

the present case the value of H 22(z) -H,1(z) - E2 at the equilibrium z-position for

the H'l(z) potential." All the quantities in (3.1) and (3.9), apart from ca, are

dimensionless.

In arriving at eqs. (3.8)-(3.9) from (3.1), using a set of z-mode acceptor states

(Hamiltonian H 22(z)), a coupling of this mode to the many other coordinates in the

system was assumed. Each z-mode acceptor state was thereby broadened. The sum

over N 23 in (3.1) can then be replaced by an integral containing the density (id) - 1 of

z-mode states. The condition EN, -EN 3 = 0 in the delta function would be satisfied

by having a maximal number of vibrational quanta pca& going into the z-mode, with

the residual energy imbalance being supplied from a coupling to a states. Thereby,

the p in (3.9) is the integer nearest - AE, 2 (with - AE, 2 expressed in units of Pw). In

practice, eqs. (3.8)-(3.9) will be treated as being interpolative, i. e., with p not being

restricted to be an integer, but rather equal to - AE12. The agreement of the various

results in Part I, e. g., a comparison of (2.8) at 0" K with a numerical solution for k,

provides some support for this approach.

IV. Population of B-

-10-



When B- is formed as an intermediate in an incoherent (hopping) mechanism

its time-dependent population can be calculated by standard chemical kinetics in

terms of rate constants k, and k2 of the two successive steps. However, when

electronic configurations 2 and 3 are strongly coupled electronically, the wavepatket

representing the system can, on reaching the B- region of the (2, 3) pair of surfaces,

move rapidly downhill. It is the dynamics on this (2, 3) pair of surfaces that is treated

next, the packet being steadily resupplied by the nonadiabatic transition from the

decaying electronic configuration 1.

At zero time the system is in some zeroth-order vibrational eigenstate ,,. (y,

z) = 4P(y) 4 (z) of electronic configuration 1. Using the type of perturbation theory

associated with exponential decay phenomena,8 the subsequent time-evolution of

4K,(y, z, t) in electronic configuration 1 is given by

-k 62-iE t

4 nm(y, z, t) = e F 4" ¢ .,(y,z) , (4.1)

where the rate constant kr is given by eq. (3.1) and E is the vibrational energy for

the (n, m) vibrational state in electronic configuration 1.

The wavefunction from electronic state 1 is continuously deposited on the (2, 3)

pair of surfaces as a result of the nonadiabatic transitioD. In the perturbation theory'

used to obtain eqs. (3.1) and (4.1), the deposited wavefunction is 172 )HiA m(Y Z, t).

The latter then moves in time on the coupled (2, 3) pair of surfaces, evolving under

the influence of the electronic-nuclear Hamiltonian Hy. given below. The electronic-

nuclear wavefunction qr(y, z, t) is now given by the convolution expression, 12

t -tH (t-0)

yt(y,z,t)) -i 0dAe * 1T2 ) H12 (O,(y,z, ) (4 2)

where P.m(Y, z, 0) is given by eq. (4.1). It is assumed for simplicity in eqs. (4.2) and

(3.1) and that because of the large separation distance the electronic matrix element

-11-



H,3 directly coupling state qY, to T 3 can, in the first approximation, be neglected. In

terms of a bra-ket notation for the diabatic electronic wavefunctions W,'s, the H, in

eq. (4.2) can be written as

H =H + H (4.3)

where, without loss of generality, the definition of H_ includes the H 23 term:

33 a2Hz= ) : >(-I z 2- 4. + H i(Z) <,, (4.4)
=2 =az

and, using the fact from eq. (2.11) that H 2 2(y) = H 33(y),

l, 3 3 d2 2v, -22 (y) (W= f, 1 (4.5)
i=2 j=2 ay

3

Here, I denotes the identity operator E I1i)( , in the (Tq2, v3) subspace, and
t=2

Hy' is defined in the first half of (3.6): HY is seen from eq. (4.5) to induce no transition,.

in the (7 2, r3) subspace, as expected.

Since H and H commute, the time-evolution operator exp (- i/-/2 ) in eq. (4.2)

can be written as exp (- iHY) exp (- iHOt). Further, using (4.5) we have

exp (- iHy t) T 2 )tn(y) = 1W2 )exp (- iHyt)n(y) (4.6)

With a change of variable t--,O, eq. (4.2) now becomes

-(k/2+E )t ft (k /2+E )O -LH'0 -ii 0
I(y,z,t)) -iH 12e r nm] doe r nm [e Y £ I(y)se 1 2)ypo,(z)l , (47)

which is the desired final expression.

The "population" B-t) of the intermediate electronic configuration 2 is

obtained by projecting Iy(y, z, t)) onto the diabatic electronic state IT 2 ) and

-12-



integrating over the nuclear coordinates:

B(t) = I IdydzI(W2 IW(yt)1M2  (4.8)

Strictly speaking, B - does not actually exist in this mechanism, and it would be more

rigorous to treat an observable, such as the absorption spectrum in the B spectral

region, rather than defining a B-(t) via eq. (4.8). Use of eq. (4.8) for B- presumes that

the quantity so defined adequately desciibes this depletion in the spectral region of B.

The exp( - iH7 '0)4)(y) term in eq. (4.7) can be written as

e ,iH 1,e. ' ), (4.9)

where lt 2)(y) is the n' th eigenfunction of the Hamiltonian HY', defined in eq. (3.6),

En. is the corresponding eigenvalue, and (j .(2)(y)j(py)) is a Franck-Condon factor.

Each of the quantities in eq. (4.9) is well-known"3 for the present case where H y'is a

harmonic oscillator Hamiltonian, eq. (3.6). The z-dependent term in (4.7), exp (-

£//4)I 2) 4)m(z), can be calculated using a Fast Fourier Transform (FFT) method.3 In

the procedure some mechanism is prescribed for the dissipation of the wavepacket

after reaching the H 33(z) surface, for example by adding an imaginary term - ir to

H3 3 (z) in eq. (4.4) or by modifying H 33 (z) and then introducing an absorbing

boundary.4

In ref. 4, for comparison with some of the numerical results for eqs. (4.7)-(4.8), we

have also made some calculations with H 22(y) + H 2 2 (z) in eq. (3.4) replaced by an

adiabatic surface E_(y, z). From a comparison of the two sets of calculations

information is obtained on the reflection, if any, of the wavepacket during its passage

through the H 22 and H33 intersection region. E(y, z) is the lower of the two adiabatic

potentials constructed from H 22 and H33 , and is given by

-13-



E_ (y, z) = ys + y, - [(H2'32 - Hg +4H23 (4.10)

where HzY is HSi(y) + Hi-(z), defined in (2.10)-(2.11).

Inasmuch as H22YZ-H 33
y' depends only on z (cf eq. (2.11)) the adiabatic potential

E(y, z) given by (4.10) is seen to be the sum of two terms,

E_(y,z) = *(y-A1Aa1)2 + E_(, (4.1 1)

where

E_(z) j{[H22(z) + H 33(z) - {[H22(z) - H33(z)] 2+4H }} (4.12)



V. Energy Partitioning Among the y- and z- modes

When the wavepacket from state 1, given in (4.2), is deposited on the (2, 3)

surface, the population B-(t) estimated in (4.8) depends on the partitioning of the

excess energy among the y and z modes. To obtain some insight into numerical

results4 for this partitioning, and later into an effective rate constant k 2, it is useful to

introduce here a quite rough but analytic estimate:

The intersection of the H 1 (y, z) and H22(y, z) potential energy qurfaces has some

lowest point (y12 , z1 2*). Using the arguments given in Appendix A, the excess energy

EY in the y-mode, measured relative to the energy at the lowest point y2
0 of the curve

H 22 (y), is

E --n+*-- (AE X/2t(/X)-AE2-n+* (5.1)

where this n' so defined is predicted to be a dominant term in eq. (4.9) or an average,

lE 0 ,(2)lt)[ 2, of the terms there. Subtracting this Ey from the approximate total
n.

energy after the q 1"*v2 transition, m + n + 1 -&E12 the average z-mode energy E, for

motion on the (2, 3) pair of surfaces is estimated to be

E = m+-(AE12 /A 12) .2
2/A) (5.2)

In the three-state dynamics the system is initially deposited from state 1 onto the

H 22(y, z) surface, since H 13 = 0. However, because of the strong coupling of the (2, 3)

pair it may quickly settle down to a motion largely on the Ey, z) surface.

-15-



In that case there is a larger energy available at (y2
0, z2

0), largerer than (5.1)-

(5.2) and distributed between the y- and z- motions. The additional amount of energy

shared between those coordinates is estimated in appendix A to be H 22(z2
0 ) -E_(z 2 '),

and thereby that Ey + E, is given by

E + E =m+n + 1 - AE 2 + [((A+AE2) 2 + H 2  -(,2 +AE (5.3)

instead of m + n + 1 - AE 12.

To interpret some of the numerical results for B-(t) and for B-, given in Part H",

and provide an approximate indication of what might be expected for other values of

the various parameters, we obtain below a rather rough classical estimate of the time

spent by the system in the "B - region" and for an effective rate constant k2. For this

purpose we approximate the length of this region by the z-interval between z12 and

the intersection z 23 of the H 22(z) and H33(z) surfaces. The point z 2 3
t is given by

equations analogous to eqs. (A3) and (A4):

zt= z2+M(zO - z O)  
(54

where M satisfies

- (2M + 1)A 23 = 6E 2 (5.5)

Thereby, the value of z23 - z12t, obtained as the difference, z23 -Z - (z12t - z20 ), is

found, using eqs. (A3) and (A4) for z12t, to be

23 12 23 + 23) + (4E12 - '1 VAI /(a)* (5.6)

When the wavepacket undergoes negligible reflection in the region near z23 , a

condition we denote by setting the 2--3 transition probability, w 23 , to be
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approximately unity, the time T2 spent by the system in the B- region is then,

classically,

t z 23 J (when w23 1) (5.7)

12 2

where vt is the local z-component of velocity. In the case of the H 22(z) curve v. is

[2{E 2-H 2(z) +H 22(z*2)}]1 , and in the case of the E_(z) curve v, would be somewhat

larger. Eq. (5.7) can be written in terms of some averaged velocity Oz , T2 = (23-

ztl2)/o , .

If t 2 is regarded as the reciprocal of an effective rate constant k2 , then eq. (1.1) still

applies approximately for the maximum population of B-, but now with the k2 given

by

-U / Iz 212 (when w -1) (5.8)

A few examples of B, calculated from eqs. (1.1) and (5.8) are given in Part ]f,4 and

indicate that eq. (5.8) is correct to roughly a factor of about two when w 23 is

approximately unity. Further, a comparison is also made there with the full B - (t) vs.

t curve using this effective k2 . This k2 becomes large when the z-interval in the

denominator of eq. (5.8) becomes small (but not too small, if the expression is to have

some validity), and if at the same time w23-- 1.

In several respects a recent article 6 by Lin on a donor-bridge-acceptor electron

transfer is complementary to the present one: the case when the B - orbital is close to

D* is included there and the overall D*--A transfer is assumed to be coherent. There

are several differences: a steady-state (Golden Rule) perturbative type treatment

was used in ref. 16 for the entire process, D*--.A, so that the time-evolution for the

formation of A- was described by a single exponential. The electronic matrix
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elements are presumably assumed to be small in ref. 16, so that the perturbative

treatment can be used throughout. In the present treatment a highly nonexponential

formation of A- may occur (e.g., Fig. 3 in Part H), and a large H23 matrix element is

permitted. One focus in the present article, unlike that in ref. 16, is on the maximum

"B-" population. Another treatment akin to that in ref. 16 is that of Kharkats et

al., ' 7 who used for simplicity a one-coordinate treatment. Other studies include one

by Friesner and Wertheimer,18 who assumed a strong vibronic (nonperturbative)

coupling in a photosynthetic system: They employed vibrational frequencies which

nearly matched the assumed electronic energy gaps and so caused, thereby, a strong

electronic interstate mixing.

Applications of the present formalism are made in Part II.
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Appendix A. Energy Partitioning Among the x- and y- Modes

The average distribution of the excess energy in each of the y and z modes after a 1

-, (2,3) transition is estimated in this Appendix. When a matrix element (CDN (Y,

z)I(DN 23(y, Z)) in eq. (3.1) is treated semiclassically, 14 it has a stationary phase point

which lies on the intersection surface of H,,(y, z) and a second surface, H 22(y, z) or E_

(y, z), depending on the approximate (N 2 3 (y, z) used for the stationary phase

condition: The stationary phase point occurs where there is no change in the y- and z-

components of momentum and so occurs on the above intersection surface (Franck-

Condon principle). In the classical limit, the dominant semiclassical matrix elements

provide information on an ensemble of classical trajectories from state 1 to state (2,3).

This ensemble, in their crossing from the H,1(y, z) surface to the second surface, is

centered around the lowest point (y12*, zI2 ) on the intersection surface.

If the y-mode and z-mode energies before and just after the transition are E and

E,, respectively,.in the notation of eq. (3.3), the y-mode kinetic energy at (y, 2 , zI2 ) is

E - 1 (y 12 t - yl), 2 where (ye°, z1
° ) specifies the minimum of the H 1 (y, z) surface. The

potential energy for the y-mode on the H22 (yz) surface, relative to what it would be at

the point y2
0 is ijy 1 2* --y 2o), 2 where (y2

° , z 2
° ) specifies the minimum of H 2 2 (y, z). Thus,

E, the y-mode energy in excess of the potential energy H 22 (y 2
0) after the 1 -, (2,3)

transition, is

E n +*-*+y 2  +i(4- (Al)

We define the corresponding z-mode energy E as its value relative to that at z2 .

Thereby,

E =m+.- (zt - ,)2 + J (z2 - z) (H2 surface) (A2)
z 12 112
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The dominant n' term in eq. (4.9) is the one whose energy, n' + j, in units of ftcO, most

closely approximates the energy Ey given by (Al).

Using concepts employed for intersecting parabolic surfaces 5 the point (y, 2 , zI 2 )

lying on the intersection of Hl1 (y, z) and H 22(y, z) surfaces and having the least

potential energy is given by

t tg'* 0 -z 0 +M(Z -ZO) (3Y 12= Yal + M (y - y2 )  Z 12 = 1 2 (A3)

where M satisfies the equation1 5

-(2M+1) 1 2 =AEl2  (A4)

Equations (A1)-(A5) then yield the energy partitioning expressions, eqs. (5.1)-(5.2).

If the system after the 1--3 transition is better described near z2
0 as residing on

the E(y,.z) surface rather than on the H 22(yz) one, then there is available for

distribution among the y- and z- motions some extra energy (extra when H 22 > E_),

namely, H 22(z 20) - E (z 20),. Using eq. (4.12) and (2.11) this additional energy term

is found to be given by eq. (5.3).
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Appendix B. Landau-Zener Transmission Probability Near z23 .

In a Landau-Zener treatment the probability w23 of remaining on the potential

energy curve E_(z) after a single passage through z23 . is given by'4

- 2riH / v IAsI
w 123 -e 2 z (B1)

when z23 . is real. Here, vz is the velocity at the crossing-point and As is the difference

of slopes of the intersecting diabatic potential energy curves there. If we set vZ2 = N

in dimensionless units, (which defines N), and if we introduce the value' for lAsi,

namely (z3
0 -z 2

0 ) in dimensionless units, one finds that

-2n1 2 n 2

w2 -e 2 (B2)

For example, if the z-energy in the vicinity of z23* is approximately the zero-point

energy, then N= 1. Employing eq. (B2) when H 23 becomes very large may, however,

be questionable.
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Legend to Figure

Fig. 1 Original (q, q2 q3 ) and rotated (x y z) coordinate axes. The x-axis is

perpendicular to the plane containing a, a2 a3 and intersects with it at Q. The

z-coordinate axis is parallel to the line a2 a3 and serves as the reaction

coordinate after the initial loss of the electron from D*. The y' axis is the result

for the new q2-axis, obtained after the rotation of an angle ( about the ql-axis,

and the y-axis results from Oy' after the rotation about Oz through an angle 0.

P is the foot of the perpendicular from 0 to the line a2 a3.
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