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INTRODUCTION

'The present document is a final report for work on supersonic
nozzle analysis for both perfect and real gases and for viscous and
inviscid flows. The primary focus of this research was to develop
an accurate, efficient procedure for computing nozzle flows with
careful attention to global mass conservation. In general, the
goal was to demonstrate computations with mass flux errors of less
than 1% on moderately resolved grids. Calculation procedures for
both viscous and inviscid flows and for parabolized Navier-Stokes
(PNS) algorithms have consistently demonstrated this goal. Primary
emphasis has been on perfect gas calculations, but a real gas
analysis has been developed and demonstrated to a lesser degree.
Also included in the effort was a procedure for coupling the nozzle
wall cooling flow with the nozzle flowfield so that both nozzle
wall temperature and heat flux were simultaneously determined by
the calculation. Finally, a procedure for determining the effect
of small variations in back pressure on the nozzle flowfield has
been developed.

The present final report includes as Appendix C a Ph.D.
thesis1 which describes the detail of the perfect gas work. In
particular, this Appendix includes the coupled nozzle wall cooling
and nozzle back pressure calculations as an appendix. Results of
this work have also appeared as parts of three papers 2 ,3, 4 which
are available in the literature. The main body of the report
contains nozzle back pressure calculations, including flows with
weakly separated boundary layers and associated recirculation
regions. This Appendix also describes methods for extending the
present results to the fully three-dimensional problem.

The main body of the report is focussed on the real gas
formulation and on representative results for real gas calculations.
In addition, some recent perfect gas calculations which do not
appear in Appendix C are included.

The high temperatures associated with rocket combustion
processes lead to vibrational excitation and dissociation of the
flowing gases, and as the gas expands through the nozzle, these
high temperature effects have a significant influence on the
physics of the flow and, therefore, cannot be computed by perfect
gas assumptions.

The most complete model for describing these phenomena is to
add the appropriate species diffusion equations and take into
account the complete chemical kinetic effects. The present
analysis, however, addresses the simpler problem of a real gas
undergoing shifting equilibrium chemistry. This implies that the
real gas chemistry is infinitely rapid. During the expansion, the
gases in the nozzle generally reach a point at which their
temperature and pressure are low enough that this infinite rate
assumption fails and non-equilibrium effects begin to appear. The
simplest expedient for handling this phenomena is to switch from
equilibrium to frozen flow assumptions at a given point. Such
issues are, however, not included in the present analysis which
discusses only the equilibrium, real gas problem.

In the next section, the governing systems of equations are
described, and the real gas model is defined. The real gas effects



assume that the gas properties, including the molecular weight, Mw,
the temperature, T, the internal energy, e, the viscosity, V, and
the thermal conductivity, K, are functions of the thermodynamic
variables. For completeness, both the Euler equations and the
thin-layer Navier-Stokes (TLNS) equations are considered.

In the following section, the implicit numerical schemes for
solving the Euler and TLNS equations are described. The Euler
solutions are limited to fully supersonic flows, while the TLNS
solutions contain a thin subsonic layer along the wall.
Corresponding transonic codes (as descrioed in Appendix C) are used
to generate the supersonic (or predominantly supersonic) start
lines for these supersonic-oriented algorithms.

An important difference between the perfect gas analysis of
Appendix C and the real gas equations of the main body of the
report are that the flux vectors of the former are homogeneous
while those for the real gas equations are non-homogeneous. This
requires that a different splitting of the Jacobians associated
with convective terms be used for the difference equations.

Differential equations to compute the nozzle rate of mass flow
and thrust are also evaluated in this section. The next section
includes the user's manual which explains how to run the supersonic
codes. The following section presents representative real gas
results. For simplicity, these calculations are based on the
properties of equilibrium air which were more readily available
than combustion gas properties. The extension to combustion gas
properties is straightforward once the thermodynamic properties are
available for the desired fuel, oxidizer and equivalence ratio.
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THE GOVERNING EQUATIONS

The Euler and TLNS Equations

The two-dimensional axisymmetric form of the unsteady
Navier-Stokes equations written in generalized body-fitted
transformed coordinates are given by:

where,

p pU pV

Pu puU+CxP puV+fl xp

Q YPv E YP+&pF = YPvV+1i p

e (eo+p)U (e o+p)V

0 0

0[xxx [yyx

Hp+P (3 V'V-2v) R = y  +J 3 V__yJ [x xy+ y yy

0 xf + yg

0

SX XX + l1y Tyx

S = TY Tyr +

1x f + T) yg

Here, (x,y) are the Cartesian coordinates parallel and
perpendicular to the axis of symmetry, respectively; (E,q) are the
body-fitted transformed coordinates,

&= (x,y)
= T1(x,y) (2)

where & is the streamwise coordinate which coalesces with the
nozzle axis and the nozzle wall; J is the transformation Jacobian,
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1 _ x y (3)

E JI q

and U and V are the contravariant velocities,

U = fxu + &yV and V = qxu + qyV (4)

The viscous and conductive terms are,

au au 2Vv

+ + 71av @u + @

yx = xy = [ ( x  + x FY) + ( y y F)]I

V 2 V' 5

yy p[2(Cy 9T +y ) (

aT aTf = Xu  + TxyV + k(E x  @T + 71x @

aT aTg = y u  + Tyyv + k(Ey @T + Ty @T

au @u v v
VOV =E + + + ( ) + ny j)

The vector, Q, contains the dependent variables. Here, the
standard notation has been used for density, p, velocity
components, (u,v), pressure, p, temperature, T, and total in--rnal
energy, eo . The vectors E and F are the convective fluxes, b and S
are the viscous fluxes, and H is the source term.

The equation of state is,

R= - T (6)

w

This is the ideal gas equation where R is the universal gas
constant.

The internal energy is defined in terms of the total energy,
the density, and the velocity components,

e = e- (u 2+ v ) (7)P 2
Four other equations are needed to close the set of equations.

These equations are functions of the gas properties,

Mw = Mw (p, T) molecular weight (8)

T = T (p, e) temperature (9)

V = V (p, e) viscosity (10)

4



K = K (p, e) conductivity (11)

The gas properties can be represented in functional or in tabulated
data form. For a perfect gas, Mw is constant and the temperature
can be related to the other variables by,

T=Y ( _ 1 (u2 + v2) (12)
Cp p 2

where Cp is the specific heat at constant pressure and Y is the
specific heat ratio.

The Euler equations are derived from the full Navier-Stokes
equations by eliminating all the viscous and heat transfer terms,
i.e., p = k = 0. The inviscid equations then become identical to
Eqn. 1 with R and S set to zero.

The advantage of this reduced set of equations is that it can
be solved numerically using much less computer time and memory than
is required for the complete Navier-Stokes equations.

The thin-layer Navier-Stokes (TLNS) equations take into
account only those viscous and conductive terms containing
derivatives in the direction perpendicular to the body surface.
Terms containing derivatives parallel to the surface are dropped.
Specifically, the thin-layer approach assumes that / 0. The
TLNS equations are thus reduced to,

+ E + F = H' + -(13)

where the vectors H' and S' are given by,

0

H'- 2 x (v) (13a)

2 au 2 u+p 4
3'7x 1  

3 TyV R3
2 a 22
3 (Puv) - Tly q (pv 2

and

s' a au av (4

1 =J +9 2  - (14)

av au

32 2T
1 @au2 +pot @ I+1P av + K1v @T

where,
a 4q 2 1 2+4 2* 2 2

S 3 x y2 2= 3 x y 3=  x 3 'y ; 4= qx +y
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The viscous term, S', can be further rearranged as,

as' a (R@0 +R
= ap j (R1  + R2  (In

in which R 1 and R 2 are 4 x 4 matrices given by,

R1 , 0 ai a 2 0 R 2 =J 0 0 0 0

0 a2 1 3 0 0 0 0 0

o 0 o o a 22 o a a2

p4 2 2
(16)

The vectors, Q1 and Q2, are defined by,

Q,= (p, U, v, eo)T, Q2 = (T, u 2 , v 2 , uv)T (17)

In this form, the viscous dissipation in the energy equation is
separated from the remaining viscous terms and the matrices R1 and
R 2 contain only the viscosity and thermal conductivity and the
metrics of the transformation.

Important Relations For The Real Gas Equations

The boundary layers in rocket nozzles can be either laminar or
turbulent, and frequently it is difficult to tell what the nature
of the flow will be. The favorable pressure gradient, the wall
cooling and the supersonic character of the flow all tend to
stabilize the boundary layer and favor laminar flow, but for high
Reynolds numbers (such as occur in large thrust systems), and high
expansion ratio nozzles (which are typically quite long), the
boundary layers are generally turbulent. Modeling turbulent flows
is never an easy assignment, but for these supersonic, strongly
accelerating, highly cooled boundary layers with chemical reaction
and heat release, it is safe to speculate that existing turbulence
models which have been developed and calibrated for incompressible
flows with weak pressure gradients will be less realistic than in
their normal, more benign, environments.

Consequently, the use of complex turbulence models which are
interested in the present regime is hardly justifiable.
Accordingly, we have used the simple Baldwin-Lomax two-layer mixing
length model, along with a constant turbulent Prandtl number
assumption. This approach gives flowfield profiles which are
representative of turbulence conditions and verifies that the codes
continue to work in the turbulent flow environment. Incorporation
of more advances turbulence models can readily be incorporated if
and when they become available.

6



NUMERICAL SOLUTION PROCEDURES

Although the fluid dynamic equations are formulated in the
complete unsteady sense, only steady state solutions are considered.
These solutions are obtained by applying time-dependent schemes to
the Euler and TLNS equations. Implicit time-marching methods are
used throughout.

The spatial discretization that is chosen for the axisymmetric
problem uses central differencing in the cross-stream or radial (q)
direction, and second order upwind differencing in the streamwise
or axial (&) direction. For the inviscid supersonic case, this
upwind-central differencing combination nicely iALi-ms the physics
of the flow. For the parabolized case, it also mimics the type of
differencing that is typically chosen for PNS algorithms. The
extension of this hybrid differencing scheme to the TLNS equations
is also straightforward if we interpret the upwind differencing in
a flux split sense.

With this choice of differencing, both the supersonic inviscid
case and the PNS formulation can be solved by a single sweep
through the flowfield. The TLNS formulation then becomes a fully
iterative (forward-backward sweeps) solution procedure for which
the PNS solution is just the forward sweep.

Details of this discretization and solution method are given
in the present section fdor the real gas formulation. Similar
developments for the perfect gas case are given in Appendix D.
Because the flux vectors in the perfect gas formulation are
homogeneous functions of the dependent variable, Q, flux vector
splitting, rather than flux difference splitting, is used in
Appendix D. The flux difference method described here is necessary
for real gases where the flux vectors are non-homogeneous, but
should perform as well as flux vector splitting in the perfect gas
case. Consequently, our recommendation is to use flux-difference
splitting throughout rather than only in the real gas case.

We begin by considering the thin-layer Navier-Stokes equations
and then drop viscous effects to obtain an Euler equation
procedure.

Discretization Of The Thin-Layer Navier-Stokes Equations

We begin by discretizing the TLNS equations (Eqn. 12) in time
using Euler implicit differencing in time,

Qn+l Q n aF a a 0 o =

6t + (gT + -, - (R1 V,1 + R 2  -) - H')+1 (18)

where n and n+l refer to the previous and current time levels,
respectively. We then express Eqn. 18 in delta form,

a a aF aS' n
6Q + 6t( 6E + 6F - 6S' - 6H = -At( + - - H') (19)

where AQ = Qn+l - Qn, etc.

The spatial discretization of the right-hand side of Eqn.
19 is accomplished as follows,

7
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and,

R 1  [Rl ij) - (R-1 d) ij-1/2 I(ij -1/2(20)

where the tilde denotes the numerical flux of the indicated vectors.
These quantities are identified below.

For the streamwise vector, E, the discretization is defined
by,

Ei+i/2j =2 )ij+ Ei+lj- AEi+I/2j+ AEi+I/2j +  i -1/2j- AEi+3/2j(21)

whereby a Taylors series in Z, we define,

1E+1/2j =A(Q) i+I/2j (Qi+lj - Qij )

where A+ and A- are the eigenvalue split forms of A. When Eqn. 21
is substituted into the discretized form of @E/@ defined in Eqn.
20, this gives a flux split second order upwind differenced scheme.

The splitting of matrix A is determined on the basis of the
eigenvalues of A. Thus, we define,

A = A+ + A- (22a)

where the eigenvalues of A+ are positive and those of A- are
negative. We define this matrix by diagonalizing A by the
similarity transformation,

AA = T-Ip-IAPT

where,

AA = diag (U, U, U+C, U-C) (23)

Here, U is the contravariant velocity, U = u + v, and C is the
transformed speed of sound, C = c(&x 2 + &y2 )/2, where c is the
physical speed of sound. 

±

The split eigenvalues are defined by Ai = (Xi ± ki)/2 where
ki are the individual eigenvalues in Eqn. 23. As can be seen by
inspection, this choice leads to the definition of two diagonal
eigenvalues, AA+ and AA- where all eigenvalues of AA+ are either
positive or zero and those of AA- are negative or zero. From these
split diagonal matrices, we can define the splitting of A as,

A+ = TPAA+ P-iT-1

A- = TPAA- P-IT-I (24)

and by inspection we see A+ + A- = A. The matrix PT is given in
Appendix A.

8



Thus far, we have demonstrated the method of splitting A and
its upwind differencing. We now return to Eqn. 20 to define the
spatial differencing in q. Because we use central differencing in
r, we define,

Fij+i/2 = l/2(Fij+l + Fij) (25)

which leads to the standard three point differencing. The
differencing of the two viscous term is given as,
a a (Qj+1- Q, ( Qij- Qj-SR 1  R R1  .) -jl,2 R J (26)

ij+i/2 13 ij-1/2

The differencing of the first order derivations in H' are done
in a manner identical to that for aF/a@. The derivatives on the
left-hand side of Eqn. 19 are accomplished with the aid of a
Taylor's series in time. For the vector, E, we have,

n+1 n aEE =E + Q (27)

so that,
E=En+l -En aE

AE = E Q (28)

Similar results can be obtained for the vectors F, Ql, Q2, and H'.
The notation for the Jacobians of E and F has already been
introduced (as A and B, respectively). We also define the
Jacobians,

D = 9- , Bvl = Q , B2 = (29)

These matrices are given in Appendix A. We also use the flux split
matrices A+ and A- for the streamwise derivatives. Incorporating
these Taylor's series expansions on the left-hand side and the
previously defined differences for the right-hand side, the fully
discretized equation becomes,

aaa aa

[I- = At( (A +A) + -B - 0 B2

@E @F a a1  a Q n
TDJ g- H'71]- (30)

For simplicity of notation, we express,

D = D' + D'' (31)

where D' represents the Jacobian of the algebraic terms in H' (Eqn.
13) and D'' represents the Jacobian of the first derivative terms
in H'. These matrices are defined in Appendix A. We then also
express the fl derivatives on the left-hand side of Eqn. 30 by BT
(for total derivative) so that,

9



B BAQ (B R1  Bi- R2 j-B 2  D'']AQ (32)

and again use the S' notation for the viscous terms on the
right-hand side of Eqn. 30 (see Eqn. 15). We can then simplify
Eqn. 30 as,

[I - AtD' + At L(A++ A-) + At BT]AQ -At Res (33)

where Res is the residual evaluated at time level n,

R @E +F aS' n

es = + - Z - H'] (34)

Here, it is assumed that the right-hand side of Eqn. 33 (or Eqn.
30) is evaluated according to Eqn. 20 et seq. We also note that
for central differencing in q, the term incorporating BT will
contain both first and second derivatives and will include
quantities evaluated at j+l, j, and j-1. The numerical solution of
Eqn. 33 is described in the following subsection.

Numerical Solution Of The Thin-Layer Navier-Stokes Equations

The direct inversion of the matrix on the left-hand side of
Eqn. 33 contains unknowns from the five different grid-lines in the
k direction and from three in the q direction. In particular, the
derivative @(A+AQ)/3k introduces unknowns at i, i-i and i-2, while
@(A-AQ/e) introduces unknowns at i, i+l and i+2. This results in
a matrix which is quite costly to invert by direct means.
Consequently, we look to approximately factored procedures to solve
Eqn. 33. For this purpose, we express the equations in fully
discretized form and factor using the parabolized Navier-Stokes
alternating direction implicit (PNS-ADI) procedure.

We can approximately factor the discretized version of the
left-hand side and rewrite Eqn 33 as, approximately:

At + + a B -I At - -
[ (4Ai- 1 - i-2 U1 B + - (4Ai I - Ai]Q -tR

where the matrix r contains all terms on the diagonal,

r = I - AtD' + i (A+ - AT) (36)

By performing the indicated multiplication on the left-hand side of
Eqn. 35, we see that Eqn. 35 is equal to Eqn. 33 except for terms
of order At2 .

The solution of Eqn. 35 proceeds directly. The first operator
is tridiagonal in q with two lower diagonals corresponaing to A+i-l
and A+i_2. This operator can be solved by a sweep in the
streamwise direction which requires a block tridiagonal matrix
solution. The second operator in brackets is lower (block)
diagonal and can be solved by marching from the downstream to the
upstream end of the nozzle. Thus, Eqn. 35 represents a
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forward-backward iteration procedure. This iteration proceeds
until AQ is driven to zero, or to an acceptable tolerance. As in
the perfect gas formulation (see Appendix C), this approximate
factorization procedure is very efficient for predominantly
supersonic flows.

Solution Of The Euler Equations

The description above is also applicable to the Euler
equations, except for several simplifications. First of all, the
viscous terms are omitted (V and k set to zero) in Eqns. 13 and 14
so the vector H' simplifies to only one term and the viscous flux
S' vanishes. Similarly, the matrix BT in Eqn. 33 (see Eqn. 32)
simplifies to BT = B, and we have a forward-backward iteration
procedure for inviscid flow.

In the special case where the flow is entirely supersonic, the
matrix A- becomes identically zero, and A+ becomes equal to A. In
this case, the backward sweep degenerates to an identity operator,
and Eqn. 35 reduces to:

At + _A+ (7

[r- L (4A+ -Ai 2  + B] AQ = -At Res (37)

where r and Res are simplified as noted. As in Appendix D, it is
recommended that each line be time-marched till AQ goes to zero
rather than sweeping the entire field. This then results in an
iterative space-marching solution for supersonic flows.

Solution Of The Parabolized Navier-Stokes Equations

The parabolized Navier-Stokes (PNS) procedure for supersonic
flow is based upon removing the terms in the equations that allow
upstream propagation of information. This involves two steps. The
first step involves removing viscous diffusion in the streamwise
direction which has already been done in the TLNS equations. The
second step involves omitting the upstream propagation of
information through the subsonic portion of the boundary layer.
These approximations make the equations parabolic and allow space
marching procedures to be used.

The present parabolized procedure is obtained by setting the
matrix A- to zero in the TLNS formulation of Eqn. 35. By omitting
A-, the back sweep of Eqn. 35 simplifies to the identity matrix and
the remaining algorithm corresponds exactly to the forward sweep of
the full TLNS procedure. In omitting A-, we drop all upstream
running characteristics and thus obtain a well-posed space marching
procedure. The resulting numerical algorithm becomes identical to
the inviscid procedure for the supersonic Euler equations except
that the viscous terms are retained. (Recall the A- operator is
identically zero in supersonic flow.) Setting A- to zero and
eliminating the upstream operatur is completely analogous to
multiplying the pressure gradient by a value of w less than one and
ignoring the (l-w)ap/@ term as is done in standard PNS procedures5 .
The advantage of the present procedure is that it is more firmly
founded from a physical viewpoint.

11



Mathematically, the PNS algorithm is expressed as,

tit @[r x (4A -A .- +  BT]A q = At Res (38)
i-1 1-2) T e.j B]s =A

where r is as defined in Eqn. 36 except that A- is zero, and BT
still retains its full viscous form of Eqn. 32. As for the
supersonic inviscid flow calculation, iterations at each line are
converged before moving downstream so that the converged solution
is obtained in a single sweep.

Euler Equation Boundary Conditions

Boundary conditions are specified in exactly the same method
as described in Appendix C. We begin with boundary conditions for
the Euler equations. For the Euler equations, we rely on the
Method of Characteristics to ensure we enforce both the correct
number of conditions and types of conditions that are physically
and mathematically acceptable. In general, this means that the
four unknowns (corresponding to the four equations in
two-dimensional flow) are obtained from a combination of boundary
conditions and specific subsets of the equations of motion.

At a subsonic inflow boundary, we specify three quantities as
boundary conditions and obtain the last from the equations of
motion. For supersonic inflow, we specify all four quantities.
Since we are primarily interested in supersonic nozzle flows which
are started downstream of the throat of a converging-diverging
nozzle, this latter choice is the one of primary interest here.
Consequently, we give no details as to the MOC procedure for
subsonic inflow. These can, however, be obtained from an extension
of the MOC procedures for wall boundary conditions, or from
Appendix C. In the case of supersonic inflow, the necessary two
lines of information are obtained from the transonir solution (see
Appendix C).

At the outflow boundary, the solution of Euler equations for a
diverging nozzle is wholly supersonic. Therefore, all the
information at the downstream end is determined from the flowfield
itself. No downstream boundary condition is needed or allowed. On
the axis of symmetry, y = 0, therefore,

Q = 0 (39)

because y is contained inside Q (see Eqn. 1). After Q is
determined, the primitive variables are determined by a second
order extrapolation. If f denotes a primitive variable, then on
the axis af/@y = 0 and,

f il Cyfi-1 - V/ (4fl i - fiF-1) (40)
i'l = Ey + 1/2Tqy

Since v = 0 on the axis, there are only three primitive variables
to be extrapolated. The real gas variables are f = p, u, eo .

For inviscid flows, slip wall boundary conditions are enforced
by means of the Methods of Characteristics and auxiliary
information corresponding to in-running characteristics.
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From an eigenvalue analysis of the Jacobian, B =F/f, one

gets,

AB = diag (V, V, V+C, V-C)

where V is the contravariant velocity component, V f 1u + TyV, and
C is the transformed speed of sound, C = c(qx 2 + fly 2 )1 ! 2 .

On a wall, the first three eigenvalues are positive or zero
and the fourth is negative. Accordingly, three quantities on the
boundary are enforced by outgoing characteristic relations and the
fourth is obtained from the specified boundary condition, V = 0
which forces the flow to be tangent to the wall.

The three characteristic equations are derived from the
discretized Euler equations (Eqns. 30) by premultiplying both the
left- and right-hand sides by the product of a selection matrix, L,
and an eigenvector matrix, TB-IP -I , where the matrix L, L = diag
(1, 1, 1, 0), acts as a selection operator that selects only the
information (equations) corresponding to the outgoing
characteristics. The modal matrix, TB-IP -I is given in Appendix A.

The single boundary condition which combines with the three
characteristic relations given above can be expressed in vector
form as,

Q(Q) = [0, 0, 0, V]T = 0.

In order to express this boundary condition in delta form, we
expand 0 in a Taylor's series,

n+l n aQ = + Q AQ = 0 (41)

where @Q/@Q is a Jacobian matrix.

By combining the one relation in Eqn. 41 with the three
conditions in Eqn. 40, we obtain four coupled equations which
determine the four unknowns on the nozzle wall.

Viscous Boundary Conditions For The TLNS Equations

For the thin-layer Navier-Stokes equations, two boundary
conditions, namely those at the upstream end and those along the
axis, are identical to those applied to the Euler equations.
Additional detail is not given here. Both the outflow boundary
conditions and the solid wall boundary conditions are different.
The outflow conditions are still treated in an inviscid manner by
the Method of Characteristics, but because of the nozzle wall
boundary layer, portions of the flow at the nozzle exit are
subsonic, so both subsonic and supersonic conditions are needed
there. At the wall, the viscous no slip conditions are specified.
Details of these implementations are given here.

The flow at the downstream boundary consists of two parts -- a
major supersonic part extending from the axis to the vicinity of
the wall, and a small subsonic part adjacent to the wall
corresponding to the subsonic part of the boundary layer.
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Quantities on these two parts of the boundary line are determined
differently because of the different nature of supersonic and
subsonic flows. The fourth eigenvalue of the Jacobian, A = @E/@Q,
changes sign from positive to negative as the flow changes from
supersonic to subsonic.

From an eigenvalue analysis of the Jacobian A, one gets,

OA = diag (U, U, U+C, U-C)

where U is the contravariant velocity component, U =xu + EyV, and
C is the transformed speed of sound, C = R(Ex 2 + C.2)12. In the
supersonic region, all eigenvalues are positive. therefore, the
boundary conditions are determined by the outgoing flow which is
solved by the forward sweep step. In the subsonic region, the
first three eigenvalues are positive and the fourth is negative.
This means that three of the four unknowns are determined by the
outgoing characteristics while the fourth must be imposed as a
boundary condition.

The three characteristic equations are derived from the
discretized TLNS equations (Eqn. 33) upon premultiplying by
LTA-IP -I , in the same manner as described for the inviscid wall
boundary condition. The difference is that here the selection
matrix is given by L = diag (1, 1, 1, 0) so that only the
information (equations) corresponding to the outgoinq
characteristics is retained. A second difference is that the modal
matrix, TA-IP-1 (given in Appendix A) is the one corresponding to
the Jacobian A.

The boundary condition that is used to augment these three
Method of Characteristic relations is a specification of the nozzle
back pressure, Pb, over those portions of the flow that are
subsonic. In vector notation, this becomes,

Q(Q) = [0, 0, 0, p - Pb]T = 0 (42)

Then, taking the Jacobian of d with respect to Q, we obtain as
before,

AQ = Pb- p  (43)

The right-hand side of Eqn. 43 can either be left ds is to prevent
small drifts of the pressure at the exit plane, or can be set to
zero as Eqn. 42 suggests.

In addition to this mathematically and physically correct
treatment of the subsonic portion of the outflow, we also use a
second option of extrapolating the subsonic pressure from inside
the flowfield. This second procedure is not correct
mathematically, but it is frequently imposed in problems of this
type. Its success rests with the smallness of the subsonic region.
Choice of the extrapolation condition eliminates the possibility of
determining the effect of perturbations in the back pressure on
nozzle performance, an issue that is sometimes of considerable
interest.
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To apply the extrapolated pressure condition, we use the three
Ciaracteristic relations along with a first order extrapolation of
pressure, namely,

n+l n+l (44)PIli ::- PI-lIj(4

where I is the last grid line. In vector form, this is expressed
as,

QI - QI-1 = 0 (45)

where,

= (0, 0, 0, Pij)T (46)

Finally, we note that in using the specified boundary
condition, PB, only minor deviations from the ideally expanded
nozzle can be accommodated. A typical procedure is to first
determine the "ideally expanded" back pressure by the extrapolation
condition. Then other back pressures in the neighborhood of this
condition can be specified. Generally speaking, the back pressure
can only be varied by a factor of two or three from the value
determined by the extrapolation procedure. This variation is,
however, enough to show a decided thinning of the subsonic portion
of the boundary layer when the back pressure is lowered, as well as
a thickening of the subsonic region and the establishment of a
small recirculating region when the back pressure is increased.
When re-entry flow is encountered, inflow conditions must be added
for those points on the exit boundary that experience inflow. In
general, the procedure fails when the inflow region becomes large
enough that the point of demarcation between inflow and outflow
begins to jump back and forth during the iteration. To go beyond
these limits, it is necessary to expand the flow domain to extend
outside the nozzle. Nevertheless, the present procedure can be
very effective in understanding the physics of non-ideally
expanded, viscous supersonic flows and in assessing performance
shifts when the nozzle back pressure is nearly, but not exactly,
matched to the flow.

For the viscous wall boundary condition, we specify three
boundary condition. The no-slip boundary condition implies that
both components of the contravariant velocity are zero, u = V = 0.
The third boundary condition is one on the energy flux at the wall.
This can either take the form of a specified wall temperature,
(Tw = Tw(&), or a specified heat flux, @T/@y = f( ), where f is an
arbitrary function.

The fourth condition for the viscous wall boundary condition
comes by solving the radial momentum equation for the normal
pressure gradient at the wall, and enforcing this momentum equation
in conjunction with the three boundary conditions. The normal
gradient of the pressure in a non-orthoqonal coordinate system is
given by,

n*Vp = (fx~x - qy;y) p& + (,1x2 + qy 2 ) pq (47)
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where n is the unit normal to the wall. An analogous relation is
used for specifying the temperature gradient when the heat flux
boundary condition is imposed. In differencing Eqn. 47, second
order accurate one-sided differences are used in q and central
differences are used in E.

Boundary Conditions For The PNS Procedure

Boundary conditions for the PNS procedure are identical to
those for the TLNS equations except that no downstream conditions
are allowed and no downstream information is allowed in computing
normal derivatives on the walls. When normal derivatives of
pressure and temperature are obtained, similar procedures are used
except the derivatives are evaluated by a second-order backward
difference.

Computing The Rate Of Mass Flow And Thrust

For an axisymmetric nozzle, the conservation of mass flow is
verified by integrating along arbitrary cross-sections at various
streamwise positions. With no mass addition, the rate of mass flow
must be equal at each of these sections. The nozzle thrust is
determined by integrating across the cross-section at the exit
plane.

For simplicity, cross-sections along constant values of C are
chosen to verify the conservation of mass flow and to compute the
thrust.

The rate of mass flow, dmn, through an elemental surface, ds,
is given by,

di = pU~ds (48)

where,

U + (49)U& = (x2 +y2 ) 1/2 (2 + )/ (X2 .F Cy )/

is the component of the velocity vector normal to the surface,
=(x,y), ana ds = 2nydy, is the elemental area at a distance y

from the axis.
In Cartesian notation, d = ((dx) 2 + (dy)2 )i/2 , and the rate

of mass flow is given by,

d; = 2n(puydy - pvydx) (50)

The integration of di is performed numerically between j=l and j=J.
for each i using Simpson's rule.

In the real gas TLNS equations, the fluxes are defined at the
midpoint Ei+l/21 (Eqn. 25). Then, for second order accuracy (the
index j is omit ed for simplicity),
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(Pu )i+[(pUC)i + (PUF)i~11

2+ (p)9i + 6(PU)i+3 1 2 ]

The differential thrust, dt, in the axial direction, is given

by,

dT = diu + (P - Pb) 27iydy (52)

where Pb is the prescribed pressure at the exit.
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USERS MANUAL FOR THE CODES

Introduction

The following discussion is intended to be an overview that
explains briefly how to run the codes. A total of four different
codes are described that solve the perfect or real gas flow for the
Euler or thin-layer Navier-Stokes equations in an axisymmetric
nozzle. In particular, codes AXI2DSA, AXI2DSE and AXI2DSF solve
the Euler equations, while the codes DDADIPBC, DDADIPBE and
DDADIPBG solve the TLNS equations.

The perfect gas flow is solved by the codes AXI2DSA, AXI2DSE,
DDADIPBC, and DDADIPBE. The real gas flow is solved by the codes
AXI2DSG and DDADIPBG. The real gas codes are demonstrated for
equilibrium air flow, however, by changing the input data and the
relevant data subroutines, the user is able to solve any other
equilibrium real gas flow. These modifications are explained later
in this section.

The Euler solver, AXI2DSA, and the TLNS solver, DDADIPBC, are
designed to solve perfect gas flows. In these codes, the molecular
weight, Mw, is constant, and the internal energy, e, is given by,

e = CvT (53)

where cv, the specific heat coefficient in constant volume, is
constant, and T is the temperature. In the TLNS solvers the
laminar viscosity coefficient, p, may be defined by one of the
following three options:

a) constant value, p = po (54a)

b) Sutherland law,

Tn + 196T 1.5 (54b)
o T + 196 (To)

c) Power law,

P= ( o (54c)

where To and V. are reference values and w is a constant ranging
between 0.5 1 w 1 1.0.

The Euler code AXI2DSC and the TLNS code DDADIPBG are the most
generalized solvers. In these codes, the molecular weight, Mw, and
the internal energy, e, are defined as functions of two variables.

Mw = Mw (p,T) (55)

and

e = e(p,T), or T = T(p,e) (56)
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In literature these relations appear as tables6' 7 . The viscosity
and thermal conductivity coefficients, p and k, are also specified
as functions of two variables,

P = V(p, e)
k = k(p, e)

in the real gas TLNS code. Simplified curve fits for p and k for
air were suggested by Srinivasan et al. 8 .

In order to run the codes, the user must furnish the
transformed coordinates for the flowfield and define the gas
properties. The real gas properties, excluding the viscosity and
thermal conductivity, are read into the Euler and TLNS codes. The
viscosity and thermal conductivity data are generated by the TLNS
codes during the computation process.

In the Euler codes, AXI2DSA and AXI2DSG, the flowfield initial
guess at each i and i = 1,2,3..., JL is obtained from the previous
converged solution at i-l. Since the Euler solution converges
relatively rapidly, it is usually obtained in a single run.
Consequently, the constants that monitor the number of iterations
and the restart for the next run, although defined in namelist
INPUT, are not in use.

In the TLNS codes, DDADIPBC and DDADIPBG, the flowfield
solution is obtained by alternate forward and backward sweeps. The
flowfield initial guess is evaluated by two ways. In DDADIPBC, the
initial guess is obtained by a PNS single-sweep procedure which is
an integrated part of the code. In DDADIPBG, the flowfield initial
guess is derived from the isentropic relations throughout the flow
domain. The above-described PNS initial condition represents a
cost savings of two or more and its implementation in this code is
recommended.

The iterative solution of the TLNS codes requires a large
amount of computer time. Therefore, the user should be cautious in
defining the constants that monitoring the number of iterations and
continuation of the next runs.

Table 2 presents a summary of the codes' executing data, which
includes the number of mesh points, the recommended number of
iterations, and the computing time per iteration per mesh point on
the NOS-BE system. In this table, the number of mesh points
denotes the maximum amount allowed by the core-memory of the CYBER
180/840, NOS-BE system. As indicated before, these stringent
limitations are removed when running under NOS-VE. The converged
solution is obtained when the average relative error, 6, defined
as,

JL IL
1 Z~ iii 4(57)

JL'IL j=l i=l Qilj

is less than a specified value. In the present runs, this was set
at A = 10- 18 for the Euler codes and A = 10-6 for the TLNS codes.

The units used in the codes are the International System of
Units (SI units). These SI units are as given in Table 3. The
universal gas constant that is consistent with these units is
R = 8314.3 J/(kgmole)GK.
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In the energy eguation, the units of the internal energy, e,

are given by (m/sec) .

Additional Information Concerning Real Gas Flows

Calculations of real gas functions require the molecular
weight, the temperature, the viscosity and thermal conductivity and
several derivatives of these quantities to be known as functions of
two thermodynamic variables. As primary dependent variables, we
choose the properties density, p, and internal energy, e. A number
of FUNCTION subroutines have been written to obtain these
quantities from tabular input data. These functions are described
in Table 4. In addition to these Function Subprograms, subroutines
UGAS3 and UGAS4 are called by Functions FZMU and FZK.

The Perfect Gas Euler Code, AXI2DSA

The code AXI2DSA solves the Euler equations for a perfect gas
flow. The present version has all dimensional arrays set to (70 x
44), i.e., 70 points in the & direction and 44 points in the i
direction. These are the maximum grid points allowed by the CYBER
NOS-BE memory. These limitations can easily be reset by a
recompilation of the code. Only the DIMENSION statements need be
changed, all other FORTRAN statements will execute properly if
these numbers are increased.

Input Data Description

1. Namelist INPUT. Namelist INPUT specifies the flow
constants. These constants are read from file TAPE1 by subroutine
INITIA. The quantities in this NAMELIST are as follows:

IL - Number of mesh points in the direction (Integer).
JL - Number of mesh points in the Ti direction (Integer).
ITRI - Not used; set to 1.
ITRN - Not used; set to 1.
ITRS - = ITRN - ITRl + 1 (Integer).
ISVP - Not used; set to 0.
CFL - Courant-Friedrichs-Levy number (typical ranges

100-500).
ITIME - Time step control (Integer):

ITIME = 0 for constant At;
ITIME = 1 for constant CFL (normal value).

THETA - Crank-Nicholson constant, always set to 1.0.
RM1 - The Mach number at the throat, RMI > 1.0.
RM2 - The exit Mach number; approximate value, only used for

set-up.
AIN - Not used.
AEX - Not used.
RL - Not used.
PO - Upstream stagnation pressure, n/m2 (uniform across the

stream).
TO - Upstream stagnation temperature, K (uniform across the

stream).
CP - Specific heat in a constant pressure (constant).
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CV - Specific heat in a constant volume (constant).
GAMMA - Ratio of specific heats, CP/CV.
GMl - (GAMMA-l).
INER - Maximum Number of iterations for a converged solution

(Integer).
IBI - Grid line in the direction at which the iterative

process starts. Usually IBI = 2 (Integer).
IBL - Grid line in the u direction at which the iterative

process ends. Usually IBL = IL (Integer).
NORD - Control variable for specifying the order of accuracy

in the C direction (Integer);
NORD = 0 - first order accurate
NORD = 1 - second order accurate (normal value).

OMEGAX- Artificial dissipation in the C direction. (Real
variable, generally less than 0.5).

OMEGAY- Artificial dissipation in I direction. (Real variable
generally less than 0.5).

IREAD - Not used; set to 0.
IWRT - Output print control (Integer):

IWRT = 0 - Brief printout
IWRT = 1 - Full printout

IRVN - Not used; set to 1.

2. Mesh Points Coordinates. The flowfield mesh points
coordinates, X(I,J), Y(C,J) for I=I,2,3,...,IL, J=I,2,3,...,JL, are
read from file TAPE3 by subroutine INITIA. In this input data the
inflow boundary conditions are defined on I=l, J=I,2,3,...,JL, the
outflow on I=IL, J=I,2,3,...,TL, the axis of symmetry on J=l,
I=I,2,3,...,IL, and the wall on J=JL, I=I,2,3,...,IL. The reading
format is,

READ (3,401)((X(I,J), Y(I,J), I=I,IL), J=I,JL)
501 FORMAT (E17.9, 4E16.9)

Output Data Description

1. Printed Results. For the short form printout, IWRT is
set to 0 in namelist INPUT. With this printout choice, the
convergence rate for each equation from subroutine SUPPLY (ENTRY
CHECK), and the downstream rate of mass flow from subroutine SUPPLY
(ENTRY MASS) is printed at each iteration.

When IWRT=l a detailed printout of the flowfield results is
printed by subroutine SUPPLY (ENTRY OUTPUT). For each mesh point
(I,J) it includes the coordinates, (X,Y), the velocity components
(u,v), the pressure, density, temperature, stagnation internal
energy, entropy, and the Mach number.

The printout is stored on TAPE6 and printed automatically at
the end of the run.

2. Conservative Variables. For further evaluation such as
plotting, the iteration constants, ITRI, ITRN, the local time
increment, DELTAU(I,J) (for Atilj), and the conservative variables,
RHO(I,J), RHOU(I,J), RHOV(I,J) and EO(I,J) (for Piij, (pu)iij,
(pv)ii , and (eo) iij, respectively), are written on TAPE8 by
subroutine SUPPLY (NTRY OUTPUT), as follows,
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WRITE (8,504) ITRI, ITRN
504 FORMAT (IG, IG)
WRITE (8,503) ((DELTAV(I,J), I=l,IL), J=I,JL)

503 FORMAT (E17.9, 4E16.9)
WRITE (8,503) ((RHO(I,J), RHOU(I,J), RHOV(I,J),

E(I,J), I=l,IL), J=l,JL)

The Real Gas Euler Code, AXI2DSG

This code solves the Euler equations for a real gas flow. The
molecular weight, Mw, and the internal energy, e, are functions of
two variables, p and T. For air, these relations are implemented
by the code INPLA and then are read as an input by the mail code
AXI2DSG.

In the present version of AXI2DSG, the number of mesh points
in the E and q directions are set at 70 and 44, respectively.

Input Data Description

1. Namelist INPUT. This namelist is identical to that for
the perfect gas code described in the previous section except that
the specific heat inputs CP and CV along with the specific heat
ratios GAMMA and GMI are omitted. In their place, the following
gas constant inputs are added:

RG - Universal Gas Constant (8314.3).
AMWO - Gas molecular weight at inlet stagnation conditions

(uniform across stream).
GAMMAO-Ratio of specific heats at inlet stagnation

conditions (uniform across stream).

2. Namelist DINPL. This namelist reads in the real gas
properties for the gas of interest. The data are read from TAPE9
by subroutine INITIA.

Xl(I) - Array of derivatives for molecular weight.
Yl(J) - Array of temperatures for molecular weight.
Fl(I,J)- Array of molecular weights at (Xl(I), Yl(J)).

X2(I) - Density array for molecular weight derivative.
Y2(J) - Temperature array for molecular weight derivative.
F2(I,J)- Array of molecular weight derivatives, (@Mw/@p)T at

(X2(I), Y2(J)).

X3(I) - Density array for aMw/aT.
Y3(J) - Temperature array for (@Mw/aT).
F3(I,J)- Array of the derivatives (@Mw/@T)p at (X3(I),

Y3(J)).

XY(F) - Density array for internal energy.
Y4(J) - Temperature array for internal energy.
F4(I,J)- Array of internal energy values, e, at (XY(I),

Y4(J)).

X5(I) - Density array for temperature.
Y5(J) - Internal energy array for temperature.
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F5(I,J)- Array of temperatures at (X5(I), Y5(J).

X6(I) - Density array for @T/@p
Y6(J) - Internal energy array for @T/@o
F6(I,J)- Array of derivatives, (@T/@p)e at (X6(I), Y6(J)).

X7(I) - Density array for 3T/@e.
Y7(J) - Internal energy array for aT/ae.
F7(I,J)- Array of derivatives, (@T/ae)p at (X7(I), Y7(I)).

3. Mesh Points Coordinates. The transformed coordinates
are read in the same manner as for the perfect gas code. See the
section on The Perfect Gas Euler Code, AXI2DSA.

Output Data Description

1. Printed Results. For the shortform printout, IWRT=0,
the namelists INPUT and DINPL, the iterated values of the molecular
weight, Mw, and the effective Y at the throat are printed from
subroutine INITIA. In addition, the convergence rate for each
equation is printed from subroutine SUPPLY (ENTRY CHECK), and the
downstream rate of mass flow is printed from subroutine SUPPLY
(ENTRY MASS).

The print for IWRT=l gives all flowfield quantities listed in
Output Data Description for the perfect gas Euler code. In
addition, it prints the molecular weight and the entropy. The
printout is again stored on TAPE6 and printed automatically at the
end of the run.

2. Conservative Variables. Plotting information is also
given on TAPE8 in the same format and for the same variables as
listed in Output Data Description for the perfect gas Euler code.

The Perfect Gas TLNS Code, DDADIPBC

This code solves the TLNS equations for a perfect gas flow.
The laminar viscosity, V, is determined by the relations in Eqns.
54a-c and the turbulent viscosity, pf, is determined by the
Baldwin-Lomax model of turbulence§ . The molecular thermal
conductivity, k, and the turbulent thermal conductivity, kT, are
expressed in terms of the laminar turbulent viscosities by means of
the Prandtl numbers, Pr, and PrT, respectively, as defined in Eqn.
13.

in the perfect gas viscous code, the maximum number of mesh
points as limited by the NOS-BE system are (70 x 44), the same as
for the perfect gas Euler code. Because of the additional run time
required (see Table 2), the viscous code is designed to be stopped
and restarted.

Input Data Description

1. Namelist INPUT. As for the inviscid codes, this
namelist specifies the flow constants. The namelist is read from
TAPE1 by subroutine INITIA. Most of the variables are analogous to
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those described in Input Data Description for the perfect gas Euler
code. These have the same definitions as given there. Additional
quantities for specifying the viscous flow are:

NBEG - The initial iteration number. Generally set to 1.
NEDN - Total number of iterations to be performed. If

NEND=I, the PNS solution is obtained.
NITER - Number of iterations in the run (Integer).
CFLl - CFL number for the PNS solution.
IVISC - An integer specifying the nature of the flow:

IVISC=O inviscid flow (with IVISC=0, this code
should duplicate the results of AXI2DSA);
IVISC=l viscous flow.

IWALL - An integer specifying the wall boundary condition;
IWALL=0 an adiabatic wall,
IWALL=l specified wall temperature.

PRN - Laminar Prandtl number (constant).
PRNT - Turbulent Prandtl number (constant).
TREF - The reference temperature for the viscosity in Eqn.

54, K.
ZMUO - Reference viscosity at T=TREF (SI units).
OMEGA - Exponent for the power law form of the viscosity,

Eqn. 54c.
TWALL - Value of the wall temperature when IWALL=l

(TWALL=O.O when IWALL=0), K.
PB - The back pressure at the nozzle exit. When PB=O,

the subsonic pressure at the exit is extrapolated
from interior.

IRVN - Control variable for restart (Integer):
IRVN=0, for the first run only,
IRVN=A, for restart from previous runs.

2. Mesh Points Coordinates. These are read in the same
format as for the Euler code, Input Data Description.

3. Convergence Rate, Previous Run. (Ignored if not a
restart case.) For the case of restart files, additional
(formatted) input is placed on TAPE1 to specify the iteration
number (NDUM+l) at which the restart run begins. This input is
also used to create a continuous file of the convergence of the
TLNS equations. This input is placed on TAPE1 behind the namelist
INPUT data. It is also read by subroutine INITIA. The reading
format is,

70 READ (9, 502, END=65) NDUM, (SS(K), K=I,Y)
502 FORMAT (I5, 3X, 4(lX, E14.7)

GO TO 70
65 CONTINUE

4. Restart Field For Continuation Runs. (Ignored if not a
restart case.) Flowfield information for restarting a computation
is obtained by reading the conservative variables data on TAPE7.
This tape contains the local time step, DELTAU(I,J) and the
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conservative variables, RHO(I,J), RHOU(I,J), RHOV(I,J), and E(I,J)
for each grid point. This file is written upon completion of any
run and is then read from TAPE7 by subroutine INITIA for use in
restarting. The format used is:

READ(7) ((DELTAU(I,J), I=IIL), J=I,JL)
READ(7) ((RHO(I,J), RHOU(I,J), RHOV(I,J),

E(I,J), I=I,IL), J=l,JL)

Output Data Description

1. Printed Results. The printed output is the same as for
the perfect gas Euler code described in Output Data Description.

2. Namelist INPUT. (If not a restart case, namelist INPUT
is written out to TAPE2.) In this output, the value of IRVN is
changed by the code from 0 to 1 to prepare for the restart. This
change enables the next run to read the convergence rate from TAPE9
and the conservative variables from TAPE7 as determined by the
previous run. The conservative variables are then ise as the
initial condition for the succeeding run.

3. Convergence Rate. This output presents the convergence
rate of the TLNS equations, SS(K), K=1,4 for each iteration. The
convergence rates from the previous run are stored on TAPE10 by
subroutine INITIA, so that a continuous concatenation of the
convergence will be available. The format is:

WRITE (10, 502) NDUM, (SS(K), K=l,4)
502 FORMAT (I5, 3X, 4(lX, E14.7))

The convergence levels from the current run are added to this
same file by subroutine SUPPLY (ENTRY CHECK).

4. Conservative Variables. The conservative variables used
for restart are written on TAPE8 in the same manner described in
Output Data Description for the perfect gas Euler code.

Choosing the Laminar Viscosity

The laminar viscosity is chosen from among the three choices
in Eqn. 54 by subroutine MU (ENTRY MULAN (Ii)). One of the
following three lines of FORTRAN must be included by recompilation.
For the constant viscosity case, set,

ZMU(J) = ZMUO,
For the Sutherland law case, set,

ZMU(J) = ZMUO*TOS/TTS*(TT/TREF)**I.5,
and for the power law case, set,

ZMU(J) = ZMUO*(TT/TREF)**OMEGA

Viscous Flow of Real Gases, Code DDADIPBG

The code DDADIPBG solves the TLNS equations for a real gas
flow. The molecular weight, Mw, and the internal energy, e, are
functions of the density, and the tem-prature as noted before, and
representative properties for air have been used for verification
purposes as stated earlier. The laminar viscosity, p, and the

26



laminar thermal conductivity, k, are given as simplified curve fit
functions of the density, p, and the internal energy, e. The
turbulent viscosity, p+, is determined by the Baldwin-Lomax model
of turbulence9 . The turbulent thermal conductivity, kT, is again
determined from the turbulent viscosity using the turbulent Prandtl
number.

In this version of the code, the number of mesh points allowed
under the NOS-BE system is limited to 60 points in the & direction
by 40 points in the q direction. The code is designed with restart
capability so that converged solutions can be obtained in
sequential runs.

Input Data Description

1. Namelist INPUT. The variables in this namelist are
identical to those for the perfect gas TLNS code (version DDADIPBC,
Input Data Description for the perfect gas Euler code) except that
the real gas variables, RG, AMWO, and GAMMAO which were used in the
real gas Euler code (version AXI2DSG, Input Data Description for
the real gas Euler code) are also included here.

2. Namelist DINPL. This namelist is used to read in the
real gas properties. It is identical to the namelist used in the
real gas Euler code, version AXI2DSG, in Input Data Description for
the real gas Euler code.

3. Mesh Point Coordinates. The transformed coordinates are
again read in in the same fashion as before. The input is
described in Input Data Description for the perfect gas version of
the Euler code.

4. Convergence Rate Summary for Restart Cases. The table
of convergence levels from previous runs is again used as input for
restart cases so a single concaterated file of the error at each
iteration is available. Input details are given in Input Data
Description for the perfect gas version of the TLNS code.

5. Conservative Variables Input for Restart. Restarting
the code is accomplished by reading in the conservative variables
from the last time step of the previous run. Details of this
output file are given in Output Data Description of the real gas
version of the Euler code. Comments as to re-entering this data
for restart purposes are given in Input Data Description of the
perfect gas version of the TLNS code.

Output Data Description

Output from the real gas version of the TLNS code is composed
of four parts. Flowfield results are available in either long or
short form and are written to TAPE6 as described in Input Data
Description (real gas version of the perfect gas code). A printout
of Namelist INPUT is written to TAPE9 as described in Output Data
Description of the perfect gas TLNS code, with the value of IRVN
reset as necessary. The convergence rate table including a summary
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of all runs to date is written to TAPE7 for plotting or restarting,
and the conservative variables for the last time step computed are
written to TAPE8 for similar purposes. Format details and contents
of these tapes are described in Output Data Description of the
perfect gas Euler code.
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EXAMPLE CALCULATIONS

A broad spectrum of perfect gas calculations are given in
Appendix D along with some careful validations of the code
predictions against independent standards. The perfect gas
examples include inviscid calculations for the transonic flow in
the converging and throat sections of various nozzle geometries, as
well as inviscid solutions for the divergence, supersonic portion
of various nozzles. In addition, similar perfect gas results are
presented to illustrate TLNS solutions in both the
subsonic-transonic and the supersonic sections of the nozzle.
These results include both laminar and turbulent conditions. In
addition, Appenuix D gives both inviscid and viscous solutions for
swirling flow in the divergent section of various nozzles. Results
concerning the effect of back pressure on the flowfield structure
near the nozzle lip are presented for moderate variations in back
pressure showing, in particular, the manner in which recirculating
regions are set up near the nozzle wall. Finally, examples showing
the coupled effect of nozzle wall cooling on wall temperature and
heat flux are presented.

In the present section, we summarize some real gas
calculations for one particular nozzle geometry and we present some
complete subsonic-transonic-supersonic solutions for an entire
converging-diverging nozzle.

Real Gas Calculations For The R-S Nozzle

The coordinates of the supersonic section of a specific
contoured nozzle are given in Table 5. This nozzle geometry was
used for the real gas calculations given in this section. The
Namelist INPUT data needed to run the cases described herein is
given in Figs. 1 through 4 for the perfect gas Euler version of the
code (Fig. 1), the real gas Euler version (Fig. 2), the perfect gas
TLNS version (Fig. 3), and the real gas TLNS version (Fig. 4).
These calculations were run on the AFAL CYBER 180/840 machine under
the NOS-BE operating system. This available core size with this
system is very limited so that maximum allowable grid sizes are
quite sparse. Nevertheless, the data give an indication of the
code's validity. The real gas calculations were all done for
equilibrium air as noted earlier.

Figure 5 shows the nozzle geometry and the 70 x 44 grid that
was used for the Euler equation solutions. Figure 6 shows Mach
number and u-velocity component contour plots for the perfect gas
constant specific heat calculation. Cor-arisons of calculations
made with the perfect gas code of Appendix D and the real gas Euler
code with property tables that correspond to constant specific
heats were identical indicating the real gas routines were working
properly. These latter perfect gas calculations are shown in Fig.
7. The effects of real gas properties (for equilibrium air) are
shown on Fig. 8. As would be expected, real gas properties
drastically diminish the Mach numbers, but the exit velocity
profiles are slightly higher for the real gas case partially
because of the low value of Y used for the perfect gas
calculations.
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Thin-layer Navier-Stokes calculations are shown on Figs. 9
through 11. Figure 9 shows the 60 x 40 grid used for these
calculations (refer to Table 2), while Fig. 10 shows TLNS results
based on perfect gas properties and Fig. 11 shows results for the
real gas calculation. Again, the effect of real gas properties is
to reduce the expansion Mach number.

Additional Perfect Gas Calculations For The Converging-Diverging
Nozzle

As an additional calculation demonstrating the coupled
transonic-supersonic codes, we have computed inviscid and viscous
solutions for a complete converging-diverging nozzle. Figure 12
shows the converging portion of the nozzle and the 120 x 80 grid
used for inviscid calculations. Figure 13 shows the Mach number
contours in the subsonic portion of the nozzle. This transonic
flow solution was used to obtain starting information for the
supersonic portion of the grid which is shown in Fig. 14. In the
diverging section, we used a 145 x 80 grid. Figure 15 shows the
Mach number contours in the supersonic portion of the nozzle, while
Fig. 16 shows the Mach number contours in the entire nozzle. The
presence of a fairly strong shock in this nozzle gives rise to
wiggles in the Mach number contours. These could be minimized by
the addition of a second order viscosity in the vicinity of the
shock or a TVD limiter. These have not been added because nozzle
flows typically contain only weak shocks. Corresponding pressure
contours for the inviscid case are given on Fig. 17. These
calculations are performed for a specific heat ratio Y = 1.17.

The subsonic portion of the grid used for the viscous
calculations was increased to 120 x 100 to improve resolution in
the boundary layer. This viscous grid is shown on Fig. 18, and the
corresponding flow Mach number contours are given on Fig. 19.
(Note, these viscous calculations are all for the Baldwin-Lomax
turbulence model.)

The viscous grid ,sed in the supersonic portion of the nozzle
included a 145 x 100 grid as shown in Fig. 20. The corresponding
Mach number contours in the supersonic section are given in Fig.
21, while Mach number contours for the complete nozzle are given in
Fig. 22. Note, that comparison of Figs. 16 and 22 shows that the
inviscid flow expands slightly more than the viscous case as would
be expected. These calculations are for a throat Reynolds number
of 5 x 105. Corresponding static pressure contours for the entire
nozzle are given in Fig. 23.

Finally, the convergence of the viscous TLNS calculation is
presented in Fig. 24. This figure shows that the RMS errors in the
solution were reduced by more than five orders of magnitude in 40
iterations.
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Table 1. SUMMARY OF THE VARIOUS VERSIONS OF THE CODE

Molecular Internal Thermal
Code Governing Gas Weight Energy viscosity Conduct-
Name Equations MW e ivity

AX12DSA Euler Per- Const. CvT

fect

AX12DSG Euler Real Mw(p,T) e(p,T)

DDADIPBC TLNS Per- Const. CvT Power Law-
fect or Suther-

land's law

I DADIPBG TLNS Real1 Mw(p,T) e(p,T) p (p, e) k(p,e)

*Related to viscosity by Prandtl number.
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Table 2. CHARACTERISTICS OF CODE EXECUTION

Executing Time
Code Number of Number of on CYBER 180/840
Name Mesh Points* Iterations Per Iteration Per

Mesh Point
(Milliseconds)

AXI2DSA 70 x 44 30 3.851

AXI2DSG 70 x 44 30 7.412

DDADIPBC 70 x 44 400 27.211

DDADIPBG 60 x 44 2000 121.912

*Maximum storage allowed by NOS-BE system. NOS-VE allows much

denser grids.
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Table 3. UNITS FOR INPUTS

Physical Quantity Unit Symbol

Length meter m

Mass kilogram kg

Density kilogram per kg/rn3

cubic meter

Time second sec

Temperature kelvin K

Force newton N

Pressure newton per n/rn3

square meter

Energy joule J

Molecular weight kg per kg/kg mole

kilogram mole

viscosity newton-second (ne sec)/m 2

per square meter

Thermal joule J/(k.m.sec)

conductivity kelvin-meter-second
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Table 4. FUNCTION SUBPROGRAMS FOR REAL GAS PROPERTY EVALUATION

Function
Subprogram Property Comments
Name and Computed
Arguments

FAMW (RHO,T) Mw(p,T) Molecular weight

FE (RHO, T) E(p,T) Internal energy

FT (RHO, E) T(p,e) Temperature

FDMDRT (RHO, T) (aMw/aP)T Molecular weight derivative as
function of p and T

FDMDTR (RHO, T) (@Mw/@T) Molecular weight derivative as
p function of p and T

FDTDRE (RHO, E) (aT/@p)e Temperature derivative; function
of p and e

FDTDER (RHO, E) (@T/@e) Temperature derivative; function
p of p and e

FZMU (RHO, E) P(p,e) Viscosity

FZK (RHO, E) k(p,e) Thermal conductivity; computed
from Prandtl number

FDMUDRE (RHO, E) (@P/@P)e Viscosity derivative; function of
p and e

FDMUDER (RHO, E) (@V/ae) Viscosity derivative; function of
p p and e

FDKDRE (RHO, E) (@k/ap)e Thermal conductivity derivative

FDKDER (RHO, E) (@k/@e) Thermal conductivity derivative

p
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Table 5a. CONTOUR POINS OF THE RS NOZZLE (70. 44)

T YC XC kIFHA I YC XC AL,1hA

1 .01006 0.00000 0.00000 41 .07105 .11669 21.64860
2 .01009 .00093 3.36523 42 .07377 .12362 21.08610
3 .01018 .00191 7.10866 43 .07654 .13090 20.52531
4 .01035 .00295 11.07978 44 .07936 .13857 19.96692
5 .01061 .00403 15.31548 45 .08224 .14662 19.41090
6 .01097 .00517 19.86431 46 .08518 .15509 18.85670
7 .01147 .00637 24.79635 47 .08818 .16400 18.30537
8 .01213 .00763 30.20430 48 .09123 .17336 17.75549
9 .01301 .00896 36.34891 49 .09433 .18321 17.20873

10 .01403 .01035 36.33356 50 .09748 .19356 16.66520
11 .01511 .01182 36.27180 51 .10068 .20444 16.12458
12 .01623 .01336 36.11491 52 .10393 .21588 15.58597
13 .01741 .01498 35.89578 53 .10723 .22792 15.05187
14 .01864 .01668 35.62613 54 .11056 .24056 14.52032
15 .01992 .01847 35.30239 55 .11395 .25386 13.99123
16 .02124 .02035 34.93930 56 .11736 .26785 13.46773
17 .02261 .02233 34.54235 57 .12081 .28255 12.94699
18 .02404 .02442 34.11646 58 .12429 .29801 12.42823
19 .02551 .02660 33.66482 59 .12780 .31426 11.91538
20 .02703 .02890 33.19136 60 .13133 .33135 11.40440
21 .02859 .03132 32.70377 61 .13487 .34931 10.89921
22 .03021 .03387 32.20513 62 .13841 .36820 10.39807
23 .03188 .03654 31.69175 63 .14197 .38806 9.89894
24 .03360 .03935 31.16775 64 .14552 .40894 9.40745
25 .03537 .04231 30.63482 65 .14907 .43090 8.91692
26 .03719 .04542 30.09359 66 .15258 .45398 8.43359
27 .03906 .04869 29.54643 67 .15609 .47825 7.95193
28 .04099 .05212 28.99329 68 .15957 .50377 7.48025
29 .04297 .05573 28.43651 69 .16286 .53060 7.00226
30 .04500 .05953 27.87618 70 .16596 .55880 6.52500
31 .04709 .06353 27.31309
32 .04923 .06772 26.74888
33 .05143 .07214 26.18210
34 .05368 .07678 25.61507
35 .05599 .08166 25.04-16
36 .05836 .08679 24.47881
37 .06078 .09219 23.91089
38 .06326 .09786 23.34445
39 .06580 .10382 22.77762
40 .06840 .11009 22.21202

Note: XC and YC are axial and radial coordinates in meters;
ALPHA is wall angle in degrees.
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Table 5b. (NTaR POINS OF THE PS NOZZLE (60, 40)

T YC XC ALPHA I YC XC ALPHA

1 .01006 0.00000 0.00000 41 .08717 .16098 18.48817
2 .01009 .00093 3.36523 42 .09087 .17226 17.81855
3 .01018 .00193 7.15475 43 .09466 .18427 17.15137
4 .01036 .00298 11.22513 44 .09852 .19705 16.48805
5 .01063 .00411 15.62255 45 .10246 .21065 15.82853
6 .01102 .00531 20.41094 46 .10647 .22513 15.17335
7 .01157 .00658 25.67889 47 .11056 .24053 14.52154
8 .01232 .00794 31.56032 48 .11470 .25693 13.87519
9 .01332 .00938 36.34023 49 .11891 .27438 13.23191

10 .01445 .01092 36.32034 50 .12317 .29295 12.59448
11 .01565 .01255 36.20025 51 .12747 .31272 11.96280
12 .01692 .01429 35.99863 52 .13181 .33376 11.33653
13 .01826 .01615 35.71517 53 .13617 .35615 10.71358
14 .01966 .01812 35.36682 54 .14055 .37998 10.09854
15 .02114 .02021 34.96643 55 .14492 .40534 9.49067
16 .02269 .02245 34.51934 56 .14929 .43233 8.88584
17 .02431 .02482 34.03213 57 .15363 .46106 8.29007
18 .02600 .02735 33.51066 58 .15796 .49163 7.70414
19 .02777 .03004 32.95256 59 .16210 .52417 7.11456
20 .02961 .03291 32.39225 60 .16596 .55880 6.52500
21 .03152 .03596 31.80246
22 .03351 .03920 31.19516
23 .03557 .04266 30.57319
24 .03772 .04633 29.93819
25 .03994 .05025 29.29224
26 .04225 .05441 28.63803
27 .04463 .05884 27.97653
28 .04710 .06356 27.30897
29 .04966 .06858 26.63766
30 .05230 .07392 25.96185
31 .05502 .07960 25.28350
32 .05784 .08565 24.60259
33 .06074 .09209 23.92056
34 .06373 .09895 23.23896
35 .06681 .10624 22.55594
36 .06998 .11400 21.87451
37 .07324 .12227 21.19345
38 .07659 .13106 20.51365
39 .08003 .14042 19.83620
40 .06356 .15038 19.16112

Note: XC and YC are axial and radial coordinates in meters;
ALPHA is wall angle in degrees.
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-$INPUr
IL = 70,
JL = 44,
ITRI =1i,
rTRN =i,

ISUP = 0,
CFL =5.,
IrIM =i,

1Rfl = 1.02,
1 42 =8.,
AIN = 0.05,
AEX = 0.275,
RL = 0. 8485,
PO = 3509431.4,
TOD = 3497.8,
CP = 1308.79,
CV = 1021.77,
GAMM4A = 1.2809,

= 1..2809,
INER = 30,
IBI = 2,
IB2 = 70,
NORD =1i,
GMBAX = 0.0,
cEGAY = .5,
IREAD = 1,
IWRT =i,

= i,

flTJN =1

$SD

Fig. 1 Sample Inpult For AXI2LSA; Namelist INPJT.
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-$INlr
IL = 70,
JL = 44,

ITRN =1i,
ITS =1,

ISUP = 0,
CFL =5.,
ITIME =i,

=iEA .,

In = 1.02,
Im2 -8.,
AIN 0.01,
AEX = 0.11,
RL - 0.245,
PO - 3509431.4,
mID 3497.8,
RG= 8314.,

AMWO = 28.9670,
GAMMAO = 1. 2809,
INER = 30,
IBI = 2,
IB2 = 70,
NORD = 1,
CMEGAX = 0.0,
cMEGAY = .5,
IREAD = 1,
IWRT -1
IRUN =1,
$ED

Fig. 2 Sample Input For AXI2E; Namelist IN fl.
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-$INPLr
IL = 70,
JL = 44,
NBBG =i,
ND =i,
NITER = 100,
THr = 1.0,
NORD = 1,
CFL = 4.0,
CFLI = 1.0,
ITIME = 1,
CMEGAX = 0.0,
CMEGAY = 0.5,
AIN = 0.05,
AEX = 0.275,
RL = 0.8485,
FST = 0.0,
FSTY = 0.0,
1MI = 1.02,

42 = 8.0,
IvIsc - 1,
IWLL =0,
GAMMA = 1.2809,
CP= 1308.79,
REN= 1.0,

RN= 0.7,
IFNT = 0.9,
TREF = 3109.55,
ZMUO = 1.02319E-05,
C14EGA = 0.8130,
PO = 3509431.4,
TO = 3497.8,
TWAL = 0.0,
PB = 0.0,
IREAD =1,
IWMf = 0,

=r 0,
$END

Fig. 3 Sanm1e IM,~t.Eor DIADIPBC; Naim1ist INpFUT.



-IN Ir
IL = 60,
JL = 40,
NEW = 1,
NENID = 100,
NITER = 100,
MEMA = 1.0,
MD = 0,
CFL = 0.5,
CFLI = 1.0,
ITIME =0,
CMW.AX = 0.0,
(MIEGAY = 0.08,
AIN = .5E-01,
AEX = .275E+00,
RL = .8485E+00,
FST = 0.0,
FSMY = 0.0,
RM = 1.02,

M= 5.0,
IvIsc =1,
IWA=L 0,
RG= 8314.,
A #= 28.967,
GAMMAO = 1.2809,
CP = 1308.79,
REN = . IE+01,
PIRN = 0.7,
PRN = 0.9,
TEF-- 1.0,
ZMUO= .102319E-06,
CKOGA = .838551,

PO = 3509431.4,
mO = 3497.8,

TWALL = 0.0,
PB = 0.0,
IRFAD = ,
IWRT = 0,
IgiN =0,

Fig. 4 Sample Input For DEADIPBG: Namelist INRJT.
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FiQt. 5 Nozzle Gecmetry and 70 x 44 Grid Used For Euler Eauation
Calculations.
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Mach Number Contours

u-Velocity Contours

Fig. 6 otours of Machi Mgj-=r (Tp) and U-VelocitV (Bottcui) For
perfect Gas solution of Euer Eautions.
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Fig. 8 Contmars of Mach Nun*er (Top) andi U-Veloity (Battcan) For
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Equilibrium Air.



Fig. 9 Nozzle Gegmetry and 60 x 40 Grid Used for Ti-ae

Navier-Stokes Calculations.
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Figr. 12 120 x 80 Grid For Inviscid Transonic Flow~ Calculation.
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Figl. 13 1adi N-UmteT CnOMOzs of InViscd Transonic Flow.



Fici. 14 145 x 80 Grid For Iiviscid upersonic now Caculation.
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Fig. 15 Mach Numb~er Contouars of Inviscid 2Wtgogoic Flow.
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Fig. 18 120 x 100 Grid for Viscouis Transonic Flow Calculations.
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Fig. 19 Mach Number gg[taiMs of Visoous Transonic Flow.
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Figi. 20 145 x 100 Grid for Viscous Suprsonic Flow Calculations.
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Fig. 22 Mach Number Contoujrs of Viscous Calculations.
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APPENDIX A

JACOBIAN MATRICES AND ASSOCIATED ALGEBRA FOR REAL GAS EQUATIONS

The present Appendix summarizes a number of important
algebraic quantities for the real gas equations. In all cases, we
indicate how these quantities simplify for the perfect gas case.
We start by specifying the Jacobian matrices of the inviscid flux
vectors E and F. These are defined right below Eqn. 1 in the main
body of the report. These Jacobians are respectively, A =E/@Q
and B = @F/@Q. They are composed of the following terms:

0 K K 0x y

-uU+K PU+K (U+ K u+K @P K ap

x UPxa(PU y x (pv) 0
A or B =  p @P U+yV p  aP-VU+Ky aP KxV+K (pu (p) K

x y 9(pu) U +(vv) y ep y

U( Xa i -K n(p) +K e-
9PP(Pu) x P)

(A.1)

where U = KxU + KyV, and K = E, U = U for A, while K = U = V for
B.

For the real gas case, the derivatives of pressure are given
by:

aP 1 e. 2  2
=P Ap - A e P(p u v

aP A u
-pu e p (A.2)

=- A Y
'a pv e p

a =A 1

0P

where,

ApP B +-B p  T
p p T T (p) e

A _B T (A.3)

e T T P

and,

B = 1- - 1 -a T (A.4)
pw w ( BT )P



For the perfect gas case, Mw is a constant, so Bp = BT = i.
In addition, (aT/@p)e = 0, while (@T/@e)p = l/Cv . Thus, for the
perfect gas case, we have,

Ap = p/p (A.5)

and,

Ae = (Y-l)p (A.6)

Substituting these values into the expressions for the derivatives
of pressure and inserting in the matrices A and B gives the
standard, perfect gas form of these Jacobians.

The modal matrices T-IP -I and TB-IP -I are: T-P -  =

1 lP 1 @P 1 @P 1 @P
l- cT -c 2  u) c -(Pv) -T -

1 1 1 K1 1 -K0
-(K u-K v) - K 1 -K 0

1 1 1 l @P 1 i P 1 fll P 1 aP
4rrp X y)C~ 1-p J (Kx+c dpu) " (K y +c Pv rpc

1 1 1+.i + a P 1 1+ pP 1 (-KI+I @P 1 aP
41=1UKp XKv)+E '9-) f:'(-KX+C (Pu)~ IJ3'- x c @(PX)) JT'c C

(A.7)

where K = E for TA, K = i for TB,

K1 Kv 1 K 1  Ky

X (K 2 + K y/,a K (Kx  2)1/
x y'. x y

The inverses of these matrices, PTA and PTB are given by, PT =

1 0 
P

u K1 u u K1
y rc xx

v - 1v KI1
x y y

1 1

a ( r1 ui-Kv I V)-cO'P 'P ( + 1V c9 (K 1 *K1V)
y '- ° 0 x y 'c Y7 oZe x y

(A.8)
where,

1 (U p  + P + P
0- = -U T P + v() ;-)
0



Again, the derivatives of pressure are as given above, and the
limiting values for perfect gases again give the familiar results
of Appendix C.

For the right-hand side terms, we need the Jacobians D' and
DIP.

For the source term, the Jacobian of the algebraic
(non-differentiated) terms in H is,

0 0 0 0

D0 0 0 0 0 (A.9)
y

31 32 33 34

0 0 0 0

where,

D I P 4 1 v 41 v(A.a)
31 p -3 y 3 y PA.a

, ap 4 1 a (u32 J(pu) 3S v (A.1 b)

, _P 41 a( 4 1 1 (A.l0c)
33 (pv) 3 y y p

D34 = 4 1 y a (A.10d)
0 0

where, again the pressure derivatives are given above for both real
and perfect gas variables.

Similarly, the Jacobian of the differentiated (first order)
terms in H is,

0 0 0 0
DPP = ' 3 D"''' (A.11)

D21 22 23 24

31 32 33 134\

I' D11 D"41 42 43 44

where,



D2 1 = x a- (v a ]J V)] (A.12a)
21 3 zq Y ?V ypu p

D'' = 2 a (v a )] (A. 12b)
22 J 3Jx ys(pu) J1

D'' = 2 a + i ) (A.12c)
23 3~ x T (v -Y y pJ

1 2 - (V -- ) ] (A. 12d)

24 J[ 3 ix yde0

1 2 Jv 1 l82 8 Ju

+ Jiv p2 a~ a (A. 12e)
+3 1y y - q - 3 '1y v (f ) ( 1

12J pual2 1, 2 aa2 a (fA2f

32 J J3 x y px 1ypy vy

1 2 J (pv) @u 2 J1 a 2 Ja i" = P -- I y v;- (- (A. 12g)
33

12 J e + 2 a a e(A.12)
434 J 3 Ti x Y u o p 3 y v (y )

D 1 2 = 1a J + JU 2 2 J Jv43 JE ? - ix ( uv - -) - ry 3 y ( vi- 21
(A. 12i)

,,D 2I a au ( uv 2 a 1, a v2)](AV129)

9,q 1 a . (pv) yu P y 9T Y (_T yVP

(A. 12k)

44 1 1- 3( uv) - Y ? y y (( 12 L)

The derivatives of p (and later k and T) with respect to Q
require some comment. By taking V = V(p,e) and k = k(p,e) and
using the chain rule, we obtain,

d]p = ( ) P p + (e)p de (A.13)



with a similar expression for the changes in k and T. Derivatives
of V, k, or T are then defined in terms of the derivatives (@P/aP)e
and (ap/ae)p etc. which are obtained from the property tables.
(Note, the 8p/9p) appearing, for example, in Eqn. A.12a is not
equal to (ap/ap)e because the term in Eqn. A.12a is obtained with Q
as the independent variable, whereas the latter considers p and e
as independent variables.

The Jacobians for the viscous terms, Bvl and B.2, are:

1 0 0 0

Bv = Q= -u/p 1/p 0 0 (A.14)

-v/p 0 i/p 0

1 0 0 0

while the matrix Bv2 is given by,

I aT aT aT aT

9-P9 pu 9av e
B = = -2u2/p 2u/p 0 0 (A.15)
V2 = Q =

-2v 2/p 0 2v/p 0

-2uv/p V/p u/p 0

The derivatives of temperature are first expanded by the chain rule
expression given in Eqn. A.13 above. Because temperature is a
primary variable of interest, we re-express this here as,

dT dp + (aT ) de (A.16a)

and we introduce the coefficients cp and ce such that,

dT = cPdP + cede (A.16b)

In terms of these variables, we can express the four derivatives of
temperature as:



@T c ( e + (U2 + v 2 )) (A.17a)" ' "= p Ce " ( p

@T U (A.17b)
Z(pu) -p p

@T- = v (A.17c)
gopv) ep

aT 1e - (A.
0

For completeness, we also define the speed of sound. The
speed of sound, c, is given by:

c2 p P BT T P )T +Ae
= + @T(- + - A + A- P (A.18)

SPp
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APPENDIX B
ROE AVERAGING

Roe averaging is used to ensure conservation even when some
terms are expressed in non-conservative form. Details of the
procedure are given in Ref. 4. In brief, Roe averaging is given
by,

=/ +- Vi- i +I + P r-ai (B. 1)Pi+i/2 /-i+ 1 +-/,-P i

- ui+V"-+ + ui/4 i  (B.2)
i+i/2 = +I +T-i

v - vi+ -+l + vic- i (B.3)vi+i/2 - J-/-Pi+l +-pi,

(h (hf)i±l'-i±l + (hf)i- (B.4)(f) i+i/2 '1-i+l +-r-Pi

The total internal energy, eo, is related to the stagnation

enthalpy by,

ph o = eo + p (B.5)

where p is the pressure. P can be evaluated from,

P = ~-y-T (pho - I/2p(u 2 + v2) (B.6)

and assuming an arithmetic averaging for which is given by,

7 = 1 + R"W (B.7)e/T
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APPENDIX C

TIME-ITERATIVE SOLUTIONS OF VISCOUS
SUPERSONIC FLOWS

(This document is bound separately)
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APPENDIX D

COMPUTER CODE LISTINGS

(This document is bound separately)
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