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Abstract

Systems of fractional order differential equations are

constructed to solve for viscoelastically damped structural

motion. To reduce computational effort the equations of motion

are cast as an initial value problem where the history dependence

is approximated by retaining events only from the recent past.

Several strong parallels with ordinary, linear differential

equations arise. These parallels plus the well-posed nature of

the fractional order differential equations leads one to view the

fractional order initial value problem as an extension of the

theory of ordinary, linear differential equations with constant

coefficients.
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Introduction

This work focuses on constructing and solving the initial

value problem for systems of fracLional order differential

equations. These equations arise when fractional order

derivatives are used to describe the linear viscoelastic behavior

of elastomeric materials in the equations of motion of damped

structures (1)(3)(5). The fractional order derivative is

particularly well suited to describe the frequency dependent

stiffness observed in many viscoelastic materials (2)(6)

(7)(8)(9)(20). These viscoelastic stress-strain constitutive

relationships are constructed by replacing the ordinary

derivatives appearing in the classical linear viscoelastic model

(11) with fractional order derivatives (6)(8)(14)(15)(18).

Because of their ability to describe weak frequency

dependence, significantly fewer fractional derivative terms are

needed to relate time-dependent stress and strain fields.

Typically models with four or five parameters effectively describe

the material stiffness over five or more decades of frequency.

The small number of parameters makes least squares fitting of the

data attractive and several materials have been modeled

(3)(4)(6)(20). Theqe constitutive models are empirical, but their

general mathematical form is suggested by approximate molecular

theories that relate microstructure to macro viscoelastic

stiffness properties (4).

More important to the engineer, these models can be

straightforwardly incorporated into continuum and finite element

formulations for the analysis of structures containing in

principle and unlimited number of linear elastic and linear
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viscoelastic materials (1). These formulations lead to closed

form, real, continuous and causal solutions using Laplace

transforms or Green's function solutions and convolution (1)(3).

The fractional calculus model that produces these solutions, like

most viscoelastic models, is a hereditary operator that requires a

complete displacement or strain history to prepuce precise

results. Present solution techniques are predicated on a total

history (1)(3)(5).

Fortunately, the fractional calculus model is also a fading

memory operator where events in the distant past have less effect

on the present and future states than do comparable events in the

recent pa.t. This feature raises the possibility of ignoring

events in the distant past and generating approximate structural

responses based the recent past (a few characteristic times back

in history), the present state and future loadings. When the

effects of the recent past are cast as pseudo forcing functions

superimposed on the future loads, one has constructed an initial

value problem wheie the structural response is uniquely dependent

on the present statE: and future loads. Solving the initial value

problem, instead of calculating the response based on a complete

displacement history, clearly reduces the effort required to

produce solutions and obviates the need to begin the analysis in

the distant past at which time the viscoelastic materials were in

a virgin, quiescent state.

The initial value problem is posed as a system of

integro-differential equations, which upon close examination may

be viewed as differential -quations generalized to fractional

order. These equations are referred to as fractional order
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differential equations with some justification because of their

similarity with ordinary differential equations with constant

coefficients. For instance, it is shown that a system of m

fractional order differential equations produces m eigenfunctions

needing m initial conditions for a unique solution. These

eigenfunctions will be cast in terms of Mittag-Leffler functions

(16), long viewed by some as generalized exponential functions

(12:280)(15:260)(18:44). The total solution for a fractional

order differential equation is seen to be composed of a

generalized homogeneous solution uniquely dependent on the initial

value and a generalized particular solution uniquely dependent on

the forcing function.

Setting the fractional order to integer values produces

ordinary differential equations with constant coefficients

(13:527) and the generalized solutions become the traditional

solutions to systems of ordinary differential equations. In

addition it is shown that the fractional order differential

equations produce non-singular Green's functions which insure

continuous dependence on the data which, when coupled with

existence and uniqueness considerations, lead to well-posed

problems. The preponderence of the strong parallels between

fractional order differential equations and ordinary differential

equations lends credence to the view that this practical tool for

the engineer is in fact a generalization to fractional order of

the theory of ordinary, linear, differential equations with

constant coefficients.
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Constructing the Fractional Order Differential Equations of Motion

Differential equaLions of fractional order arise in solid

mechanics when rational fractional order derivatives are employed

to describe the viscoelastic phenomenon. This approach produces

fractional order differential equations of motion where the

elastic constants are replaced by fractional derivative operators

intended to describe the time-dependent viscoelastic stress-strain

moduli. The extended Riemann Liouville fractional derivative

(17:50)(19:19) is a linear operator and is defined as

D ki~) t u(t) d, 0 1 (i)
Dt(t)t) d-tj a

This operator is used to construct viscoelastic stress-strain

constitutive relationships of the form

N a N a
a(t'x + Z b b fo(t ,x E (t,xi) + Z E D PC(tp  x (2)o~txi ) p=l p t) 0xi =op=l 

p (t)Ictx) 2

shown here for uniaxial deformation. This constitutive

relationship may be viewed as a generalization to fractional order

(1:17) of the classical viscoelastic model (11:14) where

derivatives of integer order are used to relate empirically

time-dependent stress anI strain fields.

This fractional derivative constitutive relationship has been

successfully incorporated into the equations of motion for

continuum and finite element formulations producing real,

1 This definition is usually presented with a restricted to less

than one. However, Gcttinger (13:527) has proven that the weak

limit of the kernel as a tends to one is the Dirac delta function,

in which case the definition produces a first derivative.
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continuous and causal solutions for forced structural response.

The solution method for the resulting equations of motion is based

on decomposing them into systems of decoupled linear, fractional

order differential equations (3)(5).

The overall approach may be demonstrated bY constructing the

equation for forced motion of a simple spring-mass harmonic

oscillator and generalizing the result for multiple degree of

freedom structures having viscoelastic components.

F(t) - Mu(t) - ku(t) (3)

Modeling the spring as a massless bar (with elastic modulus E,

cross-sectional area A and length L) yields

a(t) = F(t) - Mu(t) - Eu(t) = Ec(t) (4)
A L

This may be viewed as an elastic stress-strain relationship where

the inertially induced stress is described using D'Alembert's

principle. The massless rod is now taken to be viscoelastic and

modeled using eqn 2, where the elastic terms and the first

fractional derivative terms acting on stress and strain are

retained.

(I + bDa)c(t) = (E + E1Do)E(t) (5)

The resulting equation of motion in operator form is

(1 + bD') [F(t) -A MD 2  ___(E+ Dc)[~ (6)

Using the composition property (17:30) of the fractional

derivative operator,
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D a[ID - [ut] I - Dcf+-Y u(t)]1 (7)

the equation of motion takes the form

bMD 2+au(t) + MD 2u(t) + klDmU(t) + k u(t) = bDtF(t) I F(t). (8)
-~= -- =

0
- --

Here the equations of motion have been expanded to describe

the behavior of systems with several degrees of freedom. The

double and single underlined variables are square and column

matrices, respectively, of order equal to the number of physical

degrees of freedom, N. Identifying the largest factor fi, of

the form 1/n, common to all the fractional orders of

differentiation 2 in eqn 8 and again applying the composition

property, this equation of motion becomes

bM(D)m + M(DI ) w+ k (D6 ) q+ k u(t) =1 + b(D) q )F(t) (9)

where m, w and q are integers and (Do ) is the 0 order derivative

taken m times. The orders of the corresponding differential

operators in eqns 8 and 9 are also equal.

fim = 2 + a

Ow = 2 (10)

q =

/ = 1/n

The most general form of these equations of motion is

2 This restriction on 6 is tied to solving the initial value

problem. When solving for the motion starting with zero
displacement and velocity, this restriction is not needed and /
may be taken to be the largest rational factor common to all
orders of differentiation.

9



m CpD3p .3*(1

c (D ) u(t) = (I + b(D )q)F(t) = f (t).
p =p

Here the c are real, although many may be zero, and f (t) is the
=p

result of the viscoelastic stress operator acting on the applied

forces, F(t), as shown in eqn 9.

Eqn 11 poses the system as N equations of order fim that caa

be alternatively posed as m.17 equations of order 8. In matrix

form the m.N equations of / order are

S(D)m-1u(t)(

A

D (Dr)2u ( t)

0 (D )u(t)D(12

=n =3=2=1 (2

(D() -u(t)

-A ( 0 (D)u(t) 0

(D ) u(c) .

0 ... 0 0 c u(t) f (t)
- = =0- --

where the lowest equation is seen to be eqn 11. The matrix [A] is

chosen such that both square matrices of order m.N become

symmetric and the top (m-l).N equations are satisfied identically.

This is accomplished by constructing A such that all matrices, c
=p

lying on any given diagonal running from lower left to upper right

in the first matrix of eqn 12, are equal. This form of the

equations of motion will be referred to as the expanded equations

of motion.

For example, if a is one hail in eqn 8, then 8 is one half

10



making m-5 in eqn 9, and the expanded equations of motion become

0 0 0 0 bM (D"/)'u(t)

0 0 0 bM M (D"l2 )'u(t)

D1 /2 0 0 bM M 0 (D"/)2u(t)

0 bM M 0 0 (D1/2)'u(t)

bM M 0 0 k u(t)

(13)

0 0 0 -bM 0 (D 1 /2 )4u( t)' 0
0 0 -bM -M 0 (D'/ 2 )3u(t) 0

= = 2 - /0 *
+ 0 -bM -M 0 0 (D"') u(t) = = (t)

= = - 10
-bM -M 0 0 0 (D112 )/u(t) 0

0 0 0 0 k u(t) lb1/2
- - - (l+bD )F(t)

Both the general form, (eqn 12), and the example in eqn 13

are now posed in terms of two real, square, symmetric matrices for

which an orthonormal transformation exists

(Do)M-tu y (t)

(_ y3(t

(D)2 u(t) ([ t) ] (14)

(D) 1 u(t) Y2 (t )

u(t) yl(t)

that leads to a system of m*N uncoupled differential equa-ions of

order 2.

Dd \{Y(t)} + [\a j{y(t)} = ] Tf f *(t)} =f(t)} (15)

Moreover, one can see that this process is analogous to

posing systems of higher order coupled ordinary differential

equations with constant coefficients as a collection of first

order differential equations, the difference being that fractional

order differential equations result here.
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At this Point one might ask why we have resorted to this

formalism. In general, the stiffness matrices k and k are
-1 =0

distinctly different matrices when two or more materials are

present in the structure and at least one is viscoelastic.

Constructing an orthonormal transformation that decouples a system

with more than two (in this case two stiffness and one mass)

symmetric matrices is generally not possible. Consequently,

casting this system of equations in terms of two symmetric

matrices, eqn 12, becomes necessary to construct manageable

decoupled equations through an orthonormal transformation.

The major drawback of having to rely on the formalisms of

eqns 12 and 14 is that they require the manipulation of large,

usually sparsely populated, matrices. Numerical methods, that

capitalize on the repetitive structure of eqn 12 and the less

obvious repetitive structure of eqn 14 to increase efficiency,

have been applied to extract eigenvalues and eigenvectors for a 65

degree of freedom system with only modest computational effort

(5:923). Vhen using fractional derivative models to determine the

response of structures containing viscoelastic components, the

formalism of eqn 12 is necessary, if decoupled equations of motion

are required for modal analyses. In any event, the fractional

order basis equations shown in eqn 15 are the progenitor of the

initial value problem.
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Constructing the Initial Value Problem

The decoupled fractional order equations of motion or basis

equations, (eqn 15) individually Lake the form

(D1+ a )y(t) = f(t) 0 = 1/n (16)

where the subscripts have been dropped to simplify notation.

Green's function solutions for these equations are relatively

straightforw;ard and the resulting expressions for the forced

response of the structure can be shown to be real, continuous and

causal (1:73) These solutions to eqn 16 may be viewed as

particular solutions of the fractional order differential equation

of motion.

It is curious to note that the only homogeneous solution to

eqn 16 is the trivial solution. This appeazs to be consistent

with a strict interpretation of eqn 2, the generalized

viscoelastic constitutive model. Inherent to the model is the

implication that the relationship between stress and strain at

any given time should be a function of the complete stress and

strain histories. In other words, at time zero the viscoelastic

material should be in its virgin, undeformed state where

structural motion is commencing from a quiescent state.

Attempting to impose non-trivial initial conditions implies the

existence of previous motion that is inconsistent with the

viscoelastic model and, therefore, homogeneous solutions are not

needed.

In practice one usually does not have, cannot calculate or

should not calculate a complete time history of structural motion

to conform with this restriction. For example consider the case

13



of a viscoelastically damped structure subjected to several

episodic loadings, where time intervals between episodes do not

allow the structure to assume an essentially undeformed, quiescent

state. As a practical matter, one would like to be able to

determine the structure's response for one loading episode where

its initial displacements and velocities are significant and

known, and a "recent" history of structural motion is available.

lo produce equations of motion which satisfy this need, eqn

16 will be posed in terms of a shifted time scale, t, shown in

Figure 1.

1 d y(r-t 0
F(-0) d o dr + a y(t-t) = f(t-t (17)

dt 0(t-r) 0

Here t is the time of the onset of the loading history for which
0

the response is needed. Time zero on the t timescale is taken to

-i
be several characteristic times, a , preceding the beginning of

this load. This preceding time interval is not restricted to

being load free and in general may have loading present right up

to the start of the loading history of interest. The loads prior

to t are f (-t-t ) and the corresponding response is y(t-t ).

The equation of motion resulting from f(t-t ) is
0

D y(t-t ) + a y(t-t ) = f(t-t ) (18)o o 0

The loads for the episode of interest (t > t ) are T(t-t ) and

the equation for the corresponding response y(t-t ) is

Dy(t-t 0) + a y(t-t ) = T(t-t ) (19)

The total response for t > t is y + y and the general
0

IL



expression for the response is

1 t >,(r-u) + '(r-u) du + ay( (r) + y(r)

S(-u 0 a I

(20)

- ?(r) + g(r)

where r = t-t u = t-r. Here g(r) is a pseudo forcing function

that produces the residual response of the structure due to the

prior application of f(t-t ).

r(t
y (r-u) 0(to

g(r) F(-fl) r du +(r+to) (21)

Expressing eqn 20 in terms of the t time scale in Figure 1, where

zero time is now the onset of the loading episode of interest,

yields

t y,(tr)d
r + apy(t) = 1(t) + g(t) = g(t).

(22)

Note that here the order of differentiation and integration

in the fractional derivative operator is the opposite of eqn i.

This reversal of operations occurred when Leibnitz's rule was used

to differentiate the integral in eqn 17, producing eqns 20 and 21.

This change will prove crucial to solving the initial value

problem, because in contrast with eqn 16, eqn 22 possesses both a

particular solution, uniquely dependent on the forcing function,

and a homogeneous solution, uniquely dependent on the initial

value, y(0).

Before presenting these solutions it is important to address

15



u(t)

-- 0+

t=0 g(t)

u(t) u(t)

t=t

Figure 1 - Time Scales for the Loads and

Responses of the Initial Value Problem.
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the relationship between the operator appearing in eqn 22 and the

original definition shown in eqn 1. Using Leibnitz's rule to

differentiate the integral in eqn 1 yields

1 d ft u(t-T) d.= 1 ! (a)+ { u' (tT) dr} (23)
__l- ) at -a ( -Ck) C

0 7" t 0

or in operator form

a  u(O)t - + a
D u(t I F(l-) + Du(t)] (24)

aawhere D is the definition and D is the modified operator
a

appearing in eqn 22. In fact D is the Riemann-Liouville

fractional integral of order 1-a of the first derivative of the

3
function or effectively an order -a integal of a function. In

effect the operator Dc treats u(t) as though it is zero for

negative time and is "turned on" by a step function at time zero.

The singular term appearing in eqns 23 and 24 is the a order time

derivative of a step function with magnitude u(O). Conversely,

the D operator treats u(t) as though its value for t = 0+ is an

analytic continuation of its non-zero value at t = 0 The

existence of an analytic continuation of u(t) into positive from

negative time means its first derivative is bounded at time zcro.

As shown in Appendix C, a bounded first derivative at t - 0

restricts the initial values of the modified fractional

derivatives of positive, rational order less than one to zero.

This result will prove crucial to the solution of the initial

The relationship between the operators (eqn 24) is developed

more formally by Oldham.(17:50)

17



value problem.

Posing equation 22 in terms of the modified fractional

derivative operator, DP

(D + a ) y(t) = T(t) + g(t) = g(t) (25)

produces the modified basis equations. Note the similar

appearance of eqns 16 and 25. Recall that eqn 16 is based on the

t time scale and has a trivial homogeneous solution. On the other

hand, eqn 25 is based on the t time scale, possesses a non-trivial

homogeneous solution and accounts for the effects of previous

motion through the initial value, y(O), and pseudo forcing

function, g(t).

18



Solving the Initial Value Problem

The eventual goal is to use the solutions of the modified

basis equations, eqn 25, to construct solutions to the original

structural equations of motion for non-trivial initial

displacements and velocities, where the relaxation effects induced

by previous motion are accountcd for by the pseudo-forcing

functions, as in eqn 20. The overall homogeneous solution will be

a superposition of the homogeneous solutions for the modified

basis equations and will be shown to satisfy the initial

conditions. The overall particular solution will be constructed

from the particular solutions to the modified basis equations,

derived using Green's functions. Superimposing the overall

homogeneous and particular solutions produces the total solution

to the initial value problem for structural motion.

The overall homogeneous solution is constructed by first

solving eqn 25 for all the homogeneous solutions to the modified

basis equations. These solutions take the form

(-(at)i)
h (t ) = Yh (0 )  (26)

which is a special case of the beta order Mittag-Leffler function

defined as (16.102)

(x p

E (x) = lYpf- (27)
p.,o

In Mittag-Leffler notation the homogeneous solution is

Yh(t) = Yh(O) E)[-(at)A, (28)

19



where this special form of the Mittag-Leffler function has the

property

D'E[-(at)) --A,-(at) (29)

Including the particular solution, the total solution to each of

the modified basis equation is

Y(t) = Yh(0) E-(at)0j + f, Dl-0Ek((ar)]]g(t-)dr (30)

wih -h can be determined using Laplace transforms or other

traditional solution techniques for integral-differential

equations. The kernel in the convolution integral of eqn 29 is

the unit impulse solution (Green's function) for the modified

basis equations, and is singular. Note that E (0) is not zero and

that the singular behavior of the kernel can be determined through

a straightforward application of eqn 1.

It is the singular nature of fractional order derivatives of

E (-(at) ) that is useful in resolving an apparent paradox in the

overall initial value problem. Recall that there are m-N (eqn

25) modified basis equations needed to characterize the structure,

where the solution for each modified basis equation has a

homogereous solution containing a different initial value. For

example in the single degree of freedom problem, N=l, we have only

two initial conditions, displacement and velocity. It would

appear as though we have insufficient information to combine m

homogeneous solutions to the m modified basis equations in a

unique overall homogeneous solution.

This paradox becomes more apparent when eqn 14 is used to

20



solve for the m-N initial values of the homogeneous basis

functions in terms of the structure's initial displacements Uh (t)

and their derivatives evaluated at time zero.

(Dl m-1_-Uh (t) Ym.N (t)

(Do)2 uh(t) y3 (t) (31)

(D) 1Uh~t Y2 (

uh(t) Yl(t)

t=0 t=0

The paradox is that at this point only uh(O) and Duh(O) can be

specified, while the remaining elements in the state vector on the

left of eqn 31 are undetermined.

It is curious that the initial value problem should also call

for the initial values of accelerations and higher order

derivatives as well. Note that the order of the differential

equations of motion (eqn 8) is order 2+a or equivalently fm and

that the state vector in eqn 31 calls for the initial values of

derivatives up through 2+a-0 or equivalently B(m-l). In other

words, when posing N, Om order differential equations as a system

of m.N differential equations of order 0 the corresponding initial

value problem calls for all the initial values of the po order

derivatives of the displacement vector, uh(t): p = 0,1,2,..., m-l.

These requirements appear to be analogous to the traditional

initial value problem for ordinary differential equations, but

also leaves one with the requirement for yet more initial

conditions.

It is proven in Appendix C that all of the non-integer

derivatives of uh(t) of order less than two appearing in the state

21



vector have zero initial value. The initial values for

acceleration and the accompanying higher order derivations

appearing in the state vector can be determined by returning to

the original equation of motion, eq1i 8, and using successive

applications, of eqn 24 to determine the singular terms in the

equation of motion. The resulting equation of motion for the

response to turning off the previous forcing function is

(O-t-e(m-2n-f)fi
U( tm-2n-I t-X)3 ^

- bM (l) bM D u(O
-- -l)rl(1-6) -_ -0

^O( ot) t -
+ (I + bD' ) M -u(t) k iFla + (ko + kiD )u (t )  (32)

F(O-)t "

)b + G(t)

The fractional derivatives in this equation of motion are

evaluated for t<O or equivalently t<t as shown in Appendix A.o

G(t) are the pseudo forces needed to produce the residual motion

associated with the previous loading history, already accounted

for in the modified basis equations. The singular forcing

function is the result of the a order derivative of the step

funtion turning off F(t). The remaining singular behavior is the

result of repeatedly applying eqn 24 to separate out the singular

behavior of the fractional derivatives of acceleration.

The corresponding equation of motion for the response to

the new loads is

22



(+)t-a (m-2n-1),8
u(O )t m-2n-i - ^ +

t
bM - + bM -r(l_)D u(o

= (l -c) D Ni+

(33)

i!(O+)t ^
+ (1 + bD )M u(t) + i + (ko + k Du()

bF(0+)t - ^

l- 1 bD

where the singular forcing function results from again using eqn

24 to express the effects of the step function turning en F(t).

The remaining singular behavior iF also the result of using eqn 24

to separate out the singular behavior of the fractional

derivatives of acceleration. Again the tilde and double tilde

notation identify motion due to previous forces, F(t), and present

forces, F(t), respectfully, as in eqns 18 and 19.

Equating the coefficients of the strongest singularities

(order a) in eqns 32 and 33 yields two equations needed to

establish the initial conditions on acceleration.

- bM u(o) - lu(O-) = - bF(O) (34)

bM (o0 + k I ( +) - bF(° + )  35)

Adding these two equations produces the relationship needed to

establish changes in the initial conditions due to stopping and

starting of the load histories.

MU((i) - u'(0-) + blk]1 ( fu(0+) - -U(O-)J F(0+) - T(0-) (36)

Since this relationship is based on step loading, which is
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incapable of instantaneously changing the displacement or velocity

time history between time 0- and 0+, one can concluce that

UO(o) = U(o) (37)

1(0 + ) = U(0) (38)

and eqn 36 can now be re-expressed as

(0 )() M FJ (39)
+t +)  - T=+)  -

Thus we see that the change in the initial accelerations is

proportional to any instantaneous changes (steps) in the

magnitudes of the applied loads at t = 0.

To determine the initial accelerations at time 0+ one needs

to determine the accelerations at time 0 and then add to them the

additional component of acceleration from the change in load

histories. Should there be a continuous transition from one load

history to the other, then

u(o+ ) = (o-) (40)

and the accelerations at time 0 are the accelerations used in the

initial value problem. Satisfying the initial conditions on

acceleration in this manner effectively removes the a order

singular terms on both sides of eqns 32 and 33.

The remaining singular terms in these equations do not have

corresponding terms on the force side of the equation. To

preserve the equality one must conclude that the coefficients of

these singular terms are zero. Note that setting these

coefficients to zero, in effect generates the remaining initial
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conditions needed in eqn 31. From eqn 32

(m-2n-I)p

D [(O I - 0 X = 1,2,3, ...m-2n-1 (41)

and from eqn 33

(m-2n-4)

1 (0+ ) 1 = 0 £ 1,2,3,. .,m-2n-1. (42)

Proof is given in Appendix C. Hence, one can see that the

initial values of the fractional derivatives of displacement

greater than second order and less than order Om must be zero to

preserve the equation of motion.

Adding the two equations of motion and recalling that

(t) + U(t) = u(t) t a 0 (43)

yields

M(l -r bDa)u(t) + (k+k1 D )u 11(t) = (l+bDc) F(t) + 0(t) (44)

which is identical to eqn 8 except for one very important detail:

the fractional derivative operator has changed from the original

definition, eqn 1, to the modified definition eqn 24. Recall that

the modified basis functions use this modified definition as well.

In fact the entire initial value problem (constituted by eqns 44,

12, 25, and 31) and its solutions (eqn 30) can be cast in terms of

the modified definition of fractional differenciation. Using the

composition property, for the modified operator,

D D u(t)], (45)
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which only applies when the initial values of the fractional

derivatives of the displacements are zero, one can

straightforwardly demonstrate that eqn 44 leads to a corresponding
r^

Lorm of eqn 12 where the D operator is replaced by D . Similarly,

the D operators in eqn 31 can be replaced by D as well. Also

noting that the particular solution in the initial value problem

is in effect an excitation from a quiescent state, one can

demonstrate that the first m-l terms in the series expansion of

the kernel in eqn 30 add out when the modal solutions are combined

to construct the particular solution. The resulting expression

for that part of the modal solutions which describe the system

response is given below.

y yj (0) Eft (a

t (46)

+ (-aj)ml D E(-(ajt))]gj(t-r)dr4

Proof is given in Appendix D. The modified equality symbol

indicates that this expression is true only in the context of the

total system response.

At this point one might be tempted to assert that the

original definition of fractional order differentiation, eqn 1, is

somehow inappropriate for the initial value problem. Not true.

Recall that the initial value problem has insufficient numbers of

physically motivated initial values to determine uniquely the

overall homogeneous solution as a superposition of solutions to

the modified basis equations. The additional auxiliary initial

conditions, developed in Appendix C by suppressing singular
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behavior at time zero, provided precisely the number of needed

initial conditions for a unique solution. In fact the original

definition generated this singular behavior without which the

initial value problem would flounder for lack of initial

information.

To test the robustness of this generalized initial value

problem, one needs to ascertain its ability to generate the

structural response to impulsive loading. The method entails

solving the initial value problem for a step response (using

initial accelerations, eqn 39) from a quiescent state and noting

that the impulse response is the first derivative of the step

response. The structural response for a unit impulse load at the

th
z degree of freedom of the structure is

mt q a  
T

2 n + q - l D - l - a  t) ljj

= X j 1 +b(a )(- i E((j l

+ mbNm- l (-a ) 2n+q-l ( Tz -t (7
j=l

th

where z is an N order column vector of zeroes except the z

element, which is one. Again the solution is seen to be

continuous and is expressed in terms of the modified operator and

the Mittag-Leffler function. Derivation of this expression is

given in Appendix E.

There are several similarities between the initial value

problem posed here and the classical initial value problem. First

the equations of motion are seen to have both homogeneous and

particular solutions which are uniquely dependent on the initial

values and the forcing functions respectively. In addition
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initial values for all rational order derivatives, up to but not

including the highest order in the equation of motion, are needed

to determine a unique solution. Also, the impulse response is

seen to be a homogeneous solution with special initial conditions.

These similarities suggest that other parallels do exist.
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Broader Issues in the Generalized Initial Value Problem

The successful construction of the solution to the rational

order initial value problem yields some insights into the nature

of the underlying mathematics. One of the more unusual results is

Jih number of initial conditions needed to construct a unique

solution. It appears that a m/n order equation needs m initial

conditions: one condition for the function and a condition for

each of the p/n order derivatives p = 1,2,3, .. m-I. As shown in

Appendix C the physically motivated initial conditions - initial

displacement, velocity and acceleration - are complemented by

precisely the needed number of auxiliary initial conditions.

These auxiliary initial conditions are the result of strictly

mathematical considerations.

Moreover, how does posing the m/n order equation as a 2m/2n

order equation change the nature of the solution for which 2m

initial conditions now appear to be needed? In fact the solutions

in both cases are identical from which one infers that the basis

4
functions of the two solutions are inter-related. This means that

the /im order and 1/2m order Mittag-Leffler functions, eqns 28 and

30, are related. These relationships among the rational order

Mittag-Leffler functions will be shown later. Choosing to solve

the equation as a 2m/2n system versus a m/n system leads to

higher order matrix equations and simultaneously provides m more

auxiliary conditions ensuring a unique solution. The

One needs to establish that different but apparently

equivalent forms of the equations of motion produce identical
solutions. This is similar to posing N second order equations as

2N first order equations where both sets of equations yield the

same solution.
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requirements for the physically motivated initial conditions

remain unchanged.

Assume that the largest common factor for the fractional

orders is 1/n where the modified basis equations take the form

I/ 1n

(D I n + a. /n) y (t) = g.(t) . = 1,2,3,.. ,m (48)

but one chooses to solve the problem with a basis fraction

of 1/2n.

(D / 2 n  + a1/2 )y (t) = g (t) p 1,2,3,..-,2m (49)
p p p

1/n
For each basis equation in eqn 48 with characteristic value a.

there are two corresponding equations in eqn 49 with roots of

1/ l /2n

- -n or +ia. 1 The solutions to these two equations

of eqn 49, in the form of eqn 30, are

y p(t) = y p(0) El/ 2 n- i(ajt) /2n)

+Jit D1-1/2n[E1 /2n (-i(ajl)1/2n]]gp(t-T)dr (50)

0

and

Yp+l(t) = Yp+l ( 0 ) E1/2 n(+i(ajt)1/2nJ

+jt D1/2nIE1 /2n +i(ajr) 2 gp+l(t-r)dr

0

(51)

Solving the problem with a basis fraction of i/2n instead of 1/n

produces m additional auxiliary initial conditions of the form
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Dp/2n u(0) - 0 p odd and 0 < p < 2m (52)

The solutions to eqn 48 also satisfy these initial conditions. In

Appendix C it is shown that if u(O) exists, then the initial value

of any rational order derivative less than one is zero, while u(O)

may be independently specified.

The solutions given in eqns 50 and 51 for eqn 49 when

combined should produce a corresponding solution to eqn 48, which

again based on eqn 30, takes the form

y.(t) = yj(0)E1 /n -(ajt) I / n )

j

+ Tt D1l/nE 1/ (ar) l/ni/] gj(t-r)dr (53)

0

However, the solutions in eqns 50 and 51 are not combined

arbitrarily. The solutions are combined in a manner consistent

with solving eqn 48 as a system of twice as many equations of half

the order of differentiation. As such, the loads g (t) may be

viewed as modal loads generated by gj(t), and applying the

following conditions

yj(0) = y p(0) + yp+l (0) (54)

1/2n
D v. (0) = 0 (55)-3

the resulting expression for v.(t) is
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yI ( ) (a t) 1/2nI ] El / 2 I ( t i n t1/ 2(

2 (56)

1~- 1 / 2 n E 1/2n( i(ajir) 1/2n I-E1/2n( i(ajir)1/2n Igj(t-r-)

+ 1 /2nd
2i aj

0J

where the integral terms are expressed in terms of eqn 30.

However, defining the functions in the brackets as generalized

cosine and sine functions

) E/2n(+i(at)1/2n) + E 1 /2n(_-i(at) / 2  (57)
005l/2(a. )-3___!_ (7

El/ 2n +i(a t) /2[- -i t)2n] (58)

2i

greatly simplifies the notation and eqn 56 oecomes

y.(t) = yj(0) Cos f -/2n a.-/2n sn/2n(a g.(t-r)dr.

(59)

The definitions for the generalized sine and cosine functions

produce a class of functions having the properties

Dn/2n .1i/2nD sin 1/2n (ajt) = a. Cs12n( t) (60)

S l/ 2na

1/2n/2n
Dl Cosl/2n(ajt) = -a. sin /2n(a t) (61)
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More general properties of the fractional order sine and cosine

functions and their hyperbolic counterparts are given in Appendix

F. The appearance of generalized sine and cosine functions can be

explained by observing that eqn 48 could have been equivalently

posed as a generalized second order differential equation of basis

1/2n.

(D2/2n + a.2/2n)yj(t) = g.(t), (62)

To complete the development of the relationship between the

basis 1/n and 1/2n functions, the composition property, eqn 7, is

applied to the derivative operator in the integrand of eqn 59

D- 1/2n[ ] = D1- 1/n + 1/2n[ (63)

and noting that

D1/ 2 nsin (ajt) = a1 Cos/(ajt) (64)
112nj a. l/2n *

eqn 59 now becomes

y.(t) = y(O)cos 1 / 2 n (ajt) + ftDl l/n [COSl/2n(ar)]g(t-r)dr (65)

0

Comparing this solution to the solution of eqn 48 given in eqn

53, one concludes that
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E/-(ajt) 1/ Cos /~at)
E/nl/2nl (j

E1/ 2n(i(a t)1/2n)+El/2n( i(ajt) I /2n (66)

2

or

2E/n[ (-a )l/n] = El/ 2 n ti(aj t) 1/2n + El/2n (-i(a t) 1/2n (67)

i/n
For a. negative the relationship becomes

3

2E l/n(ajt)i/n
= E1 / 2n[(at)1/2n + E1 / 2 nf (ajt)l/2n

2 cosh /2n(aj t)

(68)

These relationships can be straightforwardly verified by expanding

the Mittag-Leffler functions in terms of their series definition,

eqn 26, and adding terms of equal powers. The more general

relationship, also verified in the same manner, takes the form

E/n±(at)m/n = P E/((±I)/p(at)m/pn (69)

where (-)l/p are the p different l/pth roots of minus one. This

relationship allows one to demonstrate the equivalence of

solutions, u(t), when determined in terms of different basis

fractions.

One now concludes that regardless of the choice of
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appropriate basis fraction, 6, and the representation of the

solution, the uniqueness of the solution may be demonstrated using

eqn 69. One also concludes that a change in the basis fraction

adjusts the number of auxiliary initial conditions to preserve the

uniqueness of the solution, leaving the role of physically

motivated initial conditions unaltered. Moreover, the

relationships among different order basis function leads to

generalized definitions of sine, cosine and the hyperbolic

functions (Appendix F). The observation that these generalized

functions degenerate into the definitions for the normal sine,

cosine, etc., when fractions are set to one, coupled with the

observation that eqn 53 becomes the general solution to a first

order equation, eqn 62, when n is set to one, lends credence to

the view that these fractional order differential equations and

their solutions are legitimate generalizations of their integer

order counterparts. Furthermore, this solution technique may be

viewed as a legitimate generalization of the initial value

problem.

Yet another similarity with ordinary differential equations

arises when one examines the nature of homogeneous solutions for a

fractional order differential equation having repeated roots in

its characteristic equation. Posing the differential equation as

a system of fi order modified basis equations in Jordan form

(10:35), the two basis equations containing the same root take

the form

35



D y. + a. y 0 (70)

D yj+I +j j+l + Y = 0 (71)

Solving for y. (eqn 28) and using y. as a forcing fur.ction to

determine yj+I (eqn 30) yields

Y+(t) = yj+ (0) Ej (ajt) )) + yj(O) 6-It Dl-O[E,3-(ajt)3)] (72)

1%, .en 6 is one this solution becomes the solution to a second order

differential equation with repeated characteristic values.

Yj+l(t) = yj+l (0) e - t + t yj(e) a t (73)

When the root is repeated more than once, y j+l(t) is used to find

Yj+ 2 (t) and so on until the solution is complete.

Dyj+2 (t) + a yj (t) + y = 0 (74)j2j j+2 Y+I(4

The general form of the homogeneous solution for m repeated roots

is

y (t) = yj(0) Ej(-(ajt)o)
j+m-l i

m-1 k-l

k=2 Ip=-1

which for 13 = 1 becomes the solution for an ordinary differential

equation having constant coefficients with m repeated roots in its
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characteristic equation.

When one is confronted with all of the similarities between

fractional order and ordinary differential equations, it seems

appropriate to examine the fractional order initial value problem

as a well posed problem. The existence of solutions has been

established. The uniqueness of solutions can be readily

established by limiting the class of loads and responses to those

having Laplace transforms. One can expand this class of functions

to include those loads that produce unique responses through the

use of the Green's functions, eqn 46 and 47, and convolution.

Continuous dependence on the data can be established using eqns

28, 31, 46, and 47 and noting that the Green's functions are

non-singular. In effect the fractional order differential

equations exhibit precisely those characteristics expected from

ordinary differential equations.

One might ask why not use Laplace transforms to solve the

problem and dispense with the formalism constructed here. First,

one is not now restricted to those loading and displacement

histories having Laplace transforms, although in practice most

loadings and responses of engineering interest do have Laplace

transforms. In principle it is possible to formulate the initial

value problem with Laplace transforms using delays to stop and

start loading histories, but several key features of the initial

value problem are missed. The transition to the modified operator

and the rationale for the formulation of the auxiliary initial

conditions can be completely overlooked. Even if the modified

operator were discovered using Laplace transforms, the initial

values of the fractional derivatives do not appear in the
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formulation, because transform theory has correctly set them to

zero. The fact that they do not appear obscures their existence

and the existence of the auxiliary conditions needed for a unique

solution. As a direct consequence, the non-singular nature of the

Green's function solutions is missed as well. Also missed are the

generalized nature of the basis functions being special

Mittag-Leffier functions, the inter-relationships among the

different sets of basis functions and the definitions of the

generalized sine, cosine, etc., functions spawned by these

inter-relationships.

In essence, Laplace t'-ansforms by themselves do not readily

reveal the structure of the initial value problem, and the needed

auxiliary initial conditions for a unique solution are not

produced, except possibly in retrospect. As a result the major

features of this generalized initial value problem can be missed,

and one is never justified in claiming that the class of

differ-integral equations solved here are in fact generalized

diffe--entiai equations.
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Conclusions

The most encompassing conclusion is that the class of

differ-integral equations, represented by eqn 8, may be viewed as

a generalization of ordinary differential equations with constant

coefficients. WhIen an equation of motion is posed in terms of m

differential equations of fractional order 0, m sets of initial

conditions are needed to determine a unique solution. Careful

examination of the singular behavior generated by fractional

differentiation leads to auxiliary initial conditions that

supplement the physically motivated initial conditions producing a

total of m sets of initial conditions and a unique solution. The

resulting fractional order differential equations are posed in

terms of a modified definition of fractional differentiation,

which appears to act on the solutions as though they were

analytically continued from negative time into positive time.

This is precisely the mathematical property needed for a

generalized initial value problem.

Several other key features of the mathematical development

ler. credence to the claim that the mathematics herein embodies a

generalization of ordinary differential equations. In every

instance, setting the basis fraction to one transforms the

solutions into the traditional solutions associated with ordinary

differential equations. In addition the solutions to the modified

basis equations are posed in terms of Mittag-Leffler functions,

long viewed as the fractional order generalization of the

exponential function. The general form of the basis solutions

contains a portion dependent on the initial condition and a

portion dependent the forcing function, clearly identifiable as a
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generalized homogeneous solution and a generalized particular

solution, respectively. The form of the homogeneous basis

solution for the case of repeated characte-iqtic roots is strongly

reminiscent of its integer order counterpart, and the two

expressions are identical when the basis fraction is one. The

generalized sine and cosine functions along with the gerieLaiized

hyperbolic functions are also very similar to the traditional

functions. These similarities lead to generalized identities that

also become traditional trigonometric identities when the basis

fraction is one. In addition to all these similarities with

ordinary differential equations, the observation that the

fractional order initial value problem appears to be a well-posed

problem makes the case.

This evidence leads one to conclude that the strong

similarities between the generalized initial value problem and the

traditional initial value problem are not coincidence, and that

this generalized initial value problem may be viewed as a

legitimate extension of the theory for ordinary linear

differential equations with constant coefficients.
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APPENDIX A - Differentiating Jhen Time is Negative

This section presents the technique needed to perform

fractional differentiation over the time interval prior to the

initial time of the initial value problem. In the process of

setting up the initial value problem one needs to examine the

mathematical behavior of the system just prior to and just after

the initial time (t = 0) to determine the nature of additional

initial conditions.

Unfortunately, the definition of fractional order

differentiation, eqn 1, becomes ambiguous when the lower limit of

integration is taken as a negative value.

Da 1 d J t y(u)

D [y(t)] -(l-) tj (u) du (A-i)
_to (t-u) d

For t less than zero and greater than -to, the kernel in the

integral becomes a complex, multivalued relationship. The

definition of fractional differentiation given in eqn 1 does not

readily allow one to specify time zero strictly as a matter of

convenience. It appears that this definition of fractional

differentiation insists that time zero be chosen at times prior to

any non-zero values of y(t) for the definition to produce at

unique result.

One would like to have the latitude of choosing time zero to

coincide with the initial time of the initial value problem. To

circumvent the ambiguity raised in eqn A-1, one may employ the two

time scales shown in figure 1 on page 15: the t scale to set up

the overall problem and the t scale to accommodate the initial

value problem. The first time scale, t, takes zero to be the
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the interval t ) in terms of produces the equation for prior

motion

M (l+bD') u (t - t ) + (k + k DC) u (t - t
_- 0 o0 =1 0

(A-5)

- (l+bD')((t - t) -U(t - to)0( - to)J

Using eqn A-4 to construct these derivatives, then applying

Leibnitz's rule for differentiating the integrals to separate out

the singular behavior and substituting t for t - t produces eqn0

32. Those terms resulting from this process not specifically

identified in eqn 32 constitute G(t), the pseudo forcing

functions, which produces the residual motion, u,(t > 0) due to

previous loading (t < 0) of the structure. This residual motion

is superimposed on the response of the structure, u(t), to present

loading, F(t), to produce the total response of the structure for

t > 0.
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onset of any recent history of motion for the structure and the

second scale, t, takes zero to be the later time about which one

wants to delineate previous and present loading histories. This

later time, t, is the time scale of the initial value problem

where the initial time is t = 0. The only difference in the time

scales is the shift factor t , the time interval of the recent
0

history of motion. Hence the relationship between the two time

scales is

t= - t (A-2)
0

Posing eqn A-1 in terms of this time shift yields

D Y(t-t)] r(l1a) dt -to (t o tu)Q du (A-3)
S-t0

and with the change of variable u = r-t this relationshop becomes
0

Ck 1 d t y(-r-t0
D Y(to) l- ) d 0-) d (A-4)

which appears in eqn 17, with a set equal to 9.

The shift of t in the time scale restores the single valued
0

5
property of the fractional derivatives operator. More

importantly eqn A-4 allows one to evaluate the behavior of

fractional derivatives in the equation of motion, eqn 7, prior to

the initial time of the initial value problem which occurs

for t = t . Posing the equation of motion for prior loading (over
O

5 Note that replacing t with t and setting to = 0 produces the

original definition, eqn 1.
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APPENDIX B - The Structure of the Eigenvector

This section establishes the systematic structure of the

eigenvectors (the columns of the orthonormal transformation matrix

in eqn 14) associated with the expanded equations of motion, eqn

12. In particular one demonstrates that the jth eigenvector eqn

12 has the following structure

0 .' ( ( -a3 M- 1
3j (-

2i3S= _ = 0J (B-I)

- -laj -ii " )

where 4 is the corresponding j th eigenvector associated with the

homogeneous form of eqn 11 and -aO is the eigenvalue associatedJ

with both eqns 11 and 12. SLated more succinctly, one will prove

that

j) p-1  p = 1,2,3,...,m (B-2)

given the homogeneous form of eqn 12 shown below.

= 7j = -Mi

(-a A -0 + -A 0 - 0 (B-3)
(-.-~3i -3i I

-0 :0:0o2 o -2j 0
cC ... C C C -0 ....0 O:c ...

=h = =2 =1 -1j, =0 -13/

To begin the proof one focuses on the upper m-i sets of

matrix equations in eqn B-3 and observes that they may be
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re-expressed as

(-a) (B-4)

or

]1 '4-I m1 (-a) - 0
I 3 Tfl

A _ -2j
( -0 (B-5)

(-a' a) - 0 0

- 2j

The absolute value of the determinant of [A], indicated by det[A],

can be expressed as

det/AJ = b m-(det M)m -  (B-6)

where M is the system's mass matrix. Since the mass matrix is

positive definite, then the determinant of (A] is always non-zero

and [A] is not singular. Hence the only solution to eqn B-5 is

the trivial solution, and as a result

-2j -lj(-a)
-j

-3 = -2 (-a ) 3j - 2j i(B-7)

-mj = -m-l j ( j

from which one concludes

j- lj(-aj) P-i p = 1,2,3,...,m (B-2)
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APPENDIX C - Deriving the Auxiliary Initial Conditions

This section establishes the sources of the auxiliary initial

conditions. These auxiliary conditions are needed to determine a

unique solution for the initial value problem when the equations

of motion are posed as a system of /3 order differential equations.

The auxiliary conditions have two sources. The first is eqn

33, the equation of motion, where certain singular terms appear on

the response side of the equation without corresponding singular

terms appearing in the applied forces. The equation of motion is

preserved by setting the coefficients of these singular terms to

zero. These coefficients are the initial values of the fractional

derivatives of order greater than 2 and less that 2 + a of the

structural displacement histories. The source of the remaining

auxilary conditions, those derivatives of order between one and

two and between zero and one, is the following theorem, Given a

set of functions, u(t), which are a linear combination of Mittag-

Leffler functions as in eqn 31 where u(t) have bounded first

derivatives at t = 0, then all fractional derivatives of these

functions of rational order less than one have initial values of

zero at t = 0.

The proof starts with eqn 32.

m.N

uh(t) = X Olj yj(t) (32)
j=l ~-

where 0,,are the eigenvectors associated with eqn 11 and yj(t)

are Mittag-Leffler homogeneous solutions for the modified basis

equations shown in eqn 28. Identifying these homogeneous solutions

appearing in eqn 31 with the subscript j produces
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yj(t) - yj(0) E (-(ajt)i] (C-1)

and using eqn 27 to express these functions in series form

produces

0-( j )] =- cc ( p p(C-2)

p0 E(l+po)

Substituting eqn C-2 into eqn C-I and then substituting the

resulting equation for y.(t) in eqn 32 yields

m N CO ( ( , t ) " C 3
uh(t) X 01' y '0) X r(l+p ) (C-3)

Taking the first time derivative of this expression results in

P) ptP- 1

m.N c (-a.) pt
u(t) = Z -lj Yj(0) Z (C-4)

j=l p=l

where the derivatives of the constant terms in the infinite series

(p-0) are now zero. Because one of the two summations has a

finite number of terms, the order of summation may be interchanged

without loss of generality. Also noting that

PB 1 (C-5)
F(l+po) F(p'3)

the expression for the derviative uh(t) becomes

00 pfi-l m-N

(-t) Z X.N ( )a p yj(0) (C-6)_- (t) = - r (po) j- i- j - j

Recall that u(0) is assumed bounded and at worst has a step
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discontinuity at t - 0, and that P is of the form i/n. Therefore,

the first n-i terms of the infinite series must be zero because

they are singular and unbounded at t=O. Setting the coefficients

of the first n-l terms equal zero yields

jIN l (-a.j ) yj(0) = 0 p = 1,2,3,.. ,n-i (C-7)

j=i .J 3

Applying the results of Appendix B

k-i

kj = lj(-a j ) k 1,2,3,.. ,m (B-2)

to equation C-7, while noting the m > 2n, results in

m.N

X pi yj(0) - 0 p = 1,2,3,..,n-i (C-8)
j=il. .

.th
Examining the structure of the j- eigenvector for eqns 12,

0., shown in equations B-i, and using eqn 31 one concludes that

m.N
DP/n uh(O)= X pi yj(0) p = 1,2,3,..-,n-i (C-9)

j=l

and with eqn C-8, one can further conclude that

D p/ n uh(O) = 0 p = 1,2,3,... ,n- (C-10)

Because n has not been specified, in principle any n could

bechosen. One can conclude that p/n can take on any rational

value between zero and one and the proof of the theorem is

complete.
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However, the theorem need now be applied to determine the

initial values of the derivatives of uh(t)lt-0 of rational order

between one and two. The most intense forces applied to the

structure in the initial value problem are the step functions

turning off and turning on the loading histories at time zero. A

step load is incapable of instantaneously changing the system's

kinetic energy and one concludes that the resulting velocity

histories are continuous functions for all time. Step loading is

also incapable of producing unbounded accelerations, therefore the

first derivative of velocity is bounded and piecewise continuous.

From this, one can conclude that the velocities vh(t) have bounded

derivatives, v (t), and the above theorem applies to the initial
-h

values for the fractional derivatives of rational order between

zero and one of the velocities. The result is

Dp / n vh(0) = 0 p = 1,2,3,',n-i (C-11)

Expressed in term of the displacements, these conditions are

DP/n+iuh(O) - 0 p = 1,2,3,.'. ,n-i (C-12)

and are seen to be the initial values of the derivatives of

rational order between one and two of the displacements.

Given that the initial displacements and the initial

velocities are known, coupled with the auxiliary conditions given

in eqn C-10 and C-12, the only remaining initial conditions needed

in eqn 31 are the initial accelerations and the initial values for

the fractional derivatives of uh(t) of rational order between 2

and 2+a. These conditions are determined by examining the
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singular behavior in the equation of motion for previous loading,

eqn 32, and the equation of motion for present loading, eqn 33.

The singular behavior in these equations of motion is

generated by the a order derivatives of the step functions turning

off and turning on the previous and present loading histories and

by the 2+a order derivatives of the respective resulting

dispacement histories. The singular behavior of the forcing

function and the a order derivative of the displacements in the

equation of motion for present loading, eqn 33, is derived using

eqn 23. Calculating the 2+a derivative of the displacements is

relatively straightforward

t2+pp m.N p+2n

-h(t) - -Uh(0) + -Uh(O)-t + r(3+p) 1l'= l(-a ) yj(0) (C-13)

The displacements, shown here with the initial displacements and

velocities specified and the auxiliary conditions of eqn C-10 and

C-12 applied, are first differentiated twice and then successive 8

order derivatives are taken to produce the 2+a order derivative.

The result is

1) = tp 1-a m N 1 p+2n
D+ -h (t ) P= F(l+p13-a) 1 lj(-aj )  yj(0) (C-14)

and recalling the 1 = 1/n and from eqn 10 that a = 6q, this

expression becomes

D t(p-q)O m.N 3 p+2n (C-15)D u -'h ( t )  = P F (l - (p - )X 1 l j )  yj(0) ( -5
p=0 j =
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Separating out the singular terms yields

aq1 t (p-q)p mN )p+2nD _ U (t) I r(1-(p-q),6) j l j(ai i()( -6

p=0 -i .

O (p-q)O m.N p+2n
+ Z I (l-(p-q)i) X "J yj(O)

p=q j=l

For p = 0 the order of the singular term is a and the coefficient

of this singular term

m.N 2n
I j) yj(0) = _.(0 + ) (C-17)

j=l -i- -h

appears in eqn 44 as the initial value of the acceleration due to

6
the present loading. Recall that eqn 35 resulted from setting

equal the coefficients of the a order singular terms on both sides

of eqn 33.

The remaining singular terms in eqn C-16 do not have

corresponding singular terms in the forces. To preserve the

equality of eqn 33 one must conclude that the coefficients of

these singular terms are zero. Setting these coefficients to zero

yields

m.N p+2n

k !(-a) y.(O+ ) - 0 p - 1,2,3,...,q-1 (C-18)
j=l

Again, using the results of Appendix B, eqn B-2, eqn C-18 becomes

6 This result can be confirmed by differentiating C-13 twice and

setting t - 0.
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m.N

X j yj(0 + ) - 0 = 2n+l,2n+2,2n+3,.. ,m-l (C-19)

j=l

This equation sets the initial values of the fractional

derivatives of the displacements of rational order between 2 and

2 + a to zero.

Applying the process that led to eqns C-14 through C-19 to

the equation of motion for previous loading, eqn 32, and equating

the a order singular terms leads to eqn 34. The methods used to

determine the fractional derivatives at time 0 are presented in

Appendix A. Combining eqns 34 and 35 produces the initial

condition on acceleration, eqn 39, and with the initial values of

displacements and velocities completes the needed physically

motivated initial conditions. These conditions coupled with the

auxiliary initial conditions established in eqns C-10, C-12 and

C-19 constitute the complete set of initial conditions needed to

determine a unique solution for the initial value problem.

52



APPENDIX D The Basis Green's Function

The overall particular solution (forced response) for the

equations of motion, eqn 8, can be constructed from the solutions

of the modified basis equations appearing in eqn 30. The overall

solution is a linear combination of the modified basis particular

solutions prescribed by the orthonormal transformation for the

equations of motion. These linear relationships are, of course,

the analogue of eqn 31 applied to the particular solutions.

(D)mlUp(t) y (t)

(Do) 2U(t) 1 y (t) (D-l)fiI-p [ -P3
p ) P 2u p(t) y p(t)

Although one need only employ the lowest set of matrix equations

to determine the particular response, this relationship is useful

in demonstrating that the overall particular solution does not

contain the response generated by the singular terms in the kernel

appearing in eqn 30. The kernel is of the form

CO (-a --t j-l

Di = '3 E j = 1,2,3,-..m.N (D-2)

These kernels are the particular solutions when the forcing

functions, gj(t), are unit impulse functions.

To examine the behavior of the impulse response, one

calculates first the response to a unit step load and then takes

the first derivative of the step response to produce the impulse

th
response. The response of the j modified basis equation for a
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th
unit step applied at the z degree of freedom is

yp(t) f 9 D1-0 Ek-(ajit)P gjz (-)d D3

.z 0

where

T t
gj t T Zl U(t) (D-4)

r jt

Here l is the transpose of the j eigenvector of eqn 11, z is a

th
column matrix of zero elements except the z which is one and

U(t) is the unit step function. Substituting eqn D-4 into eqn

D-3 and evaluating the integral produces the step response,

ys. (t).

jz

y (t) = I'[E$t-(ajt)'3] OT z (D-5)
s. -lj -3z

11 is the fractional integral of order P3 and is defined as

t

)I Jy(t - T)

I [y(t)] = [ y(t)- dr (D-6)
rP) it 1-P

The / order integral of the 0 order Mittag-Leffler function

appearing in equation D-5 can be shown to be

I'(a. tE(( D7~~ [3~-k~tIJ ~=lF(l + Ifi)(D)

Using eqns D-5 and D-7 and summing all the step responses of
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the basis functions using the lowest set of matrix equations in

D-1 produces the structure's step response.

m N T (-a.) t1t

u (t) = 1 l lj z I ) (D-8)-s - - (l + 1,)

However, noting that all the basis step responses, eqn D-5, are

zero at t = 0 (see eqn D-7), one can conclude from eqn D-1 that

all of the fractional derivatives

Dkus(t)] = 0 k = 0,1,2,3,...,m-I (D-9)

z t=0

of the step response are zero at t = 0 as well. In other words,

if all the step responses are zero at t = 0, then all of the

elements in the right column vector of eqn D-1 are zero for t = 0

and eqn D-9 follows.

It follows from applying eqn D-9 to eqn D-8 that the first

m-l terms in the time series representation of u (t), eqn D-8,
-z

must also be zero. The resulting expression for the step response

is

mN T (-a8) It

u (t) lj !j T PI - (D-10)
s z j=l =m

or

m.N T O (-ao) 2n+q+2-l t(2n+q+ )

s = r(l+P(2n+q+)) (D-11)
z j-1 =0

Taking the first derivative of u produces the impulse response,-S
z
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u (t). Recall that 8 - 1/n.
-

z

MIN T 00 ( a ) 2n+q+2-l l+a+1
6 (t) = lj lj z Z j

z j=l I 0 0(2++ ) (D-12)

However, the overall impulse response may also be expressed as a

linear combination of the effective impulse responses associated

with each mode as shown below.

m.N
-6 .I l Y (t) (D-13)

z j=l jq

Using eqns D-12 and D-13 one can determine the expression for the

effective impulse response associated with each mode, and it is

seen to be

/3 2n~q- (-a. t
Y6 (t) = (-a.) 2n+q- X (P+ T z (D-14)

jz 0 lj

Given the effective modal impulse response one can now work

back to determine the new form for the kernel of the convolution

integral in the particular solution. The new kernel is

/3 £-l £/3-l
_(-a.) tml

) = (-a.j) D E,-(ajt)J (D-15)

The first tern in the kernel is order l+a. The earlier expression

for the kernel, eqn D-2, shows a first term of order /-1. The

difference in these expressions is based on the observation that
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eqn D-9 demonstrates that the first m-i terms of the basis step

responses sum to zero when constructing the overall step response

using eqn D-1. Consequently, the first m-I terms of the basis

impulse responses sum to zero when constructing the overall

impulse response. Without loss of generality these m-i terms may

be left out of the kernel when calculating the overall particular

solution for any loading history. The general form of the overall

particular solution is given in eqn 46.
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APPENDIX E - The Response to Impulsive Loading

In Appendix D the impulse response or Green's function was

based on gj(t), eqn 22, being impulsive where g.(t) is a

combination of the pseudo forces and the stress operator from the

viscoelastic model acting on the applied forces. This appendix

presents the general form of the response of the structure to an

impulsive force. The derivation is based on the step response for

which the foundation has been laid in eqns 32 through 44 and

Appendices A, B, and C. Paralleling Appendix D, the determination

of the impulse response rests on the observation that in all

linear systems the first derivative of the step response is the

impulse response.

The derivation of the step response is based on solving eqn

44. Note that for step loading with no previous motion, G(t) and

D f(t) are zero in eqn 44. Casting the resulting equation of

motion in expanded format, eqn 12, allows one to solve for the

step response by specifying the initial accelerations in the state

vector. The expressions for the initial accelerations based on

eqn 39 is

+ -l= +
u(O ) M F(O ) (E-l)

where the tildes will be dropped because there is no longer a need

to distinguish between previous and present loading and responses.

The remaining force vector in eqn 44, f(t), is taken to be a

th
unit step load applied at the z degree of the freedom. This

th
load vector z is all zeros except for the z element, which is

one. The resulting expression for the initial accelerations is
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u(O - 1 z (E-2)

Note that the step force generates both homogeneous and a

particular parts in the response. The homogeneous part arises

from the initial accelerations and the particular part arises from

the force term E(t)in the equation of motion. For simplicity, the

particular part of the step response will not be introduced until

after the homogeneous solution is determined. The particular

solution and its derivatives of order up to and including 2+a-o

are initially zero and have no effect on the form of the

homogeneous part.

Based on eqn 31 the initial values of the homogeneous

parts of the basis functions should satisfy

0

Ym.N(0)
6
M-1 z
= . Y3 (0) (E-3)

6 yl(0)

Here M 1 z is the prescribed initial accelerations and is the

2n + 1s t  column vector from the bottom of the array. To

determine the homogeneous part one needs to solve for

yj(0), j - 1,2,3,..., m.N. The orthonormal transformation matrix

for the expanded equations of motion, eqn 12, has the property
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where [M I is the pseudo mass matrix associated with the expanded

equations of motion, eqn 12. Hence premultiplying both sides of

equation E-3 by [D]T[M*], which is [@] produces

0
Ym.N (0 )

M-1
= Y3-0) (E-5)
0 Y2(0)[ yl[] )

Due to the systematic structure of [M ] and the eigenvectors

associated with the expanded equations of motion shown in Appendix

B, and the location of M- z in the array (the 2n+l t column

vector); it follows that E-5 reduces to

T
T z y (0)-qm.N YmN

±T
b q3 Y 3 (0) (E-6)

q2 - Y 2(0)

Oql 7 Yl (
-

)

from which one concludes

y.(0) b 6 z j = 1,2,3,...,m.N (E-7)
J -qj -

where q is defined in eqn 10. Using eqn B-2, this expression for

the initial values of the basis functions becomes

y.(0) - b Ol (-a ) z j = 1,2,3,...,m.N (E-8)

The initial values, yj(O), are now uniquely determined;
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however, certain conditions resulting from eqn E-8 will be useful

in simplifying the expressions for the homogeneous part. Using

eqn E-8 to substitute for the initial values in eqn E-3 yields

0 (_a p  ) q-l
_M (a. N 1
O ~ q-1

M -Z (-a 3 ) T
o = - (3q b4 z (E-9)
0 (- 6 3q-1 j

b2

6 (-a)p q-1

and as a result one sees that

m ( q- _ 0 p - 1,2,3,.. ,m-1 p o 2n + 1 (E-1O)

and again using eqn B-2, eqn E-10 becomes

m-NX (_apj)p+q-2 = 0 p = l,2,3, . .,m-i p o 2n + 1 (E-ll)
j=1

These conditions will be applied to the homogeneous part of the

response.

Based on eqn 31, the homogeneous part of the step response is

m.N

u(t) j 1 0-1j  Y (0) E [-(ajt)16 (E-12)

Using eqn E-8 to insert the initial values and presenting the

Mittag-Leffler functions in terms of their series representations

produces the homogeneous part of the step response, u h(t).

mN Cq (-a. t

u (t) = l b (-a.) T z)jlj- r (l + 28) (E-13)
z j-1 1-0

61



Interchanging the order of summation and re-arranging terms

results in

u ( O) - m-N b ) P+q - T z (E-14)
h~t) - Ij(l + I , lj (  -iT

z 1-0 j I -1 l "( -4

This form of the response allows one to apply, in a

straightforward manner, the conditions given in eqn E-11, which

removes several of the lower order terms in the time series. The

resulting form of the homogeneous part of the step response is

2 m.N

u (t) - X b (-a )-h 2 1 1_# 2~

z j=l -J J )  J

(E-15)

tO m.N 1
+ x P(I+8) X b (-a 0+-. z

£=2n+q j=l - J

Having applied all the initial conditions and constructed the

homogeneous part of step response, one takes the first derivative

of eqn E-15. Recall that (2n+q)p is equal to 2+a.

m.N
i (t) =- b (-apj 2n+q-i T
z j-1 (E-16)

m-N O t(n+q+R)O al)
+ I b (-a)2n+2q-i __I__Z3

j-i -J j 3J - 1-0 F(l+n+q+£)

Using more compact notation eqn E-16 becomes

(t) -m b T z fa)2n+q-i-h lj !lj k"

z j-1i (E-17)

a 2n+2q-l^-l- [E (a
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This equation is the expression for the part of the impulse

response dependent on the initially induced velocities (or

momentum). Recall however, that particular part of the step

response, based on eqns 46 and D-4,

2iP(t) - X Ol Olj z (-a m- D- - E (-(ajt) )  (E-18)
z jf m 2 F

is not yet included. Taking its first derivative

m-N T
Pz (t)j=l lj j ( z a )m- D [E (-(at)18 (E-19)

and combining it with eqn E-17 yields eqn 47.
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APPENDIX F - A Class of Generalized Functions

Oldham and Spanier (17:122) present the one-half order

analogue of the exponential function. This function is predicated

on the definition of fractional differentiation given in eqn 1,

and the function exhibits singular behavior at t = 0. Note that

the formulation of the fractional order initial value problem led

to the exclusive adoption of the modified definition of fractional

order differentiation, D[y(t)] defined in eqn 23. As a result

one is motivated to construct a set of generalized functions based

on the modified definition of fractional order differentiation.

As expected the singular behavior does not appear in the

derivatives of the modified analogues. The absences of the

singular behavior lead to a modified set of generalized functions

having properties remarkably similar to their common counterparts.

Moreover, this set of modified functions is precisely those

functions found in the solutions to the modified basis equations

which are the foundation of the fractional order initial value

problem.

This class of functions is built around the special

Mittag-Leffler function

E 0 -(at)] X (-(at) )p

p=0 F(l+pf) (F-l)

and the modified definition of fractional differentiation.

t1 F u' (t-r) dr0 < <1(F-2)
D [u(t)] P (I- ) J dr 3

The special Mittag-Leffler function has the property
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which is of course analogous to

d -at -at
-- e = - ae (F-4)

In fact eqn F-3 becomes eqn F-4 when / is set to one.(13:527)

Consequently, for our purposes the special Mittag-Leffler

function, eqn F-l, is taken to be the generalized fractional order

exponential function. The property given in F-3 may be proven by

taking the 0 order derivative, eqn F-2, of each term in the series

appearing in eqn F-1.

Having established che fractional order exponential function,

the definitions of the fractional order sine and cosine functions

take the form

sinP((at)l E,4i(at)P] - Eui-i(at)1 (F5)

Cos i(at)l] E [i(at)O] + E0- i(at) (F6

co4(t) 2

These two functions have derivatives very similar to the regular

sine and cosine functions

D[sinI,[(at)')] - a cos (at)8) (F-7)

D[cos, 3 (at)')] - asin# [ (at) (F-8)
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Note that setting P to one in the above four equations yields the

exponential representation of the normal sine and cosine functions

as well as the properties of their derivatives. Using eqns F-5

and F-6 one can straightforwardly demonstrate that

E ,(i(at),8 = cosP((at)QJ ± i sin P((at)l) (F. 9)

which is the generalized form of Euler's formula. This

relationship also leads to

E [i(at)P] E[-(') ] = cos [(at)l + sin 2[(at)fi (F-1)

which for set to one produces

1 = cos (at) + sin 2(at) (F-11)

The definitions for the fractional order hyperbolic sine and

cosine functions are

sinh 8(at)l = - E6((at)') 2 E , - ( a t )  (F-12)

cosh I(at)O - 2(F-13)
/36 ) 2

where their derivatives are seen to be

[ sinh okat)'l - a cosh ((at)' 1 (F-14)

D P~[osh 1(at) 11 = a sinh 01(at)B (F-15)
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These functions also satisfy

E 0!(at)O) = cosh3((at)l3 ± sinhPd(at)l] (F-16)

and

E,[(at)o] E,[-(at)] = cosh 2(at)P) - sinh>2(at)Bl (F-17)

All of these definitions and relationships for the generalized

hyperbolic functions are seen to reduce to traditional definitions

and relationships when / is one.

The remarkable similarity between the behavior of these

generalized functions and their ordinary counterparts, not

exhibited by Oldham's generalized functions, is directly

attributable to the absence of the singular behavior in Oldham's

functions.
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