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Tie MNaval Qcean Rescarch and Development Activity has been heavily
awvalved with the design of the Defense Mapping Agency’s (DMA) World
Vacior Shoreline (WVS) data product. The completion of worldwide WVS
coverape was scheduled for June 1989, A Cempact Disk - Read Only Memory
Pmt'ﬂypv is also planned. .

Many Navy systems will be using the WVS. The coastlmc simplification
or thinning methods described will enable the efficient use of the WVS product
in mapping applications that require lower levels of resolution. The distribution
of lower-resolution: coastiine data sets by DMA could save individual method
development for cach system, ensure that all systems display the same coastline
at the same map scale, and greatly speed the display.
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Executive Summary

The World Vector Shoreline (WVS) product is being produced at a map
scale of 1:250,000. Three algorithms for simplifying or thinning the WVS to
lower resolution are implemented, tested, compared, and evaluated. The
Douglas-Peucker algorithm is recommended for generating lower resotution
data sets for distribution by the Defense Mapping Agency. Other methods
have significant speed advantages for real-time applications. Guidelines for
selecting a simplification algorithm for a particular application are presented.
A resolution threshold of 9 seconds is recommended for map scales from
1:1,000,000 to 1:10,000,000. A resolution threshold of 72 seconds is
recommended for map scales smaller than 1:10,000,000.
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Simplification Methods for the World Vector Shoreline

Introduction

The fractal nature of the coastline! makes it
desirable to sample the World Vector Shoreline (WVS)
data base in a manner related to the map scale at
which it will be displayed. A survey of Navy users?
has determined that several resolutions of the WVS
are required.

This report shows the relationships among vector
data-base resolution, display device resolution, and
map scale, then presents three simplification
algorithms. These algorithms provide means of
reducing the data-base resolution to that which is
appropriate for a particular map scale and display
device resolution. The discussion is supplemented with
a series of maps illustrating the output of the
simplification algorithms at several map scales.

Data Base Resolution, Map Scale,
and Display Device Resolution

Digital electronic display devices have a finite
resolution. It is not possible to display intormation
in any finer detail. A typical display resolution is
100 pixels per inch, which is used throughout this
report. Pixel size in geographic seconds is given by
Pixel size - 3,600 seconds/degree ,

R (pixels/inch) « § (inches/degree)

where R is the device resolution and S is the map scale.

Table 1 lists pixel sizes for various map scales. The
display resolution, R, is 100 pixels/inch.

Pixel size does not necessarily mandate a desirable
resolution for all mapping applications. It does offer
an objective resolution threshold, since any increase
in data-base resolution is wasted as the finer resolution
data collapse into the pixel resolution upon display.

Table 1. Map scale vs. pixel size.

Map Scale Pixel size
Inches/degree Ratio at equator (seconds)
16.0 1:270.000 2.25
10.0 1:432.000 3.6
80 1:540,000 45
40 1:1.080,000 9
20 1 2.160,000 18
10 14,320,000 36
05 1 8.640,000 72
025 1:17.280,000 144
0t 143,200,000 576

Simplification Algorithms

Three simpiification algorithms were chosen for
implementation, testing, and evaluation. One algorithm
is not directly resolution-dependent. The other two
algorithms are directly resolution-dependent.
Each algorithm produces output consisting of a subset
of the input points. The second and third algorithms
may be considered to be “‘excerpolation’’ algorithms as
defined by Sharman.?

The first algorithm is simple, but useful, and is
known as the Nth point aigorithm. The first and last
points in each segment are retained. The intermedi-
ate points are selected at some sampling interval, N.

The second algorithm was developed by the author
and Robert E. Mullen at the Naval Oceanographic
Office in 1985. For this algorithm a resolution
threshold is specified in the units of the data. The first
two points and the last point are retained. The distance
from cach intermediary point to an imaginary line
through the two previously selected points is compared
to the resolution threshold. If the distance exceeds the
threshold, then the point is retained. If the distance
1> less than the threshold, then the point is rejected.

The third algorithm was described by Robinson?
as follows: *“The Douglas-Peucker algorithm allows the
cartographer to specify a threshold that controls
the amount of simplification. For a specified line
segment the two end points are connected by a straight
line and the perpendicular distances from all the
intervening points to that line are calculated. If &
perpendicular distance exceeds the specified threshold,
the point with the greatest perpendicular distance is
used as the new end point for the subdivision of the
original line. The perpendicular distances from all
the intervening points are calculated and compared
to the specified threshold. If at any time none of the
perpendiculars exceed the threshold, all of the inter-
vening points arc eliminated. The routine continues
until all possible points have been climinated.™

The advantages and disadvantages of the algorihms
arc summaiized in Table 2.

The three algorithms appear in FORTRAN 77 ¢oded
form in the appendix.

Map Description

From Table 1, recolutions of 9 seconds and 72
scconds were chosen to test and evaluate the simplitica-
tion algorithms and as likely candidates tor useful




Table 2. Algorithm advantages and disadvantages

Algorithm Advantages

Disadvantages

Nth point
Very fast and simple.
Guarantees spatial resolution.
Moderately fast. Simple.

Landrum-Mullen

Douglas-Peucker

Uniform sampling rate. Plots look good.

A standard published algorithm. Guarantees spatial
resolution with minimum number of points.

No guarantee of spacial resolution.
Directionally dependent.

Always keeps the first two points. Variable
point spacing. Directionally dependent.
Very slow. Variable point spacing.

Not simple to implement.

Table 3. Algorithm performance statistics.

Algorithm Resolution Vertices File size Run time

% of orig. % of orig. minutes
Nth point N=5 25 48 42
Nth point N =20 11 42 42
Landrum-Mullen 9 seconds 29 55 50
Landrum-Mullen 72 seconds 13 41 46
Douglas-Peucker 9 seconds 20 47 76
Douglas-Peucker | 72 seconds 10 40 70

lower-resolution data sets. The 9-second resolution
would be appropriate tor high-quality maps at scales
from 1:1,000,000 to 1:10,000,000. The 72-second
resolution would be appropriate for high-quality maps
at scales less than 1:10,000,000. For the Nth point
algorithm, N was chosen at 5 and 20 to produce
approximately equivalent resolutions. A sample WVS
data set was processed using the three simplification
algorithms and the two chosen resolutions to produce
six simplified WVS files.

Table 3 presents the results of the six simplifications
performed. For each simplification and resolution, the
percentage of the original vertices remaining after
simplification, the percentage of the original file size,
and the run time in minutes are listed. An estimated

40 minutes of the run time was spent on input and out-
put rather than simplification processing.

The reduction in file size is non-linear because
all of the attribute information associated with the
coastline segments is retained and no segments are
completely eliminated.

The full-resolution data file and the six simplified
files are plotted as follows:

Figures 1.7 0.1 inch/degree  (approx. 1:43,200.000)
Figures 8-14 1.0 inch/degree  (approx. 1:4,320,000)
Figures 15-21 10.0 inch/degree (approx 1:432,000)

Each of these figure groups shows an order of
magnitude zoom on the upper-left corner of the
previous figure group.

Map scale = 0.1 inch/degree (approx. 1:43.200,000)
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Figure 1. WVS at original resolution.

Observations

I At this small map scale all of the simplified coastlines appear as good or better than the original,
even though the number of vertices is reduced to as little as 10 percent of the original.
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Map scale =

01 mch/degree (approx. 1:43,200,000)
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Pivwre 20 Nth point, N = 5.

wre o Douglus Peucker, 9 sec.

Figure S. Landrum-Mullen, 72 sec.
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Figure 7. Douglas-Peucker, 72 sec




Map scale = 0.1 inch/degree (approx. 1.4,320,000)
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Figure 8. WVS at original resolution.

Observations

1. At this map scale the 9-second, or N = §, resolution is appropriate for high-quality maps.

2. The 72-second, or M - 20, resolution may be adequate for some applications.




Map scale = 1.0 inch/degree (approx. 1:4,.320.000)
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Figure 11 Landrum-AMullen, 9 sec.
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Figure 13. Douglas-Peucker, 9 sec.
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Figure 10. Nth point, N = 20.
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Figure 14

. Douglas-Peucker, 72 sec.




Map ale = 10.0 inch/degree (approx. 1:432,000)
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Figure 1S, WS ar orniginul resolution,

Observations

oAt farp nap scale the onginal resolution is appropriate for high-quality maps.
20 he 9osedondd, or N\ S,otesolution may be appropriate for some applicatiens.

3 s ap saale cnphasizes the ditterences between the simplification algorithms.




10 inch/degree (approx. 1:432.000)

Map scale
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Figure 17.
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Figure 19. Landrum-Mullen,

9 sec.
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Figure 21, Douglas-Peucker.

Figure 20, Douglias-Peucker, 9 sec.




Conclusions

* A number of good algorithms are available for
simplifying high-resolution vector data bases as a
preprocessing step to their display on digital systems
at lower resolution.

* When data bases are sitnplitied to the appropriate
resolution, the number of vertices is reduced; reduced
storage requirements and taster display are the results.

¢ Generally, the better the simplification algorithm,
the more complex and time consuming it will be.

Recommendations

e |t processing speed 1y most nmportant, then the
Ath point and [ andrum-Mullen algorithms  are
recommended.

o It maintaining « speciticd positional accuracy
iv most important, thea the Landrum-Muallen and
Douglas-Peucker algorithms are recommended.

o [t mimmizing the number of vertices while
maintaining a speaitied positional accuracy is most
important, then the Douglas-Peucker algorithm is
recommended.

* For the one-time production of simplitied World
Vector Shoreline data bases tor distribution by DMA|
the Douglas-Peucker algorithm would probably be
most desirable.

® All of the simplification algorithms should be
made available to the WVS users so that choices can
be made for system optimization and error budgeting.

® The issue of feature elimination (the total elimina-
tion of features that simplify down to a threshold size)
should be resolved on a case-by-case basis depending
on the application.
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APPENDIX A. FORTRAN SIMPLIFICATION PROGRAMS

_A35$DJC1:(DATABASE.WVS]NTHPT.FOR;9

[ele e IEe o s I e NN e I ¢}

[N
to
[SlNe]

23 100

25 ¢ the

SUBROUTINE NTHPT(xin,yin,numin,nth,xout,yout,numout)
simplifies using Nth point algorithm
INPUTS:

XIN(numin)~- real- array of input x coordinates
YIN(numin)~- real- array of input y coordinates
NUMIN- integer- number of input points

NTH- integer- the point interval to be extracted

OUTPUTS:

XOUT(numin)- real- array of nutput x coordinates
YOUT(numin)- real- array of output y coordinates
NUMOUT- integer- number of output coordinates

Jerry Landrum, NORDA/DMAP (601) 688-4613, AUTOVON 485-4613

real xin(numin),yin(numin),xout(numin),yout(numin)

iin=1

numout=0

do 100 i=1,numin,nth
iin=iin+nth
numout=numout+]

write(*,*) ' i, numout’,i,numout
xout {(numout)=xin{(1i)
yout (numout)=yin(i)

continue

if(iin.ne.numin) then

loop ended short of last point in segment so include it

numout=numout+1
xout (numout)=xin{numin)
yout (numout)=yin(numin)
end 1f
return
end

10

4-APR-198




_A35$DJC1
1
2 C
3 C
4
5
6
7 o
8
9
10
11
12
13 c
14 c
15
16
17 c
18
19 c
20
21 c
22 c
23
24
25 c
26
27
28
29
30

: [ DATABASE .WVS]DIST3.FOR;3

REAL FUNCTION DIST3(xl,yl,x2,y2,x3,y3)
returns the distance from the point x3,y3 to a line through
the two points x1,yl and x2,y2

dx=(x2-x1)
dy=(y2-yl)
vertical and horizontal slopes are trivial cases
if(dx.eq.0.)then
dist3=abs(x3-x1)
else if(dy.eq.0.)then
dist3=abs(y3-yl)
else
From analytic geometry
slope and intercept(b) of line connecting (x1,yl) and (x2,y2)
slopel=(y2-yl)/(x2-x1)
bl=yl-(slopel*xl)
by definition of perpendicular lines, slope from point to line is
slope2=-(1l/slopel)
the intercept of the perpendicular is
b2=y3-(slope2*x3)

using substitution we obtain the point of intersection of the line an

its perpendicular
=(b2-bl)/(slopel-slope2)
y=((b2*slopel)-(bl*slope2})/(slopel-slope2)

the distance we seek is the distance from x3,y3 to the point of inte:

dist3=sqrt((x-x3)**2+(y-y3)**2)
end if
return
end

11

4-APR-198




_A3S$DJC1:[DATABASE.WVS]LANDRUM.FOR;4 4-APR-19
1 SUBROUTINE LANDRUM(xin,yin,numin,res,xout,yout,numout)
2 ¢ Landrum-Mullen algorithm for resolution dependent simplification of a
3 c string of points.
4 c INPUTS:
5 c XIN{numin)- real- array of input x coordinates
6 c YIN(numin)- real- array of input y coordinates
1 c NUMIN- integer- number of input points
8 c RES- real- the desired resolution in the units of the input poin
9 ¢ OUTPUTS:
10 c XOUT(numin)- real- array of output x coordinates
11 C YOUT(numin)- real- array of output y coordinates
12 c NUMOUT- integer- number of output coordinates
13 ¢ Jerry Landrum, NORDA/DMAP (601) 688-4613, AUTOVON 485-4613
14
15 ¢ Examines the input arrays xin and yin, dropping out points within dis
16 c res,
17 real xin{numin),yin(numin),xout{numin),yout(numin)
18 numout=0.
19 ¢ keep first two points
20 do 10 i=1l,min(numin,2)
2 xout(i)=xin(1i)
22 yout(i)=yin(i}
23 numout=numout+1
24 10 continue
25
2 do 20 i=3,numin-1
27 d=dist3(xout(numout-1),yout(numout-1),xout(numout),yout(numout),
28 IS xin(i),yin(i))
29 if(d.gqt.res) then
30 numout=numout+1
31 xout(numout)exin(i)
2 yout (numout)=yin(i)
33 end if
34 20 continue
35
36 c keep last point
5 if(numin.at.2) then
ERE numout=numcut+1l
id xout (numout )=xin(numin)
40 youti{numout)=yin(numin)
H end if
43 return
G end
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: [ DATABASE.WVS JDOUGLAS.FOR; 11 11-APR-10

SUBROUTINE DOUGLAS(xin,yin,numin,res,xout,yout,numout)
Douglas—Peuker algorithm for resolution dependent simplification of a
string of points. Ref Robinson,A.H.,ELEMENTS OF CARTOGRAPHY,
Wiley,1984
INPUTS:
XIN(numin)- real- array of input x coordinates
YIN{numin)- real- array of input y coordinates
NUMIN- integer- number of input points
RES- real(for compatibility with other simplification routines
the point interval to be extracted

OUTPUTS:
XOUT(numin)- real- array of output x coordinates
YOUT(numin)- real- array of output y coordinates
NUMOUT- integer- number of output coordinates
METHOD:

A stack of pointers to sections of the string requiring further
analysis is maintained using a stack routine. Selected points ar
flaged for output in a local character array YESNO.

Jerry Landrum, NORDA/DMAP (601) 688-4613, AUTOVON 485-4613

parameter (MAXLEN=10000)
real xin(numin),yin(numin),xout(numin),yout(numin)
character*l yesno(MAXLEN)
integer start,end
logical prin
prin=.false.
yesno(l)='Y"’
Initialize to keep first and last, can all others
do 10 i=2,numin-1
yesno(i)='N’
continue
yesno{numin)="Y’
Begin with the entire string of points
start=1
end=numin

The following loop exits when the pointer stack is empty, it should n
reach completion.
do 100 k=1,numin
dmax=0
if(prin) write(*,*) ' start,end’,start,end
Find farthest point from line containing start and end
do 20 i=start+l,end-1
Compute distance from point to line containing start and end points
d=dist3(xin(start),yin(start),xin{end),yin(end),

& xin(i),yin(i))
if (d.gt.dmax) then
dmax=d
index=1i
end if

continue
if (dmax.gt.res) then
Ve have a significant point. Flag the point, handle the segments.
yesno(index)='Y’
save pointers to the second segment
call push(*300,index)
call push(*300,end)

13




_A35$DJC1:[DATABASE.WVS]DOUGLAS.FOR;ll
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c¢ and process the first segment
end=index
else

¢ We do not have a significant point, move to next segment

call pop(*200,
call pop(*200,start)

end if
100 continue

200 continue

¢ The analysis is complete, move the flaged points to output

numout=0
do 210 i=1,numin

end)

if(yesno(i).eg.’Y’) then
numout=numout+1
xout(numout)}=xin(i)
yout (numout)=yin(i)
1f(prin) write(*,6 *)

end it
210 countinue
retuarn

300 continue

print*, ERROR Stack length exceeded’

stop
end

SUBROUTINE STACK()
z Stack push and pop.

- A A

save

parameter (LENSTK=10000)
integer 1stack(LENSTK)
legical prin
prin=.true.

1ptr=0

return

ELiTkY PUSH(*,]ltem)

iptr=iptr+l

if(iptr.gt.LENSTK) then
if(prin) write(=>,*) ¢
RETUKNI

lstack{iptr)=itemn
RETURN
SITEEED I

FrUTREY OPOPCA, 1tem)

1f o trprr.ltol) then
ifrpraing) wrrteos, »)
RETURI]

'

item=i1stackiiporn)

Call Stack() to initialize stack pointer

Call Push(*label,item) to place an integer on the stack

Call Pop(*label,item) to pop an integer from the stack
RETURN]l is executed upon overflow and underflow.

STHCK

11-APR-19

* output:’,l,xout{nuncut® =

to 0.

OVERFLOW'

T

1




_A355DJC1:[DATABASE.WVS ]DOUGLAS.FOR;11 11-APR-19

117 iptr=iptr-1

118 c write(*,*) * POP’,iptr,item
119 RETURN

120 end if

121 end

15
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