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Abstract

This paper describes an efficient algorithm for the parallel solution of systems of
linear equations with a block tridiagonal coefficient matrix. The algorithm comprises
a multilevel LU-factorization based on block cyclic reduction and a corresponding
solution algorithm.

The paper includes a general presentation of the parallel multilevel LU-factoriza-
tion and solution algorithms, but the main emphasis is on implementation principles
for a message passing computer with hypercube topology. Problem partitioning,
processor allocation and communication requirements are discussed for the general
block tridiagonal algorithm.

Band matrices can be cast into block tridiagonal form, and this special but
important problem is dealt with in detail. It is demonstrated how the efficiency of
the general block tridiagonal multilevel algorithm can be improved by introducing
the equivalent of two-way Gaussian elimination for the first and the last partitioning
and by carefully balancing the load of the processors. The presentation of the
multilevel band solver is accompanied by detailed complexity analyses.

The properties of the parallel band solver were evaluated by implementing the
algorithm on an Intel iPSC hypercube parallel computer and solving a larger number
of banded linear equations using 2 to 32 processors. The results of the evaluation

include speed-up over a sequential processor, and the measured values are in good
agreement with the theoretical values resulting from complexity analysis. It is found
that the maximum asymptotic speed-up of the multilevel LU-factorization using p

processors and load balancing is approximated well by the expression (p+6)/ 4 .
Finally, the multilevel parallel solver is compared with solvers based on row

interleaved organization and with other block solvers.
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1 Introduction

Many technical and scientific problems involve the solution of linear systems of equations

Ax =b (1.1)

where A can be structured as a block tridiagonal matrix. The discretization of

boundary value problems for both ordinary and partial differential equations may lead
to band matrices which can be structured into block tridiagonal matrices. Likewise,
the analysis of linearly connected substructures (mechanical, electrical,...) often leads to
block tridiagonal matrices. These matrices may be numerically symmetric, symmetric in
structure only, or nonsymmetric but still block tridiagonal in structure.

This paper presents an algorithm for the efficient solution of (1.1) on a parallel com-
puter with medium to large number of processors. A version of the algorithm for solving
structurally symmetric band systems has been implemented for the Intel iPSC hyperCube.
and the performance of the implementation of the algorithm is evaluated in great detail.

The multilevel parallel solver is based on block cyclic reduction [1] which permits sep-
arate LU-factorization and solution stages. The formulation of the block cyclic reduction
which we have used is related to nested dissection [2,3], and it is an LU-factorization and
solution of a block reordered system. The communication required by the band matrix
implementation of the parallel solver is shown to be negligible.

Our implementation of the parallel solver introduces some enhancements to standard
block cyclic reduction which may also be used for a general block tridiagonal matrix. The
first enhancement is two-way Gaussian elimination for the first and the last block. This
eliminates fill-ins in the two blocks and permits the second enhancement, an efficient load
balancing which improves the efficiency with the equivalent of 6 extra processors. The
third enhancement is a block parallel organization which improves processor utilization at
the lower levels of the algorithm, with a modest communication penalty.

The performance of the implementation of the multilevel parallel band solver on the
Intel iPSC with 32 processors is evaluated carefully, and the measured execution times
are compared with predictions derived from complexity analysis.

Direct parallel solvers can be classified into two different groups: block methods (as the
one described here and [4, 5, 6, 7] ) and row interleaved methods [8]. The block methods
pay a heavy penalty in terms of fill-ins while communication cost is negligible. The block

methods can exploit many processors, limited only by the dimension/bandwidth ratio.
The row interleaved algorithm is computationally identical to a sequential Gaussian

elimination. The pivot row is broadcasted and the processors perform the elimination
in parallel. Ideal speed-up is prevented by communication which is fairly expensive on
medium grain parallel processors such as the Intel iPSC [9]. The row interleaved algorithm
can only exploit a number of processors corresponding to the half bandwidth.

The block methods are therefore advantageous for narrow band problems and medium

to large number of processing elements. For wide band problems and few processors, the
row interleaved algorithm is the better. It is also worth mentioning at this point that
almost all reported implementations of parallel solvers of banded systems are done on

3



shared-memory vector machines, such as the Alliant and the Cray computers, while
our implementation is done on a distributed-memory system with a limited number of
processors and no vectorization, namely, the Intel iPSC.

This paper is organized as follows. In section 2 block tridiagonal matrices are briefly
described. Sections 3 and 4 explain the multilevel LU-factorization and solution steps.
Section 5 describes the general principles for implementing the multilevel algorithm on
a hypercube, including the communication scheme among the processors. The details of
the implementation on the hypercube are given in section 6. Section 6.1 describes the
partitioning and allocation of tasks to different processors and the ordering of the first
and the last partitions to reduce fill-ins by using 2-way Gaussian elimination. The per-
formance of the multilevel algorithm is estimated in section 6.2 using complexity analysis.
The important problem of load balancing is addressed in section 6.3. As a result of the
complexity analysis it becomes clear that uniform partitioning of the band matrix will
lead to poor load balance for the LU-factorization. Balance equations for selecting the
sizes of the partitions are then derived. The performarce of the parallel band matrix
solver is presented in section 7. This includes the executing time graph model and actual U
numerical results. A comparison between the multilevel approach and the row interleaved
factorization and solution approach is given in section 7.3.

2 Block tridiagonal matrices 3
Consider the system of linear equations (1.1) where A, x and b are partitioned as follows:

C A2 B2 X2 b2
A C3 A3 B 3  x X3 b= b3  (2.1)

CN AN XybN

N is odd by assumption and

A, R 'vn' and x,, b,cRlr for r = 1,2, .., N. 3
BcR '  for r = 1, 2,.., N - 1 and 3

CTr R "r for r = 2,3,.., N. 3
The entries of A are zero outside the tridiagonal band of matrices.
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X X]XX XX XX X

X XlXX X XX XX X
xxxx x xxxxxxx

IX XX X X X XX XX XX Xxxx xxx xxxxxxxx
xxXlXXI  xxxxxxx

xxxx Ix xI  xxxxxxx
xx xx xx xx xx x
x x x xx xx xx x
Ixx Ix xxxxxx

X XXXXXX

XX X HX X Xxxxxxx
X Xxxx

xx x
xxxx×
xxxxx

X XXXXx XX

Xr 2 E

Figure 2.1. w ee irnxamples of typical block tridiagonal matrices.Th

first matrix occurs in the lower levels of the multilevel algorithm applied to a structurally
symmetric band matrix. The second matrix is a nonsynmmetric band matrix with a block
tridiagonal structure superimposed on it. The third example illustrates two connected
arbitrary nonsymmetric sub-structures grouped into a block tridiagonal form.

The first level of the multilevel algorithm (block cyclic reduction) is based on the
reordering of A given in (2.2).

A1  B
A3  C3 B3

A5  C5 B 5

A = . .. . .. . .. 2 2A N ' . . . . . .. . . CN_ (2.2)

C4 B4  A4
C6 ... A6

•... BN-.1  AN-.1

The sets {C,A,.,B,,B,.-l,C,.+} for r=2, 4, .. , N-i are called separators since they
separate the matrix A into independent blocks A,, r = 1,3, .., N. The reordering of A into
A3 therefore involves a symmetric row column reordering where the separators are moved
to the last rows and columns. If A is diagonally dominant, so is A since the symmetric
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reordering preserves diagonal dominance. Obviously, any symmetry of A will also be
preserved.

N is assumed to be odd, and this is merely a convenient assumption. If N is originally
even, either two block rows and columns can be merged to reduce N by one or the
reordering of (2.2) can be modified slightly to account for an even value of N.

In practical applications, the dimensions of separators, n, for r=2,4,..,N-1, are usually
small compared with the dimensions of the remaining blocks, n' for r=1,3,...,N, but this
is not a necessary condition for the application of the multilevel algorithm although it
may be a necessary condition for obtaining high efficiency.

3 Multilevel LU-factorization

The first level of the multilevel LU-factorization is a standard LU-factorization of A
defined in (2.2) stopping after n, + n 3 ... + nN pivot rows. This leaves the lower right-
hand block of dimension n 2 + n 4 ... + nN-I unfactored. The partially factored matrix is
called , and is defined in (3.1)

L1lU1 13LIU,
L3 U3  C3 B3

L 5 UN Cs Bs

A4 = LNUN32 - b(3.1)
C2  B 2  A42 D2

C4 B4  E4 A4 D4

P6 A6 ...

L. BAII ... AN-I1
The submatrices in (3.1) are related to the ones in (2.2) as follows

L,U, = A,,r = 1,3,..,N (3.2a)

where L and Ur are lower and upper triangular matrices, respectively. 3
3r = L- 1 B., r = 1,3,..,N -2. (3.2b)

C, = L-' Cr, r = 3,5,..,N. (3.2c)

C0+I = Cr+ U-"1, r = 1,3,..,N -2. (3.2d)

B3.- 1 = Br-I U71, r = 3,5,..,N. (3.2e) I

= A, - CB,-i - 3 C 8 +, s = 2,4,.., N - 1. (3.2f)

63



Ds D, -D3 35 + 1 , s =2,4,. N - 3. (3.2g)

s= Es - ¢OC'-_1 s = 4,6, .., N - 1. (3.2h)

The tableau in (3.1) and the relations (3.2) reveal the block parallelism in computing
A. The factorization of a diagonal block A, (r is odd) and the associated row operations5 leading to C,, ,., BA-1, C,+i, D,..- and E,+1 can be performed independenly of the cor-
responding computations for different r-values. The only overlap is in the computation
of A. as specified in (3.2f). At the end of this section, a convenient organization for the
parallel computation of A is presented.

Notice that D, = 0 (s = 2, 4,.., N - 3) and E, = 0 (s = 4, 6,.., N - 1) for the block
tridiagonal matrix A defined in (2.1). However, the multilevel algorithm handles at no
extra cost the case where the separators are extended with D, / 0 and E, : 0. In this
case the even numbered rows and columns of A (the separators) will contain five matrix3 blocks: EsCA,,B,,DandD..2 B,-A,, C+s , EC+2 , respectively for s = 4.6. .., N-3.
For s = 2, Do and E2 will be absent while DN-1 and EN+1 will be absent for s = N-1.

The D, and E, matrices have the following dimensions:

D,fR' s"@+ for s = 2,4, .., N - 3

E8 cR 'hx ' - 2 for s = 4,6,.., N - 1.

In the tridiagonal case k2.1), the matrices D, and E. are fill-ins. The LU-factorization
will in general also create fill-ins in the original blocks of A unless they are full from the
outset.3 The four blocks of A seperated by the dashed lines can be expressed in a compact
form as:

W At (3.3a

*where

IA=C [ l[ LX]U (3.3b)
At is the Schur complement and L and U are lower and upper block triangular matrices,
respectively, composed of L, and U,, r=1, 3, .., N.

The multilevel algorithm (block cyclic reduction) is now based on the fact that At is a
block tridiagonal matrix which can be reordered into a form similar to A in (2.2), partially3 LU-factored like A leaving a block tridiagonal partially factored lower right-hand block
etc.

If N = 2d+l - 1. the process will terminate after d levels with a Schur complement1 consisting of just one block which is then factored. If N is composed differently, some
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of the intermediate block tridiagonal matrices will have an even block dimension, but as
mentioned in the previous section, this is only a minor complication.

The partial factorization of A leading to A can be performed conveniently in parallel
by partitioning the original block tridiagonal matrix A as follows:

Q1 AlB, ad QN AN CN (. ,b
1  B C2 AQ BN-1 0

Q. A,. B, C'.

Q Cr= Cr+i Ar+ Er.j1 for r = 3,5,.., N - 2 (3.4c)
Br-I Dr-I

DrI = 0 and Er+I = 0 when A is block tridiagonal, and Dr- 0 0 and E,+, - 0
only when A has extended separators as discussed priviously. The Q-matrices can be 3
considered slightly reordered samples of A which are straightforward to establish.

The Q-matrices can be partially factored in parallel leading to the Q-matrices defined
in (3.5).

L IU, an d Q[L N UN ON 13. ab
C2  A2 I B[v-, AN-,j(35ab

r L,= U B,. C. 1 ,
Q, = [ r+C Ar,+ E',.+ for r = 3,5,..,N - 2. (3.5c)

The Q-matrices can be computed conveniently by applying standard LU-factorization
to the Q-matrices and stopping when A,, for r being odd, is completely factored.

The entries of the Q-matrices are as defined in (3.2) except for A, and 4,:

A, = A, -C, B, 1 and 3
A, = -B3, C.+ 1 leading to

A, = A,+A, for s=2,4,..,N -1 3
Pivoting has not been considered so far since the possibilities are limited in the multi-

level algorithm. From the partial LU-factorizations leading to the Q-matrices, however,it
is obvious that pivoting can be done as usual during the factorization of A,. for r being odd
as long as the search for a pivot element is limited to A. If A, is singular, the algorithm
requires fundamental modifications to work properly. I

The next level of the multilevel algorithm involves the partial LU-factorization of A

defined in (3.3). The block representation of At as given in (3.1) is I

I



A2 D 2

P 4 A 4 D b4
At= E6 -...

AN-1

The At-matrix is sampled similarly to A to create Q2, Q6, .. , QN-1 defined in (3.6).

From (3.5) it is seen that Q2, Q6, .. , QN-I can also be obtained by sampling Q, for r being

odd. The relationships are listed in (3.7) where (Q.-1, Q-,+1, Q3+3) - Q3 specifies that

Q, is composed of samples from Q.,-,, Q+, and Q,+3 etc.

Q2 A f and QN-i = -. N- (3.6a, b)

Q E = +2 A,+ 2  0 for s =6,10,.., N - 5. (3.6c)
D/.-2  0 0

(Q.-1, Qs+l, Q+3) -- Qs for s= 2,6,10,.., N -5. (3.7a)

The partial LU-factorization of At can now be performed in parallel by partially

factoring Q2, Q6, .. , QN-1 which are resampled to create Q4, Q8, .. , QN-3 etc. until the

LU-factorization is completed by factoring just one block.

Each partial LU-factorization of a Q-matrix completes the factorization of the first
block row and column leaving the lower right-hand 2 x2 block unfactored and the subject

of the next level of factorization.
So far it has been implied that only one processor is to be used for the partial factor-

ization of a Q-matrix. Since each level of the multilevel algorithm deals with only half
the number of Q-matrices as the previous level, one might consider using more than one

processor for each Q-matrix to try to keep all processors busy.
In the block parallel organization described in [10], one processor is assigned to each

Q-matrix in the top level, two processors in the next level etc. up to 4 processors for the
2 x2 Q-matrices and 8 processors for the 3 x3 Q-matrices. The natural partitioning of the

Q-matrices into blocks is used to allocate one or several blocks to each processor. Since
the LU-factorization is partial, this approach results in good load balance and moderate
communication overhead.

4 Multilevel solution

The purpose of the solution step is to compute x of (1.1). The solution is expressed
symbolically as

9



x = A- ' b (4.1)

The reordering of A into A is expressed by the permutation matrix H1 such that
H1 A H[ A. This leads to the equation

(4.2)

where i = H1 x (and x = HT *) and b = H b. Equation (4.2) can now be expressed by
the partial factorization in (3.3b),

where (x ,, xt) and (b,,, bt) are partitionings of i and b, respectively, corresponding to the
block factorization of A.

Equation (4.3) is solved by the standard approach,

y. = L - ' b. bt = bt - Wy, (4.4a, b)

xt= A ' bt (4.4c)

X. = U- ' (y. - Vxt) (4.4d)

The computation of xt in (4.4c) expresses symbolically the solution of a block tridi-
agonal system of equations similar to (1.1), and (4.4c) is therefore analogous to (4.1).
The algorithm outlined by the equations (4.1), (4.2), (4.3) and (4.4) is therefore applied
recursively until all components of the solution are eventually computed.

When the complete multilevel LU-factorization is available, the multilevel solution is
obtained by a recursive application of the relations (4.4a,b,d) until (4.4c) involves just
one LU-factored block. In order to describe the multilevel solution algorithm the vectors
XU) Xt I b, and b, are defined from the partitioning in (2.1) and the permutation H 1.

X1 X2 b b a
XU- X3 Xt- X4 , b- b3 bt- N

XN XN-1 bN bN-1

Furthermore partitioned vectors yu and bt similar to xu and b, respectively, are defined.

The detailed block relations corresponding to (4.4 a,b,d) are:

y,=L-lb, for r = 1,3,..,N. (4.5a)

br+1 = br+1 - C'+ 1 Yr - Br+1 Iyr+2 for r = 1,3,.., N - 2. (4.5b)
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X1 = UW' (y1 - P ), X2 v = UV' (yN -CNXN-1) (4.5d)

xt=U'(y - xOr -Bx- tx+l) for r=3,5,..,N-2

Each of the three sets of relations (4.5a), (4.5b) and (4.5d) can be computed in parallel

using (N+1)/2 processors. The computation of yr and xr requires factorized matrix blocks

from Q , defined in (3.5) while b, requires blocks from both Q,-i and Q,+,.

5 Hypercube implementation

This section describes the general principles for the implementation of the multilevel
algorithm on a hypercube parallel computer of dimension d. The number of processors

is p = 2d , and it will be assumed that all processors are used for the top level of the
multilevel algorithm which means that p is related to the block dimension N through the
following relation,

p= 2 = (N+ 1)/2 (5.1)

If N is determined by the problem (which is not the case for a band matrix) and violates
relation (5.1), the multilevel algorithm may require minor modifications. If N > 2p - 1,
more processors may be simulated by running several processes on each processor. If
N < 2p - 1, some processors may be left idle or more than one processor may be used for
some or all Q-matrices (3.4).

It will be assumed in the rest of this section that (5.1) is satisfied. The Q-matrices of

the top level, level 1, are allocated to the processors as follows. Matrix Q2i+l is allocated
to processors P for i=0,1,..,p-1. This is expressed formally as

Q2i+ - P, for i=0,1,..,p-1 (5.2a)

The allocation relation for level 2 is

Q4,+2 -- P2 for i=0,1,..,(p/ 2 )-1 (5.2b)

The general alloccL on relation for level ( is

Q2t,+2-, -- o P--,, for i = 0,1,.., (p/ 2 (t - 1)) - 1 (5.3)

The allocation principle is illustrated in Fig. 5.1 for p=S and consequently N=15. The
processors are labeled 0,1,..,7 expressed as binary numbers. Processors in a hypercube
can be labeled such that processors whose labels differ in only one bit position are

11
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Processor 000 001 010 011 100 101 110 111
Level 5
1 Q1 Q3 Q5 Q7 Q9 Q11 Q13 Q15

2 Q2 Q6 Qo Q1 4
/ ,/

3 Q4 Q12

4 Q8

Figure 5.1: Processor allocation and communication structure for a hypercube implementation 3
of the multilevel algorithm.

neighbors. The allocation relation in (5.3) is constructed to permit multilevel factorization 3
and solution using only neighbor to neighbor communication.

The multilevel LU-factorization proceeds as follows. At level 1, Q1, Q3, .. , QN are
partially LU-factored in parallel. Then the unfactored parts of Q3, Q7, .- , QN are passed 3
on to the processors storing Q1, Q5, .. , QN-2 (see Fig. 5.1). This involves only neigh-

bor to neighbor communication, and it can be done completely in parallel. However,
according to (3.7a) the construction of Q2, Q6, .. , QN-5 requires contributions from three
Q-matrices from the previous level, and thus more communication and a more elaborate
communication scheme to limit communication distance are required.

In order to circumvent this problem and use the simple allocation and communication
scheme examplified in Fig. 5.1, the Q-matrices of levels other than the first one are
redefined slightly.

A2 D2 AN-i EN-I1
2= E 4 A 4  , - = I N-3 AN- 3  (5.4a.b)

A, , E,

AO' = /+2 +2 0 , for s = 6,10,.., N - 5 (5.4c)
Ds_ 2  0 As-2 I

The definition in (5.4) will supersede (3.6) in the following, and the prime symbol will 3
be left out from the Q-matrices defined by (5.4). Likewise, the construction rule (3.7) is
superseded by

(0-,1 QS+I) --+ Q, for s = 2,6,..,N -1 (5.5)

The construction of the general matrix Q, in (5.4c) is easily verified by writingQ -. 3
and Q,+, in detail, based on (3.5c):

I
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[LS...U,.... B3... C5...1  Ls,Us+l Bs+j C3+i1
Qsi I C, A. ,~ QS+i 0.+,2  As+2 Es+2

. -B,2  ,- 2 A,-2 P, D, A.

Q, is composed from the lower right-hand 2x2 blocks and A, is computed as A, =
A3+ A,.

The observation leading to the redefinition of the Q-matrices for levels greater than
one is that the partial factorization of a Q-matrix leaves the first block row and column
completely factored and the rest unfactored. This means that the first block row and
column (and especially A,, s=2,6,..,N-1) must hold the final values before the factorization
while intermediate values (like A, and A,, s=4,8,..,N-3) suffice for the remaining entries
of the Q-matrix.

After the partial LU-factorization, the Q-matrices of level 2 will have the same struc-
ture as the Q-matrices of level 1 defined in (3.5). The allocation algorithm ensures that
the Q-matrices on each level are allocated to processors that are pairwize neighbors.
This means that the partial LU-factorization of the Q-matrices of level f and neighbor to
neighbor communication to compose the Q-matrices of level e+1 can be continued until
the last level, d+1. At the last level Q(N+1)/2, which is only one block, is computed by
adding the lower right-hand blocks of Q(N+1)/4 and Q3(N+1)/4 , and finally Q(N+1)/2 is
fully LU-factored.

The blocks of the b-vector defined in (2.1) are allocated with the corresponding A-
blocks (diagonal blocks) which means that

(b2 +1, b21+ 2 ) -+ Pi for i = O, 1,.., p - 2 (5.6a)

bN -- Pp-_I (5.6b)

With this allocation, the first level of the solution algorithm defined in (4.5a,b) is per-
formed as follows

Po : Yi = L-'bi , b2 =b2- 0 2Y1 (5.7a, b)

Pi : y, = L'b,. ,k+ = b,+l - Cr+lyr (5.7c, d)

m .,_, = -Br-y, (5.7e)

for r=2i+l and i= 1,2,..,p-2

P- 1 : YN - LbN , 6-1 = -BN-IYN (5.7f, g)
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The partial b-vectors b, and b, are associated with the unfactored diagonal blocks
A, and A,. This implies that they are communicated along the same routes and the
calculation b. = b, + b, takes place in the same processor and at the same level as the
calculation A, = A, + A,.

The first communication step then involves

Send (b41+2 1 b4i+4) to P 2i for i = 0, 1, .., (p/2) - 2.

Send bSN _. to Pp 2

At level 2 the computation of b2 , b6, .. , bN.-I are completed according to (4.5b),

b4i+2 = b4i+ 2 + b4i+ 2 for i = 0, 1,.., (p/2) - 1 (5.8)

The remaining b-vectors, b4 , b, .. , bN-3 are not computed at level 2 since they are
not needed at this level. Besides, their computation would require communication among
non-neighbors.

The computation algorithm and communication scheme as outlined can be continued
down to the bottom level and up again according to (4.5d). Instead of giving a formal al-
gorithm which will come out rather complicated, the informal description of the multilevel
solution algorithm will be supplemented with an example for N=7 and p=4 processors.
The example shown in Fig. 5.2 also includes the Q-matrices and a specification of the
level where they were computed.

The communication pattern of the solution phase can be deduced from the data de-
pendencies among the different levels of computations shown in Fig. 5.2.

I

I
!
I
I
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Figure 5.2: Parallel solution algorithm for N=7 based on multilevel LU-factorization.

6 Parallel band matrix solver for hypercube

6.1 Partitioning and allocation

The principles of a multilevel parallel solver described in the previous sections were used
for an implementation on the Intel iPSC hypercube. The implementation is restricted to
linear systems with structurally symmetric band matrices. This restriction is exploited
in the implementation to improve the basic implementation principles described in the
previous section. The improvement involves the equivalent of 2-way Gaussian elimina-
tion for the partial factorization of Q, and QN to permit an efficient load distribution.
Programs and documentation are presented in [11].
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The band matrix is charaterized by dimension n and by bandwidth w=1+2m where
m is the number of upper or lower off-diagonal elements.

The block tridiagonal structure of (2.1) is imposed on the band matrix by choosing N
and nl, n2.., nN properly. There exist the following constraints:

Z n,=n and n, _> m for r=1,2,..,N
r=1

N is chosen to match the actual hypercube (or sub-cube) of dimension d which means
that relation (5.1) is fulfilled.

The dimension of the separators is chosen to the minimum dimension, 3
n,=m , s=2,4,..,N-1

in order to minimize the amount of work involved in the lower levels of the algorithm.
The dimensions of the odd numbered blocks are in general determined by the load

distribution algorithm which will be described later. However, a special case should be
mentioned here, namely the minimum dimension problem where n, = m , r = 1,2,.., N.
This is the case where the blocks of the block tridiagonal matrix in (2.1) are chosen as
small as possible. This could be the case if the algorithm is excuted by a fine grain parallel I
computer where the maximum number of blocks for a particular band matrix are required
in order to exploit as many processors as possible.

Besides, the lower right-hand block tridiagonal matrix of (3.1) (called At in (3.3)) is a
minimum dimension matrix with all blocks of dimension m when A originates from a block
tridiagonal matrix with seperators of dimension m. The minimum dimension property
also applies to the lower levels.

The structure of Q,, for r=3, 5, .., N-2 is given in Fig. 6.1. The densely dotted areas
correspond to the non-zero entries of Q, with Dr-, = 0, E.+- =0 and the lightly dotted 3
areas correspond to fill-ins created by the partial factorization. Q, and QN are depicted
similarly in Fig. 6.2 and 6.3.

The partial factorization of Q, leading to Qr for r=3,5,..,N results in rather severe I
amounts of fill-ins, not just in terms of zero blocks being filled, like A-I , D.-1 and E+ 1

but also fill-ins inside B- 1 and C7 . Q, is partially factored completely without fill-ins
while QN is similar to the general Q7-rnatrix in this respect.

However, it is possible to make the partial LU-factorization of level 1 symmetric by
modifying the factorization of QN. The ordering of the band matrix AN of QN is reversed 3
by a symmetric row column reordering. The column reordering also includes BN-l and
the row reordering includes CN. After this reordering, the partial factorization of Qv
leads to a matrix QN with a structure identical to Q, shown in Fig. 6.2. I

The reordering of QN results in a considerable saving in the operations count of the
partial LU-factorization. The large differences in operations count in partially factoring
Q, and QN on one side and Q3, Q5, .. , QN-2 on the other side are exploited in the load
distribution algorithm.
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Figure 6.2. The structure of Figure 6.3. The structure of

The Q-matrices of the lower levels are all block matrices with full mxm blocks. The3 extreme matrices, corresponding to Qi and QN, are 2 x2 block matrices while the interior
matrices have block dimension 3. The matrix at the lowest level Q(N+i)/2 is just one block
of dimension m.

6.2 Complexity analysis

3 The performance of the multilevel algorithm can be estimated on the basis of complexity
analysis. Let F denote the number of floating point operations required fur the partial
factorization of Q,. We then have the following operations counts.

Level 1

3 F7 (n,) = nm(2m + 1) , r = 1,N. (6.1a)
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Fr(n,)=2nrm(4m+1) , r=3,5,..,N-2. (6.1b)

Level t (2 < t < d)

FN(e-1 = .N1- 14 3 3 ~.2 -1 (6.1c)
4 3 5 2 1

3 -2 - (6.1d)
fo -Z 1, 2, .., (p/2"- ' )  2fori2

Level d+1

23 _1 2 1 --f,, -5m---m(6.1e)
F2 d =23 _I2 6 6.e

The operations count of a standard band LU-factorization, called FBLU is

4 3 3 2 _1m

FBLU =nm (2m + 1) m 32 (6.2)

A rough estimate of the total complexity of the multilevel algorithm is FMLU ,
2 n m (4m + 1) for n > m and N > 1. This implies that FMLU/FBLU ; 4 which is
the penalty for being able to do the LU-factorization in parallel. According to this, the
maximum speed-up from the multilevel algorithm using p processors is expected to be
p/ 4 . A more accurate speed-up calculation including the effect of the load balancing will
be given in the next section. I

The parallel complexity of the multilevel LU-factorization called FPLU can be com-
puted as the sum of the dominating complexities at each level,

FPLU = F 2dI (l 2d- 1 ) + (d - 2) F_ 2 + F(d-,) + F2 d

38 3 _ 52 _ 1m 63 M-2n 2d._m(4m+ 1)+(d-2) (3_m3 2 1 )±M -2 m (6.3) 3
F2 d_j and Fd_2 represent complexities at top and intermediate levels, respectively. The
expression in (6.3) is correct under certain assumptions about the partitioning, e.g. nj = I
n3 = ..nN or the partitioning defined by the load balance relations (6.10). FPLU is valid for
d > 2, and using p = 2d processors, FPLU gives the execution time for an LU-factorization
when multiplied by the average floating point excution time called TF. 3

The communication time model is based on the model [9]

t = To + M/B (6.4) 1
where the latency To = 1.2msec and bandwidth B=1 MByte/sec are measured values for
neighbor to neighbor communication on the Intel iPSC. The model in (6.4) is valid for 3
messages of length M bytes fulfilling 0< M < 1024 bytes.

The multilevel LU-factorization algorithm involves the communication of 2mx2m
matrices from one level to a lower, except to the last level where only an mxm matrix is
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transferred. The 2mx2m matrices of double precision numbers fit into 1KByte for m<5.
Under this assumption, the communication model corresponding to (6.3) is

TCLU = (d - 1) (To + 32m2/B) + To + 8m 2 /B (6.5)

Table 6.1 shows TcLu/ (TF FPLU) for the minimum dimension problem (FPLU is com-
puted from (6.3) with n 2 ._1 = m). TF = 50psec is an approximate value of the gross
floating point execution time measured for the multilevel algorithm. Communication is
O(m 2 ) while computation is 0(m3 ).

d\m 1 2 3 4 5 6
2 3.75 0.48 0.153 0.070 0.041 0.034
3 3.68 0.39 0.125 0.058 0.033 0.030
4 3.63 0.36 0.115 0.054 0.031 0.029
5 3.61 0.34 0.109 0.051 0.030 0.028

Table 6.1 Communication to computation ratio, TCLU/(TFFPLU)
for the multilevel LU-factorization algorithm applied to

the minimum dimension problem.

This is clearly reflected by Table 6.1 which shows that communication dominates for m=1
but loses significance very quickly for increasing values of m. The model (6.4) and therefore
also (6.5) is only valid for m<5. The model was extended also to include m=6 which is
shown in Table 6.1. This demonstrates that it is sufficient to take the communication
cost into account for m<5.

The communication to computation ratios of Table 6.1 can be considered worst-case
values for the multilevel algorithm. The operations count FPLU in (6.3) is O(n 2 _1 M2 )

while TCLU in (6.5) is O(m 2). This means that communication becomes negligible for
n. > m, r=1, 3,.., N, even for m=1.

The speed-up of the parallel multilevel LU-factorization algorithm is defined as the
execution time of a standard band LU-factorization on a single processor divided by the
execution time of the parallel algorithm executed on p processors.

The speed-up is computed as SLU = TFFBLU/ (TFFPLU + TCLU) where the complex-
ities are given in (6.2), (6.3) and (6.5). Table 7.1 shows speed-up values computed for
the minimum dimension problem (n2d_1 = m) for selected values of m and d. Theoretical
values of SLu are given in parantheses for comparison with experimentally determined
values.

The multilevel solution algorithm consists of a forward sweep (levels 1 to d+1) and
a backward sweep (levels d+1 to 1), cf. Fig. 5.2. Analogously to the LU-factorization,
only the computations of level 1 depend on the total dimension n of the problem while
the lower levels only depend on m.

The complexity of the solution algorithm is stated separately for the forward and the
backward sweep. Let P, denote the complexity of the computational step during the
forward sweep involving the partially factored matrix Q,, e.g. the complexity of
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y, = L - ' b, b+ 1 = b -+ Yr , b,-. = -B3-I Yr

Similarly Pr denotes the complexity of a computational step involving Q, during the
backward sweep. We then have the following complexities:

Level 1
F, (n1 ) = 2nim, FN (nN) = 2 nNm - m (6.6a, b)

P, (n,) = 4nm - m, r = 3,5,.., N - 2. (6.6c)

F (n1 ) = ni (2m + 1), FN (nN) = n (2m + 1) (6.6d, e)

PF,(n,)=n,.(4m+ ),r 3,5,..,N-2. (6.6f)

Level f (2 < < d)

P2(,-1) = FPN+.-2,(-,) = F2(1- 1) = FN+,-2(t-i) = 3m 2  (6.6g)

'21i+2(1-1) = 5m 2 - M, F21i+2(E-1) = 5m 2 for i = 1,2,..., (p/2(t -1)) - 2 (6.6h, i)

Level d+
F(N+1)/2 = F(N+1)/ 2 = m 2  (6.6j)

The parallel complexity of the solution algorithm Fps can now be computed as the
sum of the dominating complexities at each level. The expression (6.7) is valid under the
same assumptions as (6.3).

Fps = (d- 2) (10m2 - m) + n 2 d-_ (8m + 1) + 8m 2 - m (6.7)

The communication model for the multilevel solution algorithm is

Tcs (m) = 2 [(d - 1) (To + 16m/B) + To + Sm/B] (6.8)

The parameters To and B are given in connection with (6.5), and (6.8) is valid for m<64

d\m 1 2 5 10 15 20
2 5.36 1.43 0.24 0.062 0.028 0.016
3 5.36 1.38 0.23 0.058 0.027 0.015
4 5.36 1.35 0.22 0.056 0.026 0.015
5 5.36 1.34 0.22 0.055 0.025 0.015

Table 6.2. Communication to computation ratio, Tcs/ (TFFps), for the
multilevel solution algorithm applied to minimum dimension problems.
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Table 6.2 shows how communication affects the efflciency of the multilevel solution
algorithm applied to minimum dimension problems, i.e. the computational complexity
Fps is computed from (6.7) for n 2 d I = m. Comparing with Table 6.1, it is seen that the
solution algorithm is communication bounded to a larger extent than the LU-factorization
algorithm.

Communication cost only depends on m and d (6.8) while the computational com-
plexity is 0 (n2dlm). This means that Table 6.3 shows a worst-case situation. and that
communication cost even for m=l becomes negligible for n 2d-I/m > 1.

The operations count of a standard forward-backward solution based on an LU-
factored band matrix is

FBS = 4nm + n - 2m 2 -- 2m (6.9)

The speed-up of the multilevel solution algorithm can now be computed for the mini-
mum dimension prcblem as Ss = TFFBs/ (TFFps + Tcs) where the complexities are given
in (6.7) (for n2dl = m), (6.8) and (6.9). Table 7.3 in section 7 below shows speed-up
values computed from Ss for selected values of m and d. The speed-up values estimated
by Ss are given in parantheses for comparison with experimentally determined values.

6.3 Load balancing

From (6.1 a,b) it is clear that a uniform partitioning of the band matrix, n, = n3=

nN, will lead to poor load balance for the LU-factorization. A first attempt to improve
the load balance would be to choose n3 = n5 = .. = nN-2 and n = = Ti s4,n, 1.
choice results in F, = F3 = .. = FN and thus load balance in level 1. However, some
imbalance still remains in the lower levels as specified by (6.1 c,d).

The lower levels could be load balanced after the same principle followed in level 1
by chosing some of n2 , n4 , .., nN-1 greater than m, but this is undesirable since it would
increase the computational load of the lower levels where parallelism is harder to exploit.

The load balancing scheme chosen for the band matrix can be explained by referring
to the complexity relations (6.1) and to Fig. 5.1. The factorization of Q1 and Q3 finish

a4 +n permitting processor P0 to start the factorizationat the same time when n, = "43,+,

of Q2 without idle time. Likewise, the factorization of Qs and Q7 complete at the same
time when ns = n,. The ratio ns/n 3 is now adjusted such that the factorization of Q2

and Q6 finish at the same time. This would complete the load balancing of Fig. 5.1 since
the matrix partitioning is symmetric ni = nN,n3= nN-2...

The balancing principle is easily generalized and (6.10) gives a general set of balance
equations based on (6.1). For a given set of values n, m, and d, the load balance equations
determine n1, n3, .., nN. The equations are easily solved by expressing n3. n 7 ,.. by n, and
substituting these expressions into the last equation and solving it for nI.

n. - nN+I-,, r - 1,3,..,(N - 1)/2 (symmetry) (6.iOa)

n.5 = n77 (6.1Ob)
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n= niln = n1 5  (6.1Oc) I
2(d-')+i = n 2(d-I)+ 3 = = n2 dl (6.10d)

F, (ni) = F3 (n3) (6.10e) I
F, (n1 ) + F2 = F7 (n7) + F6  (6.10f)

F, (n1 ) + 2F2 = C15 (nl 5 ) + 2F 4  (6.10g) m

F, (n1 ) + (d -2) F2 = F2 ,_1 (n 2 d_ 1 ) + (d -2) F2d_2  (6.10h) I
2 (n, + n 3 + 2n, + 4n1 s.. + 2 d2n 2'._) + (2 c - I) m = n (6.10i)

The solition of (6.10) will in general not lead to integer values of nl,n 3 ,.., but the
resulting values are rounded to satisfy the last equation which states that the total number
of equations is n. When n is too small, an effective load balance is not obtained. The 3
balance equations (6.10) yield n,-values smaller than m which is not permitted by the
present implementation. This situation is dealt with by increasing the n,-values smaller
than m to become m, and by reducing the n,-values greater than m correspondingly. I

Communication cost has not been included into the load balance equations since com-
munication cost is such a small fraction that it can only be taken properly into consider-
ation for m<2. This can be seen from the following argument.

Equation (6.10e) is modified to include communication cost:

F1 (ni) = F3 (n 3 ) + (To + 32m2IB) I,'T

Since F3 (n 3 ) = 2n 3m (4m + 1), communication is only going to affect n 3 after rounding
if

2 (To + 32rn2/B) /T, 2m (4mn + 1)I

The break-even value for m is m=2.52 which means that communication cost is too
small in a relative sense to be included in the load balance if m > 2. This is in good
agreement with Table 6.1.

It is obvious from (6.1) that the execution time for the multilevel LU-factorization is
proportional to n when n1 = n 3 = ... = N. When the partitioning is based on the load 3
balance equations (6.10), the complexity FPLU defined in (6.3) and thus the execution
time is still proportional to n since n 2d. 1 in (6.3) depends linearly on n through the load

balance equations (6.10). The derivative obtained by solving (6.10) is: m

an21_1o/, = [4 (4m + 1)/(2m + 1)+ 2 + 4 + ( + ... + 23-(1

The multilevel solution algorithm can be load balanced using the equations (6.10)
where P,. functions from (6.6) are substituted for F. This entails some approximations
besides ignoring communication cost. First, (6.10) has n, = nN while F, (r,) 7 F.v (n,): I
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and secondly, F,, which means that balance is only obtained for the forward sweep.
The discrepancies, however, are either O(m) or 0(n,) and do not lead to serious imbalance.

A crude approximation to the solution algorithm load balance can be based on the
equation P, (ni) = F3 (n 3) , ni = nN and n 3 = n5 = .. = nN-2. This leads to nj -
2n 3 which should be compared with the corresponding relation nj ; 4n 3 for the LU-
factorization. This implies that optimum load balance requires different partitionings of
the band matrix for LU-factorization and solution. Since the solution must be based
on the result of a factorization and the load distribution chosen for the factorization.
load distribution should in practice be chosen to minimize total execution time of LU-
factorization and solution(s).

The minimization of the execution time of a multilevel LU-factorization followed by
a sequence of solution steps (e.g. for pseudo-Newton iteration) is a cbmplicated prob-
lem and will not be addressed. If only one solution per LU-factorization is needed, the
forward sweep of the solution algorithm can be merged with LU-factorization leading to
a multilevel Gaussian elimination, and this part can easily be load balanced by solving
(6.10) with F, + F, substituted for F. The backward sweep will not be well balanced.
but execution time can only be reduced by a different load distribution for a very large
number of processors and very small value of m.

7 Performance of the parallel band matrix solver

7.1 Execution time model

Figure 7.1 shows an execution time model for sequential band LU-factorization (marked
TBLU). Execution time for the sequential algorithm is proportional to FBLL defined in
(6.2).

The execution time graph for the parallel multilevel algorithm has more complicated
features. For a given number of processors, p=(N+l)/2, the smallest problem that can
be solved has dimension n=m N. Therefore the execution time graph starts at n=m N.
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Figure 7.1.: Executing time T as a function of problem dimension
n for a given set of m and N(=2d+l-1).

The load balance equations (6.10) lead to the following relations:

n, > n3 > n7 > n7 s > ... > _2 d, 3
This means that the smallest value of n for which load balance is effective (n=nL) is defined
by n2d-l=m. This value is substituted into (6.10h) from which nj can be computed.
The remaining n,-values can now be computed from equations (6.10e,f,g,..) and nL is
computed from (6.10i) as

nL =2 (n, +n 3 + 2n7z+ 4f+ .. + 2m) +(2-)

Execution time is constant (TPLU = T,) for m N < n < nL.
For n > nL, the execution time increases linearly with n, according to (6.3) and (6.11).

The speed-up of the parallel multilevel algorithm over the sequential algorithm for a given
value of n is derived from Fig. 7.1 as SLU = TBLu/TpLu. The speed-up is a nonlinear 3
function of n.

Two speed-up values are of particular interest, namely the speed-up of the minimum
dimension problem,

SL= TBLUITPLUnl=,N (7.1) 3
and the maximum asymptotic speed-up computed for n > nL

SLU = (OTBLIOn) / (TpLu/on) (7.2) 3
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The speed-up of the minimum dimension problem SmyJn is a worst-case value. It is
characterized by only two parameters, m and N, and it does not involve load balancing.

The maximum asymptotic speed-up cannot be attained since

,S -u= lim SLU

and it corresponds to the speed-up obtained by neglecting the computation involved in
the lower levels of the multilevel algorithm. For a given value of n, the speed-up, SL.,, is
bounded as follows:

S min < SLU < SLU

The discussion so far has only been concerned with LU-factorization. The solution
algorithms have the same qualitative properties and S"' and SO are defined analogously
to SLY and SLU in (7.1) and (7.2).

7.2 Numerical results

Figure 7.2 shows an example of the problems which were solved by the parallel multilevel
LU-factorization in order to verify the properties of the algorithm experimentally. The
graphs of Fig. 7.2 are of the types presented in Fig. 7.1. The dots indicate measured
values. All results in this section are based on measurements reported in [11].

An interesting feature of Fig. 7.2 is that the graphs intersect. This has as a con-
sequence that certain problems are solved more efficiently by fewer processors than the
maximum number. The phenomenon originates from the load balance algorithm and from
the fact that a doubling of the number of processors increases the depth of the multilevel
algorithm by one.
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Figure 7.2.: Execution time versus problem size for sequential (d=0) and multilevel

parallel LU-factorization (d>l). Bandwidth w=21 corresponding to m=10.
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m\p 2 4 8 16 32
2 (1.06) 0.7 (0.78) 0.8 (1.03) 1.14 (1.54) 2.13 (2.44)
5 1.4 (1.56) 0.95 (0:99) 1.10 (1.19) 1.60 (1.72) 2.57 (2.67)
10 1.5 (1.69) 0.96 (0.99) 1.14 (1.17) 1.64 (1.67) 2.57 (2.59)
15 1.6 (1.71) 0.96 (0.95) 1.14 (1.10) 1.65 (1.57) 2.56 (2.43)
20 1.6 (1.72) 0.97 (0.95) 1.15 (1.10) 1.65 (1.57) 2.53 (2.43)

Table 7.1. Measured and predicted (in paranthesis) values of speed-up of the multilevel
parallel LU-factorization over a sequential band factorization. The speed-up, SLT),

applies to the minimum dimension problem, N=2p-1 and n=m N.

Table 7.1 shows measured and predicted (in parantheses) values of speed-up for the
parallel multilevel LU-factorization algorithm applied to the minimum dimension prob-
lem. All execution times are measured with a resolution of 5msec. This means that
execution time for m=2 and p=2 cannot be measured (2-3msec) and that execution time
for m=5 and p=2 is not very accurate (20-25msec). The measurements only include LU-
factorization and corresponding communication for the parallel algorithm. Downloading
of programs, set-up of problem etc. are excluded from the execution time measurements.

The predicted speed-up values are computed as explained in Section 6.1. The expres-
sion for FPLU given in (6.3) does not include p=2 (d=l). A special formula, which is
easily derived, was used for this column in Table 7.1.

There is good agreement between measured and predicted speed-up values except for
m=2 where overhead like procedure calls and initialization leads to smaller speed-up than
expected from the model which only includes floating point operations.

For m=15 and m=20 the observed speed-up is slightly greater than the predicted
speed-up for p>4. This phenomenon could be explained by the fact that the block
structure of the Q-matrices in the multilevel algorithm leads to the equivalent of unrolling
of the loops of the factorization algorithm. The sequential band matrix factorization is
programmed in a straightforward style.

Table 7.2 shows measured and predicted (in paranthesis) values of the maximum
asymptotic speed-up for the parallel multilevel LU-factorization. Since these speed-up
values correspond to neglecting the computational expense of the lower levels, communi-
cation is also neglected in the model. The predicted speed-up values are computed from
(6.2), (6.3), (6.11) and (7.2). There is very close agreement between measured and pre-
dicted values since the top level of the multilevel algorithm is programmed very similarly
to the sequential band matrix factorization. This means that the measured speed-up is
very close to the ratio of floating point operations counts.

The maximum asymptotic speed-up of the parallel LU-factorization using p processors
and load balancing has the following limit which is easily derived from (6.1a,b) and (6.2):

SLu --+(p+6)/4 for m--+o (7.3)

Put into words, the performance of the multilevel LU-factorization algorithm with p
processor and load balancing according to (6.10) is identical to the performance with p+6
processors and no load balancing (ni = n3 = ... = nN).
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m\p 2 4 8 16 32
2 1.99 (2) 2.55 (2.56) 3.66 (3.67) 5.90 (5.89) 10.4 (10.3)
5 1.99 (2) 2.51 (2.52) 3.56 (3.57) 5.65 (5.67) 9.84 (9.86)
10 1.99 (2) 2.50 (2.51) 3.52 (3.54) 5.57 (5.59) 9.69 (9.68)
15 1.99 (2) 2.50 (2.51) 3.51 (3.52) 5.50 (5.56) 9.66 (9.62)
20 1.99 (2) 2.49 (2.51) 3.49 (3.52) 5.48 (5.54) 9.72 (9.59)

Table 7.2. Measured and predicted (in paranthesis) values of maximum asymptotic
speed-up, SLU, of the multilevel parallel LU-factorization over

a sequential band factorization.

m\p 2 4 8 16 32
2 - (0.51) 1.3 (0.73) 1.8 (1.06) 2.0 (1.66) 2.7 (2.69)
5 1.5 (1.2) 1.25 (1.36) 2.0 (1.91) 3.21 (2.94) 5.11 (4.73)
10 1.5 (1.5) 1.67 (1.56) 2.41 (2.16) 3.88 (3.30) 6.17 (5.31)
15 1.45 (1.58) 1.77 (1.60) 2.58 (2.21) 4.07 (3.37) 6.60 (5.41)
20 1.59 (1.61) 1.78 (1.61) 2.65 (2.23) 4.11 (3.39) 6.67 (5.44)

Table 7.3. Measured and predicted (in paranthesis) values of speed-up of the multilevel
parallel solution algorithm over a sequential forward-backward band substitution

algorithm. The speed-up Ss"' applies to the minimum
dimension problem, N=2p-I and n=mN. 3

In Table 7.3 the speed-up values of the parallel solution algorithm are given for the
minimum dimension problem. The solution algorithm examplified by Fig. 5.2 is applied
to a multilevel LU-factorization produced by the parallel multilevel LU-factorization
algorithm.

The measured speed-up values in Table 7.3 for m=2 and m=5 with p<8 are rather
inaccurate because of the resolution of 5 msec in the execution time measurements.

Disregarding the inaccurate speed-up measurements, the observed speed-up is consis-
tently greater than the predicted speed-up for p>2. This somewhat surprising result was
traced to an inadvertent exploitation of processor parallelism at the lower levels of the
parallel solution algorithm. Floating point computation on the 80287 processor and index 3
computation on the 80286 processor were to a certain degree overlapped in the parallel
algorithm and not in the sequential solution algorithm.

There was no attempt to optimize either the sequential or the parallel implementation, U
and very careful optimization could probably improve the speed by 25%-50%. However
communication would still be insignificant for problems large enough to justify the use
of a parallel computer. The experimental implementation therefore fulfils its purpose of
demonstrating the feasibility of the multilevel algorithm.

The predicted asymptotic speed-up S5u involves the computation of OTPLU/an which 3
is computed 

as

OTPLulON = (OF2d, 1/8n 2d' 1) (On2d.1/ofl) TF 3
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Because of the nature of the load balance algorithm, we have the following result for
n> nL :

8TPLU/an = (OF, On,) (On,/On) TF (7.4)

for r= 1, 3, .., N.

520U can now be expressed as

SL'u = (OTBLu/On) / [(OF/an1 ) (an,/an) TF] = (Onj/On)-'

The predicted asymptotic speed-up for the multilevel solution algorithm with load
distribution for optimum LU-factorization speed can be expressed as

= (aTos/8 ) / [(a (P +.P) /an, ) (afl/On)TF] =

which is equal to SZu.
Since load balance is not for optimum solution algorithm speed, a relation similar to

(7.4) is aot valid. The partitioning nj is approximately twice as large as the optimum
value. Therefore we have OFps/On = a (PA + PA) /On.

A table analogous to Table 7.2 with measured and predicted values of Ss for load dis-
tribution for optimum LU-factorization was constructed. As expected, it was essentially
identical to Table 7.2, and it was therefore omitted.

Load distribution is chosen to be optimum for LU-factorization since this is close to
minimum execution time for one LU-factorization followed by one solution step.

When one LU-factorization is computed followed by a large number of solution steps
(e.g. Newton iteration) it may be advantageous to load balance for optimum solution
speed. In this case we have:

Ss' -- (p+2)/2 for m- oo

This speed-up is almost twice as large as the corresponding limit value when load distri-
bution is with respect to LU-factorization as stated in (7.3).

7.3 Row interleaved factorization and solution

An alternative parallel LU-factorization and solution approach is the row interleaved
algorithm [8]. Contrary to the multilevel algorithm, the row interleaved algorithm does
not pay any computational penalty for the parallelization, only communication penalty.
Each pivot row must be broadcast to all processors to permit parallel factorization. The
execution time model for the row interleaved LU-factorization is as follows:

TRLU = n [m (2m + 1) TF/2d + d(To + 8m/B)]

The row interleaved LU-factorization can be compared with the multilevel LU-factorization
by comparing asymptotic speed-ups. For small values of m we have Soo > SLU where
SRLU is defined analogously to SLv :
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S'U= (OTBLU/afl)/ (OTRLU/l)

Table 7.4 gives the integer rn-values for which the algorithms break even, S- S-Lu.

P 4 8 16 32
m 13 15 21 31

Table 7.4. Integer values of in for which row interleaved and multilevel
LU-factorizations break even in asymptotic speed-up.

The entries of Table 7.5 are computed from the equation

OTRLuI/ n = 8qTpLuI/ n

where
8TpLUIn / 4m (2m + 1) TFI (2d +6)

This value is a good approximation assuming load distribution and "large" m.
For rn-values larger than those given in Table 7.4, the row interleaved LU-factorization

will be superior to the multilevel algorithm. For p=2, the multilevel algorithm is always
superior.

The values of table 7.4 were compared with measurements of an implementation of
the row interleaved algorithm and measurements of the multilevel algorithm. The mea-
surements resulted in m=14 and m=20 for p=8 and p=16, respectively. This is in good
agreement with the predictions of the model.

The row interleaved solution algorithm performs very poorly since the number og
broadcasts is the same as for the LU-factorization while computation is O(m) for each
broadcast for the solution algorithm compared with 0(m2 ) for the LU-factorization.

Concluding the comparison of multilevel and row interleaved algorithms, the former
is superiour for narrow band problems while the latter takes over for wide band prob-
lems. The LU-factorizations break even for the rn-values given in Table 7.5. For one
LU-factorization and one solution step, the rn-values corresponding to break even will
increase.

It is obvious that the rn-values of Table 7.4 are sensitive to the communication and
computation performance of the parallel computer as modeled by To, B and TF. However,
there is no trend in parallel computer technology towards a substantial shift of the break-
even values of m.

Finally, the multilevel solution method and the implementation techniques on the
hypercube discribed in this paper should also be applicable to the other members of the
family of permutations for parallel solution of block tridiagonal matrices proposed in [7].

30



m

Acknowledgement

I The careful implementation of the multilevel algorithms together with the numerical ex-
periments were done by Per Ulkjwr Andersen who also contributed to the principles behind3 load balancing, processor allocation and communication for the multilevel algorithm.

The work of I.N.Hajj was supported in part by the U.S.Joint Services Electronics
Program and by Intel Corporation.

References

m [1 ] D. Heller, "Some aspects of the cyclic reduction algorithm for block tridiagonal
systems", SIAM J. Numer.Anal., Vol. 13, no. 4, pp. 484-496, 1976.

[2 1 G. Birkhoff and A. George, "Elimination by nested dissection", in Complexity of
Sequential and Numerical Algorithms edited by J. F. Traub, pp. 221-269, Academic

3 Press, 1973.

[3 ] i. N. Hajj, "Sparsity considerations in network solution by tearing, IEEE Trans.
Circuit and Systems, Vol. CAS-27, no. 5, pp. 357-366, 1980.

[4 1 J. J. Dongarra and A. H. Sameh, "One some parallel banded system solvers",
Parallel Computing 1 (1984) 223-235.

[5 1 S. L. Johnsson, "Solving narrow banded systems on emsemble architectures", ACM
Trans. Math. Software, Vol. 11, no. 3, pp. 271-288, 1985.

(6 1 U. Meier, "A parallel partition method for solving banded systems of linear equa-
tions", Parallel Computing 2 (1985) 33-43.

m [7 1 S. Utku, M. Salama and R. J. Melosh, "A family of permutations for concurrent
factorization of block tridiagonal matrices", IEEE Trans. on Computers, Vol. 38.

m No. 6, pp. 812-824, June 1989.

[8 ] Y. Saad and H. M. Schultz, "Parallel direct methods for solving banded linear
m systems", Linear Algebra and its Applications, Vol. 88/89, pp. 623-650, 1987.

[9 ] D. K. Bradley, "First and second generation hypercube performance", Report
No. UIUCDCS-R-88-1455, Dept. Computer Science, University of Illinois, Urbana
Champaign, USA, 1988.

[10 ] I. N. Hajj and S. Skelboe, "Multilevel parallel solver for banded linear systems",
in Aspects of Computation on Asynchronous Parallel Processors, edited by M. H.
Wright, IFIP 1989, pp. 69-78.

I [11 1 P. Ulfkjaer Andersen, "Implementation of a two-level a multilevel and a block
parallel multilevel parallel solver for banded linear systems", Report, Department3 of Computer Science, University of Copenhagen, 1988.

331


