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Abstract. An element set is advocated that is familiar (in traditional

terms), and yet applicable to all types of orbit without loss of

,: ... accuracy. It is not free of singularity, but this is not a serious

deficiency. Conversion procedures, to and from position and velocity,

are outlined, with Fortran-77 listings appended. Tests have indicated

that the errors in the pair of procedures are minimal, accuracy being

limited only by computer precision and the (fixed) number of iterations

used in the Kepler-equation solutions.

1. Introduction

There has long been the goal, in celestial mechanics, of subsuming the

solutions of the two-body problem, particular to the ellipse, parabola

and hyperbola, in a universal solution, valid for the rectilinear orbit

of each type as well as the general orbit. Steps towards this goal have

been taken by Sundman (1912), Stumpff (1947), Goodyear (1965), Herrick

(1965), Pitkin (1965) and Shepperd (1985), among others, and some

elegant mathematical formulations have been achieved. The aesthetic

attractions of the universal approach have to be weighed against a

numoer of computational disadvantages, however, and the latter are often

"disregarded.

An important distinction must be made between universality

associated with orbital elements, on the one hand, and the formulae and

working variables of computing procedures, on the other. The case for
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universal elements is undeniable, but it does not automatically extend

to algorithms such as those involved in the conversion of elements to

and from position and velocity; the user of such an algorithm is

naturally concerned with its generality, as well as with its accuracy

and efficiency, but a requirement for generality does not imply that the

algorithm has to be internally 'blind' to orbit type.

The foregoing distinction is at the heart of the present paper,

..... which is a shortened version of a recent RAE Report by Gooding (1987).

Section 2 discusses what is actually meant by a set of universal (or

universally applicable) elements, and introduces the set to be used in

the rest of the paper; this set suffers from certain singularities, but

the singularities are found to lead to no real difficulty in the con-

version algorithms. Based on the assumed element set, Section 3

describes a computing procedure for the conversion to position and velo-

city; this involves, in particular, separate algorithms for solving

Kepler's equation and the corresponding hyperbolic equation, as

currently described by Gooding and Odell (1989). Section 4 describes

the reverse procedure; here the algorithms for ellipse and hyperbola

need to be formulated with great care, since serious inaccuracy can

arise if a formula for hyperbolic orbits is based on direct trans-

mutation of the corresponding elliptic formula. Section 5 of the paper

is concerned with the testing and performance of the two conversion

procedures, each of them having been implemented by a pair of Fortran-77

subroutines, one to cover the two-dimensional (in-plane) part of the

conversion and the other the three-dimensional aspects.

There are situations in which the orbital-element singularities

present difficulties that are more real than in the conversion

algorithms. Section 6 indicates how such difficulties may be dealt

with.
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2. A Set of Universally Applicable Elements

We seek to define a set of universally applicable elements for motion in

unperturbed orbits about a centre of Newtonian attraction of strength

* We restrict our attention to non-redundant element sets, for

convenience denoting by C the sextuple of quantities that such a set

must comprise; further, we make the usual assumption that the first five

eieents of define the orbital path, whilst the sixth is a phase

specifier. Since our main concern is with computing procedures for

converting from orbital elements to position and velocity, and vice

versa, we let x denote the sextuple of components of position and

velocity in a convenient system of rectangular coordinates, with origin

at the attraction centre; we introduce f as the function converting

from C to x , so that

x - • (1)

We shall also refer to the Jacobian (partial-derivative) matrix of

with respect to 4 , and denote it by ,

If a particular element set can be chosen that covers every type

of orbit, then in principle we regard these elements as universal. It

is implied that the function f is surJective, with range covering all

possible x , but this is not enough. We also require that J is

defined (exists) over the domain of valid C , with no occurrence of

discontinuity or infinity.

Ideally, f would be injective as well as surjective, so that it

would have a unique inverse, with the matrix J never singular. Since

non-singularity seems to be incompatible with universality, however, we

must give up the extra requirement, but for many purposes (in solving

Lambert's problem, for example) this is of little consequence. From the

surjective property, we can always define a (non-unique) function,
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f such that the composition of f followed by f is the identity

over x-space , and this is enough to demand of the function f

Looking ahead to Section 5, however, we can express this relation more

conveniently (and symmetrically) as a property based on c-space , viz

f fl f - f . (2)

We now proceed to the identification of a particular set of

universally applicable elements. Our starting point is the set

(a, e, i, Q, w, M) of familiar elements used for elliptic orbits. The

elements i , n and w , which operate as Euler angles relating the

orbital plane to the chosen axis system, are already universal, applying

as well to parabolas and hyperbolas as to ellipses. The element M is

manifestly not universal, on the other hand, since it is identically

zero in the parabolic limit. It becomes universal on division by n

(mean motion), however, the result being a new element (time from peri-

focus) that we denote by T ; clearly, T is just the negative of the

element T , traditionally used as an alternative to M . The four

elements so far considered are all involved in indeterminacies (non-

uniqueness) due to singularity (and the associated non-injectivity of

the function f ), the sources of singularity being rectilinear orbits,

circular orbits, and orbits for which i - 0 or i - w .

It just remains to consider the first two of the original

elements, and the combination of a and e cannot be universal, since

a parabola's perifocal distance, given by q - a(l - e) , and parameter,

given by p - a(l - e 2 ) , would not then be defined. If we replace e

by q , however, the new pair of elements (a and q) would be universal

if we allowed a to be infinite. To avoid this difficulty, we replace

a by a , where
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a - P/a, (3)

and then the set (a, q, i, fl, w, T) is a universal set. It is noted

that the definition of a by (3) maintains the desirable feature cf the

original element set that makes one element a function only of energy;

indeed a is twice the negative energy per unit mass, since

V2 - 2u/r = -a . (4)

The incorporation of the factor U in (3) leads to certain simplifi-

cations in computing; as can be seen from (4), it also permits the

element a to be well defined in the ultimate limiting case in which

- 0 . It would not be satisfactory to replace q by p , since

(because aq/p = I/Ze , for a fixed value of a) a circular orbit would

then involve infinities in J

In terms of a and q , the following complete classification of

orbits becomes possible:

a > 0 a 0 a < 0

q > 0 general ellipse general parabola general hyperbola

- - - q - 0 rectilinear ellipse rectilinear parabola rectilinear hyperbola

Figure I shows how q varies with a/. ( = ]/a) for selected values of e

The curves are all rectangular hyperbolas, and it is easily seen how

rectilinear orbits (points on the horizontal axis) may be distinguished

from parabolic orbits (points on the vertical axis), though e - 1 in

both cases.

3. Conversion of Elements to Position and Velocity

The procedure to be described converts from the assumed element set

(0, q, i, S1, w, T) to position and velocity (x, y, z. x, x, i). It has

been implemented by a pair of Fortran-77 subroutines, listed in



Appendices A and B. Subroutine ELS2PV (Appendix A) covers the purely

two-dimensional (ia-plane) part of the conversion, in which the polar

coordinates r and u (u being 'argument of latitude', assuming the

normal interpretation of the axis system), together with the radial and

transverse velocity components V Rand V T, are derived from the

elements a, q, w and T , plus u . The definition of VT is such

that V > 0 ; also it is assumed that r > 0 , avoiding the polar-

coordinate singularity at r - 0 , though ELS2PV operates accurately for

all points of a rectilinear orbit other than the centre of attraction

itself. Subroutine ELS3PV (Appendix B) first calls ELS2PV, and then

--- uses the angles u, i and 9 to perform the appropriate rotations to

complete the conversion.

Details of the computing procedure will be omitted here. The

* - ' relevant formulae have been given, without proofs, by Gooding (1987),

and further detail can be obtained from text-books. Some comments on

particular aspects of the procedure are called for, however.

First, in much of ELS2PV, different algorithms are used for the

ellipse, hyperbola and parabola, the control parameter being (the sign

of) a . The function procedures EKEPL and SHKEPL are used to solve

Kepler's equation and a reformulated hyperbolic equation, the latter

as described by Gooding and Odell (1987); the guaranteed accuracies

(relative truncation error) for these procedures, in two iterations of a

quartic convergence process, are 14 decimal digits for E (eccentric

anomaly) and 20 digits for S (- sinh H , where H is the hyperbolic

anomaly). For the parabola, Barker's equation, in the form

d3 + 61qd " 62 T , (5)

is solved directly for d , where d - rr Care has been taken to
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obtain maximum accuracy in the solution of this cubic equation, in

particular by the use of a refined cube root.

The next point concerns the value of v (true anomaly), computed

as a working variable of ELS2PV. For hype rbolas and parabolas, we must

have I v J <ir , so that the subroutine can accommodate an arbitrary

value of w unambiguously, with included multiples of 27 carried

directly into u • For ellipses, on the other hand, an arbitrary value

of v can arise, reflecting the number of orbital periods present in

T , so that the mapping (W, T) - u is no longer one-one. This is an

aspect of the non-injective nature of the function f of Section 2,

quite apart from the singularity issue, and it will be referred to

again in Section 4.

As a third point we note that, for the ellipse, r and v are

computed from formulae in sin kE and cos kE , but that the corre-

sponding formulae (in sinh kH and cosh hH) are not available for

the hyperbola, as it is S ( - sinh H) that is provided by SHKEPL.

There is no difficulty, however, as both r and v can be expressed in

terms of C - 1 , where C - cosh H ; to minimize rounding error, we

compute

C - /(1 + S2)

followed by

C -i S2 /(C + 1)

A final comment may be helpful in interpreting the listings in the

Appendices (it applies in Section 4 as well as here). As a corollary of

the appearance of U in definition (3), an appropriate (integral) power

of U is naturally associated with other quantities also; thus the

Fortran variables E and M refer to pe and uM , respectively, not

just e and M



4. Conversion of Position and Velocity to Elements

We are now concerned with the procedure for converting from position and

velocity (x, y, z, i, , i) to the element set (a, q, i, S1, w, t).

Whereas the procedure described in Section 3 constitutes the unambiguous

function f of Section 2, the procedure to be described here merely

defines a particular inverse function, f- , of the many satisfying

(2). It has been implemented by a pair of Fortran-77 subroutines,

listed in Appendices C and D, that are the natural counterparts of those

from Sectinn 3. Subroutine PV2ELS (Appendix C) covers the purely two-

dimensional part of the conversion, computing a, q, w and T from

r, u, VR and VT  (together with 1j), whilst PV3ELS (Appendix D) imple-

ments the overall procedure, deriving i and Q as well as the input

required for PV2ELS, which it calls.

Mainly because of the semi-arbitrary nature of the procedure, the

f- subroutines are a good deal more complicated than the f sub-

routines, and more extensive commentary is necessary - there is one

simplification, on the other hand, since there is no longer a transcen-

dental equation to be solved. The first comment refere to the control

parameter, in PV2ELS, for the type of orbit. This is again a , given by

(4). To avoid arbitrariness, the orbit is only deemed to be parabolic

if a is exactly zero, and this condition is very unlikely to occur in

practice; because of rounding error, this is true even when f-1

follows an f that operated on an exactly parabolic orbit. There is no

lessening of accuracy in the handling of near-parabolic ellipses and

hyperbolas, however, so it is only the efficiency associated with the

parabolic formulae that is lost; if this were considered important, then

PV2ELS cotld be modified to decree 'parabolic orbit' whenever ra/ I

is less than some suitable criterion value.



A similar situation (still in PV2ELS) applies to the reccgnition

of a circular orbit, which only happens if an exactly zero value of e

(which is just a working variable) is computed. This special case has

to be covered because it constitutes a singularity, with the values of

w and T both becoming indeterminate; PV2ELS sets T and v (another

working variable) arbitrarily to zero, after which w is set to u - v

as with every other type of orbit. There is a degree of arbitrariness

associated with all elliptic orbits, of course, due to the non-injective

nature of the mapping (w,t) u , as remarked in Section 3. The two

obvious options, for PV2ELS, were to select for minimum ITj or minimum

w " The former is the better choice, because it reduces rounding

error in certain circumstances, in particular for near-rectilinear

ellipses, and this option has been implemented in the subroutine; the

other option can be obtained, however, by changing the value of a

built-in logical variable (L).

It was remarked in Section 1 that the use of directly parallel

formulae, for the ellipse and hyperbola, can lead to inaccuracy. The

reference was to rounding error, and a good example of such error arises

with the computation of e , required so that q can be computed from

q - p/(1 + e) • (6)

If we define

c - rV2/ -2

a:,?

a r v R ll

tnen the elliptic interpretation is that c - e cos E and
2 2 2

s - e sin E , so that e is given by e - c + s . For the hyperbola,

however, the interpretations of c and s are as e cosh H and
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2 2 2
e sinh H , so that the parallel formula is e - c - s 2 The potential

sensitivity to rounding error, when I HI is large, is obvious, yet this

is a formula frequently given in text-books. The formula appropriate

2for hyperbolas is simply e - I - ap/p , where (since a is negative)

it is really an addition, not a subtraction, that is implied. This

formula would, in turn, be inappropriate for ellipses (cf the remark in

Section 2 that a and p , as opposed to a and q , would be an

unsatisfactory pair of elements for orbits approaching circularity), and

PV2ELS uses the optimum formula for each case.

The remaining comments refer to the computation of the quantities

i, Q and u by subroutine PV3ELS, prior to the calling of PV2ELS. The

main problem is singularity again, though (as in PV2ELS) there is the

additional source of arbitrariness associated, in particular, with the

convention that the value determined for Q should always satisfy

-7r < n < 7r.

The predominant singularity relates to rectilinear orbits, and it

is deemed to arise only when the angular-momentum vector is exactly

zero. As no 'orbital plane' is then defined, it was necessary, for the

operation of PV3ELS, to fabricate one, and it was decided to do this, in

principle, by taking the plane that contains the orbit and for which

i - k. For an 'axial orbit', perpendicular to the reference plane,

there is a subsidiary singularity, however, with the general principle

inadequate to define a unique plane; for definiteness in this case, the

value of n is decreed to be zero.

For the general (non-rectilinear) orbit, superficially the only

difficulty arises with the singularity that occurs when the orbital

plane exactly coincides with the reference plane, and this is easily

dealt with, again by decreeing Q to be zero - this is just like

setting w and T to zero (in PV2ELS) for an exactly circular orbit.
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But there is another difficulty; it arises with near-rectilinear orbits,

for which the rounding error in computing the components of the angular-

momentum vector, h., can be serious. The problem here disappears at

once, however, if instead of just computing h ( - X x i) we compute

r2 h -r x ( x r ]

further detail has been given by Gooding (1987).

5. Testing of the Computing Procedures

The basic philosophy for testing was that the two conversion procedures,

as implemented by the subroutines ELS3PV and PV3ELS, would be used to

test each other. The validity of this philosophy emanated from two

considerations: first, that the subroutines were essentially inde-

pendent, with (for example) Kepler's equation only arising in (a sub-

routine subordinate to) ELS3PV and rectilinear orbits only having 'to

be recognized in PV3ELS; secondly, that advantage could be taken of the

different formulae used for different types of orbit, to make a careful

study of continuity across the transition lines. The obvious property

to test, in the notation of Section 2, was that ff-I (the composition

of f-1 followed by f) should be the identity over x-space , with no

corresponding requirement for f- f ; but the need to make the testing

systematic and efficient pointed to the use of input from £-space

rather than x-space , and this is why the testing was actually based on

the property specified by Equation (2). The testing has been restricted

to the verification of (2), to within tolerable rounding error, at fixed

instants in time, but this restriction does not limit the efficacy of

the subroutines or the testing, since to proceed from x at to , say,

to x at t, , we merely have to increment the T-component of

0 " f-I (SO) , by tj - to , before deriving Z1 from f( l) .
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To attach a meaning to 'tolerable rounding error', we separate the

sextuple x into the pair of vectors r and . Also, for each

'input' x (derived from an actual input C ), we write ff-l () as

x + Ax . Then the relative errors in the final position and velocity

are taken to be j Ar I/r and I Ai /V , respectively, where r - I

and V I tj It might be hoped that the ff-1  operation would not

produce relative errors more than about a (decimal) order of magnitude

greater than the limiting precision of the computer used; since this was

a PRIME 750, of limiting accuracy (double precision) about 1014, it

was therefore reasonable to look for a maximum relative error no greater

than 2 x l0 - 1 3 . This goal has been met for I Arl /r without

-.. ... .. difficulty, but for I A I/V only in a modified manner. Before

explaining this, we remark on the range of test cases covered.

There are seven degrees of freedom associated with the input to

ELS3PV, since p is an argument as well as the sextuple C . It was

obviously impracticable to carry out exhaustive tests over a seven-

dimensional space, so most of the testing concentrated on the in-plane

S.. :algorithms, using fixed values of i, n and w . In these tests, the

quantities U, a, q and t had to be covered, but it was not

necessary to vary them all independently, if the assumption was made

that orbits of the same shape produce, at corresponding points, relative

errors of the same order of magnitude. Thus, orbits having the same

value of aq/u may be regarded as equivalent in shape, this being the

value of I - e , whilst points with the same value of a r /P may be

regarded as in correspondence, this being the value of M2  for elliptic

orbits. On this basis, it was legitimate, for non-rectilinear orbits, to

test with fixed values of V and q , taken (arbitrarily) as 64 and 1

respectively; these tests, with two degrees of freedom (a and T),

then had to be supplemented by one-degree tests (on a only) for
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rectilinear orbits, with q now set to zero and T given a fixed value.

A wide range of values for a and T was covered: a varied from an

extreme negative value of -1020 to its maximum permissible value of 64

(for the given u and q), with test values clustered in particular

around zero (parabolic orbit) and close to 64 (circular orbit); test

values for r also clustered about zero (perifocus), with a maximum

20
value of 10

The essentially in-plane tests, just described, were carried out

with the fixed value of kw for i . Tests for a wide range of i

were obviously important, however, in particular with values clustered

close to the limiting values of 0 and w ; these tests were carried

out with a varied over its full range, but T (as well as the other

quantities) held fixed. Finally, it seemed enough to carry out a

limited (non-systematic) set of tests with the values of 12 and w

varied.

As already indicated, all the tests met the goal set for position

error, as measured by j /r The goal was also met for velocity

error, as measured by & /V , in most of the tests, but it was not

' met in a number of cases involving proximity to the apofocus of a near-

rectilinear orbit. Since V is very small in such circumstances, the

requirement becomes severe, but failure to achieve it can be ascribed to

a specific technical point: when E is close to w , it is impossible

to restrict the relative error in sin E ; but VR is proportional to

sin E , so when i is dominated by VR (because VT - 0) the loss of

(relative) accuracy in i is inevitable; another way of putting this

point is that 6V/6r is large in comparison with V/T , so the relative

error in computing T (within PV2ELS) gets magnified in the subsequent

return to velocity. If we measure relative error by At J/W , how-

ever, where W is max(V, ra), not just V , then the goal of 2 x 10I1
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is met in all cases. A similar problem might have been expected with

position error when r is very small; but for values of E close to

zero, the relative error in sin E is kept low, whilst values of E

close to 2r, 4w etc cannot arise with the composite function

f(f-1 (x)) , since f-1 selects for minimum T as explained in

Section 4.

6. On the Singularities

Not counting the rectilinear-orbit singularity (defined by q = 0 , but

of little practical interest), there are three singularities that have

long been recognized as possible sources of difficulty in computational

analysis based on the usual elliptic elements: the singularity at

e - 0 ; and the pair of singularities at i - 0 and i - w . It is

easy to transform the elements so as to eliminate any one of these

singularities, and it is not hard to find a transformation that sim-

ultaneously eliminates the eccentricity singularity and one of the

inclination singularities - this is achieved with the 'equinoctial

elements' of Broucke and Cefola (1972), for example. The elimination of

all three singularities together is much more difficult, however,

though it was achieved by Cohen and Hubbard (1962) with the element set

defined by

qo = pk cos ki cos k(Q + w + a) , q -- pk sin ki cos h(n - w -o) ,

q2 - pk sin ki sin k(il - w - a) , q3 - pk cos ki sin k(n + w + a) ,

e M e cosa and e -e sin a

I y

where a is the mean anomaly at epoch.

The trouble with the partial or total elimination of singularity,

in element sets such as the ones just referred to, is that it only
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applies to elliptic orbits and is incompatible with universal appli-

cability. By the same token, there is no simple transformation of the

universal elements recommended here that eliminates singularity whilst

retaining universality. We have already seen, on the other hand, that

singularity is of little consequence so far as conversion procedures are

concerned. But up to now we have only been concerned with fixed values

of the relevant elements; when variations in these elements are con-

sidered, we cannot dismiss the singularity question so lightly.

Suppose we have a large computer program involving differential

changes in the values of a set of orbital elements subject to singu-

larity; these changes may arise, in particular, from the evaluation of

perturbation formulae, or from the use of observations in orbit deter-

mination. If the program is used with an element set in the vicinity of

a singularity, it is likely that unacceptable error will result, and the

first time this occurs it may seem that we have to rewrite the program

in terms of a different (singularity free) element set. This could be a

daunting prospect, and an especially unattractive one if it could be

fbreseen that the efficiency of the new program would be significantly

reduced by the complexity of the new elements. However, such a radical

rewrite is almost certainly unnecessary, as it should be possible to

maintain the original elements with only a short-term switch to non-

singular equivalents.

To illustrate the principle, consider just the singularity associ-

ated with e - 0 . For simplicity, we suppose that the computer program

has been written in terms of the usual elliptic elements, rather than

our universally applicable set, but this is a point of minor consider-

ation. Unless e is exactly zero, we have been able to compute changes

in all the elements, including superficially meaningless values of SW

and 6M • Applying these changes directly could lead to serious error
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!n e, w and M , attributable to truncation effects in the underlying

Taylor expansions, but such error could be avoided by just a temporary

switch from the elements e, w and M to , T and U , where

( , r, U) - (e cos w, e sin w, H + w);

the switch is implemented on the basis that e' , w' and M' , the new

elements we require, are recoverable from

e' cosw' = [' wt + = (e + 6e) cos w - (e 6w) sin w

e' sin w' - n' n n + 6n= (e + Se) sin w + (e 6w) cos w

and

M, + ' U' = U + SU (M + 6M) + (W + 6W)

Truncation error can be entirely avoided by the artifice just

illustrated (except perhaps at the points of exact singularity), but

rounding error can still be a problem. Depending on the application, it

should be possible to deal with this via minimal software modifications,

]. in particular in the computation of partial derivatives. In the pertur-

bation context, the procedure for singularity avoidance has been

indicated before, by Gooding (1983).

7. Conclusion

The only truly 'universal' elements are perhaps the epochal components

of position and velocity, and papers such as Shepperd's (1985)* give

• Two points in this generally excellent paper illustrate the weaknesses

of computing procedures that are almost totally blind to orbital type.
First, Shepperd recommends the use of a certain universal variable, u
in terms of which an 'intermediate parameter' q , where
q - au2 /(l + au2) , is the argument of a particular continued-fraction
expansion, G5(q) . For elliptic orbits, q is actually sin2 kAE I
where AE - E - , so that qmax ' 0.5 , as Shepperd remarks. But for

this value of q , 18 iterations of the recursive evaluation of G5(q)

are needed to give 14-decimal-digit accuracy, whereas the same accuracy
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elegant algorithms for the propagation (or transition) of these from one

instant of time to another. Only one element of the traditional type

figures in such algorithms, namely, the energy-equivalent inverse of the

semi-major axis. However, total universality is not available, even

with an approach as general as this, since the generalized anomaly vari-

able has to be range-restricted when an elliptic orbit is identified and

more than a single revolution within this ellipse is involved. Though

text-books increasingly reflect the attractions of the very general

approach, they also continue to recognize the utility of traditional

element sets, and in particular of sets for which five of the six

elements are independent of orbital position. It has been the main

objective of the present paper to establish that the most familiar of

all element sets is, with only slight modification, of universal

application, so long as the necessary conversion procedures (to and from

position and velocity) are carefully programmed. In particular, optimum

numerical accuracy can only be maintained if the procedures respect the

necessity for different types of formulae to be employed internally,

according to the type of orbit.

The universality objective (for an element set) is not compatible

with freedom from singularity, but in the majority of applications

singularity is either of little consequence or can be dealt with easily.

Hence the existence of singularities for a universally applicable

element set should not be regarded as a major defect.

can be obtained with much greater efficiency if the G5 function is
evaluated, in a specifically elliptic formulation, as
15(64E - 8 sin AE + sin 2AE)/96 sinSjAE . The other point is more
serious, in that Shepperd suggests that use of u as argument of a
universal Kepler's equation automatically eliminates the
slow-convergence problem noted, in particular, by Odell and Gooding
(1986). This is a misconception, however; with Newton-Raphson
iteration, the problem can only be universally eliminated by careful
choice of a starting formula.
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Four Fortran-77 subroutines, which implement the conversion procedures

described in the paper, are listed in Appendices A to D.
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Appendix A

SUBROUTINE ELS2PV

SUBROUTINE ELS2PV (GM, AL, Q, OM, TAU, R, U, VR, VT)
C ALGORITHM FOR TWO-DIMENSIONAL CONVERSION
C FROM ORBITAL ELEMENTS TO POSITION AND VELOCITY.
C INPUT ARGUMENTS ARE: GM (G*M), AL(PHA) (GM/A),
C Q (PERI DISTANCE), OM(EGA) (ARG-PERI RELATIVE TO
C ASSUMED REFERENCE DIRECTION) AND TAU (TIME FROM PERI).
C OUTPUT ARGUMENTS ARE: R (RADIAL DISTANCE),
C U (ANGLE FROM REFERENCE DIRECTION), VR (RADIAL VELOCIY)
C AND VT (TRANSVERSE VELOCITY: .GE.0).

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (PI = 3.14159265358979323846264338328D0,

1 FOURPI =4D0*PI)

IF (AL.EQ.ODO) THEN
C (PARABOLA - GM CANNOT BE ZERO)

D = DCBSOL(O.5D0/GM, Q, 1.5D0*GM*TAU)
R = Q + O.5D0*D*D/GM
H = DSQRT(2D0*GM*Q)
V = 2D0*DATAN2(D, H)

ELSE
C (ELLIPSE OR HYPERBOLA)

El = AL*Q
E =GM -El
EP1 GM + E
H = DSQRT(Q*EP1)
ALP DABS (AL)
RTAL =DSQRT(ALP)

C (LAST 6 ITEMS COULD BE SAVED IF REPEATING GM, AL & Q
EM = TAU*ALP*RTAL
IF (AL.GT.QDO) THEN

C (ELLIPSE - GM CANNOT BE ZERO)
EE2 - .5D0*EKEPL(EM/GM, El/GM)
S2 =DSIN(EE2)

C2 =DCOS(EE2)

R = Q + 2D0*E*S2*S2/AL
D - 2D0*E*S2*C2/RTAL
V = 2D0*DATAN2(EPI*S2, H*RTAL*C2)
EMV = EM/GM - V
V = V + FOURPI*DSIGN(DINT(DABS(EMV/FOURPI) + .5D0), EMV)
ELSE

C (HYPERBOLA)
S = SHKEPL(EM/E, -E1/E)
S2 =S*S
C = DSQRT(1D0 + S2)
S2 =S2/(C + iDO)
R = Q - E*S2/AL
D = E*S/RTAL
V - DATAN2(S*H*RTAL, -GM*S2 -El)

END IF
END IF

C (ALL ORBITS)
U =OM + V
VR =D/R

VT =H/R

RETURN
END
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Appendix B

SUBROUTINE ELS3PV

SUBROUTINE ELS3PV (GM, AL, Q, EI, BOM, OM, TAU,
1 X, Y, Z, XDOT, YDOT, ZDOT)

C ALGORITHM FOR THREE-DIMENSIONAL CONVERSION
C FROM ORBITAL ELEMENTS TO POSITION AND VELOCITY.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CALL ELS2PV (GM, AL, Q, OM, TAU, R, U, VR, VT)
C = DCOS(U)
S = DSIN(U)
Xl - R*C
Y1 = R*S

. .X2 = VR*C - VT*S
Y2 = VR*S + VT*C
C = DCOS(EI)
S = DSIN(EI)
Z = Y1*S
Yl = Yl*C
ZDOT = Y2*S
Y2 =Y2*C
C = DCOS(BOM)
S = DSIN(BOM)
X = XI*C - YI*S

.... ¥ XI*S + YI*C

XDOT = X2*C - Y2*S
YDOT = X2*S + Y2*C
RETURN
END
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Appendix C

SUBROUTINE PV2ELS

SUBROUTINE PV2ELS (GM, R, U, VR, VT, AL, Q, OM, TAU)
C ALGORITHM FOR TWO-DIMENSIONAL CONVERSION
C FROM POSITION AND VELOCITY TO ORBITAL ELEMENTS.
C INPUT ARGUMENTS ARE: GM (G*M), R (RADIAL DISTANCE),
C U (ANGLE FROM ASSUMED REFERENCE DIRECTION),
C VR (RADIAL VELOCITY) AND VT (TRANSVERSE VELOCITY: .GE.0).
C OUTPUT ARGUMENTS ARE: AL(PHA) (GM/A), Q (PERI DISTANCE),
C OM(EGA) (ARG-PERI RELATIVE TO REFERENCE DIRECTION)

.- C AND TAU (TIME FROM PERI).
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
LOGICAL L
PARAMETER (PI = 3.14159265358979323846264338328D0,
1 TWOPI = 2D0*PI, SW = 0.25D0, L = .FALSE.)

C (ALL ORBITS)
VSQ = VR*VR + VT*VT

AL = 2D0*GM/R - VSQ
ALP = DABS(AL)

S .RTAL - DSQRT(ALP)
D = R*VR
H - R*VT
P = H*H
ESQI = P*AL
ES = D*RTAL
ESES = ES*ES
EC - R*VSQ - GM

ECEC = EC*EC
IF (AL.GT.ODO) THEN

C (ONE ESQ FORMULA SUPERIOR FOR THE ELLIPSE)
ESQ = ECEC + ESES

ELSE
C (DIFFERENT FORMULA SUPERIOR FOR THE HYPERBOLA)

* ESQ - GM*GM - ESQI
END IF
E - DSQRT(ESQ)
Q - P/(GM + E)
IF (AL.EQ.ODO) THEN

C (PARABOLA)
TAU - D*(2DO*Q + R)/(3DO*GM)
V - 2DO*DATAN2(VR, VT)
ELSE IF (E.EQ.ODO) THEN

C (CIRCLE)
TAU = ODO
V - ODO

EJ.'E

Cconcluded next page]
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(continuation of PV2ELS)

C (ELLIPSE OR HYPERBOLA)
El = AL*Q
IF (AL.GT.ODO) THEN

C (ELLIPSE)
EH - DATAN2 (ES, EC)
IF (GM*EH*EH/6DO + El .GE. GM*SW) THEN

C (GENERAL CASE)
EM = GM*EH - ES
ECESQ = GM*EC - ESQ

ELSE
C (FOR El & EH BOTH NEAR ZERO)

EM = GM*EMKEP(EI/GM, EH)
ECESQ = (ESQI*ECEC - ESQ*ESES)/(ESQ + GM*EC)

END IF
ELSE

C (HYPERBOLA)
EH - DASINH(ES/E)
IF (GM*EH*EH/6DO - El .GE. GM*SW) THEN

C (GENERAL CASE)
EM = ES - GM*EH
ECESQ = ESQ - GM*EC
ELSE

C (FOR El & EH BOTH NEAR ZERO)
EM = E*SHMKEP(-El/E, ES/E)
ECESQ = -(ESQI*ECEC + ESQ*ESES)/(ESQ + GM*EC)

END IF
END IF

C (ELLIPSE OR HYPERBOLA STILL)
EN = ALP*RTAL

TAU - EM/EN
V = DATAN2(ES*H*RTAL, ECESQ)

END IF
C (ALL ORBITS)

= OM=U-V
IF (L .AND. AL.GT.ODO) THEN

C (FOR ELLIPSE, ADJUST REVOLUTIONS IF REQUIRED (USING L))
ADJ TWOPI*DSIGN(DINT(DABS(OM/TWOPI) + 0.5D0), OM)
OM = OM - ADJ
TAU = TAU + ADJ/EN

END IF
RETURN
END



25

Appendix D

SUBROUTINE PV3ELS

SUBROUTINE PV3ELS (GM, X, Y, Z, XDOT, YDOT, ZDOT,
I AL, Q, EI, BOM, OM, TAU)

C ALGORITHM FOR THREE-DIMENSIONAL CONVERSION
C FROM POSITION AND VELOCITY TO ORBITAL ELEMENTS.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (PI=3.14159265358979323846264338328DO, HALFPI=PI/2D0)
XSQYSQ - X*X + Y*Y
RSQ = XSQYSQ + Z*Z
R DSQRT(RSQ)
VR = (X*XDOT + Y*YDOT + Z*ZDOT)/R
HX = Y*ZDOT - Z*YDOT
HY = Z*XDOT - X*ZDOT
HZ X*YDOT - Y*XDOT
HSQ = HX*HX + HY*HY + HZ*HZ
IF (HSQ.EQ.ODO) THEN

C (RECTILINEAR ORBIT)
El = HALFPI
IF (XSQYSQ.EQ.ODO) THEN

C (AXIAL ORBIT)
BOM = ODO

ELSE
C (GENERAL RECTILINEAR ORBIT)

BOM = DATAN2(Y, X)
END IF
U = DATAN2(Z, DSQRT(XSQYSQ))
VT = ODO

ELSE
C (NON-DEGENERATE ORBIT)

BX = HY*Z - HZ*Y
BY = HZ*X - HX*Z
BZ = HX*Y - HY*X
HX = Y*BZ - Z*BY
HY = Z*BX - X*BZ
HZ = X*BY - Y*BX
W = HX*HX + HY*HY
H = DSQRT(W + HZ*HZ)
EI = DATAN2(DSQRT(W), HZ)
IF (W.EQ.ODO) THEN

C (ORBIT IN REFERENCE PLANE)
BOM = ODO
U = DATAN2(Y*DSIGN(IDO,HZ), X)

ELSE
C (GENERAL ORBIT)

BOM = DATAN2(HX, -HY)
U = DATAN2(H*Z, RSQ*BZ)

END IF
VT = H/(R*RSQ)

END IF
CALL PV2ELS (GM, R, U, VR, VT, AL, Q, OM, TAU)
RETURN
END
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