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INTRODUCTION

Metal matrix composites (MMC) of aluminum alloys reinforced with whisker or particulate silicon
carbide have been stud:ed extensively in recent years1-23. These composites have a high specific
modulus and strength. low coefficient of thermal expansion, and good thermat stability 15-22 in contrast
to continuous filament MMC, they can offer isotropic properties, easier fabricability and formabihty. and
potentially iow cost. However, like continuous filament MMC, their ductility and fracture toughness are
low.81521-23they fail in a relatively brittle manner. and their fatigue behavior is not well characterized or
understood. The increasing number of applications of SiC/Al composites in aero-vehicles demands a
detailed knowledge of their fatigue behavior. The objective of this study is to characterize the fatigue

behavior of a silicon carbide whisker reinforced aluminum matrix composite.
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EXPERIMENTAL PROCEDURE

The experimental procedure includes Material and Specimen Preparation. Tension and Fatigue
Testing,and Microstructural and Fractographic Examination.

MATERIAL AND SPECIMEN PREPARATION

The specimen material was a silicon carbide whisker reinforced aluminum matrix composite,
designated SXA24E/20W-T8E510 (19.8 vol % SiCw/Al-3.7 Cu-1.4 Mg). fabricated by Advanced
Composite Materials Corp.. Greer. SC. This material was initially double extruded from a 12 in dia
billet to a 4 in. dia. rod. machined to a 3 in. dia. billet, extruded to 0.25 in. x 1.5 in. bar. stretched after
solution annealing and cold water quenching. and aged for 10 hours at 320°F. From this material.
rectangular tension test and center-cracked-tension specimens were machined. as shown in Figure 1

TENSION AND FATIGUE TESTS

The tension and fatigue tests were conducted at room temperature in a laboratory atmosphere
using a closed-loop etectro-hydrauiic MTS machine. During the tension test. the loading rate was 5.200
ib:min. The fatigue test conditions were stress ratio (¢ min/c max) of 0.1, constant amplitude loading
of a haversine waveform, and a frequency of 10 Hz.

MICROSTRUCTURAL AND FRACTOGRAPHIC EXAMINATION

The specimen planes, perpendicular and parallel to the extrusion direction, were polished, etched
by Keller's reagent. and examined 1n an Advanced Metals Research 1000 scanninj electron microscope.
operated at an accelerating voltage of 20 kV. The fractographic examination of tension-fractured and
fatigue-fractured specimens was aiso carried cut using the same scanning electron microscope.
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(a} Rectangular Teasion Test Specimen
(b) Center-Cracked-Tension Specimen for Fatigue Test
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RESULTS AND DISCUSSION

The results and discussion are divided into five parts: Microstructure, Tensile Strength, Crack
Growth Path. Fractography. and Fatigue Fracture Life.

MICROSTRUCTURE

The scanning electron micrographs of the specimen planes, perpendicular and parallel to the
extrusion direction, are shown in Figures 2 (a) and (b). respectively. In the plane perpendicular to the
extrusion direction. showr. in Figure 2 (a), many white dots which are the transverse section images of
SiC whiskers can be seen. In the specimen plane parallel to the extrusion direction, shown in Figure 2
{b). many " hite rods which are the longitudinal images of SiC whiskers are observed. Such a
micrographic feature indicates that the SiC whiskers are aligned in the extrusion direction. From the
iwcrographs. the size of the SiC whisker is measured to be between 0.1 and 1 um dia. and 1.5 to 11 um
long. The short SIC whiskers are attributable to possible breakage during the composite fabrication
process of blending. consolidation, and extrusion.

TENSILE STRENGTH

The determined ultimate tensile strength and 0.2% offset yield strength of the specimen material
of LT orientation are 87 8 ksi and 83.5 ksi, respectively.

CRACK GROWTH PATH

In the tension test specimen, the crack growth path is transverse to the loading (or extrusion)
direction. No significant deflection in crack growth path is noticeable, as shown in Figure 3.

In the center-cracked-tension specimen for fatigue testing, tv:o fatigue cracks emanate initially
from the two opposite tips of the center notch, shown in Figure 4. Subsequently, without appreciable
growth, these cracks deflect about 100° in opposite directions and grow towards the opposite ends of
the specimen, respectively. As a result, the two crack paths are parallel to each other and inclined about
10° to the longitudinal (or loading) direction. In the final overload fracture stage. the two cracks deflect
transversely towards the opposite edges of the width-reduction-portions. Such a tortuous fatigue crack
growth path is not changed v reducing the specimen thickness from 3/16 in. to 1/16 in. The
tortuousness of the fatigue crack growth path is attributed to the aiignment of SiC whiskers in the
extrusion direction.

A somewhat similar deflection of the fatigue crack growth path is also observabie in specimens
with straight or semi-circular single edge notches, shown in Figure 5 (a) and (b).

FRACTOGRAPHY

The fractographs of a tension tested specimen are shown in Figure 6. The transverse fracture
surface is entirely covered by dimples. Some of the dimples contain SiC whiskers, debonded partly or
mostly. indicating microvoid nucleation at SiC whiskers. Those whiskers are fractured transversely and
do not have any longitudinal crack.

The fractographs of a fatigue fractured specimen are shown in Figure 7. In the immediate vicinity
of the center notch tips, numerous white dots {transverse section images of SiC whiskers) and cavities
of various sizes are seen in the matrix. The dimensions of their diameters are similar tc those of SiC
whiskers. It appears that these cavities have been formed by those SiC whiskers which were pulled out
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(b)

(a)

Figure 2. Scanning Electron Micrographs

{a) Plane Perpendicular to Extrusion Direction
(b) Plane Parallel to Extrusion Direction
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Figure 3. Crack Growth Path in Tension Test Specimen
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Figure 6. Fractographs of a Tension Tested Specimen

10




NADC-89037-60

Figure 7. Fractographs of a Fatigue Fractured Specimen
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during the cracking process. The matrix also shows facets and steps but no visible striation. After the
deflection of the crack path to a nearly longitudinal direction, white rods (longitudmal images of SiC
whiskers) and striations are visible in the matrix, indicating fatigue crack growth. Those SiC whiskers
have smooth longitudinal surfaces with scattered debris-like-particles but no evidence of any cracking.
Figure 8. Such a smooth longitudinal surface is probably due to debonding of the SiC whiskers during
fatigue crack growth. Therefore. it is evident that the fatigue crack grows parallel to or along the
longitudinal interfaces of the aligned SiC whiskers but not through them. As the crack grows further in
the same direction, visible striations are fewer and fainter. Near the transverse deflection. the SiC
whiskers are still seen as white rods. and dimples are present in the matrix_ indicating overload fracture

From the observed features of the crack path and the fractograph. it is apparent that:

1. Dunng slow crack growth under fatigue loading. most of the crack path is neariy parallel to or along
the longitudinal interfaces of the aligned SiC whiskers. The corresponding fractographic features are
facets. steps. and striations. In this period. the maximum stress intensity factor Kmax 1S less than the
critical stress intensity factor of the material K¢, i.e. Kmax < K¢. Accordingly for Kmax - Kc. the
crack grows in a direction nearly parallel to or along the longitudinal interface of the aligned SiC
whiskers.

2 During the tensile fracture or the overload fracture following the slow fatigue crack growth. the crack
path is transverse to the aligned SiC whiskers. The corresponding fractographic features are dimples.
some of which are nucleated at SiC whiskers. In this region, Kmax = K¢. Accordingly, for Kmax = Ke.
the crack cuts through the aligned SiC whiskers transversely.

FATIGUE FRACTURE LIFE

Due to the tortuousness of the fatigue crack growth path, it was not possible to measure the
increasing crack size and define its growth rate. Consequently, only the fatigue fracture life was
determined and its relationship with the applied stress range was established. A piot of stress range
versus logarithm of fatigue fracture lite is shown in Figure 9. The plot is a straight line and is defined by
the question:

Ao = 10190 — 1157.log Ns (1)

or log Ny = 881 — _A0
1157 (2)

where Aa: stress range (psi)
N¢. fatigue fracture life (cycle)

12
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(b)

Figure 8. Morphology of a Fatigue Crack Growth Area
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CONCLUSIONS

. The SiC whiskers in the extruded 19.8 vol. % SiCw/2124 aluminum alloy composite are aligned in the
extrusion direction.

. During slow fatigue crack growth under the loading condition of Kmax < K¢. the crack growth path
is nearly paralle! to or along the longitudinal interface of the aligned SiC whiskers. In this stage,
fatigue striations are developed on a nearly longitudinal matrix crack plane.

. During the tensile fracture or the overload fracture foliowing slow fatigue crack growth under the
loading condition of Kmax = Kc¢. the crack growth path is transverse to the aligned SiC whiskers. In
this stage, dimples are formed in the matrix.

. The logarithm of fatigue fracture life, Ny. increases linearly with decreasing stress range, As. This
relationship is defined by the equation:

log Nf = 8.81 — Ao
1157

15
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