The research effort was to determine theoretically a physical basis for the interaction of low-intensity externally applied electromagnetic fields with biological tissue. The primary aim of the investigation was to establish a molecular basis for the class of interactions commonly referred to as nonthermal effects of electromagnetic fields with biological systems. In particular, the biological structure of interest was the plasma-membrane since it had been either directly or indirectly implicated in numerous experimental studies. (1) It was demonstrated how a membrane undergoing a phase transition could qualitatively account for the release and/or uptake of divalent calcium ions. (2) A characterization of changes in the structure of the membrane-electrolyte interface due to field induced changes in enzymatic activity was demonstrated. (3) The role of critical phenomena was shown analytically to be able to account for the unique sensitivity of biomembranes to weak external field perturbations, and describe alterations in the passive transport of sodium ions in rabbit erythrocytes.
INTRODUCTION

This research effort was to determine theoretically a physical basis for the interaction of low-intensity externally applied electromagnetic fields with biological tissue. Various anomalous responses of tissue at the cellular level have been observed which cannot be understood in terms of classical dielectric response theory. Examples of such responses are the anomalous release and/or uptake of divalent calcium ions from the neuronal cell surface during ELF field exposure and the anomalous enhancement of passive sodium ion permeability in red blood cells concomitant with microwave exposure.

The primary aim of the investigation was to establish a molecular basis for the class of interactions commonly referred to as nonthermal effects of electromagnetic fields with biological systems. In particular, the biological structure of interest was the plasmamembrane since it had been either directly or indirectly implicated in numerous experimental studies.

Techniques from the physics and chemistry of interfaces and from the physics of phase transitions were used extensively in this work.

GOALS

The specific goals of this project were to:

- Examine changes in the structure of the electrical double layer at the membrane/extracellular electrolyte interface subsequent to changes in activity of membrane bound enzymes due to external electromagnetic fields;

- Study the possible role of membrane phase transitions in mediating a cellular response to an electromagnetic field.

- Conduct workshops and colloquia to properly integrate both experimental and theoretical research in the bioelectromagnetics area, and to disseminate any critical reviews and analyses of the scientific literature to the international bioelectromagnetics community.
RESULTS

The above mentioned goals were all met. In addition, a number of publications in peer reviewed journals, a book, three book chapters, an average distribution of 10 international newsletters a year, a number of invited talks, as well as contributed papers, workshops, symposia, and colloquia (including synopses) resulted from this effort. The book, Electroporation and Electrofusion in Cell Biology, was forwarded to ONR's COTR under separate cover and is to be considered as part of this final report. (The publication release date by Plenum Press was late summer 1989.)

The publications, listed in this report, provide detailed accounts of the work accomplished. Highlights of the results are as follows:

- It was demonstrated how a membrane suffering a phase transition could qualitatively account for the release and/or uptake of divalent calcium ions;

- A characterization of changes in the structure of the membrane/electrolyte interface due to field induced changes in enzymatic activity was demonstrated;

- The role of critical phenomena, i.e. a membrane phase change occurring at or near a thermodynamic critical point was shown analytically to be able to:
 - account for the unique sensitivity of biomembranes to weak external field perturbations;
 - describe explicitly alterations in the passive transport of sodium ions in rabbit erythrocytes.

- Numerous suggestions were provided to the experimental community for additional experiments to be performed in order to not only test our theoretical prediction, but to provide additional insight into interaction mechanisms (molecular) between external fields and biological membranes.

GENERAL REMARKS

Without a doubt, what the field commonly referred to as bioelectromagnetics sorely needs is a much greater interaction between theorists and experimentalists. To physicists, such collaboration is tacitly understood. The prevailing modus operandi, however, among many biological scientists is to do an experiment and "model" the results themselves. In some instances, such an approach has met with success; however, when dealing with extraordinarily complex systems (biological systems) and attempting to describe their behavior at the molecular level, competent theoretical guidance is essential. Success in understanding the basic mechanism of interaction of fields with membranes is most likely to be gained by the establishment of well-designed and well-organized interdisciplinary efforts.
PUBLICATIONS

BOOK CHAPTERS AND BOOKS EDITED

SPECIAL INVITATIONS

Participate at the 1984 Gordon Conference on Bioelectrochemistry and Bioenergetics. (Summer 1984) (J. Bond)

Guest Scientist, Teknikum, Uppsala University, Uppsala, Sweden. (May 1983) (J. Bond)

Participate at the 1983 special symposium on "Techniques in Studies of Biological Effects of Low Level Millimeter Waves," Herrsching, West Germany. (4-6 September 1983) (J. Bond)

CONTRIBUTED TALKS

INVITED TALKS

Bond, J.D., Symposium on Electromagnetic Effects in Biomembranes, University of Texas. (December 1985)

Bond, J.D., and N.C. Wyeth, Symposium on Electrical Double Layers in Biology, Toronto, Canada. (May 1985)

Bond, J.D., American Chemical Society Symposium on "Bioelectrochemistry: Ions, Membranes, and Surfaces." (August 1983)

Bond, J.D., Third International Workshop on Nonlinear Electromagnetic Interaction with Biological Tissue, University of Maryland. (November 1983)

WORKSHOPS AND COLLOQUIA

Workshop on "Phase Transitions and Critical Phenomena in Biomembranes" which included prototypes and the role such transitions play in mediating electromagnetic interactions with these systems. National Institutes of Health, Bethesda, MD. (1-2 October 1986). Approximately 40-50 scientists in attendance.

Workshop on the "Biological Effects of High-Frequency Electromagnetic Fields" which included molecular experiments (i.e., effects on DNA), and theories to include vibrational, electronic and cooperative response. Asilomar, Pacific Grove, CA. (28-30 April 1985). Approximately 40-50 scientists in attendance.
Workshop on the "Biological Effects of Low Frequency Magnetic Fields" which included pulsed magnetic fields, the influences of constant low-level magnetic fields on ac effects, and stimulation of growth and regeneration of soft tissue. Airlie House, Airlie, VA. (11-13 November 1984). Approximately 20 scientists in attendance.

Dr. Richard B. Frankel, Massachusetts Institute of Technology, Colloquium on "Magnetite and Magnetic Navigation in Bacteria," Uniformed Services University of Health Sciences. (2 May 1984)

Dr. Friedrich Kremer, Max-Planck-Institut fur Festkorperforschung, Stuttgart, Colloquium on "The Non-Thermal Influences of MM-Waves on Biological Systems," Uniformed Services University of Health Sciences. (14 January 1984)

Dr. Alan Bishop, Los Alamos National Lab, Colloquium on "Solitons in Synthetic and Biological Polymers," Uniformed Services University of Health Sciences, (10 November 1983)

Prof. Herbert A. Pohl, Oklahoma State University, Colloquium "Biological Dielectrophoresis: Applications to Cell Fusion, Rotation, and Characterization of Natural Radio Emissions," National Center for Devices and Radiological Health, Food and Drug Administration. (26 May 1983)

Prof. E. H. Grant, University of London, Colloquium on "Electrical Properties of Tissue and Their Role in Stimulated Tissue Regeneration and Other Biological Phenomena," National Institutes of Health. (20 April 1983)

Dr. Barnett Rosenberg, Michigan State University, Colloquium on "Monitoring Brain and Hearth Function by Microwave Scattering," National Institutes of Health. (3 March 1983)

Dr. C. Andrew L. Bassett, Columbia University, Colloquium on "Biomedical Implications of Pulsed Electromagnetic Fields (PEMFs)," National Institutes of Health. (26 January 1983)

Dr. Arthur Pilla, Mt. Sinai School of Medicine, Colloquium on "Cellular Mechanisms Involved in Biomedical Applications of Pulsed Electromagnetic Fields," National Institutes of Health. (8 December 1982).
DISTRIBUTION LIST
Bioelectromagnetics Program
Annual, Final and Technical Reports (one copy each)

INVESTIGATORS

Dr. W. R. Adey
J. L. Pettis Memorial VA Hospital
11201 Benton Street
Loma Linda, CA 92357

Dr. Bruce Kleinstein
Information Ventures, Inc.
1500 Locust Street
Philadelphia, PA 19102

Dr. Stephen Cleary
Virginia Commonwealth University
Box 694 - MCV Station
Richmond, VA 23298

Dr. Raphael Lee
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Dr. C. C. Davis
Department of Electrical Engineering
University of Maryland
College Park, MD 20742

Dr. S. M. Lindsay
Department of Physics
Arizona State University
Tempe, AZ 85287

Dr. Carl Durney
Department of Electrical Engineering
University of Utah
Salt Lake City, UT 84112

Dr. Thomas C. Rozzell
National Research Council, FG 424
2101 Constitution Avenue
Washington, DC 20418

Dr. Kenneth R. Foster
Bioengineering Department
University of Pennsylvania
Philadelphia, PA 19104

Dr. Asher Sheppard
Research Service 151
J. L. Pettis Memorial VA Hospital
Loma Linda, CA 92357

Dr. Reba Goodman
Columbia University
630 West 168th Street
New York, NY 10032

Dr. Betty Sisken
Wenner-Gren Research Laboratory
University of Kentucky
Lexington, KY 40506

Dr. A. W. Guy
Department of Rehab. Medicine, RJ-30
University of Washington
Seattle, WA 98195

Dr. Arthur E. Sowers
American Red Cross
Holland Laboratory
15601 Crabbs Branch Way
Rockville, MD 20855

Ms. Carol Jordan
SAIC, 1710 Goodridge Drive
P.O. Box 1303
McLean, VA 22102

Dr. Shiro Takashima
Bioengineering Department
University of Pennsylvania
Philadelphia, PA 19104

Dr. Adrianus J. Kalmijn
Scripps Institution of Oceanography
Ocean Research Division, A-020
La Jolla, CA 92093

Dr. Watt W. Webb
Department of Applied Physics
Cornell University
Ithaca, NY 14853
Annual Final and Technical Reports (one copy each except as noted)

ADMINISTRATORS

Scientific Officer, Biophysics Program
Code 1141SB
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Program Manager, Molecular Biology
Code 1141MB
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Program Manager
Biological/Human Factors Division
Office of Naval Research, Code 125
800 N. Quincy Street
Arlington, VA 22217-5000

Program Manager
Support Technology Directorate
Office of Naval Research, Code 223
800 N. Quincy Street
Arlington, VA 22217-5000

Administrator (2 Copies; enclose DTIC Form 50)
Defense Technical Information Center
Building 5, Cameron Station
Alexandria, VA 22314

Administrative Contracting Officer
ONR Resident Representative
(address varies--obtain from business office)

Annual and Final Reports Only (one copy each)

DOD ACTIVITIES

Commander
Chemical and Biological Sciences Division
Army Research Office, P.O. Box 12211
Research Triangle Park, NC 27709

Director
Department of Microwave Research
Walter Reed Army Institute of Research
Washington, DC 20307-5001

Directorate of Life Sciences
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, DC 20332

Program Manager
Radiofrequency Radiation Program
U.S. Air Force School of Aerospace Medicine
Brooks Air Force Base, TX 78235

Library
Armed Forces Radiation Research Institute
Bethesda, MD 20814-5145

Final and Technical Reports Only (six copies each)

Director, Naval Research Laboratory
Attn: Technical Information Division, Code 2627
Washington, DC 20375