A novel transfer RNA gene of Sulfolobus has been cloned. It has a large "D-loop" containing 27 residues and appears to code for glutamic acid tRNA. The sequence CCGGU occurs twice within the "D-loop". Two symmetrical cuts within or just outside these sequences can produce a typical tRNA and an 18-base "intron". The gene occurs as a single copy in the genome and is transcribed. It is being determined that whether this "intron" is actually spliced out or it remains as a part of the mature tRNA.

In addition, an approximately 9 Kb EcoRI genomic fragment of Sulfolobus, containing genes for two tRNA-methyltransferases has been cloned. The tRNAs isolated from E. coli cells containing this recombinant plasmid contain N²-methylguanosine (mG²) and 1-methyladenosine (mA), the modified nucleosides not normally present in E. coli tRNAs. It appears that some Sulfolobus genes are expressed when cloned in E. coli and at least some of its enzymes are functional in the E. coli environment.
ANNUAL REPORT

CONTRACT NO.: N00014-86-K-0739
R&T Code: 4412010

FULL TITLE: Structure and expression of various RNAs in the Archaebacteria.

ABBREVIATED TITLE: RNAs in Archaebacteria

INSTITUTION: The Board of Trustees of Southern Illinois University, Carbondale, IL 62901

PRINCIPAL INVESTIGATOR: Ramesh Gupta
Chemistry and Biochemistry
Southern Illinois University
Carbondale, IL 62901

PERIOD OF REPORT: September 1988 - August 1989

Summary of Project Goals:

1. Separation and sequencing of various RNAs of thermophilic archaebacteria.

2. Sequencing of various tRNA genes of archaebacteria (mainly thermophiles) and their surrounding regions to determine the organization of these genes and to identify the potential transcription control regions and the transcript processing sites.

3. Identification of the transcription initiation and termination sites in tRNA genes of various archaebacteria.

Recent Accomplishments

We have partially sequenced specific regions of some of the previously produced clones containing Sulfolobus tRNA genes. Some of these tRNA genes contain introns while others do not. One of these genes appears to be novel. Its transcript can be folded into a tRNA-like structure, in which the "D-loop" contains 27 residues. It appears to code for tRNA\textsubscript{Glu} and lacks the 3'-terminal CCA sequence of the mature tRNA. The sequence CCGGU occurs twice within the "D-loop"; the first four bases of which can pair with each other to form a stem. Two symmetrical cuts within or just outside these sequences (i.e., at any of the six pairs of positions) can produce a typical tRNA containing all of the invariant and semi-invariant residues at their respective positions and an 18-base "intron". The gene occurs as a single copy in the genome, as revealed by Southern hybridizations, using an "intron" and both the "5'- and 3'-exon" specific probes. The Northern hybridizations by the two "exon" specific probes indicated that the gene is transcribed. For some of the further studies we have subcloned this tRNA gene in pBluescribe vectors.
(Stratagene) in such a way that T7 RNA polymerase produces the transcripts which contain the complete sequence of the tRNA from position 2 through 71 (of the mature tRNA), and all of the "intron" and, in addition, some extra sequences at the 5' and 3' ends derived from the multiple cloning sites of the vectors.

In an effort to study the synthesis of the modified nucleosides of tRNAs, we are cloning the genes for archaebacterial tRNA-modifying enzymes. We have isolated a recombinant plasmid containing an approximately 9 Kb EcoRI genomic fragment of Sulfolobus in the pUC 19 vector. This fragment seems to contain genes for two tRNA-methyltransferases. The nucleoside composition of the tRNAs isolated from IPTG (isopropylthiogalactoside) induced E. coli cells containing this plasmid, as analysed by Liquid Chromatography/Mass Spectrometry (LC/MS), revealed the presence of N2-methylguanosine (m2G) and 1-methyladenosine (m1A) in these tRNAs. These two modified nucleosides are known to be present in Sulfolobus, but are not normally present in E. coli tRNAs. It appears that at least some of the thermophilic archaebacterial genes are expressed when cloned in E. coli and that at least some of their enzymes are functional in the E. coli environment.

We have also cloned several tRNA genes of Thermococcus. The structures of these genes are being analyzed.

Plans for next year:

During the remaining period of this contract, all of the above mentioned works will be continued.

Initially, we shall determine whether the "intron" sequence (18 bases) in the above mentioned tRNA^{Glu} gene is actually spliced out or whether it exists as part of the mature tRNA. If it is spliced out, then we shall try to determine how its splicing is different from splicing other introns.

Initially the insert of clone carrying m2G and m1A modification activities will be gradually deleted from the ends to determine the minimum size of the insert required to express these activities. These genes and their flanking regions will be sequenced. These genes will then be fused, in phase, to the lac Z gene of the pUC 18 or 19 vector with an aim of producing large quantities of the enzymes required for further studies.

In addition, we shall start sequencing mature tRNAs of Sulfolobus. Initially, Glu isoacceptor will be sequenced to determine whether the above mentioned tRNA has the extra 18 base in the mature tRNA.
Distribution List for Annual and Final Reports

1. Put a cover page (Form DD 1473) on your report and attach a copy of the distribution list. Mail one copy of the report to each person on the contractor subset list attached on which your name appears. The other subset list is for your information only. Please don't forget to attach this distribution list to your report - otherwise the folks below think they have mistakenly received the copy meant for the Molecular Biology Program and forward it to us.

2. Mail two copies to (include a DTIC Form 50 with these two copies too)
 Administrator
 Defense Technical Information Center
 Building 5, Cameron Station
 Alexandria, VA 22314

3. Mail one copy to each of the following:

 (a) Dr. Michael Marron
 ONR Code 1141
 Molecular Biology Program
 800 N. Quincy Street
 Arlington, VA 22217-5000

 (b) Administrative Contracting Officer
 ONR Resident Representative
 (address varies - see copy of your grant)

 (c) Director,
 Applied Research Directorate
 ONR Code 12
 800 N. Quincy Street
 Arlington, VA 22217-5000

 (d) Director
 Office of Naval Technology
 Code 22
 800 N. Quincy Street
 Arlington, VA 22217-5000

 (e) Director
 Chemical and Biological Sci Div
 Army Research Office
 P. O. Box 12211
 Research Triangle Park, NC 27709

 (f) Life Sciences Directorate
 Air Force Office of Scientific Research
 Bolling Air Force Base
 Washington, DC 20332

 (g) Director
 Naval Research Laboratory
 Technical Information Div, Code 2627
 Washington, DC 20375
NEALSON, Kenneth H.
Center for Great Lakes Studies
University of Wisconsin-Milwaukee
600 E. Greenfield Avenue
Milwaukee, WI 53204

OLSEN, Gary J.
Indiana University
Department of Biology
Jordan Hall 138
Bloomington, Indiana 47405

PACE, Norman R.
Department of Biology
Indiana University
Bloomington, IN 47405

PREZELIN, Barbara B.
Marine Science Institute
University of California
Santa Barbara, CA 93106

REEVE, John N.
Department of Microbiology
Ohio State University
484 West 12th Avenue
Columbus, OH 43210-1292

ROSEMAN, Saul
Department of Biology
Johns Hopkins University
Baltimore, MD 21218

SEARCY, Dennis G.
Zoology Department
University of Massachusetts
Amherst, MA 01003

SILVERMAN, Michael
Agouron Institute
505 Coast Blvd. South
La Jolla, CA 92037

SMIT, John
Department of Microbiology
University of British Columbia
#300 - 6174 University Blvd
Vancouver, British Columbia
V6T 1W5 CANADA

SPUDICH, John L.
Dept of Anat and Structural Biolgy
Albert Einstein College of Medicine
1300 Morris Park Avenue
Bronx, NY 10461

STAHL, David A.
College of Veterinary Medicine
University of Illinois
Urbana, IL 61801

SWIFT, Hewson
Dept of Molec Genetics
and Cell Biology
University of Chicago
1103 East 57th Street
Chicago, IL 60637

TAYLOR, Gordon T.
Hawaii Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, HI 96822

TOSTESON, Thomas R.
Department of Marine Sciences
University of Puerto Rico
Mayaguez, PR 00709

TRENCH, Robert K.
Marine Science Institute
University of California-Santa Barbara
Santa Barbara, CA 93106

WALEH, Nahid
Molecular Biology Department
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

WHITE, David
Institute of Applied Microbiology
University of Tennessee
P. O. Box X, Building 1503/6
Oak Ridge, TN 37831

WOESE, Carl R.
Genetics Department
University of Illinois
515 Morrill Hall
Urbana, IL 61801

YAYANOS, A. Aristides
Physiological Research Laboratory
Scripps Institution of Oceanography
University of California-San Diego
La Jolla, CA 92093

ZINDER, Stephen H.
Department of Microbiology
Cornell University
Stocking Hall
Ithaca, NY 14853