AD-A212 653

RRSLANE SAR Al A' AT @

NWC TP 6989

Analysis of Three- and Four-Sided
Uniform Waveguides With Unusual

Cross-Section/Boundary Conditions

by
P. L. Overfelt
Research Department
“~LECTE uwm 3’1&1‘1989
: & aht

NAVAL WEAPONS CENTER
CHINA LAKE, CA 93555-6001

Approved for public release; distribution is unlimited.

89 9 18 048




Naval Weapons Center

FOREWORD

The research described in this
Weapons Center during fiscal years

report was performed at the Naval
1985 through 1989. The work was

supported by 6.1 Independent Research Funds.

This study provides theoretical analysis for those working with uniform
waveguides of complicated cross-sectional form. It is intended to be an
interim working document; the research it describes is not complete.

This report has been reviewed for techmical accuracy by D. J. White.

Approved by

R. L. DERR, Head
Research Department
30 January 1989

Released for publication by
G. R. SCHIEFER
Technical Director

NWC Technical

Published by .................... ...
Collation . . .......ci it it iinennneenn

FirstPrinting .. .....................

Under authority of
J. A. BURT

Capt., U. S. Navy
Commander

Publication 6989

... Technical Information Department
..................... Cover, 26 leaves
.......................... 60 copies




UNCLASSIFIED
SECURITY CLASSIFICAT ON OF ThiS PAGE

REPORT DOCUMENTATION PAGE

a REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFCATION AUTHORITY

3 DISTRIBUTION . AVAILABILITY OF REPORT

2b DJECLASSFICATION. DOWNGRADING SCHEDULE

A Statement; public release; distribution
unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
NWC TP 6989

5 MONITORING ORGANIZATION REPORT NUMBER(S)

. 6a NAME OF PERFORMING ORGANIZATION
Naval Weapons Center

63 OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

6c. ADDRESS (City, State, and ZIP Code)

China Lake, CA 93555-6001

7o. ADDRESS (City, State, and ZIP Code)

8a NAME OF FUNDING. SPONSORING
ORGANIZATION

Naval Weapons Center

8b OFFICE SYMBOL
(if applicable)

9 PROCUREMENT iINSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

China Lake, CA 93555-6001

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. [ NO NO ACCESSION NO
61152N OONW RROONW 13801052

11 TITLE {Include Security Classification)

BOUNDARY CONDITIONS (U)

ANALYSIS OF THREE- AND FOUR-SIDED UNIFORM WAVEGUIDES WITH UNUSUAL CROSS-SECTION/

12 PERSONAL AUTHOR(S)
Overfelt, P. L.

13a. TYPE OF REPORT
Interim

1 o BEOFIC | 89 Jan

14. DATE OF REPORT (Year, Month, Day)

15 PAGE COUNT
1989, January E56 v

16 SUPPLEMVENTARY NCTATION

COSAT! CODES

FIELD

GROUP

SUB-GROUP

09

0l

18 SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
Waveguides—Triangular, Trapezoidal, Parallelogram,

TE and TM Modes, Cutoff Formulas, Nonorthogonal
Boundary Conditions

. speculate

magnetic

harmonics,
infinite sets of TE and TM modes have been determined for each geometry,

that this

L)

eight

symmetry,

19 ABSTRALT (Continue on reverse if necessary and identify by block number)

(U) This report gives closed-form expressions for the transverse electric and transverse
modes of
geometry/boundary conditions.
rectangular
Although
complete sets of modes (in the
incompleteness of
nonorthogonal geometries that possess multiple reflections and periodic extensions, which
cannot cover all of space.

cross-sectional
sums of
principle.

uniform
These expressions
and the Riemann-Schwarz

waveguides with unusual
are derived using finite
reflection

sense of the rectangular waveguide) are not found. We
the mode sets is a consequence of solving

20 DSTRIBUTION  AVAILABILITY OF ABSTRACT
O nceassiseo uNuMiTeED [ SaME AS RPT

21 ABSTRACT SECURITY CLASSIFICATION

] oTIC USERS Unclassified

22a

NAVE OF RESPONSIBLE INDIVIDUAL
P. L. Overfelt

22b TELEPHONE (Include Area Code)

22¢ QFFICE SYMBO
619-939-3958 © 3812 L

DD FORM 1473, 8amar

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE
fr U.S. Governnment Printing Otfice: 1986—607-044

UNCLASSIFIED

All other editions are obsolete




-

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DO Form 1473, JUN 86 (Reverse) SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED




I1.

111,

Introduction

Accesion For

p———

NTIS CRA&I
DTIC TAB

Unannounced
Justitication

By ____
NWC TP 6989 Distributiun
Avail:bity Codes !
! | | |
CONTENTS A-l |

Closed-Form Transverse Eleciric and Magnetic Solutions for Unusual

A.

B.

H

Cutoff Formulas and Mode Plots

A.

B.

Waveguide GEOmMetHes . . ... ... oo vhin it ittt e i it

Isosceles Right Triangular Waveguide With Two Electric and One

MagneticWall at X =3 .. ...... ...t iiiiiiiiiiiiiiiinnnns

Isosceles Right Triangular Waveguide With Two Electric and One

MagneticWallaty=0........ ...t

Isosceles Right Triangular Waveguide With Two Electric and One

Magnetic Wall at y = X . . ...ciittti ittt tiea e

45- and 135-Degree Parallelogram Waveguide With Perfectly

Conducting Walls . . . ... o i it i e

90- and 90- and 135- and 45-Degree Waveguide With Perfectly

Conducting Walls . . ... . it ittt

45- and 135-Degree Trapezoidal Waveguide With Perfectly

Conducting Walls . .. ... ..ttt it i

60- and 120-Degree Parallelogram Waveguide With Perfectly

Conducting Walls . . . ... ...ttt i i,

60- and 120-Degree Trapezoidal Waveguide With Perfectly

ConductingWalls . . ....... ..ot i

Isosceles Right Triangular Waveguide With Two Electric and One

MagneticWall . ... ... .. i i i i i

Isosceles Right Triangular Waveguide With Two Electric and One

MagneticWallal y = X . ... ... iiitiiuninrennnnennnnnn

C 45- and 135-Degree Parallelogram Waveguide With Perfectly

Conducting Walls . . ... ...ttt i e

....................................................

...................................




NWC TP 6989
D. 90- and 90- and 135- and 45-Degree Waveguide With Perfectly
Conducting Walls . . ... ... . . it it eiei e
E. 45- and 135-Degree Trapezoidal Waveguide With Perfectly
Conducting Walls . . .. ... .. i i it et e
F. 60- and 120-Degree Parallelogram Waveguide With Perfectly
Conducting Walls . . ... ... it it i i e
G. 60- and 120-Degree Trapezoidal Waveguide With Perfectly
Conducting Walls . ........ ... ittt
IV, ConCIuSiOnS . . ..ottt it et i i e e e e
V. Re OIS . . ... i e e e e e
V. B gUIeS . ..o i e e e e e i e

L




NWC TP 6989

I. INTRODUCTION

Closed-form expressions for the transverse electric (TE) and transverse
magnetic (TM) modes of uniform waveguides with unusual cross-sectional
geometry are useful in several areas of electromagnetic theory. Both
microstrip-antenna analysis using cavity models (Reference 1) and high-
power microwave applications (Reference 2) require solution methods
capable of calculating accurate resonant frequencies and electromagnetic
field components. Typically, while analysis involving unusual geometries is
handled v:z: approximate numerical techniques (References 3 through 6),
closed-form solutions are especially desirable for their physical and
computational simplicity as well as for their ability to provide checks on the
accuracy of numerical solutions.

In the past, closed-form TE and TM mode expressions for four perfectly
conducting uniform waveguides of triangular cross section were determined
using the superposition of plane waves technique (References 7 through 9).
All of these solutions have the general form of finite sums of rectangular
harmonics. Although each rectangular harmonic term alone satisfies the
Helmholtz equation, only the entire solution with particular relationships
among the cigenvalues satisfies the boundary conditions (either Dirichlet or
Neumann) as well.

Beginning with an initial solution formed wusing a finite sum of
rectangular harmonics and utilizing the symmetry properties (Reference 10)
of a particular waveguide geometry as well as the Riemann-Schwarz
reflection principle (References 11 and 12), we have found some closed-form
solutions for the TE and TM modes of certain three- and four-sided uniform
waveguides with unusual cross-sectional geometry. In the majority of cases,
we have assumed perfectly conducting walls; however, in some instances,

A D A -
combinations of perfect electric MXE=0, n*B=0) and perfect magnetic

A A =
walls mMxH=0, ne D =0) have been assumed. Although infinite sets of TE
and TM modes based on finite sums of rectangular harmonics have been
determined for each geometry, complete sets of modes (Reference 13) (in the
sense of the rectangular waveguide) are not found. @ We believe that this
imcompleteness of the mode sets is ¢ consequence of solving geometries with
nonorthogonal boundaries that possess multiple reflections and periodic
extensions that cannot cover all of space. We believe that the "missing”
modes cannot have the form of finite sums of rectangular harmonics and
speculate that they may be determined from either infinite sums of

3
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rectangular harmonics or purely nonseparable solutions of the Helmholtz

equation (Reference 14).

Section II presents TE and TM mode expressions for the
waveguide geometries and boundary conditions:

A. Isosceles right triangular waveguide with two electric
magnetic wall at x = a

B. Isosceles right triangular waveguide with two electric
magnetic wall at y = 0

C Isosceles right triangular waveguide with two electric
magnetic wall at y = x

D. 45- and 135-degree paralielogram waveguide with
conducting walls

following

and one

and one

and one

perfectly

E. 90- and 90- and 135- and 45-degrce waveguide with perfectly

conducting walls

F. 45- and 135-degrec trapezoidal waveguide with perfectly conducting

walls

G. 60- and 120-degree parallelogram waveguide with
conducting walls

perfectly

H. 60- and 120-degree trapezoidal waveguide with perfectly conducting

walls.

In Section III, cutoff formulas and lowest order (i.e., the lowest found by
the above method) mode plots are presented. Section IV contains our

conclusions.

II. CLOSED-FORM TRANSVERSE ELECTRIC AND MAGNETIC SOLUTIONS

FOR UNUSUAL WAVEGUIDE GEOMETRIES

In this report, all waveguides are assumed to be uniform, i.e., with e72
el®t dependence and free space inside and outside the guide. In all cases,

e id= il ey
where

Yy=a+ip

(1)

(2)
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2
2 2 2x
ko =07, = (—
Ao
and k; and ky are the transverse wave numbers.

A. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND ONE
MAGNETIC WALL AT x=a

Using the general form of solution for the perfectly conducting
waveguide of isosceles right triangular cross section (see Figure 1) as given
in Reference 9, we find by inspection that

E, = sin kx sin k,y — sin kyx sin k;y (4)

for the TM modes and

H, = cos k;x cos kyy + cos kyx cos k;y (5)

for the TE modes with the transverse wave numbers

mn nx
k = ve— . k2=—
17 23 2a (6)

will satisfy the appropriate boundary conditions. There are restrictions on
the integer indices, m and n, such that for TM modes

m#n (7
and for all modes both m and n must be odd.

Equations 4 and 6 must satisfy the boundary conditions

E,=0 on y=0 , y=x (8a)

and

% 0 (orE )
= on x=alor =extremmumon x =3,
ox z (8b)

(An extremum can be either a maximum or a minimum.) By inspection of
Equation 4, we sec that Equation 8a is satisfied and that

oE, , :
P k; cos k;x sin kyy — k; cos kox sin k;y 9)
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‘canbe Oonx =a only when Equation 6 is used with both m and n odd integers.
The TE modes are usually of more practical importance than the TM modes in
waveguiding applications. Equation 5 must satisfy the boundary conditions

oH, 0 0
=0 on v=
oy y (10a)
3H, aH, .
= on =X
ox 9y y (10b)
H,=0 on x=a (10¢)

Equation 10a is satisfied on y = 0 automatically. H, is 0 on x = a provided m and
n in Equation 6 are both odd, just as for the TM modes. To show that Equation
10b is true, we simply write

(aH’ aH’)l(k'k kax = K, sin kox cos k;x)
Eraiir i ; sin k;x cos kax ~ k, sin k,x cos k;x
+ (k, cos k;x sin kox + k; cos kyx sin k;x) =0 (11)

The lowest order mode found from Equations 5 and 6 is the TE;; mode (m = n is
allowed for TE modes) with a distribution (see Figure 12)

X Ty
H, (TE;) = 2 cos =— cOs ==
z 11 2a 2a (12)

The TE13 and TM;3 are the second lowest order modes found in this way.

B. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND
ONE MAGNETIC WALL AT y=0

Consider the isosceles right triangular waveguide in Figure 2. This
solution is difficult to achieve by symmetry and inspection. (We could, of
course, determine it by rotation and tranmslation—it is the same situation as in
Equations 4, 5, and 6.) If we use superposition of plane waves and substitute
boundary conditions as in Reference 9, we find that (for TM modcs)

E, = cos k;x cos k,y - cos kyx cos k;y (13a)

with
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ki==—— , ky==—
17 9, 27 7a (13b)

will match the boundary conditions, i.e.,

E,=0on x=a , y=x (14a)

oE,
oy oony=0 (14b)

k, and k7 are given by Equation 13b, with both m and n odd integers, m = n.
The lowest order TM mode is the TM;3. The TE modes must satisfy

oH, 0

=0 on x=a
T X (15a)
oH, OJH, 0

- =0 on x=
ox 9y y (15b)
H,=0 on y=0 (15¢)

Again using symmetry and an initial form based on a finite sum of
rectangular harmonic terms, we find that the TE modes are given by

H, = sin k;x sin kyy + sin k,x sin k;y (16)

with ki and k3 as in Equation 13b. The boundary conditions in Equation 15
are again satisfied provided both m and n are odd integers. For the TE modes,
m = n is allowed. The TE;; mode is the lowest order mode with the form of

Equation 16 and has a distribution (see Figure 13)

., WX . Wy
H, (TE;;) = 2 sin = sin ==
z 11 1 2a 2a (17)

Naturally, it is the same distribution—only rotated—as for Section II, Part A.
The TEj;3 and TMjj3 are the second lowest order modes.

C. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND
ONE MAGNETIC WALL AT y=x

For TM modes, we attempt a solution of the form (see Figure 3)

E, = sin k;x sin k,y + sin kyx sin k,y (18)

7
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with

k1= =
a (19)

For this situation, we must satisfy

E,=0 on y=0 and x=a (20a)
JdE, JE, 0

_———==00n vy=X

ox 9y y (20b)

By inspection, we see that the boundary conditions in Equation 20 are
satisfied and place no restrictions on the values of m and n (except that they
must be integers and m # 0, n # 0). Thus, the TM;; is the lowest order TM mode.

The TE modes must satisfy

oH, 0 0
= on =
oy y (21a)
oH,
—a—=0 on x=a
” (21b)
H,=0 on y=x (21c)
Using
H, = cos k;x cos kyy — cos kyx cos k;y (22)
with
k1=-t_n,_t. . kzzﬂ
a a (23)

the boundary conditions in Equation 21 are satisfied by inspection. The only
restriction is m # n in Equation 22. The lowest order mode of this structure is a
TE 0 mode (see Figure 14) given by

X Ty
H, (TE,y) = cos — — cos ——
z 10 a a (24)

The second lowest order mode is the TMy, i.e.,
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E, (TM,,) = 2 sin — sin —~
a = a . (25)

The next lowest modes are the TEj2 and TMj2.

D. 45- AND 135-DEGREE PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Consider the paralielogram geometry in Figure 4. Since the 45- and 135-
degree parallelogram is composed of two isosceles right triangles oriented
back to back, we use the general form of solution in Reference 9 and find, by
inspection, that for TM modes possible solutions are given by

E, = sin k;x sin kyy — sin kox sin k;y (26)
with
klzﬂ , k2—2£
a a 27

The boundary conditions for this parallelogram are

E,=0Oon y=0,y=a,y=x,and y=x-a (28)

Obviously, Equation 26 is zero for y = 0, y = a, and y = x. The fourth boundary
condition, y = x -~ a, when substituted into Equation 26 gives

E, = sin k;x (sin kyx cos k,a — cos kjx sin k,a)
— sin kyx (sin k;x cos k,a — cos kx sin k,a) (29)

Equation 29 can be zero only if

sink;a=0 and sink;a=0 (30a)
as well as
cos kja = cos kja (30b)

Equation 30a is satisfied by any integers m and n, but Equation 30b requires
that (using Equation 27)

-

COsS MR = COs NN (31)
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This implies that both m and n must be even or they both must be odd, with
m=0,n=#0, and m # n. For E;, as given by Equations 26 and 27, no m even, n
odd (or vice versa) modes can satisfy all four boundary conditions
simultaneously. This means that the TMj3 is the lowest order TM mode found
by the above procedure. We see from Equation 26 that E; is 0 not only on the
walls but also along the line x = a (seec Figure 4). This means that we have
found a set of modes that is "odd" about the line x = a; thus, there should exist a
corresponding set of modes "even" about x = a, i.e., E; should be a maximum
there. This observation originaily motivated the isosceles right triangular
solutions with a magnetic wall at x = a. Unfortunately, any attempt to use
Equations 4 and 6 as the starting point for a set of TM solutions that are
maximum on X = a but still zero on the walls is doomed to failure. From
Equations 4 and 6, we see that there is no way for E; =0ony=0andony =a
simultaneously if E; is to be maximum on x = a.

For the TE modes, we choose

H, = cos k;x cos kyy + cos k,x cos k;y (32)
. .
a a (33)
dH,

subject to gn =0 on the walls. Just as for the TM modes, we find that either
both m and n must be even or both m and n must be odd and m = n is allowed.
Thus, the Tl:',11 mode is the lowest order TE mode found using Equations 32 and

33. Its distribution is (see Figure 15)

H, (TE;;) =2 cos X cos =X
a a (34)

The next lowest mode is the TE2qg, followed by the TE23, and then the TM;3 and
TE 13 modes.

In comparing the perfectly conducting isosceles right triangular
waveguide with the 45- and 135-degree parallelogram waveguide, it is evident
that only about half of the modes that satisfy the triangular boundary
conditions also satisfy the parallelogram boundary conditions. Any even-odd
correspondence (and vice versa) between the mode indices (m and n) has
been eliminated by the y = x - a boundary condition. Since the isosceles right
triangular modes form a complecte set (Reference 13), we conclude that some
of the modes for the 45- and 135-degree parallelogram are missing, including
the true lowest order mode.

Using finite difference analysis (Reference 15) of the 45- and 135-degree
parallelogram waveguide, we can indeed show that the above TEpj

10
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distribution is actually only the third lowest order mode of the structure.
There are two modes with lower cutoff wave numbers, and we conclude that
these two modes cannot be found in closed form using a finite sum of
rectangular harmonics.

E. 90- AND 90- AND 135- AND 45-DEGREE WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Consider the four-sided waveguide cross section shown in Figure 5. It is a
combination of a square and an isosceles right triangle. Using the isosceles
right triangular solution for TM modes given previously, we assume that

E, = sin k;x sin k,y — sin k,x sin k;y (35)
with
kl - P_l_?t_ . k2= -IE
a a (36)

as usual for this type of boundary. The boundary conditions in Equation 37
for the TM modes of this geometry are

E,=0on y=0 , x=0 , x=a , y=x+a 37

By inspection, we see that the first three conditions in Equation 37 are met.
For the fourth condition, E; becomes

E, = sin k;x sin ky (x + a) — sin k,x sin k; (x +a)
= sin k;x(sin kyx cos kja + cos kyx sin kpa)

— sin k,x(sin k,x cos k,a + cos k;x sin k;a) (38)

Thus, for E; to be zero on y = x + a, we must have

sink;a=0 and sink,a=0 (39a)

simultaneously, along with

cos kja =cos kja (39b)

To satisfy the conditions of Equation 39a, m and n must be integer. To satisfy
the condition of Equation 39b, we must have both m and n odd or both m and n
even, m #0,n 20, m # n. This is the same solution and integer restrictions
found for the 45- and 135-degree parallelogram. However, in this instance,
we have another TM solution.

11
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If
E, = sin k;x sin k,y + sin kyx sin k;y (40)
with
kl=ﬂ R ](2=--t-1£
a a (41)

we see that the first three boundary conditions are again satisfied term by
term and the y = x + a condition forces

sinkja=0 , sinka=0 (42a)

but now

cos kja =—cos kpa (42b)

Again, m and n must be integer, but now if m is odd, n must be even and vice
versa. Thus, the solution in Equation 40 allows a TMj7 mode, which satisfies
all boundary conditions simultaneously and is the lowest order TM modc found
using the initial forms given by Equations 35 and 40.

For the TE modes, we have a similar situation. One solution is given by

H, = cos k;x cos kyy + cos kyx cos k;y (43)

with the eigenvalues as in Equation 41. We must satisfy
o, 0 0 0
= =0 on x= , ¥Yy=0 , x=a , y=x+a
dn Y Y (44)

As for the TM modes, the first three conditions in Equation 44 are seen to be
satisfied by Equation 43 by inspection. On y = x + a, we must satisfy

aH aH
(52-5) | - 5

y=x+a

Upon taking the derivatives and substituting in the fourth boundary
condition, we have

12
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(—8;_ - Ty_)yJ = [k, sin k;x cos k; (x + a)

X+4

— k, sin kyx cos k; (x + a)] = [~ k; cos kx sin k; (x + a)

— k; cos kox sin k; (x + a)] (46)
dH, oH, , .
kT yz’lm = — k; sin k;x(cos k,x cos kja ~ sin kyx sin kya)

— k, sin kyx(cos k;x cos k;a - sin kx sin k;a)
+ k; cos k;x(sin kyx cos kja + cos kox sin kpa)

+k, cos kyx(sin k;x cos k;a + cos k;x sin k;a) (47)

For this to be zero, we see that
sinkja=0 and sink;a=0 ' (48a)
and

cos k;a = cos kpa (48b)

Thus, both m and n are even or both m and n are odd, with m = n allowed.

The other set of TE solutions is given by

H, = cos k;x cos kyy — cos kyx cos kyy (49)
with
R .
a a (50)

As for the TM modes, again we seec that (for the y = x + a boundary condition)

sink,;a=0 and sink;a=0 (51a)

but now

13
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cos k;a=~cos kra (51b)

Thus, m must be even, n odd, and vice versa. This second TE solution allows a
TE19 mode as the lowest order mode derived from finite sums of rectangular
harmonics found for this guiding structure. The TEjp mode has the form (see
Figure 16)

X Ty
H, (TE,,) = cos — — cos ——
z 10 a a (52)

The next lowest modes are the TE;; (see Figure 17) from Equation 43 and the
TM 2 from Equation 40. Just as for the 45- and 135-degree parallelogram
waveguide, we do not have a complete set of modes and the true lowest order
mode is missing. A finite difference analysis shows that there is one mode
below the TEj1g of Equation 52 that has not been determined in closed form
(Reference 16).

F. 45- AND 135-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Consider the trapezoidal geometry oriented as in Figure 6. For the TM
modes, we must satisfy '

E,=0 on x=0,a ; y=:t(x+¥a-)

2 (53)
As previously, we attempt a solution of the form
E, = sin k;x sin kyy — sin k,x sin k,y (54)
with
2mx 2nx
kk=— , ky=—=—
a a (595)

By inspection, E; in Equation 54 is zero on x = 0 and a. Substituting the
(y = x + a/2) boundary condition into Equation 54,

. . kpa . kpa
E, = sin kx| sin k,x cos —~ +cos kox sin -

: : kja . ka
— sin kox| sin k;x cos =5- + cos k;x sin ——
2 2 (56)

14
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Equation 56 can be zero when

. k2 . kpa

\ sm—2-=0 and smT=0 (573)
simultaneously with
k;a k,a

€os ~—5~ = C€Os ~5= (57b)
Equation 57 becomes (using Equation 55)

sinmr=0 and sinnr=0 (582)
with

COS Mm% = COS NN (58b)

Thus, m and n integer satisfy Equation 58a, and Equation 58b implies that
either both m and n are even or both m and n are odd. {The y = -(x + 2af2)
condition gives the same result as above.] By considering the ‘form of
Equation 56, we see that another solution is

E, = sin k;x sin kpy + sin kox sin ky (59)

using Equation 55.

Using Equation 59 and substituting in y = x + a/2, we now have the
conditions
sinmr=0and sinnt=0 (60a)
and
COs MM = — COS NIt (60b)

for E; in Equation 59 to be zero on y = +(x + a/2). Now if m is an even integer,
n must be odd and vice versa.

Equations 54 and 59 are solutions that are zero on y = 0. Thus, these
solutions are odd with respect to the center of the trapezoid, and we would like
also to find solutions that are even with respect to y = 0. We attempt a solution
of the form

E, = sin k;x cos kyy £ sin kox cos k;y (61)

with
15
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(2m - D) _@n-Dn

ky= ,
1 a 2 a (62)

Again, E; = 0 on x = 0,a by inspection.

Using y = x + a/2 in Equation 61, we have

. kja . koa
E, = sin kx| cos ksx cos —5 —sin ksx sin -

. kja . kja
* sin k,x| cos k;x cos —— — sin k;x sin -

2 (63)
Equation 63 can be zero if
ksa kja
cos —=—=0 and cos ==
2 2 (64a)
simultaneously with
. koa . kja . .
sin —5= = - sin —~ for the plus sign in Equation 61
. ka  kjua . - .
sin ~>— =sin —=—  for the minus sign in Equation 61
2 2 (64b)

Thus, we see from Equation 64 that for the minus sign in Equation 61, we must
have both m and n even or both m and n odd. For the plus sign, we must have
m even, n odd, and vice versa. To summarize the TM modes, we have

E.ﬁl) = sin k;x sin kyy — sin kyx sin k;y ; (65a)
both m.,n even (odd)
E? = sin kyx sin koy + sin kox sin k;y ;
= 1 2y + SIN KoX SIn Ky ¢ (65b)

m even, n odd (or vice versa) with

2mn 2nxw
kl — —a_ , k2 = emaee _
a (65¢c)
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m = 0, n # 0 for E;(1) and E;(2); m # n for E;(1) only.

E.?) = sin kyx cos kyy — sin kyx cos ky
both m,n even (or odd)

E,E“) = sin k;x cos kpy + sin kyx cos kyy .

m even, n odd (or vice versa) with

_Qm-Dr
- a

_ 2n-1)x

k; .

7k2

and m #n for E;(3) only. The TE modes must satisfy

oH, 0 0
7’(—— on x=4u,a

{66a)

(66b)

(66¢)

(67a)

(67b)

(68)

%Hxi-a-al{f-=0 on y=:t(x+-;-)
ch use the TE solution for the isosceles right triangular waveguide as usual
an )

H, = cos k;x cos kyy + cos kyx cos k;y
with

W

(69)

Equation 67a is satisfied immediately. Substituting y = x + a/2 into Equation

67b,
dH, OJH, ) a
xSy |.=[—k1smklxcosk2(x+-2-)
y=x+-2-
. a . a
-k, sin k,x cos k; (x + -2-)]— [- ky cos k;x sin k, (x + 5)

-k, cos kyx sin k; (x + %)]

17
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( aHz aHZ ) l K si ( k kza . . k2a )
= oy L, =Tk sin k;x | cos Kyx cos—5— — sin kyx sin -
y=x+-2-
. kja st
-k, sin kyx | cos k;x cos —— —sin k;x sin -
. k,a . kja
+ k cos kyx { sin kyx cos—5- + cos ksx sin =
: kja . ka
+ k; cos kpx | sin k;x cos —— + cos k;x sin —~
2 2 (71)
Equation 71 is zero provided
. Ka . ko
sin ==—=0 and sin—-=0
2 2 (72a)
along with
kla k2a .
COS —5— = COS —3—
2 2 (72b)

Thus, both m and n must be even integers or both m and n are odd integers,
just as for Ez(1). [We obtain the same result when y = -(x + a/2).] Also from
Equation 71, we see that

H, = cos k;x cos kyy — cos kpx cos kyy : (73)

along with Equation 68, is a solution provided m is an even integer, while n is
odd and vice versa. Just as for the TM modes, we have two more solutions, i.e.,

H, = cos k;x sin kpy * cos k,x sin k;y (74)
with
-1 -
K = 2m-1x k= (2n-r
a a (75)

which now go to zero along y = 0. [Equation 74 obeys Equation 67a by
inspection. Equation 67b becomes (using Equation 74)

18
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aHz aHz . . a
(7)(_ - Ty-) | = -k, sin k;x sin k, (x+ -2-)

+=
y=X+3

+ k, sin k,x sin k; (x + %)]- [k2 cos k;x cos ky (x + -;-)

* k; cos koyx cos k; (x + -;-)]

(76)
(aH, GHZ) | « « ( « kya « ka)
> oy =" 1 sin k;x { sin 2X €OS —5— + COs zxsm—z—
y=x+-2-
- ) kla k a
+ kj sin kox | sin k;x cos —— +cos k;x sin —2-
ka2
— kj cos k;x | cos kyx cos — — sin kyx sin —2-
k;a
+ k; cos kox (cos k;x cos — - sin k;x sin T)}
amn
Equation 77 can be zero provided
k;a k,a
cos = =0 and cos —— =0
2 2 (78a)
along with
k a kza . . .
sin T =sin - for the plus sign in Equation 74
k a k2a . . .
sin —— = — sin — for the minus sign in Equation 74
2 2 (78b)

Thus, the TE solutions follow restrictions on integers m and n similar to the
TM modes. That is, for the plus sign in Equation 74, both m and n must be
even or both m and n must be odd; for the minus sign, m must be even and n
odd or vice versa.

To summarize the TE modes, we have
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H(zl) = cos k;x cos kyy + cos kox cos k;y (19a)
both m, n even (or odd)
H(2) -
2 =cos k;x cos kyy — cos kyx cos k;y (79b)

m even, n odd (or vice versa) with

a a (79¢)
and
H(z:") = cos kx sin kyy + cos kyx sin k;y (80a)

both m, n even (or odd)
H? = . .
z =cos k;x sin kyy — cos k,x sin k;y (80b)

m even, n odd (or vice versa) with

(2m-~1)n Ko = (2n- 1)
a 2 a (80¢)

k1=

The lowest order mode of this trapezoidal geometry (note that the top length
and the width of the trapezoid are both equal) determined from Equations 79

and 80 is the TE;; mode given by H,(3). Iis distribution is (see Figure 18)

3 X . my
H,” (TE;,) =2 cos =— sin ==
z 11 a a (81)

The exact same mode can be found from Equation 80b with m = 0, n = 1. The
next lowest mode is the TEjp mode given by Equation 79b, i.e.,

2ny

() 27x
H,” (TE,g) =cos - cos
z 10 a (82)
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G. 60- AND 120-DEGREE PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Using the solutions found previously for the equilateral triangular
waveguide (Reference 9), we can achieve some solutions for a 60- and 120-
degree parallelogram oriented as in Figure 7. We assume that (for TM modes)

Eﬁl) = sin 2k, x sin 2k,y + sin k3x sin k,y + sin ksx sin kgy (83)
with
(oo o2 _ (m+n)2r K _ (n—3m)2x
1= a‘j'3“ ’ 2= 3a ’ 3= 3{3- ’ 4 = 3a s
(m-nR2n (n +3m)2n
ks = —————— | o em——
T a3 s 3a (84)

We know that this solution for E;(1) is zero on x = av3/2 and x = yV3. Also, we
see immediately that it is zero for x = 0. So we neced to check only the fourth
boundary condition of the 60- and 120-degree parallelogram geometry, i.c.,
y= x/N3 - a2 or x = yV3 + ¥3a/2. Substituting this into Equation 83, we have

a

2) sin 2k,y + sin k3 V3 (y - %) sin kgy

E = sin 2k, V3 (y +

+ sin ksﬁ(y+ %) sin key

(85)
Using the ki (i = 1 to 6) given above, the arguments of the sine terms in
Equation 85 become
2k, ﬁ(y+ i): Am1y +2mn
2 a (86a)
4nmy
2k,y =
Y= (86b)
k3ﬁ(y+5)=w+n(m+n)
2 a (86¢)
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n)y + n(m - n)

(864d)

(86¢)

(86f)

(87)

Using Equations 86 and 87 and substituting into E;(1) in Equation 85, we have

EYY = sin (2A + 2mn) sin 2B + sin [A + 3B + n(m + n)] sin (B — A)

+ sin [A = 3B + n{m - n)] sin (B + A)

Using the double-angle formulas, i.e.,

sin(A+3B)=sinAcos3Btcos Asin3B=U;+U,

sin(B+A)=sinBcosAtcosBsinA=V, +V,

and
sin[A£3B+n(mtn)l=
(provided m and n are
we see that

sin (A £ 3B) cos n{m £ n)

integer)

4+ sin (A £ 3B) for{m+n} even
m-n

<

Lsin(M;313)for{:“‘} odd

\

22
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ELY = sin 2A sin 2B £ (U, + Up)(V, = V,) £ (U; = UV, + V) 91
= sin 2A sin 2B £ 2(U,V, - U,V,) (92)
= sin 2A sin 2B t 2[sin A cos A (sin B cos 3B ~ cos B sin 3B)] (93)
= sin 2A sin 2B * sin 2A sin (-2B) (94)

At this point, we see that the plus sign in Equation 90 must be used to force
E.(1) to be 0. Therefore, we must have both (m + n) and (m - n) even to match
all the boundary conditions. For the other solution, i.e., a solution that is even
about y = 0 (Reference 9), we have

E.EZ) = sin 2k;x cos 2k,y — sin k3x cos kyy — sin ksx cos kgy (95)

along with Equation 84. In a similar manner as for E,(1), we can show that
both (m + n) and (m - n) must be even in order for our solution to obey the
fourth boundary condition. As in the equilateral triangular waveguide, E,(1)
is zero on y = 0, the "odd" solutior., whereas, E;(2) is an extremum on y = 0, the

"even" solution. For the odd types of TM modes, we must have m # 0, n # 0,
m #n, and n # 3m. For the even TM modes, we must have m # 0 and m = n. The

lowest order TM mode is given by E,(®, and it is a TM2¢ mode.

The TE modes are given also by the corresponding equilateral triangular
TE solutions, i.e.,

Hil) = cos 2k;x cos 2k,y + cos k3x cos kay + cos ksx cos kgy (96a)
H?) = cos 2k;x sin Zkyy — cos kyx sin kyy — cos ksx sin kgy (96b)

with the k;'s given by Equation 84. Again, we find that both (m + n) and
(m-n) must be even to satisfy the condition on the fourth boundary.
Furthermore, for the H,(2) solutions, n #C and n # 3m. The TE1; mode is the
lowest order mode determined in the above way for this structure. Its
distribution is (see Figure 19)

m X 4ny 8y
H (TE“)=2cos——cos—-+cos——
’ av3 3a (97a)

which is even about y = 0 and (see Figure 20)
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@ _ 4nx . Any . 8y
H,” (TE,;) =2 cos " sm' 3.~ sin =

(97b)

which is Q0 on y = Q.

H. 60- AND 120-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

The 60- and 120-degree trapezoidal waveguide, oriented as in Figure 8,

must satisfy the following boundary conditions for TM mode solutions. These
are

av3 X a
E,=0 on x=0 , x== , =i(—+—)
’ 2 TR T2 (98)

Again, we attempt to use the equilateral triangular waveguide solutions, i.e.,

E, sin 2k;x sin 2k,y + sin k3x sin k,y + sin ksx sin kgy (99)

with the k; as in Equation 84. We know that E; is zero on x = 0 and x = aV3/2 by
inspection. To check the y = x/¥3 + a2 condition, we use Equations 99 and 84
to give .

E, = sin 2k, V3 (y - %) sin 2K,y + sin ky V3 (y - ;—) sin k,y

+sink5\f§(y --;-)sink6y (100)

Using Equation 86 (with minus signs between the terms in Equations 86a, 86c,
and 86e) and Equation 87 and substituting into E; in Equation 100, we have

E, = sin (2A — 2mn) sin 2B + sin [(A + 3B) = n(m + n)] sin (B-A)
+sin[(A—3B)—_1t(m—n)]sin(B+A) (101)

Using Equation 89 and observing that (for m and n integer)
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sin [(A £ 3B) — n(m % n)] =sin (A £ 3B) cos n(m £ n)

sin (A+3B) for {m+ n} even
m-n

m+n

—sin (A £3B) for {

} o
\

(102)

is just the same as Equation 90, then E; will be zero provided both (m + n) and
(m - n) are even (following Equations 91 through 94). [The same result
obtains from y = -(x/N3 + a/2)).

In the case of the trapezoid, we see that another solution is possible where
the minus signs in Equation 102 are used. Thus,

E, = sin 2k;x sin 2k,y — sin k3x sin k4y — sin ksx sin kgy (103)

with both (m + n) and (m - n) odd, and the k; given by Equation 84 is another
solution. Furthermore, there are two -more solutions that are maximum on y =
0 and these are

E, = sin 2k;x cos 2k,y * sin k3x cos kyy * sin ksx cos kgy (104)

with both (m + n) and (m - n) even for the minus signs in Equation 104 and
both (m + n) and (m - n) odd for the plus signs in Equation 104. The k; are
still given by Equation 84.

The TE modes exhibit the same type of behavior. Without detail, these are
Hgl) = cos 2k;x cos 2k,y + cos k3x cos k,y + cos ksx cos kgy (105)
with the ki as in Equation 84 and both (m + n) and (m - n) even. Also, we have
H(ZZ) = cos 2k;x cos 2k,y — cos k3x cos ksy — cos ksx cos kgy (106)

with both (m + n) and (m - n) odd.
Finally,

(3)
H(:) = cos 2k;x sin 2k,y * cos k3x sin kyy + cos ksx sin kgy (107)
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with the ki as in Equation 84 and both (m + n) and (m - n) even for the minus
signs in Equation 107 and both (m + n) and (m - n) odd for the plus signs. The
lowest TE mode found from the above four solutions is the TEg; mode (see

Figures 21 and 22), i.e,,

arn
HY (TEq) = sin 3y +2cos 22X gin 2 21ty
aVv3 : (108a)

which is zero on y = 0 and its counterpart

H(z) (TEy,) =cos -4—31—2cos 25X cos 231ty
av3 a (108b)

which is even about y = 0.

. CUTOFF FORMULAS AND MODE PLOTS

A. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND ONE
MAGNETIC WALL

2 T 2 2 2
k = | —
(kedmn (2 )(m +n%) (109)

is the cutoff wave number of this structure. We have claimed that the TE;j
mode is the lowest order mode found by the methods of Section II. Thus,

1t2

(kc)fl ==
2a (110)

The corresponding cutoff wavelength for this mode is

A = -chi=2ﬁa
1 (111)

which is larger than that of the corresponding square waveguide of x
dimension, a (see Figure 9). Considering this fact along with the structure of
the contour lines of constant H, for the TE;; mode as shown in Figure 12, this
mode is truly the lowest order mode of this guide. We see from a comparison
of Figures 12 and 13 that we obtain the same result whether the magnetic wall
is fixed at x = a or at y = 0, as expected.
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B. ISOSCELES RIGHT TRIANGULAR WAVEGUIDE WITH TWO ELECTRIC AND ONE
MAGNETIC WALL AT y=x

For this geometry, the cutoff wave number is

2 _(xV, 2. 2
(kc)m-(a) (m?+n?) 112

which is the same as that for the isosceles right triangular waveguide with
perfectly conducting walls (also the same as for the square waveguide of side
a). The lowest mode is the TEj9 mode shown in Figure 14. Its cutoff is

ho=(Z)

and its cutoff wavelength is

(113)

(Xc)10= 2a (114)

Thus, this is also a true lowest order mode.

C 45- AND 135-DEGREE. PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

This structure has the same cutoff formula as the isosceles right
triangular waveguide (Reference 9) given by Equation 112. However,
because of the integer restrictions necessary for satisfaction of the fourth
boundary conditions, the lowest order mode found is the TE;; (see Figure 15).
Thus, its cutoff wave number is

2
k.)? =2(1‘-)
c¢/11 a (115)

and

(A 11 =av2 (116)

We know (see Section II and Reference 15) that there are two modes with
cutoff wave numbers lower than the above TE;; mode, but we have been

unable to determine them in closed form.
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D. 90- AND 90- AND 135- AND 45-DEGREE WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

This geometry has the same general cutoff formula as the 45- and 135-
degree parallelogram waveguide (see Equation 112). In this case, we do have
a TEjo mode (see Figure 16), but it is not the lowest order mode (see Section II
and Reference 16). Its cutoff wavelength is

just as for the rectangular waveguide. However, this is not a true lowest order
mode (see Figure 16).

E. 45- AND 135-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

Thic trapezoidal waveguide contains a high degree of symmetry, i.e., not
only are the four angles either 45 or 135 degrees but the length of its "top”
section along x = 0 is equal to its width a (see Figure 6). Its cutoff formula is
given by

2
4
(kJon = = (m” +1%) |
a (118a)

for certain solutions, while

2

(A = = [2m - 1)*+ @n - 1]

mnl:q

(118b)

for the other solutions (see Section II, Equations 79 and 80). The lowest order
mode is the TEj; mode given by Equations 118b and 80a. Its cutoff wave
number and wavelength are

2
kJh=2=
a | (119)
or
(A1 =av2 (120)

Since Equation 120 is smaller than the cutoff wavelength for the rectangular
waveguide, it is likely that our TE;; mode in Equation 81 is not a true lowest
order mode. Contour lines of constant H; are shown in Figure 18 for this TEj
mode.
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F. 60- AND 120-DEGREE PARALLELOGRAM WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

The cutoff formula for this geometry is the same as for the equilateral
triangular waveguide (see Reference 9)

2 2
(kc)rznn= (41? (m2+%)
3a (121)

The TEj;; mode (see Figures 19 and 20) is the lowest order mode found from
Equation 96.

Thus,

wh= 42 (3)

(122)

and

3a
11774 (123)

If we compare the values in Equations 122 and 123 with those for the
equilateral triangular guide (Reference 9), we see that although we have
solutions that are even and odd about y = 0, these TE|; solutions are not the
true lowest order modes (see Reference 16).

G. 60- AND 120-DEGREE TRAPEZOIDAL WAVEGUIDE WITH PERFECTLY
CONDUCTING WALLS

This waveguide has the same general cutoff formula as given above by
Equation 121. In this instance, however, we have a TEg) mode, which may be
a true lowest order mode. It has a cutoff wave number given by

2

2 4n
(ko1 = (—)
¢ 3a (124)

(the same as for the lowest order mode of an equilateral triangular
waveguide), and its corresponding cutoff wavelength is

3
(Ador = 5- 1259
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Just as for the equilateral triangular waveguide, this mode has two
distributions, one of which is even and the other odd about y = 0 (see Figures
21 and 22).

IV. CONCLUSIONS

Closed-form mode solutions for eight uniform waveguides with unusual
cross-sectional geometries/boundary conditions have been determined using
finite sums of rectangular harmonics, symmetry, and the Riemann-Schwarz
reflection principle. Although infinite sets of transverse electric and
transverse magnetic modes are generated for these eight geometries,
complete sets of modes (in the sense of the rectangular waveguide) have not
been determined. In particular, the lowest order modes of certain shapes are
"missing." We have speculated that these "missing” modes do not have the
form of finite sums of rectangular harmonics and must be found using either
an infinite sum of rectangular harmonics or a purely nonseparable type of
solution.
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VI. FIGURES

(a, a)

FIGURE 1. Isosceles Right Triangular Waveguide With Two
Electric Walls and One Magnetic Wall at x = a (Dashed
Line).

{a, a)

FIGURE 2. Isosceles Right Triangular Waveguide With Two
Electric Walls and One Magnetic Wall at y = 0 (Dashed Line).
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(a, o)

FIGURE 3. [Isosceles Right Triangular Waveguide With
Two Electric Walls and One Magnetic Wall at y = x (Dashed
Line).

(a, a)

{2a, a)
135°

45°

FIGURE 4. 45- and 135-Degree Parallelogram Waveguide
With Perfectly Conducting Walls.
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(a, 2a)
Y
/ 45°
(o, a) 135°

{a, o}

FIGURE 5. 90- and 90- and 135- and 45-Degree
Parallelogram Waveguide With Perfectly Conducting

Walls.
Y
(a, 3a/2)
45°
o, a/2) 135°

#_(a, o)
—t X

(o, ~a/2) 135¢
45°
(a, -3a/2)

FIGURE 6. 45- and 135-Degree Trapezoidal Waveguide
With Perfectly Conducting Walls.
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(aV3/2,3/2)

to, o} av3/2, o)

(o, —as2)

FIGURE 7. 60- and 120-Degree Parallelogram Waveguide
With Perfectly Conducting Walls.

Y
(aVv3/2, a)
60¢
(0. 8/2)
120°

oo \
aV3/2, -al

FIGURE 8. 60- and 120-Degree Trapezoidal
Waveguide With Perfectly Conducting Walls.
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FIGURE 9. Contour Plot of TEjg Mode for Square Waveguide.
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FIGURE 10. Contour Plot of TEjg Mode for Isosceles Right Triangular
Waveguide With Perfectly Conducting Walls.
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FIGURE 11. Contour Plot of TE;; Mode for Isosceles Right Triangular

Waveguide With Perfectly Conducting Walls.
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FIGURE 12. Contour Plot of TE;; Mode for Isosceles Right Triangular
Waveguide With a Magnetic Wall at x = 1.
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FIGURE 13. Contour Plot of TE;j; Mode for Isosceles Right Triangular
Waveguide With a Magnetic Wall at y = 0.
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FIGURE 14. Contour Plot of TEjp Mode for Isosceles Right Triangular
Waveguide With a Magnetic Wall at y = x,
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FIGURE 16. Contour Plot of TEjg for 90- and 90- and 135- and
45-Degree  Waveguide.

44




NWC TP 6989
20—
Tls— ]
| R
Y
0.0
~
g ‘o/ ‘\_0———
\%‘ ‘/°
12 \ / A5
[ s
P \ i /
\ ‘© \ | S /
\ | | /
Y ‘ e | L
,0} 2 o 3 P
o T \ \\
/ ! \
08 |- < o / \ ’ N
L /.\. / \ ) \\‘1
__/ / \ \
/ N
/0'6/ o Qs\
r___ —_— o N~ —— *
0.0 0.0
o4 T T T~~~ _ S -7
~ )
e) o
‘S v
L\ N\ / /_
I ’O \\ // /\o ___J
— //
\ 7/
\ \ J /
\ ‘ l j
0.2 L il L |
o 0.2 0.4 0.6 0.8
- X

FIGURE 17. Contour Plot of TEj; Mode for 90- and 90- and 135-
and 45-Degree Waveguide.
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FIGURE 18. Contour Plot of TE|; Mode for
45- and 135-Degree Traperoidal Wave-
guide.
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FIGURE 19. Contour Plot of TEj; Mode for 60- and 120-Degree Parallelogram
Waveguide (Even Solution).
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FIGURE 20. Contour Plot of TE;; Mode for 60- und 120-Degree Parallelogram
Waveguide (Odd Solution).
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FIGURE 21. Contour Plot of TEg; Mode for 60- and 120-
Degree Trapezoidal Waveguide (Odd Solution).
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FIGURE 22. Contour Plot of TEg; Mode for 60- and 120-
Degree Trapezoidal Waveguide (Even Solution).
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