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The parabolic approximation method is widely recogniz as useful for accurately analyzing
and predicting sound transmission intensity in diverse n environments. One reason for its or

attractiveness is that solutions are marched in range, th eeby avoiding the large internal
storage requirements when using the full wave equatio. Present finite-difference 0
implementations employ a range step size that is presc bed by either the user or the code and *'d
that remains fixed for the duration of the computation n algorithm is presented in which the -

range step is adaptively selected by a procedure within a version of the implicit finite-difference
(IFD) implementation of the parabolic approximation. An error indicator is computed at each
range step, and its value is compared to an error tolerance window that is readily specified by
the user. If the error indicator falls outside this window, a new range step size is computed and
used until the error indicator again leaves the tolerance window. Furthermore, for a given . Cds
tolerance, this algorithm generates a range step size that is optimal in a specified sense and that

often leads to large decreases in run time. Additional related modifications to the IFD 'I d I or
implementations are discussed. Several examples are presented that illustrate the efficacy of the s~tciaJ
enhanced algorithm. P

PACS numbers: 430.Bp A-' 1 .O__ _

INTRODUCTION problems and may be infeasible with present codes. For ex-
ample, results in the time domain can be obtained by solving

Since its introduction to the underwater acoustics com- a PE for many different frequencies in the same channel and
munity more than a decade ago,' the parabolic approxima- then superposing the results with Fourier transforms.6

tion to the reduced wave equation has seen widespread appli- Broadband problems solved by this method require dozens,
cation in many important underwater sound propagation perhaps hundreds, of computations at different frequencies.
problems. This type of approximation easily and accurately Also, high-frequency propagation problems may require
handles strongly range-dependent environments, offering a computational meshes of prohibitively small size, making
capability beyond the reach of normal mode theory and re- solutions simply too expensive to compute. Deep-ocean
lated methods. Since it is effective at low frequencies, it is channels of long range can require large amounts of time,
suitable for analyzing and predicting propagation in situa- limiting the ability to perform simulated propagation studies
tions where diffraction may be important, thus offering a under a varieiy of interesting conditions. In addition, certain
significant advantage over ray theory. Another reason for classes of three-dimensional problems can be computed by
interest in this method is computational efficiency. The two-dimensional solutions through vertical slices of the
fruits of this approximation are parabolic equations (PEs) ocean." For sufficiently large azimuthal regions, this method
that can be marched in range, thereby saving considerable clearly requires large amounts of time for each computation.
amounts of internal core storage. There is a clear and pressing need for substantially faster

Numerical implementations of PEs have been devel- propagation codes.' In part, this requirement for speed will
oped using different algorithms. One of these, using an im- be satisfied with more powerful computers, such as array
plicit finite-difference scheme, 2 is well suited to ocean envi- processors and supercomputers,' which may become avail-
ronments in which there are significant amounts of acoustic able in a few years. Even so, computational acoustic algo-
interaction with the ocean bottom. Other algorithms, based rithms must be made as efficient as possible, regardless of the
on the split-step method3 (which uses fast Fourier trans- type of machine. One way to significantly contribute toward
forms), have proven advantageous for modeling deep-ocean the goal of obtaining optimal efficiency is through the use of
sound channel propagation. Both types of algorithms have adaptive computational methods. In these, the mesh consist-
been refined in many ways. For example. the implicit finite- ing of the set of discrete points at which the solution is com-
difference algorithm has been extended to handle wide-angle puted is adjusted so that the number of points used is mini-
PEs,' while the split-step method has been implemented on a mized while some measure of the solution accuracy is pre-
high-speed, special-purpose array processor.' served. For example, one implementation of the split-step

Although PEs offer significant computational advan- method' employs adjustments or range step size based on
tages over methods for the (elliptic) Helmholtz equation, truncation error estimates that, in turn, depend on partial
many "ropagation problems pose formidable computational derivatives of the refractive index. In addition, depth step
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size can increase, but not decrease, in response to specialized range with a formal order of accuracy of O[ (Ar) 2 + A (rfl,
conditions obtained from spectral energy estimates. where Ar and Az are the range and depth step sizes, respec-

It is the purpose of this paper to describe a method for tively. This method is popular for parabolic systems because
accomplishing part of this objective for finite-difference of its accuracy and absolute stability. One advantage to this
methods. We emphasize here that the approach we describe approach is its particularly convenient ability to model hori-
is substantially different from the one employed in Ref. 3. In zontal as well as irregular interfaces between layers with dif-
addition, the focus of our work is on the performance accu- ferent acoustic properties. The implementation, known as
racy on the adaptive algorithm as well as its efficiency. In implicit finite-difference (IFD) implementation, contains a
Sec. 1, a two-dimensional narrow-angle parabolic approxi- number of powerful and flexible features that permit its ap-
mation and a finite-difference algorithm implementation for plication to a broad variety of ocean acoustic environments.
solving the resulting PEs are reviewed. Notation pertinent to For instance, an input stream provides a mechanism for the
the discretized PE solution, as well as a discussion of current user to prescribe source data, specify selected numerical pa-
methods of selecting fixed mesh sizes, are presented. An er- rameters such as mesh size, describe many types of complex
ror indicator is introduced and a method for adaptively se- propagation environments, and select a variety of output op-
lecting the range step using this indicator is discussed in Sec. tions. IFD implements pressure-release and rigid boundary
II. In Sec. III are presented several example- that demon- conditions on flat or sloping boundaries, and matches the
strate the computational advantages attained by adaptively wave field from the water column into any number of sub-
selecting the range step. Finally, Sec. IV contains a summary bottom layers with different densities, sound speeds, and vol-
of our principal results. ume attenuations. It also contains a feature to apply an artifi-

cial absorbing layer (beneath sub-bottom layers) that is used
I. THE PARABOLIC APPROXIMATION AND IFD to enforce a pressure-release bottom boundary in many ap-
IMPLEMENTATION plications. The code generates several output files, including

Parabolic approximations typically begin from the ones containing the complex-valued solution to the PE, as
Helmholtz equation well as the transmission loss. Additional features are avail-

2p m -able and are documented in Refs. 2 and 13. For the rest of
V2p-4-k n P- (1) this paper, IFD will refer to the implicit finite-difference

which governs the acoustic pressure field p in a steady, quies- implementation described in Ref. 2 (and modified by us for
cent medium due to a harmonic point source of frequencyf increased speed and accuracy), while EIFD will refer to the
In Eq. ( 1), k, = 21rf/co is the wavenumber, n = c(/c (r,O,z) implementation including the enhancements discussed here-
is the index of refraction, c(r,9,z) is the sound speed, and co is in.
a reference sound speed. The farfield assumption is given by In the IFD implementation, the numerical solution of

p u(rOz)H ")(kor), (2) Eq. (3) is represented as u,", where

where H'" (kor) is the Hankel function of the first kind of u- = u(r,,z,,), m = I .... M, n =..... V. (4)
order zero. Equation (2), assumed to hold for sufficiently
large values of r, supposes that there are only outward travel- In Eq. (4), (r,,,z,,) corresponds to a point on the range-
ing waves, i.e., no backscattering. The quantity u (r,9 z) is a depth mesh, and M and N are integers indicating the maxi-
slowly varying function of position that modulates the Han- mum number of range and depth points on the mesh. Al-
kel function. If Eq. (2) is substituted into Eq. ( 1 ), and ap- though the algorithm treats nonhorizontal boundaries by
propriate conditions are satisfied, the following "standard adding or deleting depth mesh points, we take N fixed
PE" can be shown to hold: throughout this papti-. We note that this versiou of IFD only

handles horizontal interfaces, so that sloping or irregular
2ikou, +-u2, + k o ( n" - 1) u = 0. (3) interfaces are approximated by stepwise horizontal inter-

Since no 0 derivatives appear in Eq. (3), we suppress the 9 faces.
dependence of u and write u(r,z). Details on the derivation IFD requires users to either specify the characteristic
of Eq. (3) can be found in Refs. 1, 10, and elsewhere. It is dimensions of the computational grid upon which the solu-
important to note that Eq. (3) is not the only parabolic ap- tion is computed or to accept default values. With IFD, Ar
proximation that could be derived. Other examples include and Az represent fixed range and depth increments, so that
PEs for three-dimensional propagation'' and wide-angle r, = mAr and z,, = nAz. It is not always clear a priori

propagation,' 2 and additional ones can be obtained from whether there are optimal choices for Ar and Az dimen-
more general versions of Eq. (1). For example, PEs have sioned to minimize computation time while preserving ap-
been derived that are appropriate for sound channels in propriate measures of solution accuracy. In the standard
which the medium is moving" ' or the density is variable. IFD implementation, the typical default values are Ar = A /

There are several numerical algorithms available for 2 and Az = A /4, where A is the acoustic wavelength of the
solving Eq. (3), together with an appropriate set of bound- source signal. In general, these mesh sizes tend to be un-
ary and initial conditions. In particular, one using implicit necessarily small. Normally, this can only be corrected when
finite differencing of the partial derivatives has been widely the user has had experience with computational results for a
distributed in the underwater acoustics community. Details particular problem.
of this finite-difference algorithm can be found in Ref. 13. It The geometry of the sound channel, together with val-
utilizes a Crank-Nicolson scheme to march the solution in ues of all important parameters, is provided to IFD via an
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input runstream file. Our implementation adds two addi- maintain the solution accuracy. Second, E should not fall
tional parameters to this runstream: an error tolerance e and below some percentage, chosen as 70, of E so that reasonable
a -cut-in" range value. These parameters will be discussed in computational efficiency is achieved. When these conditions
detail in Sec. II. For output, IFD generates files containing hold, the computation continues with the same value of
the complex valued solution u(r,,,,z, ) and the transmission (Ar) ,. Otherwise, if E > E or E < 0.7c, the error indicator is
loss. Our implementation appends three additional files that controlled by adjusting the step size (Ar) ,. Our technique is
contain the step size used at each range, an indicator of the similar to the step size selection used by one-step codes for
error committed at each range step, and the cumulative ordinary differential equations described in Ref. 17. Since we
range values for the transmission loss file. are using an implicit scheme, a system of equations, whose

matrix representation is tridiagonal, is solved at each range
II. ENHANCED IMPLEMENTATION (EIFD) step. This calculation is efficient because of the special struc-

Later in this paper, we will vary the range step so that ture of the matrix. Since elements in this system are depen-
(Ar), = r, - r,,,_ - refers to the mth range step taken in dent on (Ar),,,, it is desirable to avoid modifications of

the calculation. In fact, for different problems, the behavior (Ar) ,,, at every step and the costly recomputation of matrix
of (Ar),, can actually vary in interesting ways, but often elements. We have found that a proper trade-off occurs with
(Ar)., can be surprising larger than a wavelength. Conse- the indicator inside a tolerance window of from 70% to

quently, significant computational advantages are obtained. 100% of the error tolerance.

Since we intend to select the range step size to control a After any solution step, the next range step (Ar),, is
measure of the error, we first require a method for estimating determined from E, e and (Ar),. For the current step, we
the error associated with a given step size. One such choice is know from Eq. (5) that E a (Ar) ,, and, to achieve accurate

and efficient computation, we want the next range step size
E(r,,) = (Ar)',,l1d-_,1 (5) (Ar),,c e". The following proportionality resu!ts:

which indicates local error estimate and feedback to adjust
the range step size. To estimate d,, u' pointwise by Eq. (5) at E/E(r ) cc (Ar) 2 + /(Ar) ,,. (8)
each depth node n = 1,...,N, we use backward differences on Consequently, if a range step adjustment isjudged necessary,
the two previous range steps; i.e., the new step size is determined by

u. _ U u / -- uM (Ar), =B[E/E(rm)]"2 (Ar),, (9)a,, T \-Tir7 -_ -. a Ti At),,. (6)
Vr , where f is a constant of proportionality.

The norm used in Eq. (5) is the discrete approximation to The parameter#$ provides a useful degree of freedom in
the L 2 norm, given by our method. If the current step's error estimate is over the

1 1,,2u7 7,,) window (E> e), the adjustment is made with ,f = (0. 7 in
lia,,unh = mN , (7) order to project the error estimate for the next step :oward

the bottom of the window. If the error estimate has de-
where the overbar denotes complex conjugation. We exam- creased below the window (E < 0.7), the choicef, = 1 ad-
ined other norms, L, or L ., but found no particular reason justs the next step size to an error estimation near the top of
to select one over another, so that L. was chosen as a matter the window. These selections of fi provide for maximum
of convenience. For the PE, the measure given by Eq. (5) is possible use of the window before the next range step adjust-
only proportional to the true error, but is nonetheless 4 good ment needs to be made. We emphasize the novelty of our
error indicator. A more accurate error estimation technique, approach by pointing out that selection of parameters analo-
such as Richardson extrapolation, could also be implemen- gous tof are usually ad hoc. ' In contrast, we have provided
ted at the expense of additional computational overhead. .4,'. herein a definite and consistent way to select its value based
Furthermore, this error indicator does not contain any esti- on the performanco " . error indicator.
mate of the error caused by the discretization of the depth Another type )I- ad, .,tment to (Ar)., , may also be
into steps of size Az. required to ensure th4 ' algorithm performs adequately at

Our technique contrasts with the work of Ref. 16, which vertical interfaces, which may occur at certain ranges to
does not deal with step-changing algorithms, but which uses model rapid horizontal changes in sound-speed profile, bot-
a measure of the local error to verify the solution accuracy tom structure, or channel geometry. As a result of the basic
after the computation of the entire solution. Furthermore, IFD implementation, it is necessary that calculation always
we emphasize that our error indicator is obtained directly begin exactly at a range r,, of a vertical interface. With uni-
from the computed solution, a substantially different ap- form step sizes, this is usually easy to arrange, but with vari-
proach from the uie used in Ref. 3, which estimates trunca- able range steps, particularly when (Ar), is very large, it is
tion error of the solution in terms of certain partial deriva- possible for (r., - r,, ) < (Ar) ,. In this case. (Ar) ,,
tives of the refractive index. This latter method of error = r., - r,,, and the range step is forced to be much smaller
estimation is feasible for calculations performed in the wave- than required by the error indicator. Once the computation
number domain. proceeds past the vertical interface, many more step adjust-

We seek to control the magnitude of the error indicator ments arise from this small step, introducing undesirqble
Fq (5) in two ways. First, the error inuacator E should be computatuml overhead. In order to provide a smooth tran-
kept below a user-specified error tolerance e in order to sition of the range step size at such an interface, our algo-
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rithm checks two step sizes ahead and, when a change is cases. An uncertainty of q = I dB seems to be a reasonable
necessary, makes two modest step size changes instead of constraint on the size of the decibel error away from deep
one more drastic change. In particular, fades. Given these choices, a convenient selection for a value

if r, + 2 (r)~ > r,, of the error tolerance, using Eq. (14), is c = 10 - . Other
choices of E are discussed in Sec. III.

then (Ar),. . = J(r, - r,). (10) Before discussing specific numerical examples, we now

Occasionally, the step size from Eq. (10) is too large ar~d the discuss several additional features that have been included in
indicator leaves the window. However, within two steps, the EIFD. Often the start-up field results in many modes propa-

error is typically brought back under control. gating until bottom attenuation strips the higher-order
EIFD includes another enhancement appropriate for modes so that near the source, the solution looks "noisy."

acoustic intensity calculations. Any algorithm that numeri- Within this region, the adaptive range step changer could
cally solves a PE does not compute the wave field but, rather, make the range step very small. Since the nearfield is rarely

the slowly modulated envelope u(rz). This quantity is then of interest in calculations with EIFD, a feature has been
used to calculate transmission loss or relative intensity, added to the input runstream that allows the adaptive calcu-

Thus, to underwater acousticians, a meaningful error toler- lation to be switched on after a certain range, called the cut-
ance would be expressed in decibels, a form of relative error, in range r., is achieved. For example. in a particular ocean
while a more natural way to control error is in terms of the channel, it may be known that, using the usual Gaussian

absolute units in which the envelope function is computed. start-up field, the effects of bottom attenuation are largely
Clearly, near regions where the solution norm is zero or absent until a range of 4 km. Consequently, r. is set to this
nearly so, the decibel error could be very large and, in fact, value.
may be impossible to control. Thus any adaptive method It is sometimes possible that the solution to the PE is
should be constructed to locate deep fades and indicate their exponentially decaying. In this circumstance, the solution

size to some extent, but not to accurately predict how many norm will eventually become smaller than the error toler-

decibels are lost at the fade. We now describe one way to ance, so that the error measure becomes useless. EIFD con-
relate the absolute error c to a relative error q, expressed in tains a feature that checks the norm of the solution vector at
decibels. each step. If the norm l1ul2 is less than ten times the error

Let ii be the true solution to Eq. (3) and u the computed tolerance e, then the step size is no longer changed.
solution at some mesh point, with E the computed value of In order to monitor the progress of the adaptive calcula-
the error indicator. We seek an estimate for the error q in tion, several additional output files are required. Specifical-
decibels. Note that ly, both the error indicator and the step size at each step are

1I1ii - lulI<kE, (11) listed to output files. Furthermore, the value of each range at
which the relative intensity is written must also be listed, so

where k is a positive constant. Equation ( 11) is one way to that intensity curves can be properly plotted.
state that the true error is proportional to the error indicator.
This expression can be reformulated as IIl. NUMERICAL RESULTS

20 log,()( I -kE/lu) <20 log,,ul - 20 logjiol In order to gauge the efficacy of our algorithm, four
12 I + kE/lul) (12) examples will be discussed, with each example presenting a

20 log,( 1 /different and acoustically important environment. We have

From Eq. (12), we get bounds on the decibel error q, specifi- thoroughly and carefully examined the performance of our
cally step changing algorithm, with attention focused both on so-

q = 120 logjjuj - 20 logo15l1 lution accuracy as well as on execution time improvements.
Although other, nonfinite-difference implementations have

<201log 0o(l - kE/lul )I. (13) utilized range step changers, an examination, like ours, of

In general, q is small since the error tolerance e is typically algorithm performance is evidently novel.
selected to force E4 lul. However, near a null or deep fade, q All calculations were performed on a Prime 850 mini-
could become large since E may equal or substantially ex- computer. Efficiences for each example are estimated using a
ceed u I. This is one reason why the transmission loss (or performance measure that is the run-time ratio of the nona-
relative intensity), which is measured in decibels, when cal- daptive (N mode) run time to the adaptive (A mode) run
culated adaptively, may exhibit substantial error in the vi- time. This ratio, denoted by the symbol F, suggests the gen-
cinity of deep fades and other locations where the solution eral increase in computational efficiency ofthe A mode when
magnitude and error tolerance are of comparable size. F> 1, but is naturally dependent to some extent on the hard-

We can use Eq. (13) to generate a choice of error toler- ware used. Nonetheless, we believe that F is both a straight-
ance for a prescribed level of decibel error q, which will be forward way to measure the performance of our algorithm
valid away from deep fades. It follows from Eq. (13) and and a reasonable indicator of speed ratios on any system.
E > 0.7c that In each of our examples, the calculated quantity is rela-

e.( ( lOlul/7k) ( I - 10 - q/20). (14) tive intensity I, given by

Ali optimal numerical value for k is uncertain, but from our I = 2u log,"I P,-,z , (15)

numerous computations, it appeared that k =0.1 in many where p(rz) is given by Eq. (2) and p,, is a reference pres-
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sure measured at r = I m from the source. Furthermore, in t

each example, a Gaussian starting field is used to provide an
estimate of the sound field close to the source. This method is
widely used because it is simple to calculate, and, in fact, is
an integral part of the standard implementation of IFD.
Nonetheless, other starting methods are available and could ,
be used here as well. However, our results are not expected to _
depend significantly on the choice of a Gaussian starting I
field.

A. lsospeed horizontal channel tORACE ""OOI ,,-220.

In this example. a cw source J' of frequency 200 Hz is 0.7

placed at depth 25 m. The water is 100 m deep, overlying a
fluid bottom that extends an additional 100 m. Finally, an 0 s 40 4 II 12 '1 20 54 25 32 36 40-

artificial absorbing layer of depth 50 m is appended. Sound r,.-K RANGt (KV)

speed and density discontinuities appear at the interface, and FIG 2. Error indicator Eversus rangerfor channel shown in Fig. I:f 200
the lower layer also has volume attenuation. The channel HIG. 25 rres an l= 201
geometry, together with values of important acoustical pa-
rameters, is shown in Fig. 1. This sound channel is identical
to one used in Ref. 10.

For this channel, the adaptive calculation was accom- maxima and minima and height of the peaks, is predicted
plished by selecting an error tolerance of e = 10' and cut- well by the adaptive calculation. The extent of deep fades can
in range of r. = 3 km. The behavior of the error indicator E be over- or underestimated by several decibels or more. Al-
versus range r is shown in Fig. 2. The step size begins at though this is expected from our earlier discussion in Sec. II,
Ar = 5 m, and remains constant until the cut-in range is it is of little consequence since intensity levels at deep fades
achieved. The error indicator decreases steadily as the are usually of little practical interest. For the example, the
.noisy" start-up field is stripped by the lossy bottom. At that efficiency factor is F = 7.3, meaning that the adaptive calcu-

point, E is below the tolerance window, indicated by the pair lation ran over seven times faster than the nonadaptive one.

of horizontal dashed lines. Once the step size changer is acti-
vated, Ar is increased and E is brought inside the window. B. Converging channel
The error continues to decrease, and Ar is enlarged each time In this example, the sound channel is range dependent.
E falls below the lower bound of the window. At about range As depicted in Fig. 4, an isospeed water column with
r = 36 km, the step size is approximately 220 m, or about 26 C, = 1500 m s' begins at depth 350 m and lies over an
wavelengths. That the step size could achieve such a large interface, with a fluid layer below that possesses volume at-
size and still retain accuracy of calculation may be surpris- tenuation. The interface is horizontal for a range of 10 km.
ing. Then, the interface slopes upward at an angle of 8.5 deg until

The accuracy of the adaptive calculation is clearly dem- range 12 km, where the depth is 50 m. At that point, the
onstrated in Fig. 3. The solid curve represents relative inten- interface is flat and remains so to a distance of 40 km. The
sity I versus range r for a receiver depth of 25 m, using N lower layer always extends to depth 750 m, and an artificial
mode with Ar = 5 m. The dashed curve is the same quantity
but computed in A mode as described above. The overall
shape of the intensity curve, including the location of local -4

Surface

25 m CO=1500 mr"

l00m l" P.-I.0 9cm"  s.

c,-1550 ms" Bottom
-810

p=1.2 gcm-1
a-l dB/wavelength

0 4 i 12 I 20 24 21 32 36 40
RANK (KO)

FIG. 3. Relative intensity I versus range r for parameters of Fig. 2; h, = 25
FIG. I. Isospeed horizontal channel. m.
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c*('=1500 Ms-' /M.. . . . . .. *!'"-o[oRADAP,.vE

N-=.0 9em-' _ c,=1600 ms-' -90 --------------... o,,,,
r I

-=l.0 gcm' -70

1=0.2 dB/wovelength -0 723

100 1 12 40 -I0.
-go0

FIG. 4. Isospeed sloping channel. -10 UPSLOPE

-120

absorbing layer extends an additional 250 m. This channel - ,302 1 20 24 28 3) 34 ,o

was described in Ref. 13. The source frequency is 25 Hz and RANGE (KM)

is located at depth 25 m. FIG. 6. Relative intensity I versus range r for parameters of Fig. 5: h. = 25

Th.e error indicator as a function of range is depicted in m.
Fig. 5. The step size was held fixed at Ar = 10 m until the

cut-in range r. = 4 km. Note that the error tolerance used in

this example is e = 1.5 x 10 - . This value was chosen to behavior, while desirable in every case, is not fully achieved

force the tolerance and the error indicator to have approxi- in all sound channels (see Fig. 2).

mately similar magnitudes at the cut-in range, preventing A comparison between N mode and A mode intensities

rapid and severe step size adjustments. The step size contin- is shown in Fig. 6. As in our first case, the receiver depth is 25

ues to increase until Ar = 25 m at the foot of the slope where m. The solid curve depicts relative intensity versus range for

r = 10 km. The sudden rapid change in E seen at that point is the N mode solution, while the dashed curve depicts I for the

caused by step truncation at the vertical interface at the start A mode calculation. As can be seen, acoustic mode cutoff

of the slope as was discussed in Sec. II. As the sound propa- occurs near the top of the slope. Thus the sound field decays

gates upslope, the error starts to increase steadily and is con- exponentially beyond this range, accounting for why the step

trolled by reducing step size, until Ar = 9 m at the top of the changer stopped. Some error is noticeable between the two

slope. Again, a step truncation occurs at r = 12 km for the intensity curves, but the agreement is extremely good. Fur-

reason just mentioned. After E is under control, the error thermore, the efficiency factor F= 2.3. While not as dra-

decreases in a somewhat regular manner, permitting step matic as the isospeed problem, this result represents a sub-

size to be increased until Ar = 96 m at range near r = 24 km. stantial improvement in computation time.

This step size corresponds to 1.6 wavelengths. Beyond 24
km. E decreases rapidly and no more step adjustments are C. Diverging channel

made. The reason is that the solution norm is too small and This channel is physically identical to the one just de-

the algorithm has stopped changing step size. For this par- scribed. However. the source .-/ and receiver e have been

ticular sound channel, the step size changer makes nearly interchanged, so that the sound propagates to 10 km in very

full use of the tolerance window. We note that this error shallow water, travels down a steep slope, then propagates

out to 40 km in water 350 m deep. Pertinent environmental

2.5 1004

UPSLOPE 
2.0

DOWNSLOPE

2.0 _,_
1

__0__1"= 5 .

1.0

05-- l 1 r---4KaASAPTION/
0.5 YERINATED

0 3

4 8 12 t 20 24 28 32 36 40 1
RARE (Ki) 0 4 s 12 i 20 24 2S 32 3 40

RANGE (KM)

FIG 5 Error indicator E versus range r for the isospeed sloping channel

shownin Fig. 4, withsource./ at theleftand receiver.*t atthe nght;f= 25 FIG 7 Error indicator E versus range r for channel shown in Fig. 4. but

Hz; h, = 25 m; r = 4 km; and 4 = 1.5 x 10 - A. with source / and rece ver-w interchanged; parameters as in Fig. 6.
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parameters and source/receiver depths remain the same. 0_ 1

The behavior of the error indicator is shown in Fig. 7. . -.......-

Values for the error tolerance and cut-in range are the same 14

as those used in Fig. 5. Beyond r., step size is rapidly in- ----
creased until Ar = 42 m at the top of the slope. After the 143

occurrence of step truncation at that point, E decreases each
time Ar is changed. Consequently, Ar is increased as the 2 14"1466
sound propagates downslope, which is the opposite behavior
from what occurred when propagation was upslope. At 147

r = 12 kin, there is another step truncation and Ar changes A.
increases times. Near 14 km, a marked decrease occurs in the .4

rate of decrease of E with increasing range. In fact, the final 4 14"

change in step size occurs at r = 24 km, where Ar = 168 m,
corresponding to 2.8 wavelengths. This step size is substan- -__"

tially larger than the terminal step used in Fig. 5. / / / / / / / /
Computed intensities are depicted in Fig. 8. The solid BOTTOM

curve represents relative intensity I without adaption, while a 20 40 60 s0 100 120 1- r

the dashed curve shows intensity calculated with the error RANGE (KM)
tolerance and cut-in range of Fig. 7. Agreement is excellent FIG. 9. Level curves of sound speed (m s) versus range and depth (km)

between both calculations up through and well past the slop- for a deep-water sound channel.

ing region. Beyond about r = 20 km. there are some observ-
able phase shifts in both peaks and fades. Nonetheless, the
qualitative picture of fades and peaks intensity in the chan-
nel. along with levels at most of the peaks, is represented very located at range 50 ki, as suggested in Fig. 9. The sound

well. Recall that in the previous example, adaptation was speed is given by

terminated at r = 24 kin, where the relative intensity was c(r z) = c [ I + '(r) (e - " + ?/2. 1)], (16)
about - 100 dB. In Fig. 8, the solution norm beyond the where c., 4(r), and ry(r,z) are given in Table I. This sound-
slope is just barely above the termination criterion. Conse- speed profile is a modification of Munk's canonical deep-
quently, inaccuracies inevitably creep into the computation. water profile. The channel is 5 km deep and an artificial
Naturally, more accuracy can be attained with stricter val- absorbing bottom of depth 1 km is used. The source is at
ues of the error tolerance -. Finally, the efficiency factor is depth 100 m, and the source frequency is 100 Hz.
F = 4.8 for the two runs of Fig. 8. This figure is substantially The behavior of the error indicator is shown in Fig. 10.
higher than that for Fig. 6 for the same physical channel, and For this calculation, the error tolerance is e = 10- and cut-
indicates a nearly fivefold decrease in run time for the A in occurs at r. = 40 km. The cut-in distance is large because
mode calculation. the error indicator E decreases much more slowly than in

0. Deep-ocean channel any of the previous three examples, owing to the existence of
a sound channel and a lack of volume attenuation in the

In this example, a deep-ocean channel with moderately bottom (the artificial absorbing layer prevents reflections
refracting sound-speed profile was used. This example is from the bottom boundary but does not induce exponential
similar to one used in Ref. 18. The profile contains a front, decay in the solution). The initial step size is Ar = 10 m,

TABLE I. Components and parameters for the range-dependent sound-

IONoA APrrvE speed profile of Eq. ( 16).
-- 60 .. . . .. .. AOAPrTVE[ Parameter Value or description

-70
-71 c. sound speed at channel axis, 1450 m s-oOWNSLOPE L. J(r) B(r)g/co

B(r) thickness of thermocline front,
-so B, + [ (B2 - B, )/2]tanhl (r - rf/IL]B, 1.2 km

-100 B, 1.0 km
rf range to front center, 60 km

-1t1 L front width, 20 km
-120 g 0.017

7(raz) 2{[z - z. (r) ]/B(r)}
z. (r) depth of channel axis,

"130 4 S 12 t6 20 24 28 32 36 40 z,, - [(B 2 - B,)/2]tanhl(r- r)/LI
RANE (K) Z., initial depth of sound channel axis at r = 0 km, 0.8 km.

FIG. 8. Relative intensity I versus range r for parameters in Fig. 6.
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dashed curve represents the intensity for the A mode calcula-
'.5 tion. The two curves are in excellent agreement throughout

the first convergence zone, between about r = 45 km to
r = 70 kin, and out through part of the second convergence

zone. Beyond about r = 115 km, there appears to be some

A,-r shifting of phase pattern. The A mode curve reflects the
qualitative behavior of intensity all the way to r = 140 km.

l~---------------------------For this example, the efficiency factor F = 1. 8. One reason
S -_Ar.m. for the lower value of F is the size of the cut-in range r.

While smaller than F values attained for the previous three
cases, this still represents n substantial savings of processor

0. -- --------------- time, especially for this computationally intensive example.
r, -40KM

0.5 20 40 so so lo 120 140 IV. SUMMARY
NANCE (Ku) The parabolic approximation to the reduced wave equa-

FIG. 10. Error indicator E versus range r for the environment of Fig. 9: tion has established itself as a formidable propagation model

f= 100 Hz: h, = 100 m; r = 40 km: and E = 10-'. within the underwater acoustics community. Because it in-
cludes range-dependent environments, is valid at low fre-
quencies, and can be numerically solved with efficient algo-

which was used in Ref. 18. At cut-in, the error indicator rithms, it has become the model of choice for many

happens to bejust outside the window and the step size drops applications. After very briefly reviewing the origin of the

to Ar = 7 m. At about r = 42 km, the error has fallen enough parabolic approximation and related parabolic equations,

so that the first step size increase occurs. Then, several step we summarize pertinent details, such as notation and error

increases in a row occur. Note that the error indicator does characteristics of the widely employed IFD implementation.

not increase significantly in this region. Then, at nearly 50 We introduce one way to estimate the error from the

km, E becomes virtually constant for almost 15 km. Finally, IFD algorithm. This error only accounts for discretization

it leaves the window, the step size is increased, and this time in range. The error indicator is calculated with an appropri-

the error indicator is near the center of the window. At ate norm at each step. For a specified error tolerance, a toler-

r = 105 km, the step size is increased again to Ar = 49 km, ance window is formed by requiring that the error indicator

and the error is seen to remain virtually flat out to the maxi- remain below the error tolerance but above 70% of that val-

mum range examined in this example. It would appear that, ue. If the error indicator leaves the window, the step size is

in this last region, the algorithm has found a nearly optimal either increased or decreased. The magnitude of the change

step size (about three wavelengths), in the sense that the is computed from a relationship between step sizes and er-

error is virtually constant and the error is near the center of rors. An additional feature is that the activation of the step

the tolerance window, changer can be postponed by specifying an additional pa-

Relative intensity curves for this sound channel are rameter called the cut-in range. Below this range, no range

shown in Fig. 11. The solid curve depicts I versus range r for step changes are made, which may be desirable as the rapid

a receiver depth of 300 m computed in N mode, while the oscillations sometimes present in the start-up field are
stripped away. Also, should the ratio of the norm of the
solution and the error tolerance drop below a specified value,
adaption is terminated. In addition to the standard input and
output required by IFD, our enhancements (collectiyely

-- P known as EIFD) require additional input, namely the error
tolerance and cut-in range, and generate several additional
output files useful for monitoring the error behavior and

-70 graphically interpreting the transmission loss or intensity.
V..[ Because the algorithm controls absolute error, but not rela-

tive error, the decibel error in the vicinity of some fades may

~ -gooccasionally be large. Nonetheless, our adaptive enhance-
ments locate these fades and indicate their approximate

.j -1 sizes.
S-tic Numerical examples illustrate the performance of our

algorithm in a variety of propagation channels. In a shallow
-10, isospeed channel, the adaptive algorithm produced nearly a

sevenfold improvement (decrease) in run time, due partially
- S0 o 40 so too o 14-0 to its selection of large step sizes. Two cases of propagation in

No,"( (KH) an isospeed channel with a sloping bottom were examined

FIG. II. Relative intensity I versus range r for the deep-ocean channel also. In the first instance, the source was in moderately deep

shown in Fig. 9; A, = 300 m; other parameters as in Fig. 10. water and the receiver was in very shallow water, while in the
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second, the source and receiver were interchanged. Step 1D. Lee mnd G. Botsess. "IFD: An implicit fiite difference omptr mod.
size wee fond o ehibi ineretingchagesfor ropga- el fo sovn h parabolic equation.-- New L~ondon Lab., NUSC, New

siznetwer fund o exhibi there.tIng haes fmr prsoage Lo. CT (1982), TR6659, AD-Al 17701/3.
tioneiter p o dow th slpe.In he frme cae, ode 'H. K. Brock. "The AESD parabolic equation model." NORDA, Bay St.

cutoff occurred at the top of the slope, eventually leading to Louis, MS (1978), Tech. Note 12.
the requirement that adaption terminate because solution 4G- Botseaa D. Lee, and K. E. Gilbert, "IFD:Wide angle capability." New

nom nderortolerance approached comparable man- London Lab., New London, CT (1983). TR6905.

tudes. In the latter, multiple modes were not excited until 1.Nhe-h n .D apm" ihsed opc.aditrc
tive parabolic equation solution generator (PESOGEN 1.'). Acoust. Soc.

well down the slope. It is interesting to note that the adaptive Am. Suppl. 1 75. S26 (1984).
algorithm ran faster for the downslope example. Finally, "H. W Kutschale, "Arctic marine acoustics," Lamnont-Doherty Geo. Ohs..
deep-ocean propagation through a front was studied. Effi- Columbia University, Palisades. NY (1984), AD-A 147 492.

I. S. Perkins and R. N. Baer, "An Approximationi to the three-dimensional
ciency according to our measure increased by less than a parabolic equation method f'or acoustic PrOpagation." J. Acoust. Soc. Am.
factor of 2, though this represents an enormous savings in 72, 515-522 (1982).
computational time. 'D. Lee, "TMe state-of-the-art parabolic equation approximation as applied

We have described enhancements to the [FD implemen. to underwater acoustic propagation with discussions on intensive compu-
tations," NUSC, New London, CT (1984), TD 7247.

tation of the parabolic approximation that can yield signifi- 9M. H. Schultz, "Multiple amry processors for ocean acoustic problems."
cant run-time improvements. An additional approach, Comput. Math. AppI. 11, 777-735 (1935).
which may also offer promise, is to adaptively add (delete) 'OJ S. Robertson. W. L. Siegmann. and M. 1. Jacobson, "Current and cur-

poins t (fom)the ept meh gid.An otiml mtho of rent shear effects in the parabolic approximation for underwater sound
poins t frm) he ept meh grd. n otiml mtho of channels," J. Acoust. Soc. Am. 77, 1769-1780 (1935).

simultaneously selecting both range- and depth-mesh incre- D. Lee and W. L. Siegmann, "Mathematical model for the 3-dimensional
ments to minimize solution error is being investigated. These ocean sound propagation," Math. Model. 7, 143.-162 (1936).
on-going developments suggest additional research direc- '2D. F. St.Mary, D. Lee. and G. Botseas, "A modjd wide angle parabolic

wave equation." J. Comp.Phys. 71, 304-315 (1987).
tions that can significantly extend the family of underwater "D. Lee and S. T. McDaniel. "Ocean acoustic propagation by finite differ-

acoustic propagation problems that can be solved on current ence methods,"' Comput. Math. Appl. 14, 305-423 (1987).
research computers. "M. Berger and J. Oliger, "Adaptive meah refnement for hyperbolic par-

tial differential equations." J. Comput. Phys. 53,484-512 (1934).
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