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~ here holds for any function of ¥ and ', and shows that, analogously, one correction
term is required per functional limit of the triple integral in each of the deriva-
tives in the curl expression. This generalized three-dimensional Leibniz rule is
then tailored to solve the specific problem of determining electromagnetic fields
in the source region by direct differentiation of the vector potential. Z,‘

Finally, in applying the generalized expression to calculate the fields, we
simply insert the vector potential to evaluate the magnetic field, and then insert
the curl of the vector potential to evaluate the electric field. Since the shape
of the principal volume can be chosen arbitrarily we choose a convenient pillbox/
slab to simplify extracting and evaluating the relevant correction terms in the
generalized Leibniz expression. Reducing the correction terms yields identically
the expressions for the depolarizing dyadic previously calculated for an arbitrary
as well as for a pillbox/slab volume. This process also reveals that the Leibniz
correction terms are directly related to the depolarizing dyadic which represents
the difference between Maxwellian and cavity-defined fields.
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Application of a Generalized Leibniz Rule for
Calculating Electromagnetic Fields Within
Continuous Source Regions

1. INTRODUCTION

In the following treatment of electromagnetic fields in source regions we calculate E and H
due to a continuous current source by direct differentiation of the vector potental, using a
principal volume approach similar to that in Yaghjian's article on Maxwellian and cavity
flelds' . This paper, however, presents an alternative differentiation method and
interpretation of the mathematics governing transposition of differential and integral
operators when the integration limits depend on the differentiation variable. What most
calculus texts term the "generalized Leibniz rule" pertains specifically to this subtle point
when differentiating 1-D integrals. Therefore, it seemed appropriate to employ a three-
dimensional version to rigorously perform the curl of a volume integral.

After searching the literature for such a 3-D version of Leibniz' rule and finding no
previous examples we derived the 3-D generalized Leibniz rule from first principles. When
subsequently applied to the vector potential in a current region. the 3-D generalized rule
produced the rigorous expressions for the "cavity" as well as "Maxwelllan" electric and
magnetic fields. One merlt in using this direct approach is that it relates the additional terms
arising from the 3-D generalized Leibniz rule to the difference between the Maxwellian and

(Received for Publication 11 Jan. 1989.)

lvaghjian, A.D. (1985) Maxwellian and Cavity Electromagnetic Fields Within Continuous
Sources, Am. J. Phys. 53:859.
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cavity flelds, that is, to the source dyadic term. This study also encourages further
applications of the 3-D Leibniz rule derived here, wherever differentiation is required of
integrals with limits that depend on the differentiation variables. Such possibilities lie in the
analagous electrostatics problem? , and perhaps in the theory of fluld dynamics.

2. DIRECT DIFFEREN:IATION OF THE VECTOR POTENTIAL IN A CURRENT
REGION

From the expressions for the fields in terms of the vector potential A of a volume current
density J, with the e-!t time dependence suppressed, the H fleld requires one curl operation,

Hir =1 (v x A (r)), (1)
Ky

and the E fleld two in succession?,

E(r) = 10)6(1)110 [uOJ(r) -Vx VxA(r), @)

where

3y k|r-r
A=y 1 J"’F_'__ldv- (3)

v-vg fr-r

Though we will only treat current sources initially, we will generalize the results later to
include polarization and magnetization sources as well. To unambiguously define the
"Maxwellian" flelds inside the source region we use a limiting principal volume, Vs, in Eq. (3)
to eliminate the singularity of thc Green's function right at the observation point. We may
relate these mathematically defined Maxwellian flelds to operationally defined "cavity" fields
by cutting a hole, V,, in the source, inserting a test charge, q, measuring the force exerted on
the test charge by the now external sources, and calculating the fields, from

2 Portis, Alan M. (1978) Electromagnetic Fields, Sources, and Media, John Wiley & Sons, New
York, p. 40-41.
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E=;‘f’3—q°’-‘-‘—'- . The difference between the Maxwellian electric fleld and the operationally

defined cavity electric field is contained in a source dyadic term, which emerges as the
ultimate product of this analysis. It is important to realize that V. is fixed during the
differentiation with respect to r whereas in Eq. (3), Vs shrinks around the observation point,
moving with the differentiation variable, r. Thus, V - Vgvaries with r. The mathematical
repercussion of this is apparent whenever we take the curl of A (that is, differentiate with
respect to r). Specifically, the limits of the integral in Eq. (3) depend on the differentiation
variable, which prevents a casual interchange of the V and | operations.

To overcome the restriction on interchanging this differentiation and integration,
Yaghjian changes the integration variable from r' to r" = r - r, to remove the dependence of the
limits of integration of the differentiation variable, r, and proceeds to evaluate the fields
using, initially, a spherical principal volume.! Since Leibniz' rule already governs
differentiation of integrals, an obvious alternative to Yaghjian's change of variable is to
extend and apply the generalized Leibniz' rule to the 3-D differentiation of the vector potential
volume integral. This straightforward method retains both the singularity and the
dependence of the limits of integration on r, and still ylelds identical results for the fields.

References to multi-dimensional forms of Leibniz' rule are rare and apparently address
only the case of fixed integration limits rather than the "generalized Leibniz rule” which
allows variable limits of integration. For example, Osgood states, "In the case of multiple
integrals, we assume that the region of integration is fixed3. Cases arise in hydromechanics
in which the region varies with the parameters, but the treatment does not belong to the
elements of the calculus.” A 3-D rule is required for the problem at hand, so at this point we
embark on a derivation oi the 3-D generalized Leibniz rule.

3. FORMULATION OF 3-D GENERALIZED LEIBNIZ RULE

In Cartesian coordinates, the curl operator can be written as a sum of partial derivatives,

dy oz dz 9dx ax dy

Vxx=i[i&-ixl]+§[i§-ixl}+2[aﬁ-a_&] 4)

where K, in our problem, is the vector potential volume integral. We wish to apply the
famillar 1-D Leibniz rule to each of the six partial derivatives above. Consider first the
generalized 1-D Leibniz rule:

3 Osgood, (1925) Advanced Calculus, MacMillan, New York, p. 463.




a,ylx) ay(x)

3 ' . a ' . 2 n da

XJ fbcxldx=j é‘;f(’“"d"*n‘_;l (-1) f(x‘a\n(x))gx—‘l (5)
a,(x) a,{x)

Eq. (5) shows that exchanging the differential and integral operations adds (subtracts) an
additional term for each variable upper (lower) imit. We will find that the curl of a volume
integral will, in its most general form, require six additional terms (one for each l'mit in the
volume integral); these will generate a total of 36 additional terms. Fortunately, a proper
choice of principal volume geometry will later eliminate most of these terms.

We derive the 3-D rule in similar fashion to the 1-D rule, applying first the chain rule and
then the fundamental theorem of integral calculus. As an example, we write explicitly one
term from Eq. (4):

a3 2, 2y
?55.=2_ F (r, rhdV',
Jdz 9z x

8 vay va,

where K depends on the variables a,.a, (ry.z), aja, (rz). a;ag (r) and r. The derivative of each

component of K can be expanded, using the chain rule, as a sum of the derivatives of each
parameter, holding the other six constant.

a%=§ ?l_(&ajn-}-ﬁglal.%.as.

n=1 aan dz dr 9z a,. ag, ag constant 6)

The fundamental theorem of integral calculus is now applied to the volume integrals as
follows:

aKx a ae a4 ay aﬁ a,
P F (rnx,y,z)dxdydz =- F (r.x.y.a,)dydz. (7)
! 1 dag Ja; va 85 Y,




Similar expresstons hold for az - ae as well. If we apply the chain rule to each partial
derivative i1 Eq. (4). and in turn the fundamental theorem to each term in Eq. (6), after

collecting terms we can write the generalized 3-D Leibniz rule in a form analogous to the 1-D
ri:le? , with the help of the &, Levi-Civita symbol. Spectfically,

(Vx K)l - ik ajl{k

g ply Ay
a5 o

a,

! 2 n aa a.s a4 1 L} 1] 4
+ Eijk:" YN ) g g F lr.a . x,, x Jdx dx',
j n=1 aj ag a,

4 n da rg Ay
+ 3 (1 32 F (r.x . a_ x;)dx ‘dx
n=3 b a5 Ja,
6 da ply P2y
+ z (-1)n 32 Fk (r, x‘l. x'2. an)dxl'dxz;
n=5 1) a; Ja; !

Note that summation over repeated indices is implied and thus each surface integral is a
summation of 12 additional terms. This is the central result which we will use to calculate
the electric and magnetic flelds in the source region given the vector potential. We emphasize
that the fleld calculation is done to verify that the square-bracketed terms in Eq. (8) give rise
to the source dyadic term.

4. TAILORING THE 3-D GENERALIZED LEIBNIZ RULE

Returning to our specific problem of evaluating the vector potential integral, Eq. (3), let us
choose initially a disc-shaped (pillbox) principal volume to evaluate the surface integrals.
Choosing a disc principal velume, rather than a sphere or cube, i1. this case 1s advantageous

4 Kaplan, (1952), Advanced Calculus. Addision Wesley, Reading. MA, p. 221.
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because it greatly simplifies the 3-D Leibniz expression by eliminating all but 2 of the possible
36 additional terms.

We wish to evaluate the vector potential A by summing the contributions from the surface
of the disc priucipal volume to the edges of the source region, as the height of the disc, 2¢,

I
shrinks around the observation point r (Figure 1). We will, accordingly, substitute V¢ and »

» 0
8
for Vgand , :::0 on the surface integrals. Obvlously, the outer limits of integration are fixed,

since the source volume is finite. Furthermore, in Appendix A we prove that the truncated

disc can be replaced by the thin slab in Figure 2 where the disc racius extends to the edges of
the source region.

Figure 1. 'Pillbox’, or 'Disc’ Principal Volume,
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Figure 2. 'Slab’ Principal Volume,




Next, divide the volume of integration into the volumes above and below the thin slab.
Each of these two volumes are singly connected and thus we can apply our generalized 3-D
Leibniz rule {Eq. (8)] to each region. The limits in the x- and y- directions are constant, and
the only variable limuits remaining when Eq. (8) is applied to each region are the z'
integrations. We now integrate over the source volume from z' = z+ € to Qop. and
z' =2z - eto Qpor. and from X', y' = Qjeq 0 Qright where Q represents the distant boundary of the
volume current, J. The only additional Leibniz terms demanding consideration are those
corresponding to the z' limits of integration. In particular, our bounded current region
(excluding a slab principal volume) in Eq. (8) yields:

vx T J” F(r.r)dv = ™ J” VX F e dv

V-Vs V-VS (9)

1 o~ ' ' t v ' . , . \ ,
+E‘r,no X J‘J‘ F (r.x.y, 2z =z +¢) dxdy -J.J. Fy(r,x,y,z =z - €) dx'dy
S, S,

+y |- J.J. F (r.x.y.z =2z +¢g)dxdy' + J'J. F (r.x.y.z =z-¢)dx'dy
s&‘ SE

where the limit representing the surface of the principal volume splits into two terms,
one for the upper slab surface and one for the lower slab surface. This expression is particular
to our geometry but holds for any sufficiently well-behaved vector function F.

5. CALCULATION OF MAXWELLIAN FIELDS

To calzulate the Maxwellian magnetic field H(r) from Eq. (1) at points within the source
reglon, we simply differentiate the vector potential A in Eq. (3) using the 3-D generalized
Leibniz rule (Eq. (9)]




H(r) = J_ vxm J:” Fir.r)dV' |
(10)

V-Vg

Comparing this with Eq. (9), we set F(r, r') = J(r') y (|r - 1),

where wir ¥) = D o g
ere y(r. r) = ———  to give:
NN CEED
Hr) =1 “m ‘”.J VxJ(r'}) vy (Jr - r))dv
V-V (1)

-Jyvz‘=z-s)dsl

Z =Z+¢

+ltm EEJ’J. (Jyw
SE
+?JJ(-wa

S,

wa

, )dS'
Z =Z-¢€

. +
Z=Z+¢€

Up to this point we have dealt with the problem of rigorously interchanging the curl and
integral operators in Eq. (10}, but have simply assumed that the curl and limit could be
interchanged. This assumption can be proven valid by dividing the volume of /ntegration
(V - V3) into two regions, an exterior region (V - Vg) and an annular region (Vg - Vg), where Vqyis
a small but finite fixed volume enclosing V5. Since V - V4 does not depend on 3§, the curl and
limit for this part of the volume integration can be interchanged immediately. If Vqis made
small enough so that J can be expanded in a power serles over V4. the annular volume
integration over V4 - Vgcan be performed and the curl taken before or after the limit is taken.
This procedure shows directly that the result remains independent of whether the curl or limit
is taken first, thus proving that the curl and limit can be tnterchanged in Eq. (10).

To evaluate the four surface integrals, we note that if Jy v (upper) =J_ y

Zez4v - z’®Zz-€




f

{lower) and if Jy V|, {upper) = Jy WL (lower), all the surface integrals cancel. Since J
B2z-¢€

=Z+E
approaches the same value on the top and bottom surfaces of the slab, as the slab becomes

very thin, we need only consider y = elk'\/(x XY+ -y)+(z-2) . Obviously, for

’\/(x -xY+(y-y)+(z-2)
Z=z+€0rz =z-€(2-2)2=€S0VYpoz4+¢e= VYo =z2.¢ Thatis, the Green's function has the
same value on either surface of the slab, and thus it follows (see Appendix A) that both pairs of
terms vanish in Eq. (11)°, leaving the rather anti-climactic result for the magnetic field,

Hr)=1 23_[ VxJ @)y (r-rl)dv|

Ho (12)

V-V

As Yaghjian states, "The merit of the rigorous procedure does not become obvious until it is
applied a second time to find the Maxwellian electric field."! The electric fleld calculation
proceeds from Eq. {2) in the same fashion as that for the magnetic fleld, except we differentiate
the vector potential twice: E(r) o« Vx V x A(r). The first differentiation, we know from the
magnetic fleld calculation, yields no additional Leibniz terms, so we may exchange the
differential and integral signs,

81 =U
V x 8!; j Jydv 5»3 J. Vx Jydv.

(13)
V-Va V—V5
Differentiating again we write,
vV x Vxlsiigj‘ Jydv =Vxl;ng. Vx Jydv.
V- g (14)

V-V

where, as explained above, we may interchange the curl and limit. To evaluate the RHS of

ike
* for the case where x =x' and y =y', :z‘ J. € __dS becomes ik on both surfaces
s ¢

€




Eq. (14), we apply the same 3-D Leibniz rule, this time setting F = V x J¥ in Eq. (9). Thus,

Iim
]z,'(r)gi_m_é:.iE BIW -1y 5.0 J.J.J Vx VxJE) y(r - r])dv
0 v _va (15’

+% ”' (Vva)yL&z'ndx'dy'-J.J. (VxJ\v))lz':z_edx'dy}

+y -JJ. (Vwa) l dx'dy’ +JJ. (Vwa) ‘ dx'dy’
Xz =z +¢ ¥lz=z-¢
SE

SG

To evaluate the two pairs of Leibniz surface integrails in Eq. (15), we first use the following
simple vector identity to transform the integrand F = V x J¥:

Vwa:waJ=waJ+w(VxJ). (16)

Noting that V x J(r') = 0, since V operates only on r, we can rewrite the surface integrals in
Eq. {15) as:

',_,‘:3 : J:’l (V‘vx J)ylz'=z+edx.dy' -.’-J‘ (VWXJ)y}zaz-edx'dy'
se

(17)

+y ‘U (vyx J)XL' | dxdy's ”. (vyx J),Jz' L, e

Next, we examine the x- and y- components of the vector product Vy x J:

10




_

(V\y x J)x = (V\v)ydz - (vw)sz (18)
(V\y x J)y - ( V\y)xJz + (V\y)sz

where the components of the gradient of the scalar Green's function can be written

3 Kkjr-r| '
e iklr-r{-1
Vw: [ ‘ - i ](xl - x'l) X, =X (19)
1= 1 4nr - rf X, =y
X3=2

Recall that in the magnetic field expression, the scalar Green's function V¥ had equal
magnitude on the upper and lower surfaces of the slab principal volume. This was due to the z
dependence being quadratic (that is, (z - 2')}2 = €2 regardless of z). In the case of the electric
field, though, the factor of (z - z') corresponding to i = 3 in V¥ is linear. The result, upon
substituting the components from Eq. (19) into Eq. (18}, and subsequently, Eq. (18) into Eq.
(17). is

- lehg{ ﬁjj [ Y (x- x')Jz(x‘. y.z+g)+ yeJx(x‘, Y. Z+5¢)
SE

(20)
- Y (x-x)J (X, Y. z-€) +ved (X, Y. z-€) as’
+y J‘J‘ [ro-y) J,(x,y.z+¢€)+ yeJy(x', y.z+¢)
S

€

ST -Y)I, (XY z- e yeJ (XY, 2~ €) |dS’ }

elkir "1[1}{ Ir - |- 1]
4rr - r13

At first glance, it appears that the pairs of terms containing y({x - x’} and y({y - y') will
cancel immediately while the terms containing ¢ will add. Indeed, the following evaluation of

where the shorthand notation y = has been introduced.

11




these integrals proves this to be true. The analysis used to evaluate the terms in Eq. (20} is
similar to the H fleld case, of Appendix B:

{1) Within a continuous current distribution, opposing currents on the upper and lower
surfaces of a slab of infinitesimal thickness ¢ are equal. To be certain, however, we expand
J (z + €) and J (z - €) in a Taylor series about z:

2
) e
J‘ (z+e)=Jl(z)+eJ‘(z)+aJ!(z)+... @1)

2,
Jyle-e)=Jy) - Il + @)+

Subtracting the two gives 2eJ'y (z). adding gives 2J; (z). Thus, in the limit as €0, all the current
terms become zero, because they are each multiplied by a factor ¢ at some point. Therefore,
whenever [VV is shown to be finite, we can discard the product eJfVV.

(2) The gradient of the scalar Green's function VV yields slightly different integrands for

the x- and y- components than for the z- component. Translating into polar coordinates,
according to Figure 3 we have:

2 2
J‘ 2n J' ek'P *E ikp'zcos ©' dp'de’

12%’ EJ. 2y(x-x‘)dS'=1e1$ 3

o Jo 2r (02 + €9) (22)
S!
2 2
2 oo !
cum e 7 VP pPcos @ dpae
0 2 2 3/2
0 2n(p‘ +£)
and
2 2
2r we KYP YE oigaan
. e ikp'dp'd®
Linnlj 2yedS—lei_g eJ' I 52
o Jo 2r(p” +€)

sl

2 2
2n e kVp e g
] nmeJ J‘ VP ** pdpde
€0 23/2
0 0 2n(p'2+e)

12




[ SIDE VIEW OF SLAB 'z

TOP VIEW OF SLAB
SURFACE

Figure 3. Polar Coordinates for Evaluating Surface Integrals from Leibniz Rule Application

Because we will be taking the limit as €-0 and each of these integrals is multiplied by a zero
cutrent term, we can discard all portions that are finite as £+0. First, note the graphs of each
integrand in Figure 4, revealing the validity of the following approximations:
a. Since the singularities only occur as p -0 and €40, we discard the finite portion of
the curves above p' = d, thereby establishing d as the upper limit on the surface
integration.
b. For very small p’ and ¢, etk¥p?+ € _ |.




(r? + €%
(4a)
BY DEFINITION,
d
€< d
fim €=0
; 50
"
(p,z . 62)3/2
p' (4b)
2
( ,: 62) ] — €=0 (4d) 02
pe ot \\\‘\_\’,..‘---— —_—
172 \\\\///// d (02 + 62)3/2

e p'>>¢

Figure 4. Graphs Depicting Infinite and Finite Portions of Integrands Involving V.

With these assumptions, the first of the four integrals, depicted in Figure 4c, is finite and
vanishes in the limit as €-+0.

Because the singularity in the remaining three integrals 1s higher order, we evaluate these
integrals directly. First, we note that the d6' integral conveniently yields a factor of 2 n. All p’
integrals are tabulated, and are evaluated as follows:

d 2,
- lim g .___Pi__=-llmg -___d_,+1n(d+o\/d2+g! -ln¢
(@) " eo .,-o (p.2+s2Js/2 €0 [ JE & )

=-lUm ¢ln (2d) - Um elne= 0.

{The last term vanishes by L'Hospital's rule.)

14




4 £
®) le’:g elkfo —————=1eljg lk%ln[—2+ IJ.

o) P e

Using the approximation that as €0, — >> 1, we have lm ik %(]n d®-In 52) . Sincelnd? is
€

finite, we discard it, and lei_fg -ik € In €= 0. [This result also vanishes by L'Hospital's rule, as
in (a) above.]

d t 1 d
(©) lmox EJ‘ __pdg___ = g%lel:__‘_l__] =-151$g[.___1__.
e 0 (2 2)3/2 Y p" +e! J «/d2 + e:

(p re

Thus, only the last integral in Eq. (22) survives.

This non-zero result for the fourth integral is, in fact, the crucial discrepancy arising from
the double curl operation in Eq. (2). It is particular to the slab/disc principal volume. We will
quickly see that it generates the correct source dyadic term Lg, for a slab/disc. Inserting the
results of Eq. (21) and (22) into Eq. (20), we find

- lim { ;?” [ Y (x-X) (2eJ'z) - 7e2Jx} ds +§ J. ﬂ YO -Y) (ZeJ'z) - yeZJy] ds' } (23)
=X J fr) + y Jy(r).

Finally, we insert Eq. (23) into the electric fleld expression,

E() = Tml?o J(r) - Um J' J J' Vx [vw (Ir - ) x Jle) AV - XJ_(r) - ?Jy(r) .

V-Va

and combine terms to get the final electric field result:




E(r)-—- -lim JJ.J‘ Vx Vy (Ir - r) x J(r') dV'+zJ(r)

V-V

(24)

where zJz(r) is the scalar product of the current, J, , and the pillbox/slab source dyadic,
Lg =22

It is desirable, at this point, to express the E field in terms of the electric dyadic Green's

function, Gy(r, r) = 1';7 + 1|y (Jr - r|). To do this we employ the identity
k

2
V x (V x Jv) =Je [VV -v } ¥ and invoke the homogeneous scalar wave equation,

Vz\y = -kz\v, (r # r').

Elr) =E)%:; - 161$ J. J(r) .[kzl +VV i y(|r-r])dv +2Jz(r)

V'Va

(25)

= {op, lg:g J' Jir) -[l + leg_} y(jfr-r)dv + EJz(r)/imeo

V-V

zJ ,n) .

E(r) = iop, 1;3 J(r) e G dV' +

0.)80
V-vg

Analogously, we can express H(r) [Eq. (12)] in terms of the magnetic dyadic Green's function,

8 Yaghjian, A.D. (1980), Electric Dyadic Green's Functions in the Source Region, Proc. IEEE, 68:
258,
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o —

H(r) = {7 J Jglr) © Gyav (26)
v - va
where
. G, (r.r')= V' xyl

6. CALCULATION OF GENERIC SOURCE DYADIC GIVEN A PARTICULAR SOURCE
DYADIC

Having calculated the source dyadic corresponding to a designated principal volume, VgD,
one can derive a general expression valid for an arbitrary principal volume, V5. This process
improves our appreciation of how the Leibniz rule surface integials relate to the general form
of the source dyadic, L§, also a surface integral. Restated mathematically, we can show that
our result for the electric field. excluding a disc principal volume, is,

. zJ _(r)
El) = joky 1D j Jr)e Gy (r. ) gV + Zimze d 27)

D o
V-Va

can be rewritten and simplified to yield the general expression,

Lee J(r)
E(r) = fop, 1;13 J(r) e GE (r.r)dV + ——51—(06-——
0
v - V5
where
1| Be,
§ - 4r 1‘2 dS
S
17




and

_n
L

We accomplish this by circumscribing the disc principal volume with the arbitrary principal
volume® (or vice versa), as shown in Figure 5.

f////////

e

Figure 5. Arbitrary Principal Volume Circumscribing Disc-shaped Principal Volume.

-1

We can revwrite the electric fleld Eq. (27) in terms of Vg,

E‘)

7

E(r) = jok, 4™
Yo 's e

'- Jir) ¢ G (r. r‘)dV+j Jir') e Gg (r. r')dV' +

o 0
V-V,
l b Vs-Vs

)

6 Yaghjtan, A.D. (1982), A Delta-Distribution Derivation of the Electric Field in the Source
Reglon, Electromagnetics, 2:161-167.
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The task is to solve the second integral,

iim ,[ Jtr) « Gg (r. ¥') Vv
D

Vs-Vs

by considering the integral over just the Green's function,

Hm - Hm
3.0 ." GEdV T 8.0 J-

V-VG V-V6

[Y—Va‘l + lw] dav.
Kk

Again, we may bring the J(r') outside the integral since the region under consideration is
small.
Moving the origin to r so that It - !"l =R =r, and changing to spherical coordinates, we see

the unit dyad integral vanish as the limit is brought within the integral sign:

kR
limj 1€ aqv

5.0 4nR
v-vg
e'kR 2
= 1513 J’ | —ﬁ—— R sin ¢dRd6dd d=2R
v-vg dd -2

=lim J' 1 ¥R 3 gin ©dddede
8.0 4

V'Va

To perform the VV integral over the primed volume, we use V' = - V and apply the equation
J V' adv =I G'nadS' to the outside and inside surfaces of the shaded volume in Figure 5,
v S

Vs - Vf which contains no singularity.
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o
i 1 g =1 - 4 ! 0 '
a:;J' v (V\y) av = lim J's @ Vyds +LD G vyds

8 [
V5-Vg

=k 1;3"‘ G (r. r') AV

D
Va-Vs

ikrR
From Eq. (19). we know Vy = f__(u; - %) ér . 80 we rewrite each surface integral as a sum and
4rR

solve them all separately:

kR
“m‘[ U Vyds' = 18113-[ Ge € ko

50 nrT 4xR
S, Ss
elkR
n[ 5 s
n
3.0 4nR®
s

3

For the integral over the surface of Vi, the surface element more than cancels the singularity.

! ’ kR 2
nm [ G vyds =-umik [ g¥%e € R sin ¢dedo
8.0 n 8045 n'r R (s

Taking the limit, the first integral on the RHS vanishes with R, and ek = 1, leaving
. ¢
;1’-‘— GA -L dS' a L, For the surface integral over the disc principal volume, we write dS' in
n
st "K
cylindrical (polar) coordinates and take the liinit as fg + 0. eliminating the contribution from
the sides of the cylinder, as indicated in Figure 6.




D D
. s& S&
2 2
D elkV p+€
- - llm P U |de|
EaOJ‘ Yn el’ 2 2 pdp OP + BOT
b 4r (p +€ )
s&

Figure 6. Unit Normal Directions for Disc and Arbitrary Principal Volumes.

- ~D
To perform these integrals, € and u must be expressed in terms of p and ¢, as shown in
Figures 7 and 8, giving:
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so the p components cancel, leaving | € = [ be_over the cylinder ends. Using the ratio

- e -lejb ~ A
lerl = rJ . we deduce thatb=—£__. Obviously, U  =2z. Also we note that since
VZee € VpZie2

¢,and U point in the same direction, the integrals over the ends of either cylinder add.

Figure 7. Cylindrical Polar Coordinate System and Unit Normal Directions Assumed in
Deriving Source Dyadic, Lg




»

Figure 8. Side View and Cut of Disc Principal Volume Showing Directions of Position
Unit Vector and Components

kv p” +e = 1, (these

We now have, after performing the do integration, and setting e
integrals have already been solved):

J‘ 5 5/2 pdp’ 8/2 p'dp'

11 b ' = an Rl i 3/2 = s

v 5 un VydS' = ikzz .3 J. (p.Z + €2) ZZeg€ j (p,2 . 82) zz-
S p=0 p=0C

5

AN

L. -zz
Thus, returning to Eq. (27), we simply substitute —8 5— for ‘5“3 J‘ G, dV' which gives

k R
Vs ‘?

L -
E(r) = jwH, 1“3 Jr) e G (r. ) AV +J(r) « -8 5 4oz
k

8
V-V
or
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La e J(r) .

lweo

5,0

V-Va

El) = 10K, i J Jr) e Gy (r. r) dV +

This procedure of circumscribing a particular principal volume with another of arbitrary
shape always results in two terms: L, and a tertn to exactly cancel the source dyadic
representing the original principal volu.ne. The complexity of our derivation of the disc
source dyadic is thus somewhat redeemed by this simple connection to the general form. In
fact, using this procedure, any accurate expression for the electric field in terms of the
particular source dyadic for a sphere, disc, cube, ellipsoid, or any other principal volume
shape can be transformed into the general formula, in terms of Ls, which in turn can be used
to find the source dyadic for all other principal volume shapes5.

7. POLARIZATION AND MAGNETIZATION SOURCES

So far, we have considered only a source of electric current, J. To include polarization and
magnetization sources, we note that, in general, the "electric current”, Jg, includes both current
and polarization, but the "magnetic current”, Jy, consists only of magnetization, written

JE=J-1u)P

JH=0+1qu

We incorporate polarization by simply substituting for Jg: we incorporate magnetization by
summing the fleld equations and their duals, { where E-H, H-E, eo-u) and substituting for Jy.
The total fleld expressions for an arbitrary principal volume, taking into account current,
magnetization, and polarization, are thus:




——

Itm G L5'JE
R I R

V-Va

2
H(r)=g§3J‘ (GH° Jp + K GHOM)dV'-L6°M.

. V-V5

Having derived the fields using the 3-D Leibniz rule it is now easy to appreciate how the
Leibniz additional terms form the source dyadic. Ls. Comparing Eq. (23) with Eq. (25).

LSOJ

= J(r) - leijg X JJ Yed, (x,y'.z)ds - 181413 y J.j YE Jy (x.y.z)ds. (28)
Ss Ss

0

On the RHS are two additional Leibniz surface integrals which compensate for the r
dependence of V5.

If we had chosen in the beginning to evaluate E and H using a cavity volume, V., to exclude
Lsed

the observation point, the source dyadic would never result. Hence, the source dyadic pr,
0

i1s

Lged
the difference between the Maxwellian and cavity flelds, that is, Ey - E¢ = 15

. Itis easy to
WEQ

see why this occurs by considering how the equaton above would read for a cavity volume
rather than a principal volume. Since the cavity is formed by physically removing a small
volume of current around the observation point r, J(r) = 0. Because the location of the cavity
is fixed during the differentiation of A, V. does not depend on r. Obviously then, the
integration limit, V - V. does not depend on the differentiation variable, r. Thus, the regular
Leibniz rule permits interchanging the differentiation and integration. Since the "generalized
Leibniz rule”, which involves variable integration limi;s. 1s not necessary for evaluating

Ls o J
lwep

=J(r) = 0.

cavity flelds, no additional terms [the surface integrals' in Eq.(28)].arise. and

8. CONCLUDING REMARKS

Using a principal volume approach, we have made a thorough study of how
electromagnetic flelds behave in the source region, by deriving and applying a generalized 3-D
Leibniz rule to correctly differentiate the vector potential. Section 1 began by considering
only electric current sources and emphasized that the difference between cavity and
Maxwellian flelds hinges on rules restricting interchanging differential and integral

25
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operations. Then, a 3-D version of the generalized Leibniz rule was derived, to properly
perform the interchange and was subsequently employed along with a disc principal volume to
calculate both the magnetic and electric fields. In Section 5, the flelds for an arbitrary
principal volume were derived and found to be identical to those derived previously, using
other techniques. Finally, the duality of Maxwell's equations was invoked to obtain the fleld
expressions which include polarization and magnetization sources, in addition to current.

While this exercise reproduces previously known results for the flelds, in doing so, it not
only provides a clear and completely rigorous, straight-forward treatment of the problem, but
an intuitive explanation as well, from both a mathematical and a physical viewpoint.
Primarily, the extension to three dimensions demonstrates the breadth of Leibniz’'
fundamental rule, providing a glimpse of its potential to enhance precision in volume integral
formulations.
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Appendix A

Proof of Validity of Exchanging the Pillbox Principal Volume
for a Slab Principal Volume

Working in rectangular coordinates, the most logical principal volume shape for excluding
a singularity of the scalar Green's funciui y is the disc, or pillbox, shown in Figure Al below.

(9]

LD

Ny

0 .
J
N T Tl d Y""-‘TVW/////////////////ﬂ////
I

z I'd

2¢ |

£

Figure Al. Extension of the Disc to a Slab
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To specify which of the 36 additional terms in the generalized 3-D Leibniz rule actually
contribute to the flelds, it 1s advantageous to extend the x- and y- dimensions of the disc,
forming a slab principal volume. We wish to show that the disc and slab can be used
interchangeably as the imiting V; in the vector potential integral. To do this we simply show

that the vector potential, integrated over the shaded region, vanishes as the thickness, 2e,
approaches zero:

Ash(::i)ed s J y(r-t)ag@)av =0 A1)
Valab ~Vdisc

or. in cylindrical, coordinates,

2

lk P +z
A = llmJ. J' f __J)pdpdedz (A2)

shaded .

where we have moved the origin to r. By definition of the disc gecmetry, g‘ -» 0 so we have

replaced 50 with €.0. We assume J is approximately constant over a thin Az, and perform the
z integral first, noting that the integrand is an even function, symmetric about z' = 0:

2 2

, J-ﬂ 2r € Jklrdsz
im 2 p'dp'j de'd(r) —dz (A3)
)
) 5 0 Np+zZ

Using the inequality

e 1kYr2 422 €

e , dz

——dz SJ —L—. (A4)
z=0 P +z z=0 VpT +2

we can evaluate the RHS as:




lim J(r)ln(z +Vp T+ 7 )l‘ (A5)

= lim J(r[ ( W) m(p')]

= J(r) [In (p) - In (p)] = 0

Therefore, Aghaded = O proving that it is, in fact, valid to use the disc and slab principal
volumes interchangeably.
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APPENDIX B

Proof That y Terms Cancel if They Are Equal and Opposite,
Despite Singularity in y

Recall that in the Maxwellian H field calculation, we arrive at the following expression
after considering the 3-D Leibniz rule:

H(r)=1 "mj V x Je)y(r-r)) a3r
a| 50 y(jr-r ®1)

V-V&

llm o ' '
+ olX J'J' (-Jywwp +Jywbot)dxdy

ty J. (Jx‘vtop ) Jx\vbot)dx'dy}

Where Viop and v, are the values of y(ir-r'!) on the upper and lower surfaces of the slab
principal volume.

The functions y,,, and v, are equal, (Weop = Whot = V). yet still singular:




; T
Yior, = "’L - fex? + g 9 2 1 ylz'=z+¢)

t :

op TZH+E ,\/ (x-x')z + b,_),.)2 + (_6)2 A (B2)

T Wz=z-g
eikvtx')§+ (y-y’)i + &:2

Yoot = V) =

ot emze x4 by-y)° +&=

We wish to prove that in spite of this singularity, the quantity in square brackets in equation
(B1) vanishes. Since Vo, = Ypq We write

[
lim | ~ . ’ o ' ]
e—aO‘ lx J‘J- ‘V( beot } Jytop) dx'dy’ +y J'J. W( thOP i beot)dx dy’|. (B3)

We expand J, (z'=z + €} and J, (z'=z £ €} in a Taylor serles:

2
(] — 1] e "
Jz (z'=z+€) = J(z) + eJ'(2) + 2—‘J (z) + ...

2
Jpop Z=2-€) = J(2) - £J'(2) + % J@) + ...

Subtracting, we have

beo‘ - Jy‘top = -2£Jz'(z)

thop “J bt = 25Jz'(z).

Substituting these expressions into (B3), we obtain for the bracketed quantity

1'2{2&]2'(2)[-52 J.J- vdx’dy'+§J‘J. vdx'dy']}




To integrate over y, we express the integrand in polar coordinates and impose an upper limit d
on p’, since y is singular for only small values of p' (thus; we may approximate ek? p?+e?
as 1).

Ve2,e2 d
o 2rn od dkVrZse o pdp ’\/-12———2-
ydx'dy’ = ———— p'dp'd®’ =~ 2r —*~—f-—2n d” +¢ (B4)
o 0 Ap“+e 0] P +E

Now, we take the limit to show that the bracketed quantity is zero:

Thus, Eq. (B1) becomes simply,

L Iim ] '
H(r):uo IHOJ. VxJry(ie-rijdv.

v-v s
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