RSRE MEMORANDUM No. 4280

AD-A212 402

(SR IR R IR §)

’ RSRE

MEMORANDUM No. 4280

ROYAL SIGNALS & RADAR
ESTABLISHMENT

THE APPLICATION OF Z TO THE SPECIFICATION
OF AIR TAAFFIC CONTROL SYSTEMS: 1

Autiwor; L N Sincox

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,

RSR ;oh':g;‘f“"', D Tl C ‘

@™ ELECTE
N SEP151989

UNLIMITED

89 9 13 130

D

LR A N

CONDITIONS OF RELEASE
0048216
Ratasaanasensansnsanannann
COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON
Reasdssnanssr eesesscana
Reports q d are not ily avail to b
organisations.

BR-111060

Y

of the public or to commercial

ROYAL SIGNALS AND RADAR ESTABLISHMENT
Memorandum 4280

THE APPLICATION OF Z TO THE SPECIFICATION
OF AIR TRAFFIC CONTROL SYSTEMS: I

April 1989
Author: L N Simcox
SUMMARY

This report describes an initial investigation into the formal specification
language Z and its applicability to Air Traffic Control Systems. The software
corresponding to the initial radar plot processing in the multi-radar automatic
tracking system at the London Air Traffic Control Centre (LATCC) was used in
the investigation. An informal pseudo code description of the radar plot
processing function was taken as the ‘requirements’ and converted into a formal
specification in the Z language. The specification was partly validated using an
RSRE Z syntax and type checking tool. The experiences gained during the exercise
are discussed and potential benefits for the Civil Aviation Authority are
highlighted.

CARDPB Ref 24.1.1

RSRE Task 900
CAA Sponsor: Director of Projects and Engineering DPE(R&DP)
CAA Liaison: S C Willmott HdDPla

C Metcalfe RD1

This memorandum reflects the views of the author. It is not to be regarded as a
final or official statement by the UK Civil Aviation Authority.

Copyright
©
Controller HMSO London 1989

Work done under contract to the UK Civil Aviation Authority

—— — Y~ v e T—

e e t—mp—

P N

Fa

THE APPLICATION OF Z TO THE SPECIFICATION
OF AIR TRAFFIC CONTROL SYSTEMS

I: An initial specification of the
radar processing activity

CONTENTS

1 INTRODUCTION

2 RADAR DATA PROCESSING ACTIVITY
3 THEZLANGUAGE and NOTATION

4 THE Z SPECIFICATION (tutorial form)

5 DISCUSSION

6 CONCLUSIONS

Acknowledgements

REFERENCES

APPENDIX

Al Program Design Language definition of the RADAR PROCESSING
A2 Z Glossary
A3 The Z specification

Accession For .

FTIS GRAXL H
DTIC TAB o
Unannounced O
Justification]

By
Distribution/
Avallability Codes
" |aveil and/er
Dist Special

A1l |

ST

THIS PAGE IS LEFT BLANK INTENTIONALLY

1INTRODUCTION

1.1 Background

The applicability of formal specification methods to Air Traffic Control (ATC)
systems is one of the areas of the research being undertaken by the software
engineering section of the ATC Systems Research division at RSRE for the
Civil Aviation Authority. This report describes an investigation into the
formal specification language Z and its applicability to radar data processing.
The main thread of the investigation was the conversion of the algorithmic
specification of a radar processing software module into the predicate-based
language Z. To do this has involved learning about Z through the literature,
attending a short course on formal methods, discussing problems with
experienced RSRE Z users, and writing the formal specification which was
partly validated using an RSRE Z type checking tool.

The particular software module used in the conversion exercise is called the
RADAR PROCESSING ACTIVITY and corresponds to the initial radar plot
processing in the multi-radar automatic tracking system of the London Air
Traffic Control Centre (LATCC) radar data processing system. This software
was chosen for the investigation because it represented a well defined piece of
ATC software, and because the details were familiar to the investigator (the
author). The informal algorithmic specification of the activity is taken from
the pseudo code (subsequently referred to as PDL, Progam Design Language)
developed in a MASCOT based design of the LATCC tracking system given in
reference 1 and, for convenience, reproduced here in appendix 1.

The PDL looks much like the high level programming language Pascal, but it
is not too precise on semantics. For example, it does not require a variable, say
X, to be explicitly given a type; whether X is INTEGER or REAL has to be
determined from supporting text or by context. The Z language, on the other
hand is strongly typed, and variables must be given types, although it is not
necessary to give details about a type if these details are not required - a name
for the type is sufficient. A specification in Z is aimed at stating what is
required, whereas the PDL defines how the requirement is to be achieved.
The Z specification described in this report has been kept deliberately close to
a one-to-one correspondence with the PDL specification since this eases the
problem of ensuring the Z accurately captures the requirement of the radar
processing activity as represented by the PDL; it is intended in future work to
abstract away from the implementation-like spedification to one more
suitable for inclusion in a functional requirements document.

1.2 Structure of Report

The main body of the report is concerned with the development of the formal
specification of the RADAR PROCESSING activity, as defined by the PDL in
appendix 1, and is tutorial in form. Readers wishing to see the Z specification

in a non-tutorial form that would be processed by a typical Z type checker
should refer to appendix 3.

A brief description of the RADAR PROCESSING activity with the aid of
a simple dataflow diagram is given in chapter 2. This is followed, in
chapter 3, by a brief introduction to Z which should help in understanding the
notation and concepts which are likely to be unfamiliar even to experienced
software people. In this introduction a Z specification of the dataflow diagram
of the RADAR PROCESSING ACTIVITY is developed. It should be
emphasized that the main specification in chapter 4 was not derived from this
example specification, indeed the example specification was produced while
preparing this report, however it does provide an embryo of a method for top
down development from a dataflow diagram. The chapter also describes some
of the naming conventions used in Z specifications.

The derivation of the Z specification from the PDL is given in chapter 4. A
two level specification approach is adopted where the first level of abstraction
is chosen such that the main procedures of the PDL are revealed but not
detailed. This level corresponds to a level slightly more detailed than that
captured in the dataflow diagram of the RAADAR PROCESSING activity.

The second level of the specification is a decomposition of the first level in a
form that closely matches the structure of the PDL. This, together with
keeping more or less the same names for variables, simplifies the
correspondence checking between the PDL requirements and the Z
specification, and eases the uriderstanding for those already familiar with the
LATCC:-like radar processing programs.

This second level of specification presented here is derived from that which
successfully passed through an RSRE Z type checker which ensured correct
syntax and consistent use of types. The presentation is in tutorial form in a
top down manner.

The lessons learnt in preparing the Z specification are described in chapter 5.
Chapter 6 lists conclusions and discusses the possible benefits to NATS with
proposals for follow up work.

AN

2 RADAR DATA PROCESSING ACTIVITY

The general requirements of the activity can be understood with the aid of the
data flow diagram of the activity shown in figure 1. The activity takes a plot
(which will be either target or weather data) from the input buffer (RADAR
DATA INPUT) and performs either target or weather processing. Target
processing involves converting the plot position to system coordinates, and
deciding if the plot is to be rejected, or to be used for display only purposes, or
to be sent for possible correlation with tracks. The weather processing
determines if the weather data is to be used for display purposes.

The RADAR DATA PROCESSING activity carries out the initial radar plot
processing. It takes a digitized radar plot, which has come from one of a
number of surveillance radars, from an input buffer and checks to see if the
plot is from an aircraft target or if it corresponds to a weather strobe.
If it is a target plot then a time stamp is added and its position is converted
into a common coordinate system. Subject to certain criteria which are
defined later, a plot is then

a) thrown away as not required (which may occur during coordinate

conversion), or

b) tentatively correlated with a track, or

c) sent for display.

If it is a weather plot, it is either
a) thrown away, or
b) sent for display.

The data flow diagram of the activity is shown in figure 1 which is used as a
model for the Z specification. After processing a plot, the activity repeats the
processing with the next plot. The informal specification of the activity is
given by the PDL in Appendix 1.

7

ﬂL“{‘

TIME
POOL

v

TAKE

TARGET

PROCESSING

CONFIGURATION
POOL

reject plot
channel

eR 1y

PLOT DISPLAY
CHANNEL

tR Ty
7

CORRBRELATION
DATA CHANNEL

Figure 1

\WEATHER

PROCESSING

hd

.

| -—

P W S /A—-»-M [P,

3 THE Z LANGUAGE and NOTATION

A Z specification is composed of a mathematical text supported by a natural
language description. The purpose of this chapter is to introduce sufficient Z
notation to enable the Z specification of the radar processing activity given in
the following chapter to be understood. Further details on Z are available in
references 1,2, 8 and 9.

A small Z specification
A specification of the data flow diagram (figure 1) provides a convenient way

of introducing some of the terms and concepts. First the data areas are
specified simply by listing them as follows

[RADAR.DATA_INPUT, PLOT_DISPLAY_CHRNNEL,
CORRELATION_DATA_CHANNEL, reject_plot.channel,
RADAR_CONFIGURATION_POOL, TIME_POOL, RADAR_PLOT]

This square bracket notation serves to introduces new types about which no
more detail is known at this level of specification. Note: Integer types are
assumed to be in the standard Z library; the character 2 is used to denote the
type integer (positive, zero, and negative) and N to denote natural numbers
(non negative integers).

The Z specification is completed by defining the three radar processing
operations in terms of these data types. One way of doing this is by stating the
names of the operations with their input and output types, for example

TAKE: RADAR_DATA_INPUT -» RRADRR_PLOT

however a slightly more complex form is used here since it aids the tutorial:

TAKE
take: RADAR_DATA_INPUT -» RADAR_PLOT

this states that TAKE consist of a (partial) function, given the same name in
lower case for convenience, which maps RADAR.DATA_INPUT to
RADAR_PLOT. The other operations are similarly specified.

TARGET_PROCESSING
target_processing
TINEPOOL x RADAR_CONFIGURATION_POUL x RADAR_PLOT -»
RADAR_PLOT x CORRELATION_DATA_CHANNEL x
PLOT_DISPLAY_CHANNEL x reject_plot_channel

this states that TARGET_PROCESSING contains a (partial) function which
maps the pools and RADAR_PLOT to the channels and RAOAR_PLOT, and

WEATHER_PROCESSING
weather_processing
RADAR_CONFIGURATION_POOL x RRDAR_PLOT -+
RADAR_PLOT x PLOT_DISPLAY_CHANNEL x reject_plot_channel

this is similar in form to TRARGET_PROCESSING.

The three boxed constructs are particular forms of a Z structure called a
schema. Schemas can be manipulated with a set of rules defined in the Z
schema calculus (reference 1). Thus in terms of the three schemas defined
above the specification of the data flow diagram will be of the form

(TRKE and TARGET_PROCESSING)or(TAKE and HUERTHER_PROCESSING)

which indicates the alternative paths through the flow diagram: it will be
seen in the next chapter this does not capture exactly what is required.

The more general form of a schema contains two parts, the first part called the
signature which groups together declarations, and a second part called the
‘predicate’ which enables constraints to be placed on the variables defined
through the declarative signature part. The above schemas consist of only a
signature, each with only one declaration; the predicate part is omitted as no
constraints have been defined.

Example schemas
An example of a more general schema, not connected with the data flow

specification, is the representation of a simple record of personal identity
number with limits placed on the values of the identity number :-

P_IDENTITY
Name :TEXT
Ident_No :2

Ident_No >0
Ident_No <1000000

In general, the upper part of a schema contains declarations separated by line
breaks and/or semicolons: no meaning is to be attached to order of the
declarations. The lower part contains predicates (constraints) which are also
separated by line breaks and/or semicolons: the predicates so separated are
considered to be conjoined (i.e. the 'and’ is implicit).

et gt e B g g,

R i el gy B e -

Rt e — s

e

There is an alterna* ‘e horizontal form in which only semicolons are used as
separators; in this form the above example is

P.IDENTITY ¢ [Home :TEXT; Ident_No :2 Ildent_ﬁo >0; Ident_No <1000000]

where the symbol 2 can be read as "is defined as”, and the vertical line
symbol | as "such that".

Schema names can be used in various ways. One common use is in the
declaration part of another schema, for example in the personal record

P_RECORD
P_IDENTITY
Salary :2

Salary >0

is equivalent to

P_RECORD

Name :TEXT
Ident_No :2
Salary :2

Salary >0
Ident_No >0
Ident_No <1000000

me Namin nventions
The definition used in specifying the data flow diagram will need to be
refined as more details about the radar processing activity are obtained. For

instance the CORRELATION_DATR_CHANNEL will be modelled as a variable
called Correlation_Data_Channel which is a sequence of RADAR_PLOT:-

CORRELATION_DRTA_CHANNEL
LCorrelution_Datu_Channel: seq RADAR_PLOT

or equivalently
CORRELATION_DATA_CHANNELS [Crrrelation_Data.Chonnel: seq RADAR_PLOT)

Many operations read and/or change the state database. Certain conventions

are used to indicate this. A as the first character of a schema name usually
indicates an operation may read and change the indicated part of the state,

while = or = indicates the operation may read but will not write to the state.

For instance, in defining an operation that may read and alter the
CORRELATION_DATA_CHARNNEL buffer, such as by adding a plot, it will be found
convenient to define the schema ACORRELATION_DATA_CHANNEL by

ACORRELATION_DATA_CHANNEL.
Correlation_Data_Channel, Correlation_Data_Channel’
:seq RADAR_PLOT

here the dashed character ' is used to indicate the state after an operation.
The more usual way to define this schema is

ACORRELATION_DATA_CHANNEL
CORRELATION_DATA_CHANNEL, CORRELATION_DATA_CHANNEL'

The characters ? and ! are also appended to a name to indicate an input
variable and an output variable respectively. Names are case sensitive so for
example TRKE is different from take.

4 THE Z SPECIFICATION (tutorial form)
4.1 Specification Structure

The formal Z specification is based on a model in which the activity is treated
as a sequence of operations which access the state variables (the database as
represented by the data Pools and Channels shown in figure 1). Note the
RADAR_PLOT is a local data storage and is not part of the state.
‘reject_plot_channel' is a 'waste bin' and is only used explicitly in the
example specification of the previous chapter.

4.2 First Level Specification

The first level specification decomposes the operations and data objects of the
data flow diagram; the degree of decomposition has been chosen to ensure
that the procedures in the body of the Radar Processing activity given in the
appendix are revealed. To do this it is necessary to describe the structure of the
data areas in a little more detail.

The channels are first-in first-out buffers which are modelled here by
sequences of plots. The RADAR_DATA-INPUT channel contains a sequence of plots
of type SITE_PLOT from the different radar sites, which in Z can be denoted by

seq SITE-PLOT. SITE_PLOT can be thought of as a record, the details of which
are of no concern at this level of the specification. The types of plot contained
in the other two channel buffers are DISPLAY_PLOTand RADAR_PLOT
respectively. All this is captured in the Z notation by

[SITE_PLOT, RADAR_PLOT, DISPLAY_PLOT]
which introduces three new types, and

RADAR_DATA_INPUT ¢ [Radar_Data_Input: seq SITE_PLOT]
CORRELATION_DATA_CHANNELE [Correlation_Data_Channel:

seq RADAR_PLOT]
PLOT_DISPLAY_CHANNEL & [Plot_Display Channel:

seq DISPLAY_PLOT]

which defines the buffers as sequences. Note for convenience the names of
the sequences are the capitalized lower case text ot the buffer names, although
other names could have been used.

The RADAR_CONF 1FURATION..POOL contains data about the radar sites such as site
position, and information about which radar(s) are to be used for tracking in
different geographical areas (called radar sort boxes - RSB for short). Details of

10

the pool are given later. This pool is used only as a source of data by the
RADAR_PROCESSING activity.

The TINE_POOL is provided to enable the current time to be read.

The Operations

The first part of the activity is to remove a SITE_PLOT from the input buffer
and decide if it is a target or weather. The TAKE operation of the high level
specification is replaced by the two operations TRKE and TRRGET:-

TAKE . remove site plot from input buffer to local radar plot storage area,
TARGET . decide if local radar plot is target or not.

If it is a target, the following sequence of operations on the local radar plot
replaces the high level TARGET_PROCESSING operation:-

TINE_STANP . add a time stamp to plot
REGISTRATION_COLLIMATION . systematic position errors corrected
R-ARZ_FILTER . reject plot in preset r-az bands
COORD_CONUERT . position to system coordinates
RSB_FILTER . plot for correlation or display.

If it is weather then the high level HERTHER_PROCESSING operation is
replaced by:-

WEATHER_FILTER . convert for weather display or reject.
Each of the operations is defined in more detail later.
The RRADAR_PROCESSING activity is defined in the Z notation by

RADAR_PROCESSING &
(TRKE and TARGET) » TIME_STAMP » REGISTRATION_COLLIMRTION »
R_A2_FILTER » COORD_CONUERT » RSB_FILTER
or

(TARKE and not TARGET) » WERTHER_FILTER.

11

The symbol » is called 'piping™ and is used to indicate the output
components from one operation being used as input components to the
subsequent operation. There is only one component concerned here, namely
the local radar plot.

The logic symbols and, or and not are denoted in Z by the symbols A,

v and - respectively.

It is not considered profitable to provide any more details on the individual
operations at this level because most of them require more information on
the data structures before any useful meanings could be specified.

4.3 Second Level Specification

The degree of refinement to reach the second level of specification has been
such that the resulting Z specification corresponds quite closely both in
structure and detail to that of the defining PDL in the appendix. Some
extraneous pieces of Z have had to be added in order that the the Z type
checker could be used. The particular type checker used did not have REAL
types or common functions such as SQRT so these had to be introduced into
the "local library" by the following Z definitions:-

[REAL]

(*2), (L-2), (+2), (L/2) : (REALxREAL)—REAL
oy 2y S, 2 ‘REAL < REAL

€0S, SIN, SQRT :REAL -» REAL

TO_REAL :Z — REAL

TO_INTEGER :REAL — 2Z

Note: The version of the type checker used did not allow overloading of
operators, so for example, where *appears in this specification meaning
multiplication of REALs, the symbol TINES occurs in the text that was actually
processed by the type checker. The Z language forbids overloading of variables
(reference 3) but is less clear about overloading of operators.

To avoid having to define too many other operations, the types DISTANCE and
TINE were redefined as REAL and integer respectively by

DISTANCE & REAL
TINE ¢ 2

! Piping is used here as a means of indicating sequential operation: it is
assumed that if the specification of a component schema in a pipe is not
satisfied then the pipe is terminated.

12

T

Another problem with Z and hence with the type checker is that names must
be defined before they are used. Thus to the type checker, the specification is
presented in a bottom-up fashion and the more primitive types defined first.
Here the decision has been taken to present the specification in a top down
manner so that detailed definition of subcomponents can be delayed.

Types for radar identities and secondary radar code are introduced by
[RADAR_ID, SSRCODE]
with no further details required.

4.3.1 Refinement of the CHANNELS

There is no refinement of the data channels, however for later convenience
A state change schemas are defined.

[SITE_PLOT, DISPLAY_PLOT]

RADAR_DATA_INPUT
Radar_Data_lnput: seq SITE_PLOT

ARADAR_DBATA_INPUT
RADAR_DATA-INPUT, RADAR_DATA_INPUT®

CORRELATION_DRTA_CHANNEL
Correlation_Data_Channel :seq RADARR_PLOT

ACORRELATION_DATA_CHANNEL
CORRELATION_DATA_CHANNEL, CORRELATION_DATA_CHANNEL'

PLOT_DISPLAY_CHANNEL
Plot.Disploy.Channel :seq DISPLAY_PLOT

APLOT_DISPLAY_CHANNEL
PLOT_DISPLAY_CHANNEL, PLOT_DISPLAY_CHANNEL'

13

e

B e S Tt TN

s~ p——— s

P

4.3.2 Refinement of type AAQAALPLOT

RADAR_PLOT is the data structure type of the local radar plot. A schema for this
structure can be obtained immediately from the corresponding PDL record,

RADAR_PLOT
Message_Length: N
Site_Data: SITE_DRTA
Timestaomp: TINE
Corrected_R,R%,Y: DISTANCE
Rsb_id: RSB_ID
Plot_Status: PLOT_STATUS
Decay.Time: TINE

SITE_DATA, RSB.10, and PLOT_STATUS are the only undefined types. Inthe PDL
SITE_DATA represents either target or weather information and in Z this can be
expressed as a disjoint union of types TARGET_DATA and UEATHER_DATA

SITE_DATA: :=Target_Data<<TARGET_DATA>> 'Ueut her_Data<<HEATHER.DATA>>,

where
1= can be read as "is a new basic data type defined by",
denotes an alternative and can be read as or,
<< >> bracket the domain of the preceding function; for example
Target_Data is a function mapping TARGET_DATA into SITE_BATA. The inverse

function Target_Data™ is used later, for example to check if the Site_Data
component of a radar plot is target rather than weather information.

In this definition TRRGET_DATA and HEATHER_DATA are defined by the
schema types

TRRGET_DATA
Message_Length: N
Receiving_Radar_1D0: RADAR_ID
Plot_Type: PLOT_TYPE

Range: N

Azimuth: N

SSR_Code: SSRCODE
Hode_C_Height: N

14

B R N R S

Time_Delay: TIHE
Run_Length: RUN_LENGTH
Squawk: SQUAUK

Plot_Type = HEATHER

and

HERTHER.DATA
Messag:_Length: IN
Receiving_Rada: _i0: RADAR_ID
Plot_Type: PLOT_TYPE
Rzimuth: IN

Start_Range: IN

Stop_Range: NN

Plot_Type = WERTHER

Note TARGET_DATA is constrained to be not of WERTHER Plot_Type, and
WEATHER_DATA is constrained appropriately.

The schemas use the following enumerated types

PLOT_TYPE::= SECONDRRY_REINFORCED|SECONDARY|PRINARY [HERTHER
RUN_LENGTH::= SHORT | LONG

SQUANK::= NONE | IDENT | EMERGENCY

This completes the specification of SITE_DATA, leaving RSB_ID and

PLOT_STATUS as the remaining undefined types in RABAR_PLOT. These types
are

RSB_ID
LRsb_X, Rsb_Y : N

PLOT_STATUS: := PBEFEBBEDISUPPLEHEHTHRV NULL

Plot_Status can have the status PREFERRED, SUPPLEMENTARY or HNULL.

As the specification gets more concrete, constraints, such as limiting Azimuth
to lie in the range 0 to 4095, can be added into the schemas.

15

4.3.3 Refinement of RADARLCONF IGURRTION.POOL

This pool consists of three main components, Stat ion_Data for each radar,
and radar_sort_box radar data and status. The corresponding schema types
are STATION_DATA, RSB_DATA and RSB_STATUS. The number of radar
stations is given by TOTRL_STATIONS and is kept in a schema called
SYSTEN_PARAMETERS1.

RADAR_CONF IGURRTION_POOL
STATION.DATA

Station_DOata : PSTATION_DATA
RSB_DATA

RSB_STATUS
SYSTEN_PRRAMETERS1

8Station.Oata =TOTAL_STATIONS

IP means the power set, and can be read as "a set of", and ¥ gives the size
(number of distinct elements) of the set.

SYSTEN_PARANETERS) —————
TOTAL_STATIONS :IN

The components STATION.DATR, RSB_DATA and RSB_STATUS are specified
in more detail below. STATION_DATA is

STATION_DARTA
Radar_ID: RADAR_ID

¥_Position, Y_Position :DISTANCE
Sweep_Time : TIHE

Range_Correction :2
fAzimuth_Correction :2
Rho_Theta..lask : seq RHO_THETA_MASK
Heather_Nask :seq LIMITING_RANGE

8 Rho_Theta_Mask = 64
&t Ueather_Mask = 32

16

g g

Rho_Theta_fask is sequence of pairs of integers, one pair for each of 64
azimuth sectors, and each pair is of type

RHO_THETR_MASK _______
Ninimun_Range :N
Haximum_Range :N

Heather_MNask is a sequence of items, one item for each of 32 azimuth sectors,
and each item of type

LINITING-RANGE
Limiting_Range :IN

This leaves RSB_DATA and RSB_STATUS to be considered, both of which are
64 by 64 arrays in the PDL. Here they are modelled by simple functional
mappings:

RSB_DATA
RSB_Data: ((1..64) x (1..64)) — RSB_DAT

where
RSB_OAT8[RSB_Preferred:RAORR_ID;RSB_Supplementary:RADAR_ID].
The notation (1. . 64) is a convenient way of representing the set {1, 2, . ., 64}.
Note that RSB_Data(i, j) selects the ij th element of RSB_Datag, and
RSB_Data{i,j).RSB_Preferred selects the RSB_Preferred component of
the i,j th element.

Similarly RSB_STATUS is

RSB_STATUS
RSB_Status : ((1..64) x (1..64)) — RSB_STAT

where

RSB_STAT & [Status-of._RSB:STFIT;Supplementury-_Status:SUP]
STAT::= DATA_REQUIRED l NO_DATA

SUP::= ENABLED | DISABLED.

17

Notes that RSB_Status(i, j) is the i,j th element of type (STRT, SUP). Thus
the value of RSB_Status(i,j).Status_of_RSB is either DATA_REQUIRED or
NO_DATA.

TIMEPOOL
This a general purpose operation which provides the current time.

TINE_POOL
time: TINE

4.3.4 Refinement of Operations

A number of preset parameters are required by the operations and these are
gathered together in the schema below

SYSTEN_PARARNETERS2———
MERN_TRANSMISSION_TIME: TINE
THENTY_NM: DISTRNCE
R-TO_NM_CONUVERSION : REAL
MIN_REASONABLE_MODE-C :IN
NAX_REASONABLE_MODE_C :IN
DEFAULT_MODE_C :N
MODE_C_NN_CONUERSION: REAL
ACP_TO_RADIRNS :REAL
NO_CYCLE_TO_DISPLAY :N

TAKE
This operation takes a site_plot off the RADAR_DATA_INPUT buffer, reformats
it and puts in the working space called plot.

TAKE
ARADAR_DATA_INPUT

site_plot: SITE_PLOT

plot! : RARDAR-PLOT

Site_to_radarplot :SITE_PLOT-+RADAR_PLOT

Radar_Data_Input = <>
Radar_Data.lnput' = <site_plot? = Radar_Data_Input
plot! = Site_to_radarplot(site_plot)

18

L_.../A

—_

Here ARRDAR_DATA_INPUT indicates the input plot buffer may be read and
altered. It will be altered by removing a site_plot if one is present, i.e. if the
buffer Radar_Data-Input is not equal to the empty sequence <>. The
site_plot is taken from the end of the sequence; this is ensured by stating
that the Radar_Data_Input sequence before the operation is the same as the
sequence at the end of the operation with the site_plot joined (7) to it.
The function Site-_to-radarplot converts the SITE_PLOT format into the
RAOAR_PLOT format. The details are not too important here, however the

variables Timestamp, Corrected_R, X and Y are not given values at this
stage.
The output variable plot! is the local radar plot referred to in earlier text.

IRAGET

This operation checks that the variable plot!isof type TARGET_PLOT.
TARGET
plot! : RADAR-PLOT

plot!.Site_Data ¢ ran Target_Data

ran is the range operator, and used here to specify all the possible vales of
Target_Data. Note that plot! rather plot? isused because the TARGET

schema is used to check the output variable of the TAKE schema (see section
42).

TINE.STANP

TINE_STANP
TINE_POOL
SYSTEN_PRRAMETERS2

plot?, plot! :RADAR_PLOT

plot?.Site_Data ¢ ran Target_Data

plot!.Timestonp = time - inplot?.Time Delay-
MEAN_TRANSHISSION_TINE

where inplot?&Target_Data*(plot?.Site_Data)

19

b a

The input plot is checked to ensure that it is of type TRRGET_DATA and not
HEATHER_DATA. Here t ime is of type TIME and is a component of
TINE_POOL, and MERN_TRANSMISSION_TIME is a preset system parameter.
Note the dot notation could be used, asin Site_Data.Time_Delay(plot?).
The predicate Site_Data(plot?) « ran TARGET_DATA

is redundant as far as the whole specification is concerned since it will be
propagated in under the piping operation from the TAKE schema. However

its inclusion here ensures the TINE_STANP schema is less dependent on such
knowledge. Because this situation occurs with other operations it is
convenient to rewrite TINE_STANP as

ATARGET
plot?, plot! : RADAR.PLOT

plot?.Site_Data ¢ ran Target_Data

TINE_STANP
TINE_POOL
SYSTEN_PARANETERS?2
ATARGET
plot!.Timestamp = time - inplot?.Time_Delay-
HERAN_TRANSMISSION_TINE
shere inplot?&Taorget_Data*(plot?.Site_Data)

A slight liberty with conventional use of A is taken since plot is not
actually part of the system state, but can be thought of as part of the local
Radar_Processing_Act ivity state.

BEGISTRATION.COLLINATION

This operation removes the small systematic errors from range and azimuth
measurements. The output azimuth is MODULO 4096 and is achieved using

the Az i_modulo function which is not defined in detail .

20

W —

"y

REGISTRATION_COLLINATION
RADAR_CONFIGRATION_POOL
ATARGET

sd: STATION_DATA
Rzi_modulo:2—iN

sd ¢ Station_Data

sd.Radar_ID = inplot?.Receiving_Radar_I0
outplot!.Ronge = inplot?.Range+sd.Aange._Correction
outplot!.Azimuth = Azi_modulo(Rz_corrected)

where

inplot? & Target_Data™(plot?.Site_Data)

outplot! & Target_Data'(piot!.Site_Data)
Az_corrected2inplot?.Azimuth + sd.Azimuth_Correction

The requirement sd ¢ Station_Data ensures that the radar station that is
being referred to, is actually in the set of active radar stations kept in
Station_Dota.

BAZ.FILTER

This operation rejects a plot if its range does not lie between limits defined in
the RADAR_CONFIGURATION_POOL. Rejection is achieved if the predicate of
the schema evaluates to false.

R_R2_FILTER
RADAR_CONF IGURATION_POOL
ATARGET

sd : STATION_DATA

sd « Station_Data
sd.Radar_ID = inplot?.Receiving_Radar_ID
inplot?.Range > Filter.Ninimum_Range
inplot?.Range < Filter.Haxiaum_Range
plot! = plot?
shers
inplot ?8Target _Data(plot?.Site_Data)
mask_regionfinplot?.Azimuth div 64 +1
Filter2sd.Rho_Theta_HMask(mask_region)

21

W g ew N v B e

The underlying assumption is an azimuth in 12 bits (0-4095) and
mask_region is in the range 1..64.

COORD.CONVERT

This operation makes a correction for slant range, and converts the plot
position to system coordinates, i.e.

COORD_CONVU & slant_range_correction » coordinate_conuersion

No slant range correction is made to plots with ranges of 20 nautical mile and
greater. The type of slant range correction used below 20 nautical miles
depends on whether or not a valid secondary radar height is available.

The ModeC_OK schema is used as a predicate (i.e. as boolean procedure
would be used in a programming language) to indicate the validity of the
secondary radar height.

ModeC_0K
SYSTEN_.PRARAMETERS2
ATRRGET

(inplot?.Plot_Type = SECONDARY_REINFORCED
v inplot?.Plot_Type = SECONDARY)
inplot?.Mode_C_Height 2 NIN_REARSONABLE_MODE_C
inplot?.Node_C_Height § MAX_RERSONABLE_MODE_C
shere inplot?2Target_Data'(plot?.Site_Data)

slant_range_correction
ATARGET
SYSTEN_.PARRNETERS2
ModeC_0OK

r? ¢ TUENTY_NH and crl = (r? * R_TO_NM_CONUERSION)
not{r? 2 THENTY_NM) A HodeC_O0K A cri=conuerti
not(r? 2 THENTY_NH) . not{ModeC_OK)acr!=convert?2
shere

inplot?8Target Data™(plot?.Site_Data)

r?8T0_REAL(inplot?.Range)

cerléplot!.Corrected_R

22

a& (r?*R_TO_NM_CONUERSION)

b2 (TO-_REAL{inplot?.Mode_C_Height)*MODE_C_NM_CONUERSION)
c2 (TO_REAL(DEFAULT_MODE_C)*NMODE_C_NN_CONUERSION)
convert1& SQRT((a*a) - {b*b))

convert28 SQRT((a*a) - (c*c))

coordinate_conversion
RABAR_CONF IGURARTION-_POOL
ATARGET,
SYSTENM_PARRAMETERS2
sd:STATION_DATA

sd ¢ Station_Data

sd.Radar_10 = inplot?.Receiving_Radar_ID

plot!.X= (cr?*SIN(az?)) + sd.X_Postion

plot!.¥= (cr?¥C0S(az?)) + sd.Y_Position

shere inplot?éTarget_Data*(plot?.Site_Data)
cr?&plot?.Corrected_R
az?TO_REAL(inplot?.Azimuth)*ACP_TO_RADIANS

BSBLFILTER

This operation uses the x,y coordinates of the plot to find the corresponding
radar sort box coordinates. If the plot's radar matches one of the radars
(indicated as preferred or supplementary) associated with the sort box and the
appropriate status values are set the plot will be put on the correlation buffer.
If no match occurs the plot will be rejected. If a match occurs but the
appropriate status values are not set, the plot is sent to the display buffer.

The operation consists of two main parts as defined in

RSB_FILTER & calculate_rsb » rsb_status_filter,

The rsb_status_filter corresponds to a complex IF.ENDIF statement in
the main body of the radar processing activity PDL.

calculate_rsb
RADARR_CONFIGURATION_POOL
ATARGET
TO_-RSB_ID : REAL-»IN

23

v — - —

plot! . Rsb_id.Rsb_¥ = x?

plot!.Rsb_id.Rsb_Y = y?

{plot!.Plot_Status=PREFERRED A
plotradar?=rsb_data,RSB_Preferred)

v

(plot!.Plot_Status=SUPPLEMENTRRY A

plotradar?=rsb_data.RSB_Supplementary)

v

(plot!{.Plot_Status=NULL «
not (plotradar?=rsb_data.RSB_Preferred) -
not (plotradar?=rsb_data.RSB_Supplementary))

shere inplot?&Target_Data'(plot?.Site_Data)
x?2TO_RSB_ID(plot?.X / TO_REAL(16))+1
y?2TO_RSB_ID{(plot?.¥Y / TO_REAL(16))+1
rsb_datagRSB_Data(x?,y?)
plotradar?&inplot?.Receiving_Radar_ID

To_Correlation
ACORRELRTION_DARTA_CHANNEL
plot? :RADAR_PLOT

Correlation_Data_Channel' =

Correlat ion_Data_Channel ™ <plot?>

To-Bisplay
APLOT_DISPLAY_CHANNEL

plot? :RRDAR-PLOT

Display_Form :RADAR_PLOT -» DISPLAY_PLOT

Plot_Display—Channel' = Plot_Bisplay_Channel ™
<Display_Fora{plot?)>

24

rsb_status_filter
RABARR_CONFIGURATION_POGL
To_Correlation
To_Display

(To_Correlation A RSB=on~ plot?.Plot_Status=PREFERRED)

v

{To_Correlation A RSB=on~ plot?.Plot_Status=SUPPLENENTARY
~ rsb_status?.Supplementary_Status=ENABLED)

v

(To_Display ~ not(RSB=on)~ plot?.Plot_Status=PREFERRED)

v

(To_Display ~ not{RSB=on)a plot?.Plot_Status=SUPPLEMENTARY
~ rsb_status?.Supplementary_Status=ENABLED)

shere
x? & plot?.Rsb_id.Rsb_X
y? € plot?.Rsb_id.Rsb_Y

rsb_status? & RSB_Status(x?,y?)
RSB & rsb_status?.Status_of_RSB
on £ DATA_REQUIRED

Note: Display_form converts the plot to a form that can be put on the
display buffer. In the original PDL, a plot is also put on the display buffer if an
attempt to put it on the correlation buffer fails because the buffer is full: that
possibility is not considered here.

HEATHER.FILTER

The first part decides if the weather data is needed and adjusts the values if
necessary. The second part sends the data, after setting a display rate parameter,
to the display buffer.

WEATHER_FILTER® weather_filter » weather_display

The main objective of weather_filter is to ensure the values of the
Start_Range and Stop_Range components do not exceed a specified limit. If
Stop_Range exceeds the limit it is reset to the limit. The preset value of limit
depends both on the radar site concerned and on the azimuth sector in which
the plot lies.

25

weather_filter
RADAR_CONFIGURATION_POOL
plot?,plot! :RRDAR_PLOT
8d:STATION_DATR

plot?.Site_Bata ¢ ran Heather._Dota

sd ¢ Station_Data

sd.Radar_ID=weather?.Receiving_Radar_ID

weather?.Start_Range § limit?

(weather?.Stop_Range § limit?)v(weather!.Stop_Range=1imit?)

where weather?fleather_Data'(plot?.Site_Data)
weatherléleather_Data'(plot!.Site_Data)
mask?&weather? . Azimuth div 128 + 1
limit?2(sd.Neather_Hask(mask?)).Limiting_Range

weather_display
RADAR_CONF IGURRTION_POOL
To_Display

plot! :RADAR_PLOT
sd:STATION_DATA
SYSTEM_PARARMETERS2

plot?.Site_Data ¢ ran UWeather_Data

sd ¢ Station_Data
sd.Radar_ID=weather?.Receiving_Radar_ID
plot!.Decay_Time=NO_CYCLE_TO_DISPLAY*sd.Sweep_Time
To_Display

shere weather?2Ueather_Data(plot?.Site_Data)

NO_CYCLE_TO_DISPLAY is a system parameter.

26

A

5 DISCUSSION
5.1 Learning Z

One of the main objectives of the study was to gain experience in using Z: the
other being to provide an initial assessment of Z's applicability to Air Traffic
Control systems. Familiarity with set theory and a programming language
such as Pascal should enable some basic understanding of Z without difficulty.
The author attended an introductory course on formal methods which
included a small amount on Z and followed the Alvey funded self-learning
course on discrete mathematics and specification (reference 5). British
Telecom (reference 4) consider that to become proficient at using Z, an
intensive introductory course, an understanding of the underlying discrete
mathematics, and several months practical experience is required.

One problem in learning Z while trying to use it, is judging how much one
needs to know in order both to make a reasonable start on a specification and
finally to complete it. The training discussed proved to be sufficient to enable
an initial Z specification to be produced. This initial attempt then underwent
a number of corrective and restructuring iterations. The most significant of
these came as a result of a partial "walk-through” with Z experts from CC1
division at RSRE and by using their Z-type checker. The type checker proved
to be an invaluable assistant in the learning process.

One consequence of not being experienced in Z was that it was sometimes
difficult to choose the appropriate Z constructs in which to express well
understood requirements. A couple of examples illustrate the problem: How
are the notions of sequential operations and an infinite flow control loop
expressed. As described in chapter 4, the sequential operation was solved
using "piping" operations; the infinite loop remains a problem.

Fortunately only a few of the mathematical symbols peculiar to Z were
needed in the specification work, but even so initial encounters are likely to
be off-putting.

5.2 Applying Z

The approach to producing a Z specification of the radar processing activity,
described in the appendix, was the simple one of converting each PDL data
structure and each PDL procedure/function in turn into a Z schema. Thus the
overall structure of the radar processing activity remained essentially
unaltered, resulting in a state based specification with a set of operations
transforming one state of the database into another. The actual methods for
producing the Z specification were dictated, to some extent, by having to learn
Z while producing the specification. Small chunks of the PDL were selected as
exercises in Z, until it was believed that all the different structures used in the
PDL could be handled with confidence. This meant that some of the level-two
specification had been completed before the level-one specification. In
practice, it was found easier to tackle the data structures first, since in many

27

cases, it was easy to construct a Z schema with a simple and exact one-to-one
correspondence with a PDL data structure; indeed many of the Z data schemas
look like (allowing for small notational differences) Pascal records. The only
difficulties encountered were in representing a data item which could have
different pre-defined structures and in representing a square array. In the
former case a Z construct for a disjoint union provided the solution. In the
case of the array - neither Z or the ‘standard’ Z library has built in array types -
' a sequence of sequences’ was adopted initially but this was changed to matrix
type when the mechanism for defining generic types in Z was better
understood: after comments from CC1 division a much simpler mapping (see
the schema RSB_DATA in section 4.3.3) was adopted for this report that also
maintains a closer correspondence with the PDL. Neither difficulty would be a
problem for an experienced Z user.

In converting the PDL procedures to Z, one of the main problems was
unraveling the nested conditional IF statements. The basic technique used to
convert these statements into Z was to replace the nested statements by a
sequence of simpler IF statements. For example

IF A THEN B ELSEIF C THEN D
would be replaced by

IF ATHEN B

IF not A and C THEN D.
In this form only one of the conditions (the term after the IF) evaluates to
true so, in effect, the two statements are 'or-ed' together. The Z equivalent
will be of the form

(A and B) or (notA and C and B}

or using mathematical notation (A A~ B) v (A A C A D).

Other minor problems which arose included that of finding out how to refer
to items in certain complex data structures, and of having to introduce type
conversion routines and standard mathematical functions because these were
not in the Z library. One error (of omission) - was found in the PDL; the PDL
to calculate radar sort boxes refers toa plot_status of NULL, a value which
had not been defined.

Although not part of the main exercise, Z was also applied in a top down
approach by specifying the data flow diagram of the radar processing activity.

5.3 Tool Support

The only tool support used during the development of the first version of the
Z specification was a Macintosh computer - bit graphics, mouse, and windows
- with a set of Z fonts accessible to all Macintosh word processors that obey the
standard operating system guide-lines. This has been the only tool used for
document preparation.

Later versions of the specification were subject to a syntax and type checker
developed in the CC1 division at RSRE. The checker was written in Algol68
and ran under a research operating system on an ICL Perq computer. Again
the computer had bit graphics, mouse and windows. The type checker could

28

-

handle a proper Z specification consisting of both English text and Z
mathematics, although only mathematical parts of the radar processing
specification were entered.

The reliability and functionality of the tool were good, and it proved
invaluable during the specification process. Only one error was encountered
in the type checker; it accepted a ‘'macro’ clause of the form where x2(A=B)
which is not allowed. A few irritations were caused because overloading of
operators was not allowed, for example since the symbol >had already been
defined as applying to INTEGER, another name had to be used to mean 'greater
than' when applied to REAL. The associated Z text editor, while handling all
the Z notation and symbology, was very awkward to use on some of its
editing operations particularly when compared with text editors on the
Macintosh.

29

L
g

e

6 CONCLUSIONS

This initial application of the formal specification language Z to an Air Traffic
Problem has been extremely valuable and instructive. Z rather than VDM
(the other leading model-based formal specification language in the UK) was
chosen because there was experience and expertise at RSRE, Z appeared to
have better structuring facilities for large specifications, and the available tool
support seemed marginally better (some being at hand). The application
involved converting a Radar Processing program based on the one used in
the LATCC multi-radar processing system and defined by an algorithmic
Program Design Language (PDL).

6.1 Using Z

Some important points observed while learning and applying Z are listed
below.

Learning 7

1 Formal training in some form is required for writing Z specifications.
2 Having experts at hand is almost essential for a beginner.

3 Tool support is invaluable.

Converting PDL to Z
1 Some techniques and guide-lines were established for converting from PDL

to Z.

2 Data structures were usually the easiest to map.

3 Z requires data to be typed, although details of the type need not be revealed
unless needed in subsequent Z specification.

4 Declaration of standard mathematical and type conversions are explicitly
required.

5 Control flow achieved by the Z 'piping’ operation.

6 Walk-throughs essential - this implies at least more than one person is
needed to complete Z specifications.

7 Tool support invaluable.

8 Since the PDL did not explicitly handle concurrency, there were no problems
in this area with the Z.

Tool Support

1 No Z syntax/type checkers were commercially available at the time, only
text editors.

2 A commercial text editor with Z fonts on a Macintosh computer was used
for document preparation. The use of dot matrix printers was cumbersome
and very slow with relatively poor quality, although a laser printer was used
for the final printings.

3 A syntax and type checker developed and owned by another division in
RSRE was used. This is a research tocl, although a more portable version is
under construction.

4 The research tool used did not support top down development.

30

R

5 A Z type checker has been produced by the Alvey FORSITE project but
attempts to obtain copies during this work and subsequently have been
unsuccessful.

6 Since completing this work, two Z type checkers originating from the
Programming Research Group at Oxford have been mentioned in Z bulletin
boards, one programmed in the functional language ML, and the other called
FUZZ which processes Z specifications written in the type setting language
Latex for SUN and IBM PC.

6.2 Benefits To NATS
The benefits of using formal methods are claimed to be

1 Clear thought with improved ability to specify with precision and
conciseness.

2 Improved precision, consistency, unambiguity, and completeness.

3 A precise notation in which specifications can be reliably communicated to
others.

4 The use of refinement techniques to produce implementations that
accurately satisfy their specifications and to assist in validation of
requirements, and hence enable manuals related to implementation to reflect
the specificatiors accurately.

5 The use of anination techniques to assist in the validation of the semantic
aspects of specifications.

6 A basis for informal and formal reasoning and analysis about correctness,
resulting in detection and elimination of errors.

These benefits are, with varying degrees of importance, relevant to various
NATS procurement activities from analysis and requirements, through
contract monitoring and acceptance to maintenance. The application
described in this report addresses the areas of detailed requirements and
design, although many of the lessons can be extended to other phases of the
life cycle. The exercise confirms the first three benefits listed above. The Z
specification is clearer and more precise than the PDL definition on which it is
based. It is a better base for a requirements specification because it describes
'What is required’ rather than 'How it is be achieved'. Thus the PDL should
be thought of as a refinement of Z, although in this instance the WHAT was
obtained by reverse engineering from the HOW.

At least for the particular areas of requirements and design covered in the
exercise, it is considered formal specification could be of value to NATS in
producing a better rapport with contractors through increased clarity and
precision of specifications and leaving less room for argument. The improved
communications should also increase visibility and increase confidence in
acceptance of deliverables. The resulting use of precise and unambiguous
specification should also be of benefit in subsequent maintenance.

31

The benefits of validation through animation, implementation through
refinement techniques, and the value of reasoning methods will be addressed
in subsequent work.

Application of formal methods is in general hampered by the training needs
and the availability of good tools. Training and tools should not be seen as a
great barriers in the future, since good software engineering courses will
include formal methods and tools are just about entering the market place.
Although not key issues in the work reported, consideration needs to be
given to where formal specification methods can be best used and how they
are to be integrated into the other system development methods and tools
being used. One possibility is to use Z, or similar specification language, to
specify the functionality of the actions/processes of methods using data flow
diagrams; this approach is being adopted by BAe for development of avionics
software (reference 6).

Finally, it is worth noting the encouraging claims of 80% reduced
maintenance effort, 250% productivity gains and a sixfold decrease in software
integration times reported in the NCC video course on "Towards Formal
Methods'.

6.3 Future Work

Apart from the example of a Z specification of a data flow diagram, which can
be considered as an embryonic method for top down development, the
specific Z radar processing specification given here is more design than
requirements because of the close mapping from the PDL. The next stage of
the work will be directed more to the Requirements phase. A more abstract
version of the Z specification given here will be produced. This will be
followed with a versions that will make use of the knowledge of those
Requirements not captured in the specifications derived from the PDL and
will be closer to that which would developed in a top down approach.

ACKNOWLEDGEMENTS
The author would like thank Dr.C.T.Sennet and his section, particularly

R.McDonald and A.Smith, for their help in clarifying some of the Z constructs
and for their assistance in the use of their Z syntax and type checker.

32

REFERENCES

1. Detailed Design of the Demonstration System, P.A.Barrett, RMCS 1049/TD 4,
December 1986.

2. Specification Case Studies, I.Hayes (editor), Prentice-Hall, 1987.

3. The Z-package, Oxford University Computing Laboratory, Programming
Research Group, 1987. Consists of a number of documents updated regularly
to reflect the state-of-the-art. The first document has been published, see
reference 9.

4. Z (a formal specification method), A Debrief Report, DTI STARTS (Software
Tools for Application to large Real Time Systems), M.Norris (British
Telecom).

5. Essential Mathematics for Software Engineers, IEE 1987.

6. Embedding Formal Methods in SAFRA, A.Bradley, Agard conference on
Software Engineering and its Applications to Avionics, proceedings no.439,
1988.

7 An approach to animating Z using PROLOG, R.D.Knott and P.J.Krause,
Department of Mathematics, University of Surrey, Report Al.1, Alvey SE/065,
July 1988.

8 Understanding Z: a spedification language and its formal semantics,
J.M.Spivey, CUP, 1988.

9 The Z Notation - A Reference Manual, J.M.Spivey, Prentice-Hall, 1989.

33

Y ot

e e e g+ e

Al Program Design Language definition of the RADAR PROCESSING

INTRODUCTION

This a slightly shortened extract from reference 1 (1049/TD.4 Dec86) of the
design of the Radar Processing Activitity in PDL. Diagrams and the PDL of the
module display plot have been excluded. The formats of relevant Pool and
Channels have been added.

3.1 RADAR PROCESSING ACTIVITY

This activity carries out the functions of multi-radar processing on plot data received from the
radar stations. A number of masking techniques are used to separate out data which is not required
for further processing, data which is not required for correlation but which should be displayed as
plots on the radar screens, and data which is required for attempted correlation. The three types of
data are, respectively, discarded, placed into the Plot Display Channel for processing by the Console
Handler subsystem, or placed into the Correlation Data Channel for processing by the Correlation
activity.

Two main masking techniques are applied. Firstly, each radar station has associated with it a
geographical mask defining the area of coverage of that station. Plots received from a station which
fall outside its area of coverage are discarded.

Secondly, the airspace is divided into 16 nautical mile squares, knowr as Radar Sort Boxes (RSB's).
Each RSB has two bits of information associated with it: whether da... .rom that box is required for
correlation, and whether the supplementary radar site for the RSB is enabled. The information is
maintained by the Tracking activity based on expected track positions (if returns from an aircraft
being tracked could appear in a particular RSB, that RSB is enabled) and continuity of radar
returns.

Radar processing is based around ‘radar plot's. These are instances of the following data structure:

Radar Plot
- Message Length (RADAR PLOT LENGTH)
- Site Data
Jarget Data | Weather Data
Timestamp
Corrected Range
X Coordinate
Y Coordinate
RSB ID
- RSBX
- RSBY
- Plot Status (PREFERRED { SUPPLEMENTARY)
- Decay Time

A1.1

- e ——

Target

Data

Message Length
Receiving Radar 1D
Plot Type

Range
Azimuth

SSR Code
Mode C Height
Time Delay
Run Length
Squawk

Weather Data

Message Length
Receiving Radar 1D
Plot Type

Azimuth

Start Range

Stop Range

(TARGET DATA MSG LGTH)

(SECONDARY REINFORCED | SECONDARY
| PRIMARY)

(Rho)

(Theta)

(between receipt and transmission by radar)
(primary only - SHORT | LONG)
(NONE | IDENT | EMERGENCY)

(WEATHER DATA MSG LGTH)

(WEATHER)
(Theta)

'Site Data' is the information supplied by the radar stations, while the rest (much of which is
unused in the processing of weather data) is calculated during radar processing.

At1.2

25
M

B e e gea ey ‘;«'—M—”muw

Fa—

‘.._4-.....,._,1.__..[‘. - -

Structured English Description of the Radar Processing Activity
RADAR PROCESSING ACTIVITY

acquire circular channel (RADAR DATA INPUT, OUTPUT)
acquire circular channel (CORRELATION DATA CHANNEL, INPUT)
loop whlle TRUE
take (RADAR DATA INPUT CHANNEL, radar plot.site data)
if radar plot.site data.plot type <> WEATHER
timestamp (TIME POOL, radar plot)
radar piot.decay time = RADAR CONFIGURATION POOL.station datajradar plot.site
data.receiving radar id].sweep time
jstrati (RADAR CONFIGURATION POOL, radar
plot)
apply rho-theta filtering (RADAR CONFIGURATION POOL, radar plot, result)
if result <> REJECT PLOT
apply slant range correction (radar plot)
apply coordinate conversion (RADAR CONFIGURATION POOL, radar plot)
galcylate rsb (RADAR CONFIGURATION POOL, radar plot)
if radar plot.plot status = PREFERRED
or (radar plot.piot status = SUPPLEMENTARY
and RADAR CONFIGURATION POOL.rsb statusiradar plot.rsb id.rsb x,
radar plot.rsb id.rsb y].supplementary status = ENABLED)
if RADAR CONFIGURATION POOL.rsb status|radar plot.rsb id.rsb x,
radar piot.rsb id.rsb y].status of rsb = DATA REQUIRED
place (CORRELATION DATA CHANNEL, radar plot, result)
if result = FAIL
display plot (PLOT DISPLAY CHANNEL, radar plot)
end if
else
display plot (PLOT DISPLAY CHANNEL, radar plot)
end if
end It
end it
eise
apply weather filter (RADAR CONFIGURATION POOL, radar plot, result)
if result «<» REJECT PLOT
radar plot.decay time = NO CYCLES TO DISPLAY * RADAR CONFIGURATION POOL..station
data[radar plot.site data.receiving radar id].sweep time
dispiay piot (PLOT DISPLAY CHANNEL, radar plot)
end if
end If
end loop

end RADAR PROCESSING ACTIVITY.

A1.3

311 Timestamping

Each radar plot is timestamped as the first stage of its processing. This timestamp is calculated
from the current time, the delay between receipt and transmission at the radar station (contained in
the data fro- ‘he radar station) and an estimate of the mean delay between transmission by the
radar station and receipt by the Radar Processing activity.

module: timestamp (TIME POOL, radar plot)

1ead current time (TIME POOL, time)
radar plot.timestamp = time - radar plot.site data.time delay - MEAN TRANSMISSION TIME

return

‘read current time' is a standard a.cess mechanism of the TIME POOL.

312 Registration and Collimation Correction

The range and azimuth (rho, theta) values of each radar plot are corrected for any alignment errors
which may have been detected in the receiving radar station. Correction takes the form of the
addition of correction vaiues to range and azimuth.

Azimuth values are expressed in units of ACPs from North, where 4096 ACPs make up a circle.
Range is expressed in units of 1/16 of a nautical mile.

module: apply registration and collimation correction (RADAR CONFIGURATION POOL, radar plot)

radar plot.site data.range = radar plot.site data.range + RADAR CONFIGURATION
POOL.station datafradar plot.site data.receiving radar id].error data.range correction
radar plot.site data.azimuth = radar plot.site data.azimuth + RADAR CONFIGURATION
POOL.station datafradar plot.site data.receiving radar id].error data. azimuth correction
If radar plot.site data.azimuth < 0
radar plot.site data.azimuth = radar plot.site data.azimuth + 4096
else
If radar plot.site data.azimuth » 4096
radar plot.site data.azimuth = radar plot.site data.azimuth - 4096
end If
end it

return.

Al.4

- ——ae

-~

213 Rho-Theia Fiitering

Rho-Theta filtering is used to reduce the processing load on the system by rejecting as many as
possible of the plots which, for a given radar, are from neither preferred nor supplementary sites
of a Radar Sort Box (RSB).

In practice, each mask consists of 64 equal azimuth intervals (of 64 ACP's), with the minimum and
maximum ranges to be considered for each. This is represented within the system as a series of
tables, one per radar, stored in the RADAR CONFIGURATION POOL. The filtering operation consists
of a simple check of plot range against the range limits of the appropriate region. Plots falling
outside the range limits are discarded.

module: apply rho-theta filtering (RADAR CONFIGURATION POOL, radar plot, resuit)

mask region = jnteger (radar plot.site data.azimuth / 64) + 1
if radar plot.site data.range « RADAR CONFIGURATION POOL.station data[radar
plot.site data.
receiving radar id].rho-theta mask[mask
region].minimum range
result = REJECT PLOT
else
if radar plot.site data.range > RADAR CONFIGURATION POOL..station data[radar
plot.site data.
receiving radar id].rho-theta mask[mask
region].maximum range

result = REJECT PLOT
else
result = ACCEPT PLOT
end if
end if

return.

A1.5

i e e ggta - o oy S b g e

wniing, : 4 el

314 __ Slant Range Correction

Slant range correction involves adjusting plot range information to take into account the height of
the aircraft involved. Slant range correction is not applied to plots with a range of greater than 20
nautical miles, as the correction then becomes insignificant. Two types of slant range correction
are applied, according to the type of radar return concerned.

Conversion factors are incorporated into the algorithm to give the corrected range in units of
Nautical Miles (NM). (N.B. Rho is in 1/16 of a NM, Mode C Height is in feet.) The constant DEFAULT
MODE C HEIGHT IN NM is in units of NM.

module: apply slant range correction (radar plot)

it radar plot.site data.range = TWENTY NM
radar plot.corrected range = radar plot.site data.range * RHO TO NM CONVERSION

eise
if (radar plot.site data.plottype = SECONDARY REINFORCED
or radar plot.site data.plot type = SECONDARY
and (radar plot.site data.mode c height > MIN REASONABLE MODE C
and radar plot.site data.mode c height < MAX REASONABLE MODE C)
radar plot.corrected range = square root of (squarg (radar piot.site data.range *
RHO TO NM CONVERSION FACTOR) /
square (radar plot.site data.mode ¢ height *
FEET TO NM CONVERSION FACTOR))
eise
radar plot.corrected range = square root of (square (radar plot.site data.range *
RHO TO NM CONVERSION FACTOR) /
square (DEFAULT MODE C HEIGHT IN NM))

end if
end if
return.
315 Coordinate Conversion

The plot data received from the radar stations contains positional information in the form of range
and azimuth values calculated in relation 1o the site of the station. These must be converted into the
system of axes used by the system (x,y). Trigonometry, and a knowledge of the (x,y) coordinates of
each ragar station, are used to achieve this.

module: apply coordinate conversion (RADAR CONFIGURATION POOL, radar plot)

degrees = radar plot.site data.azimuth * DEGREES IN AN ACP

radar plot.x coordinate = RADAR CONFIGURATION POOL.station datajradar piot.site
data.receiving radar id].x position + (radar plot.corrected range * sin (degrees))

radar ploty coordinate = RADAR CONFIGURATION POOL.station data[radar plot.site
data.receivingradar id].y position + (radar plot.corrected range * cos (degrees))

return.

A1.6

R S RN REII=~,

3.1.6 _ Calcuiate RSB

Radar Sort Boxes (RSBs) are fixed 16 NM squares covering the FIR in a grid of 64 by 64 boxes.
The x and y values in the grid of the sort box in which a particular plot is located may be obtained by
a simple translation of the plot (x,y) coordinates. The identity of preferred and supplementary
radars for that RSB may then be obtained from a look-up table in the Radar Configuration Pool
which associates RSBs and radar stations.

module: calculate rsb (RADAR CONFIGURATION POOL, radar plot)

radar plot.rsb id.rsb x = jnteger (radar plot.x coordinate / 16) + 1
radar plot.rsb id.rsb y = jnteger (radar plot.y coordinate / 16) + 1
if radar plot.site data.receiving radar id = RADAR CONFIGURATION POOL.rsb
data[radar plot.rsb id.rsb x, radar plot.rsb id.rsb y].rsb preferred
radar plot.plot status = PREFERRED
else
if radar plot.site data.receiving radar id = RADAR CONFIGURATION POOL.rsb
data[radar plot.rsb id.rsb x, radar plot.rsb id.rsb yl.rsb supplementary
radar plot.plot status = SUPPLEMENTARY
else
radar piot.plot status = NULL
end if
end if

return.

A1.7

-

j -

317 __ Weather Map Filtering

Weather map messages are subjected to a different type of rho-theta filtering from radar target
messages. A weather rho-theta filter mask consists of 32 equal segments (of 128 ACP's), each of
which has associated with it a limiting value. Weather map messages whose range start value is
greater than the limiting value are discarded. Those whose range stop value is greater than the
limiting value have their range stop values replaced by the limiting value. Those whose range stop
value is less than the limiting value are accepted unaltered. Weather rho-theta filter masks are
stored, like target rho-theta filters, in the RADAR CONFIGURATION POOL.

Weather map messages are not generated for every sweep of the radar, thus each weather map
message is displayed for a time equivalent to MAP DISPLAY SWEEPS sweeps of the receiving radar.

module: apply weather filter (RADAR CONFIGURATION POOL, radar plot, result)

mask region = jnieger (radar plot.site data.azimuth / 128) + 1
if radar plot.site data.range start > RADAR CONFIGURATION POOL.station data[radar
plot.site data.receiving radar id].weather mask[mask region).limiting range
result = REJECT PLOT
else
if radar plot.site data.range stop > RADAR CONFIGURATION POOL.station data[radar
plot.site data.receiving radar id].weather mask{mask region].limiting range
radar plot.site data.range stop = RADAR CONFIGURATION POOL..station datajradar
plot.site data.receiving radar id].weather mask{mask region].limiting range
end if
result = ACCEPT PLOT
end if

return.

A1.8

_/A

4.1.2 RADAR CONFIGURATION POOL

The Radar Configuration Pool contains the information on radar stations and Radar Sort Boxes
(RSB's) which is used by the Radar Processing activity in the filtering and processing of radar
plots. The data is in two parts:

a) Radar station data. For each radar station, data is stored on site identity,
position, sweep-time, error correction values and the geographical rejection mask filters used in
initial data selection processing.

b) Radar Sort Box data. For each RSB, the identity of the preferred and
supplementary radar sites for that RSB, and the RSB status (whether data is required for
correlation, whether the supplementary site is enabled) are stored. The RSB status information is

maintained by the Tracking activity on the basis of expected track positions and continuity of radar
returns.

The format of the Radar Configuration Pool is as follows:

Radar Configuration Pool
- Control Queye

- Station Data [1..TOTAL STATIONS]
- RadarID
- X Position
- Y Position
- Sweep Time
- Error Data
- Range Correction
- Azimuth Correction
- Rho-Theta Mask [1..64]
- Minimum Range
- Maximum Range
- Weather Mask [1..32]
- Limiting Range

RSB Data [1..64,1..64]
- RSB Preferred
- RSB Supplementary

- RSB Status [1..64,1..64)
- Status of RSB (DATA REQUIRED | NO DATA)
- Supplementary Status (ENABLED | DISABLED)

A1.9

A2 Z Glossary

Symbols used in chapters 3 and 4:

ZN~—

114

-

eq

-

) *

< > &

4

-

]

Introduces new types

The integers; postitive, zero and negative
The natural natural numbers, non negative integers
"of type"

Function (partial)

Function (total)

Relation, i.e. a set of ordered pairs
Cartesian product, denotes ordered pairs
"such that"

Conjunction, "and"

Sequence

Indicates the associated state may change
Indicates the associated state does not change
Denotes variable after an operation
Equality

Inequality

Input variable

Output variable

'Piping’ operation

Anonymous generic parameter

"defined as"

"is a new type defined as”

Exclusive or: disjoint union

Domain or type of preceding function
Inverse function

Number of distinct elements in set
Empty sequence

Sequence joining symbol

"is a member of"

Logical and

Logical or
Logical not

Power set: read as "a set of"

A2.1

- -

ot i hgr

R .

A3 THE Z SPECIFICATION
1 Introduction

This appendix gives the specification of the RADAR PROCESSING
activity in a non-tutorial form. The formal Z parts are presented in
the order that a typical type checker would expect, i.e. definitions
of named items such as variables and schemas must be given before
they are used. The supporting English text has been kept to a
minimum to help keep down the length of the report; normally a Z
specification would be expected to contain a full description of the
requirements. The specification is not exactly that which passed
through RSRE type checker because overloading of the standard
operators such as '+ has been allowed here, a simpler model for
arrays than the one put through the type checker is used, and some
errors may have been introduced by having to re-type on a different
computer.

2 Specification Structure

The RADAR PROCESSING activity carries out the initial radar plot
processing. It takes a digitized radar plot, which has come from one
of a number of surveillance radars, from an input buffer and checks
to see if the plot is from an aircraft target or if it corresponds to a
weather strobe.

If it is a target plot then a time stamp is added and its position is
converted into a common coordinate system. Subject to certain
criteria which are defined later, a plot is then

a) thrown away as not required, or

b) sent for correlation with a track, or

¢) sent for display.

If it is a weather plot, it is either
a) thrown away, or
b) sent for display.

The data flow diagram of the activity is shown in figure 1 (see
chapter 3) which is used as a model for the Z specification. After
processing a plot, the activity repeats the processing with the next
plot. The informal specification of the activity is given by the PDL in
Appendix 1.

In Z, the RADAR_PROCESSING activity structure will be defined by
the schema following expression which corresponds to the data
flow diagram in figure 1:

RADAR-PROCESSING @

(TAKE and TRRGET) » TINE_STAMP » REGISTRATION_COLLIMATION »
R_AZ_FILTER » COORD_CONVERT » RSB_FILTER

or

(TAKE and not TARGET) » UEATHER_FILTER.

A3.1

s g

3 The Z Specification

3.1 Local Z library

Some extraneous pieces of Z have had to be added in order that the
the Z type checker could be used. In particular "EAL types, type
conversions and standard mathematical functions form a "local
library" :-

[REAL]

(xl), (=-2), (—+2), (/) : (REALxREAL)—REAL
<o, O, L, 2 :REAL < REAL

C0S, SIN, SQRT :REAL -» REAL

TO_REAL :2 — RERAL

TO_INTEGER :REAL — 2

The types DISTANCE and REAL are redefined for ease of type checking

DISTANCE & REAL
TINE ¢ 2

3.2 Plot Formats

Types for the plots from the radar sites (from the RADAR DATA
INPUT buffer to be precise) and for displaying are defined by

[SITE_PLOT, DISPLAY_PLOT]
and types for radar identities and secondary radar code are
{ RADAR_ID, SSRCODE]

The following enumerated types occur in plot messages

PLOT_TYPE::= SECONDRRY.REINFORCED|SECONDARY|PRINARY | HEATHER
RUN_LENGTH::= SHORT | LONG
SQUAUK::= NONE | IDENT | EMERGENCY

Plots from the radar sites will be either target data or weather data
defined by the following record schemas

TRARGET_DATA
Hessage_Length: N
Receiving-Radar_ID: ARDAR_ID
Plot_Type: PLOT_TYPE
Range: N

A3.2

o

Azimuth: N

SSR_Code: SSRCODE
Mode_C_Height: N
Time_Deloy: TINE
Run_Length: RUN_LENGTH
Squawk: SQUANK

Plot_Type s WUERTHER

and

UEATHER_DATA:
Message_Length: N
Receiving.Radar_1D: RADAR_ID
Plot_Type: PLOT.TYPE
Rzimuth: N

Start_Range: N

Stop_Range: N

Plot_Type = UEATHER

Note TARGET.DATA is constrained to be not of HEATHER and WEATHER_BATR is
constrained to be of type WEATHER.

Plots are taken from the input buffer and converted into a local plot
format RADAR_PLOT which is defined below. Radar sort box identifiers
and plot status variable are required and these are given by

RSB_10
Rsb_X, Asb_yY : N

PLOT_STATUS::= PREFERRED|SUPPLENENTARY |NULL

The local plot format has to cater for the different structures of
target and weather data. This is accomplished by defining a disjoint
union type

SITE_DATA: :=Target_Data<<TRRGET_DATA>> I Heather_Data<<HEATHER.DATA>>,

where, for example, Target_Datais a function mapping TRRGET_DATA into
SITE-DATA. The inverse function Target.Data™is used later to check if

the Site_Data component of a radar plot is target rather than
weather information.

A3.3

-

RADRR_PLOT
Hessage_Length: N
Site_Data: SITE_DARTA
Timestanp: TIHE
Corrected_R,X,Y: DISTANCE
Rsb_id: RSB_ID
Plot_Status: PLOT_STATUS
Decay_Time: TIHE

3.3 RADAR_CONFIGURATION_POOL

This pool consists of three main components, information about
each radar, radar identities associated with radar sort boxes, and
status information about the sort boxes. The corresponding schema
types are STATION_DATA, RSB_DRTA and RSB_STATUS. The number of radar
stations is given by TOTAL_STATIONS and is kept in a schema called
SYSTEN_PARARNETERS1.

SYSTEN_PARANETERS1
TOTAL_STATIONS :N

STATION_DATA contains a range-theta mask for subsequent sector
filtering of plots and a range based mask for subsequent weather
filtering. Rho_Theta.Mask is sequence of pairs of integers, one pair for
each of 64 azimuth sectors, and each pair is of type

RHO_THETR_NASK —
Minimum_Range :N
Maximua_Range :N

Heather_Mask is a sequence of items, one item for each of 32 azimuth
sectors, and each item of type

LIMITING_RANGE———r—
Limiting_Range :N

STATION_DATA
Radar_ID: RADRA-ID

K_Position, Y_Position :DISTANCE
Sweep_Tine : TINE
Range_Correction :2
Aziauth_Correction :2

A3.4

e e s e o e R g

o G e B e

Rho_Theta_Mask : seq RHO_THETA_MARSK
Ueather_Mask :seq LIMITING_RANGE

* Rho_Theta_Nask = 64
¢ Ueather_Mask = 32

This leaves RSB_DATA and RSB..STATUS to be considered, both of which

are 64 by 64 arrays in the PDL. Here they are modeled by simple
functional mappings:

RSB_DAT @ [RSB_Preferred:RADAR_ID;RSB_Supplementary:RADAR-1D].

RSB_DATR
[A?SB.Data: (¢1..64) x (1..64)) — RSB_DAT

and

STAT::= DATA_REQUIRED | NO_DATA
SUP::= ENRBLED | DISRBLED.
RSB_STAT @ [Status_of_RSB:STAT;Supplenentary_Status:SUP]

RSB_STATUS
[ﬁRSB_Status ¢ ({1..64) x (1..64)) — RSB_STAT

RADARR_CONF IGURATION_POOL

STATION_DATA

Station_Data : PSTATION_DATA
RSB_DATA

RSB_STATUS
SYSTEM_PARANETERSY
8Station_Data =TOTAL_STATIONS

P means the power set, and can be read as "a set of", and * gives the
size (number of distinct elements} of the set.

A3.5

3.4 The 1/0 Channels

The data channels are modeled as sequences:

RRDAR_DATA_INPUT
l Radar_Dota_lInput: seq SITE_PLOT

ARADAR_DATALINPUT
RADAR_DATA.INPUT, RADAR_DATA_INPUT'

CORRELAT JON_DATA_CHANNEL.
Correlation._Data_Channel :seq RADAR_PLOT

ACORRELATION_DATA_CHANNEL
CORRELATION_DATA_CHANNEL, CORRELATION_DATA_CHANNEL'

it

d . PLOT-DISPLAY_CHANNE | ———rmooo———
Piot_Display Channe! :seq DISPLAY_PLOT

APLOT_DISPLAY_CHANNEL
PLOT_DISPLAY_CHANNEL, PLOT_DISPLAY_CHANNEL'

1 3.5 TIMEPOOL

This a general purpose operation which provides the current time.

TIRE-POOL.
tise: TINE
. 3.6 Operations
{ A number of preset parameters are required by the operations and
\“ these are gathered together in the schema below
-4 SYSTEN._PARANETERS2—m

NERM_TRANSNISSION_TINE: TIME
TUENTY_NM: DISTANCE

1 R_TO_NM_CONVERSION : REAL
MIN_RERSONABLE_MOBE_C :N

A3.6

.

P -

VS

i e e R e B e,

NAX_REASONABLE_MODE_C :N
DEFAULT-NMODE-C :N
HODE_C_NM_CONUERSION: REAL
RCP_TO_RADIANS :REAL
NO_CYCLE_TO_DISPLRY :N

3.6.1 TAKE
This operation takes a site_plot off the RADAR_DATA_INPUT buffer,
reformats it and puts in the working space called plot.

TRKE.
ARADAR_DATA_INPUT

site_plot: SITE_PLOT

plot! : RADAR_PLOT
Site_to_radarplot:SITE_PLOT-»RARDAR_PLOT

Radar_Data_Input = <>
Radar_Data_.Input' ~ <site_plot> = Radar_Data_lnput
plot! = Site_to_radarplot(site_plot)

It will be altered by removing a site_plot if one is present, i.e. if the
buffer Radar_Data_lInput is not equal to the empty sequence <>. The
site_plot is taken from the end of the sequence; this is ensured by
stating that the Radar_Data_Input sequence before the operation is
the same as the sequence at the end of the operation with the
site_plot joined () to it. The function Site_to_radarplot converts
the SITE_PLOT format into the RADRR_PLOT format. The details are not
important here.

The output variable plot! is the local radar plot referred to in earlier
text,

3.6.2 TARGET
This operation checks that the variable plot! is of type TRRGET_PLOT.

TARGET
plot! : RADAR_PLOT

plot|.Site_Data ¢« ran Target_.Data

ATARGET
plot?, plot! : RADAR_PLOT

plot?.5ite_Data ¢ ran Target_Data

A3.7

ran is the range operator, and used here to specify all the possible
vales of Target_Data. Note that plot! rather than plot? is used because
the TARGET schema is used to check the output variable of the TAKE
schema (see section 4.2).

3.6.3 TIME_STAMP

The input plot is checked to ensure that it is of type TARGET_DATA
and not WERTHER_DATA. Here time is of type TINE and is a component
of TINE_POOL,and HEAN_TRANSHISSION_TINE is a preset system
parameter.

TINE_STAAP
TINE_POOL
SYSTEH_PARAMETERS2
ATARGET
plot!.Timestanp = time - inplot?.Time_Delay-
HEAN_TRANSMISSION_TINE
shere inpiot?2Target_Data'(piot?.Site_Data)

A slight liberty with conventional use of A is taken since plot is not
actually part of the system state, but it can be thought of as part
of the local Radar Processing state.

3.6.4 REGISTRATION_COLLINATION

This operation removes the small systematic errors from range
and azimuth measurements. The output azimuth is MODULO 4096.

REGISTRATION_COLLINATIOH
RADAR_CONF IGRATION_POOL
ATARGET

sd: STATION_DATA
Rzi_modulo:2—N

sd ¢ Station Doto

sd.Radar_ID = inplot?.Receiving_Radar_10
outplot!.Range = inplot?.Range+sd.Range_Correction
outplot!.Azimuth = Azi_modulo(Rz_corrected)

shere

inplot? # Target_Data'(plot?.Sita_Data)

outplot! @ Target_Data(plot!.Site_Data)
Az_corrected2inplot?.Azimuth + sd.Azimuth_Correction

A3.8

Sy S,

,ék

-

g

The requirement sd ¢« Station_Dota ensures that the radar station
being referred to, is actually in the set of active radar stations kept
in Station_Data.

3.6.5 R_AZ FILTER
This operation rejects a plot if its range does not lie between limits

defined in the RADAR_CONFIGURATION_POOL. Rejection is achieved if the
predicate of the schema evaluates to false.

R_AZ2_FILTER
RADAR_CONF IGURATION_POOL
ATARGET

sd : STATION_DATA

sd ¢ Station-Data

sd.Radar_ID = inplot?.Receiving_Radar_ID

inplot?.Range > Filter.Mininun_Range

inplot?.Range < Filter.Mlaximun_Range

plot! = plot?

shers
inplot?2Target_Data'(plot?.Site_Data)
mosk_regionsinplot?.Azimuth div 64 +1
Filter2sd.Rho_Theta_Nask(mask_region)

The underlying assumption is an azimuth in 12 bits (0-4095) and
sask-region is in the range 1..64.

3.€.6 COORD_CONVERT

This operation makes a correction for slant range and converts the
plot position to system coordinates.

NodeC_0K
SYSTEM_PARANETERS2
ATARGET

(inplot?.Plot_Type = SECONDARY_REINFORCED

~ inplot?.Plot_Type = SECONDARY)}
inptot?.Mode_C_Height 2 MIN_REASONABLE.MNMODE_C
inplot?.Hode_C_Height § MRX_REASONABLE.MODE_C
shere inplot?a3Target_Data'(plot?.Site_Data)

A3.9

.-

“~

slant_range_correction
ATARGET
SYSTEM_PARAMETERS2
NodeC_0K

r? 2 TUENTY.NM and crl = (r? * R_TO_NM_CONUERSION)

v

not(r? 2 THENTY_NA) A ModeC_OK A crl=converti
v
not(r? 2 THENTY_NM) A not(ModeC_OK)acrl=convert2
shers
inplot?eTarget_Data'(plot?.Site Data)
r?2TO_REAL(inplot?.Range)
cri¢plot!.Corrected.R
a¢ (r?*R_TO_NHM_CONUERSION)
be (TO_REAL(inplot?.Mode_C_Height)*NGDE_C_NM_CONVERSION)
c® (TO_REAL(DEFAULT_NMODE.C)*NODE_C_NN_CONVERSION)
converti2 SQRT((a*a) - (b*b))
convert22 SQRT((a*a) - (c*c))

coordinate_conversion
RADAR_CONFIGURATION_POOL
ATARGET,
SYSTEN_PARAMETERS2
sd:STATION_DATA

sd ¢ Station_Data

sd.Radar_I0 = inplot?.Receiving_Radar_.1D

plot!. XK= (cr?*SIN(az?)) + sd.X.Postion

plot). Y= (cn?%C05(az?)) + sd.Y_Position

shere inplot?¢Target_Data'(plot?.5ite_Data)
cr?@pliot?.Corrected R
az?eTO_REAL(inplot?.Aziauth)*ACP_TO_RADIANS

COORD_CONU & slant_range_correction » coordinate_conversion

3.6.7 RSB_FILTER

This operation uses the x,y coordinates of the plot to find the
corresponding radar sort box coordinates. If the plot's radar
matches one of the radars (indicated as preferred or
supplementary) associated with the sort box and the appropriate
status values are set the plot will be put on the correlation buffer. If
no match occurs the plot will be rejected. If a match occurs but the

A3.10

appropriate status values are not set, the plot is sent to the display
bulffer.

The operation consists of two main parts as defined in the schemas
calculate_rsb and rsb_status_filter.

The rsb_status_fiiter corresponds to a complex IF..ENDIF statement
in the main body of the radar processing activity PDL.

calculate_rsb
RADAR_CONF IGURATION_POOL
ATARGET

TO_RSB_ID : REAL-N

plot!.Asb_id.Rsb_X = x?
plot!.Rsb_id.Rsb_¥ = y?
(plot!.Plot_Status=PREFERRED A
plotradar?=rsb_data.RSB_Preferred)
(plot!.Plot_Status=SUPPLENENTARY A
plotradar?srsb_data.RSB_Supplementary)
(plot!.PTot_Stotus=NULL ~
not (plotradar?=rsb_data.RSB_Preferred) -
not {(plotradar?=rsb_data.RSB_Supplementary))

where inplot?2Target_Daota'(plot?.Site_Data)
x?2TO_ASB_ID(plot?.X / TO_REAL(16))+1
y?2TO_RSB_I0(plot?.¥ / TO_REAL(16))+1
rsb_dota®RSB_Dota(x?,y?)
plotradar?2inplot?.Receiving_Radar_10

Operation to put plots on the correlation and display buffers are
needed and given by

To_Correlation
ACORRELATION_DRTA_CHANNEL
plot? :RADARR_PLOT

Correlation_Data_Channel' =
Correlat ion_Data_Channel ~ <plot?>

and

A3.11

To-Display
APLOT_DISPLAY_.CHANNEL

plot? :RADAR_PLOT

Display_Form :RADAR_PLOT -+ DISPLAY_PLOT

Plot_Display Channel‘ = Piot_Display_Channel ™
<Display Fora(plot?)>

rsb_status_filter
RADAR_CONFIGURATION_PGOL
To_Correlation
To_Display

(To_Correlation ~ RSB=on~ plot?.Plot_Status=PREFERRED)
v
(To_Correlation ~ RSB=ona plot?.Plot_Status=SUPPLEMENTARY
~ rsb_status?,.Supplenentary_Status=ENABLED)
v
(ToDisplay ~ not{RSB=on)~ plot?.Plot_Status=PREFERRED)
(ToDisplay ~ not(RSB=on)a plot?.Plot_StatussSUPPLEMENTARY
~ rsb_status?.Supplementary_Status=ENABLED)
shere
x? 2 plot?.Rsb_id.Rsb_X
y? ¢ plot?.Rsb_id.Rsb.Y
rsb_status? ¢ RSB_Status(x?,y?)
RSB ¢ rsb_status?.Status.of_ASB
on ¢ DATA_REQUIRED

Note: Display_fora converts the plot to a form that can be put on the
display buffer. In the original PDL, a plot is also put on the display
buffer if an attempt to put it on the correlation buffer fails because
the buffer is full: that possibility is not considered here,

RSB_FILTER €@ colculate_rsb » rsb_status.i "ter.

3.6.8 WEATHER FILTER

The first part decides if the weather data is needed and adjusts the
values if necessary. The second part sends the data, after setting a
display rate parameter, to the display buffer.

weather_filter
RADAR_CONF IGURATION_POOL
plot?,plot! :RADAR_PLOT
8d:STATION_DATR

Al3.12

Lol 4

e s g < i gt

.[A—....d. .t~ e

g, ._‘L‘_,
oo

plot?.Site_Data ¢ ran Ueather_Data

sd ¢ Station.Data

sd.Radar_10=weather?.Receiving_Radar.1D

weather?,5tart_Range § l1imit?

(weather?.Stop_Range § limit?)v(weather! Stop_Range=linit?)

shers weather?2Ueather_Data™(plot?.Site_Data)
weatherl8lieather_Data(plot!{.Site.Data)
nask?2weather? . Azinuth div 128 + 1
1init?79(sd.Heather_Maosk(nask?)).Limiting_Range

weather_display—
RADAR_.CONF IGURATION_POOL
To_Display

plot! :RADAR_PLOT
sd:STATION_DATA
SYSTEN_PARARMETERS2

plot?.Site_Data ¢ ran Ueather_Data

sd ¢ Station_Data
sd.Rodor_ID=weagther?.Receiving.Radar_ID
plot!.Decay_Time=NO_CYCLE_TO_DISPLAY*sd.Sueep_Tine
To_Display

where weather?2leather_Data'(piot?.Site_Data)

UEATHER_FILTER® weather_filter » weather_display

3.7 The Radar Processing

Finally the radar processing activity is specified in terms of the
above operations by the schema expression:-

RADAR_PROCESSING ¢

(TRKE and TARGET) » TIME_STAHNP » REGISTRATION_COLLIMATION »
R_A2_FILTER » COORD.CONUERT » RSB_FILTER

or

(TAKE and not TARGET) » WEATHER_FILTER.

A3.13

ot

DOCUMENT CONTROL SHEET

LASSIFIED
Overal! security classification of sheet UNCASIE e e e eeer e e e

(4 far us possitle this sheet should contain only unclassified inforsation. 1f it is mecessary fo enter
tlassified inforsation, the box concerned must be marked to indicale the classification eg (F) (L) or {$))

1. DRIC Reference (if known) | 2. Originator's Reference | 3. Agency Reference 4, Report Secur:ty
MEMO 4280 u/c Clase Yicat or
; 5. Originator's Code (if 6. Originator (Corporate Author) Nase and Location
7784000 knovn) ROYAL SIGNALS & RADAR ESTABLISHMENT
ST ANDREWS ROAD, GREAT MALVERN,
. _WORCESTERSHIRE WR14 3PS
Sa. Sponsoring Agency's 6a. Sponsoring Agency {Contract Authority) Name and Location
Code (if known)

7. Title APPLICATION OF Z TO THE SPECIFICATION OF AIR TRAFFIC CONTROL
SYSTEMS, 1

7a. Title in Foreign Language (in the case of transiations)

t. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname, initials| 9(a) autror 2 9{b) authors 3,4... 10. Date po. ref.
SIMCOX L N 1989.4 VP
11, Contract Nusber 12, Period 13. Project 14, Other Reference

15, Distribution statement
UNLIMITED

Descriptors (or keywords)

: continue on separate viece of paoer
- 4

’ Abstract This report describes an initial investigation into the formal specificatid
language Z and its applicability to Air Traffic Control Systems. The software
corresponding to the initial radar plot processing in the multi-radar automatic
* tracking system at the London Air Traffic Control Centre (LATCC) was used in the
investigation. An informal pseudo code description of the radar plct processing
' function was taken as the 'requirements' and converted into a formal specificatiof]
in the Z language. The specification was partly validated using an RSRE Z syntax
and type checking tool. The experiences gained during the exercise are discussed
and potential benefits for the Civil Aviation Authority are highlighted.

: //; (" L - !

=l

$80/48

