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1. Background

The first method developed for solving a shape-from-shading problem was
restricted to surfaces with special reflecting properties [Rindfleisch 661. For the
surfaces that Rindfleisch considered, profiles of the solution can be obtained
by integrating along predetermined straight lines in the image. The general
problem was formulated and solved later [Horn 70, 75], using the method
of characteristic strip expansion applied to the nonlinear first-order partial
differential image irradiance equation. When the light sources and the viewer
are far away from the scene being viewed, use of the reflectance map makes
the analysis of shape-from-shading algorithms much easier [Horn 77] [Horn
& Sjoberg 79]. Several iterative schemes, mostly based on minimization of
some functional containing an integral of the brightness error, arose later
[Woodham 77] [Strat 79] [Ikeuchi & Horn 81] [Kirk 84, 87] [Brooks & Horn 85]
[Horn & Brooks 86] [Frankot & Chellappa 88].

The new method presented here was developed in part as a response
to recent attention to integrability1 [Horn & Brooks 86] [Frankot & Chel-
lappa 88] and exploits the idea of a coupled system of equations for depth and
slope [Harris 86, 87] [Horn 88]. It borrows from well-known variational ap-
proaches to the problem [Ikeuchi & Horn 81] [Brooks & Horn 85 i and an exist-
ing least-squares method for estimating surface shape given a needle map (see
[Ikeuchi 841, chapter 11 in [Horn 86], and [Horn & Brooks 86]). For one choice
of parameters, the new method becomes similar to one of the first iterative
methods ever developed for shape from shading on a regular grid [Strat 79],
while it degenerates into another well-known method [Ikeuchi & Horn 811 for a

different choice of parameters. If the brightness error term is dropped, then it
becomes a surface interpolation method [Harris 86, 87]. The computational ef-
fort grows rapidly with image size, so the new method can benefit from proper
multigrid implementation [Brandt 77, 80, 84] [Brandt & Dinar 79], as can
existing iterative shape-from-shading schemes [Terzopolous 83, 84] [Kirk 84,
87]. Alternatively, one can apply so-called direct methods for solving Poisson's
equations [Simchony, Chellappa & Shao 89].

Linear expansion of the reflectance map about the current ,st- mate of
the surface gradient leads to more rapid convergence. More impor - .y, this
modification often allows the scheme to converge when simpler schemes di-
verge, or get stuck in local minima of the functional. Most existing iterative

shape-from-shading methods handle only relatively simple surfaces and so
could benefit from a retrofit of this idea.

The new scheme was tested on a number of synthetic images of increas-
ing ,4J aplexity, including some generated from digital terrain models of steep,

1 A gradient field is integrable if it is the gradient of some surface height function.
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Figure 1. Reconstruction of surface from shaded image. See text.



2. Review of Problem Formulation 3

wrinkled surfaces, such as a glacial cirque with numerous gullies. Shown in
Figure 1(a) is a shaded view of a digital terrain model, with lighting from
the Northwest. This is the input provided to the algorithm. The underlying
231 x 178 digital terrain model was constructed from a detailed contour map,
shown in Figure 2, of Huntington ravine on the eastern slopes of Mount Wash-
ington in the White Mountains of New Hampshire 2. Shown in Figure 1(b)
is a shaded view of the same digital terrain model with lighting from the
Northeast. This is not available to the algorithm, but is shown here to make
apparent features of the surface that may not stand out as well in the other
shaded view. Figure 1(c) shows a shaded view of the surface reconstructed
by the algorithm, with lighting from the Northwest-it matches Figure 1(a)
exactly. More importantly, the shaded of view of the reconstructed surface
with lighting from the Northeast, shown in Figure 1(d), matches Figure 1(b)
exactly3 .

With proper boundary conditions, the new scheme recovers surface ori-

entation exactly when presented with noise-free synthetic scenes. Previous
iterative schemes do not find the exact solution, and in fact wander away
from the correct solution when it is used as the initial guess. To obtain exact
algebraic solutions, several details of the implementation have to be care-
fully thought through, as discussed in section 6. Simple surfaces are easier to
process-with good results even when several of the implementation choices
are not made in an optimal way. Similarly, these details perhaps may be of
lesser importance for real images, where other error sources could dominate.

In the next few sections we review image formation and other elementary
ideas underlying the usual formulation of the shape-from-shading problem.
Photoclinometry is also briefly reviewed for the benefit of researchers in ma-
chine vision who may not be familiar with this field. We then discuss both
the original and the variational approach to the shape-from-shading problem.
Readers familiar with the basic concepts may wish to skip over this material
and go directly to section 5, where the new scheme is derived. For additional
details see chapters 10 and 11 in Robot Vision [Horn 861 and the collection of
papers, Shape from Shading [Horn & Brooks 891.

2. Review of Problem Formulation

2.1 Image Projection and Image Irradiance

For many problems in machine vision it is convenient to use a camera-centered

coordinate system with the origin at the center of projection and the Z-axis
2The gullies are steep enough to be of interest to ice-climbers.
3 For additional examples of reconstructions from shaded images, see section 7.
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Figure 2. Contour map from which the digital terrain model used
to synthesize Figures 1(a) and (b) was interpolated. The surface was
modelled as a thin plate constrained to pass through the contours at the
specified elevations. The interpolating surface was found by solving the
biharmonic equation, as described at the end of section 5.4.

aligned with the optical axis (the perpendicular from the center of projection
to the image plane)4 . We can align the X- and Y-axes with the image plane
x- and y-axes. Let the principal distance (that is, the perpendicular distance
from the center of projection to the image plane) be f, and let the image plane
be reflected through the center of projection so that we avoid sign reversal of

4In photoclinometry it is customary to use an object-centered coordinate system.
This is because surface shape can be computed along profiles only when strong
additional constraint is provided, and such constraints are best expressed in an
object-centered coordinate system. Working in an object-centered coordinate
system, however, makes the formulation of the shape-from-shading problem con-
siderably more complex (see, for example, [Rindfleisch 661).
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the coordinates. Then the perspective projection equations are
x y

X f - and y=f . (1)

The problem is simplified if we assume that the depth range is small compared
with the distance of the scene from the viewer (which is often the case when
we have a narrow field of view, that is, when we use a telephoto lens). Then
we have

XPTX and Y;zL ,(2)

for some constant Zo, so that the projection is approximately orthographic.

In this case it is convenient to rescale the image coordinates so that we can

write x = X and y = Y. For work on shape from shading it is also convenient

to use z, height above some reference plane perpendicular to the optical axis,

rather than the distance measured along the optical axis from the center of

projection.
If we ignore vignetting and other imaging system defects, then image irra-

diance E at the point (X, y) is related to scene radiance L at the corresponding
point in the scene by [Horn 86]

E = L cos 4 a, (3)

where d is the diameter of the lens aperture, f is the principal distance, and

the off-axis angle a is given by

tan = V +y. (4)

Accordingly, image irradiance5 is a multiple of the scene radiance, with the

factor of proportionality depending inversely on the square of the f-number 6 .

If we have a narrow field of view, the dependence on the off-axis angle a

can be neglected. Alternatively, we can normalize the image by dividing

the observed image irradiance by cos4 a (or whatever the actual vignetting

function happens to be).

We conclude from the above that what we measure in the image is directly

proportional to scene radiance, which in turn depends on the strength and

distribution of illumination sources, the surface micro-structure and surface

orientation.

In order to be able to solve the shape from shading problem from a single

image we must assume that the surface is uniform in its reflecting properties.

If we also assume that the light sources are far away, then the irradiance of

5Grey-levels are quantized estimates of image irradiance.
6The f-number is the ratio of the principal distance to the diameter of the aperture,
that is, fid.
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different parts of the scene will be approximately the same and the incident
direction may be taken as constant. Finally, if we assume that the viewer
is far away, then the direction to the viewer will be roughly the same for all
points in the scene. Given the above, we find that scene radiance does not
depend on the position in space of a surface patch, but only on its orientation.

2.2 Specifying Surface Orientation

Methods for recovering shape from shading depend on assumptions about
the continuity of surface height and its partial derivatives. First of all. since
shading depends only on surface orientation, we must assume that the surface
is continuous and that its first partial derivatives exist. Most formulations
implicitly also require that the first partial derivatives be continuous, and
some even require that second partial derivatives exist. The existence and
continuity of derivatives lends a certain "smoothness" to the surface and allows
us to construct local tangent planes. We can then talk about the local surface
orientation in terms of the orientation of these tangent planes.

There are several commonly used ways of specifying the orientation of a
planar surface patch, including:

* Unit surface normal fi [Horn & Brooks 86];
0 Point on the Gaussian sphere (Horn 84];
* Surface gradient (p, q) [Horn 771;
* Stereographic coordinates (f, g) [Ikeuchi & Horn 81];
" Dip and strike (as defined in geology)';
* Luminance longitude and latitudes;
" Incident and emittance angles (i and e)9 ;

For our purposes here, the components of the surface gradient
az zP = T and q = y, (5)

7 Dip is the angle between a given surface and the horizontal plane, while strike is
the direction of the intersection of the surface and the horizontal plane. The line
of intersection is perpendicular to the direction of steepest descent.

8 Luminance longitude and latitude are the longitude and latitude of a point on
a sphere with the given orientation, measured in a spherical coordinate system
with the poles at right angles to both the direction towards the source and the
direction toward the viewer.

9Incident and emittance angles are meaningful quantities only when there is a single
source; and even then there is a two-way ambiguity in surface orientation unless
additional information is provided. The same applies to luminance longitude and
latitude.
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will be most directly usc ' for specifying surface orientation.
We can convert bc cen different representations easily. For example,

suppose that we are to determine the unit surface normal given the gradient
components. We know that if we move a small distance 6x in x, then the
change in height is 8z = p 6 x (since p is the slope of the surface in the x
direction). Thus (1,0,p)T is a tangent to the surface. If we move a small
distance 6y in y, then the change in height is 6z = q 6y (since q is the slope
of the surface in the y direction). Thus (0, 1, q)T is also a tangent to the
surface. The normal is perpendicular to all tangents, thus parallel to the
cross-product of these particular tangents, that is parallel to (-p, -q, I)T.
Hence a unit normal can be written in the form

1
fi= 1 (-p, q, 1)T (6)=/1 + -p + q 2

Note that this assumes that the z-component of the surface normal is positive.
This is not really a problem since we can only see surface elements whose
normal vectors point within 7r/2 of the direction toward the viewer--other
surface elements are turned away from the viewer.

We can use the same notation to specify the direction to a collimated
light source or a small portion of an extended source. We simply give the
orientation of a surface element that lies perpendicular to the incident light
rays. So we can writelo

= 1 (_p",_qsI1)T '  (7)

1 + pj + q2
for some p, and q,.

2.3 Reflectance Map

We can show the dependence of scene radiance on surface orientation in the
form of the reflectance map R(p, q). The reflectance map can be depicted
graphically in gradient spacei 1 as a series of nested contours of constant
brightness [Horn 77, 86].

The reflectance map may be determined experimentally by mounting a
sample of the surface on a goniometer stage and measuring its brightness un-

der the given illuminating conditions for various orientations. Alternatively,

1 There is a small problem, however, with this method for specifying the direction
toward the light source: A source may be "behind" the scene, with the direction
to the source more than ir/2 away from the direction toward the viewer. In this
case the z-component of the vector pointing toward the light source is negative.

iThe coordinates of gradient space are p and q, the slopes of the surface in the x
and y direction respectively.
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one may use the image of a calibration object (such as a sphere) for which
surface orientation is easily calculated at every point. Finally, a reflectance
map may be derived from a phenomenological model, such as that of a Lam-
bertian surface. In this case one can integrate the product of the bidirectional
reflectance dijtribution function (BRDF) and the given distribution of source

brightness as a function of incident angle [Horn & Sjoberg 79].
An ideal Lambertian surface illuminated by a single point source provides

a convenient example of a reflectance map 12 . Here the scene radiance is given
by R(p, q) = (Eo/7r) cos i, where i is the incident angle (the angle between the
surface normal and the direction toward the source), while E0 is the irradiance
from the source on a surface oriented perpendicular to the incident rays. (The
above formula only applies when i < 7r/2; the scene radiance is, of course, zero
for i > 7r/2.) Now cos i = ft. g, so

R(p,q) = Eo 1 + p p + q+q , (8)Ir v/'I+ p2+ q2 Il+ p2,+ ql

as long as the numerator is positive, otherwise R(p, q) = 0.

2.4 Image Irradiance Equation

We are ncw ready to write down the image irradiance equation

E(x,y) = 03 R(p(x,y),q(x,y)), (9)

where E(x, y) is the irradiance at the poi .t (x, y) in the image, while R(p, q)

is the radiance at the corresponding point in the scene, at which p = p(x, y)
and q = q(, y). The proportionality factor /0 depends on the f-number of the
imaging system (and may include a scaling factor that depends on the units
in which the instrument measures brightness). It is customary to rescale
image irradiance so that this proportionality factor may be dropped. If the
reflectance map has a unique global extremum, for example, then the image
can be normalized in this fashion, provided that a point can be located that
has the corresponding surface orientation13 .

Scene radiance also depends on the irradiance of the scene and a re-

flectance factor (loosely called albedo here). These factors of proportionality

12Note that shape-from-shading methods are most definitely not restricted to Lam-
bertian surfaces. Such special surfaces merely provide a convenient pedagogical
device for illustrating basic concepts.

131f there is a unique maximum in reflected brightness, it is convenient to rescale

the measurements so that this extremum corresponds to E = 1. The same ap-
plies when there is a unique minimum, as is the case for the scanning electron
microscope (SEM).
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can be combined into one that can be taken care of by normalization of im-

age brightness. Then only the geometric dependence of image brightness on

surface orientation remains in R(p, q), and we can write the image irradiance

equation in the simple form

E(x,y) = R(p(x,y),q(x,y)) (10)

or
E(x,y) = R(z.(x,y),zY(x,y)), (11)

where p = z. and q = zY are the first partial derivatives of z with respect
to x and y. This is a first-order partial differential equation that is typically
nonlinear, because the reflectance map in most cases depends nonlinearly on
the gradient.

2.5 Reflectance Map Linear in Gradient

Viewed from a sufficiently great distance, the material in the maria of the
moon has the interesting property that its brightness depends only on lu-
minance longitude, being independer, of luminance latitude [Hapke 63, 65].
When luminance longitude and latitude are related to the incident and emit-
tance angles, it is found that longitude is a function of (cos i/ cos e). From the
above we see that cos i = fi • 9, while cos e -= i • , where i, = (0, 0, 1)T is a
unit vector in the direction toward the viewer. Consequently,

Cos i ft. i 1cosi U 1 (1pp + q.,q). (12)
cos e n v V1 + p2 +q

Thus (cos i/ cos e) depends linearly on the gradient components p and q, and
we can write

R(p,q) = f(cp + sq), (13)

for some function f and coefficients c and s. Both Lommel-Seeliger's and

Hapke's functions fit this mold [Minnaert 61] [Hapke 63, 65]. (For a few other
papers on the reflecting properties of surfaces, see [Hapke 81, 84] [Hapke &

Wells 81] and the bibliography in [Horn & Brooks 89].) We can, without loss

of generality 14, arrange for c2 + s2 = 1.
If the function f is continuous and monotonic1 , we can find an inverse

cp+ sq = f-'(E(x,y)). (14)

14We see that c : s = p, : qs, so that the direction specified in the image by (c,s) is
the direction "toward the source," that is, the projection into the image plane of
the vector i toward the light source.

151f the function f is not monotonic, there will be more than one solution for
certain brightness values. In this case one may need to introduce assumptions
about continuity of the derivatives in order to decide which solution to choose.
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The slope in the image direction (c, s) is

cp+sq 1((xY)). (15)

We can integrate 16 out this slope along the line

x()= xO + and y()= yO + S (16)

to obtain

Z(W = zo + r j f1 (E (x (TI), y (q7)) dt1 . (17)= V C2 + S2 I

An extension of the above approach allows one to take into account perspective
projection as well as finite distance to the light source [Rindfleisch 661. Two
changes need to be made; one is that the reflectance map now is no longer
independent of image position (since the directions to the viewer and the
source vary significantly); and the other that the integral is for the logarithm
of the radial distance from the center of projection, as opposed to distance
measured parallel to the optical axis.

The above was the first shape-from-shading or photoclinometric problem
ever solved in other than a heuristic fashion. The original formuiation was
considerably more complex than described above, as the result of the use of full
perspective projection, the lack of the notion of anything like the reflectance
map, and the use of an object-centered coordinate system [Rindfleisch 66).

Note that we obtain profiles of the surface by integrating along predeter-
mined straight lines in the image. Each profile has its own unknown constant
of integration, so there is a great deal of ambiguity in the recovery of surface
shape. In fact, if z(x, y) is a solution, so is

-(X Y) = z(x,y) + g(sx - cy) (18)

for an arbitrary function g! This is true because

-h = zz + sg'(sx-cy) and Ty = zY -cg'(sx-cy), (19)

so
cp+ sq = cp+ sq, (20)

where j = I and q = Ty. It follows that R(1, q) = R(p, q). This ambiguity can

be removed if an initial curve is given from which the profiles can be started.
Such an initial curve is typically not available in practice. Ambiguity is not
restricted to the special case of a. reflectance map that is linear in the gradient:
Without additional constt :. shape-from-shading problems typically do not
have a unique solution.

1 6 T he integration is, of course, .ed out numerically, since the integrand is derived
from image measuremirtb aiid not represented as an analytic function.
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2.6 Low Gradient Terrain and Oblique Illumination

If we are looking at a surface where the gradient (p, q) is small, we can ap-
proximate the reflectamcc map using series expansion

R(p,q) - R(0, 0) + p Rp(0, 0)+ q Rq(0, 0). (21)

This approach does not work when the reflectance map is rotationally sym-
metric, since the first-order terms then drop out 7 . If the illumination is
oblique, however, we can apply the method in the previous section to get a
first estimate of the surface. Letting c = Rp(O, 0), s = Rq(O, 0) and

f-1 (E(x, y)) = E(x, y) - R(0, 0), (22)

we find that

Z( ) = z0 + VR 0 )1 J 2(,0 o ((xq) y? - R(O, 0)) d77. (23)

(For a related frequency domain approach see (Pentland 88].)

One might imagine that the above would provide a good way to get initial
conditions for an iterative shape from shading method. Unfortunately, this is
not very helpful, because of the remaining ambiguity in the direction at right
angles to that of profile integration. Iterative methods already rapidly get
adequate variations in height along "down-sun profiles," but then struggle for
a long time to try to get these profiles tied together in the direction at right
angles.

The above also suggests that errors in gradients of a computed solution
are likely to be small in the direction towards or away "from the source"
and large in the direction at right angles. It should also be clear that it is
relatively easy to find solutions for slowly undulating surfaces (where p and q
remain small) with oblique illumination (as in [Kirk 87]). It is harder to deal
with cases where the surface gradient varies widely, and with cases where the
source is near the viewer.

3. Brief Review of Photoclinometry

Photoclinometry is the recovery of surface slopes from images [Wilhelms 64]
[Rindfleisch 661 [Lambiotte & Taylor 671 [Watson 68] [Lucchitta & Gambell 701
[Tyler, Simpson & Moore 71] [Rowan, McCauley & Holm 71] [Bonner &
Small 73] [Wildey 75] [Squyres 81] [Howard, Blasius & Cutt 82]. Many papers

17The reflectance map is rotationally symmetric, for example, when the source is
where the viewer is, or when an extended source is symmetrically distributed
about the direction toward the viewer.
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and abstracts relating to this subject appear in places that may seem inacces-
sible to someone working in machine vision [Davis, Soderblom, & Eliason 82]
(Passey & Shoemaker 82] [Davis & McEwen 84) [Davis & Soderblom 83, 841
[Malin & Danielson 84] [Wilson et al. 84] [McEwen 85] (Wilson et al. 85] (For
additional references see [Horn & Brooks 89]). Superficially, photoclinometry
may appear to be just another name for shape from shading. Two different
groups of researchers independently tackled the problem of recovering surface
shape from spatial brightness variations in single images. Astrogeologists and
workers in machine vision became aware of each other's interests only a few
years ago. The underlying goals of the two groups are related, but there are
some differences in approach that may be worthy of a brief discussion.

3.1 Photoclinometry versus Shape from Shading

* First, photoclinometry has focused mostly on profile methods (photo-
clinometrists now refer to existing shape-from-shading methods as area-
based photoclinometry, as opposed to profile-based). This came about
in large part because several of the surfaces of interest to the astroge-
ologist have reflecting properties that allow numerical integration along
predetermined lines in the image, as discussed above in section 2.5 [Rind-
fleisch 661. Later, a similar profile integration approach was applied to
other kinds of surfaces, by using strong assumptions about local surface
geometry instead. The assumption that the surface is locally cylindrical
leads to such a profile integration scheme [Wildey 86], for example. More
commonly, however, it has been assumed that the cross-track slope is
zero, in a suitable object-centered coordinate system [Squyres 81]. This
may be reasonable when one is considering a cross-section of a linearly ex-
tended feature, like a ridge, a graben, or a central section of a rotationally
synnetric feature like a crater.

* The introduction of constraints that are easiest to express in an object-
centered coordinate system leads away from use of a camera-centered
coordinate system and to complex coordinate transformations that tend
to obscure the underlying problem. A classic paper on photoclinometry
[Rindfleisch 66] is difficult to read for this reason, and as a result had little
impact on the field. On the other hand, it must be acknowledged that
this paper dealt properly with perspective projection, which is important
when the field of view is large. In all but the earliest work on shape
from shading [Horn 70, 75], the assumption is made that the projection
is approximately orthographic. This simplifies the equations and allows
introduction of the reflectance map.
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0 The inherent ambiguity of the problem does not stand out as obviously
when one works with profiles, as it does when one tries to fully reconstruct
surfaces. This is perhaps why workers on shape from shading have been
more concerned with ambiguity, and why they have emphasized the im-
portance of singular points and occluding boundaries [Bruss 82] [Deift &
Sylvester 811 [Brooks 83] [Blake, Zisserman & Knowles 85] [Saxberg 88].

* The recovery of shape is more complex than the computation of a set of
profiles. Consequently much of the work in shape from shading has been
restricted to simple shapes. At the same time, there has been extensive
testing of shape from shading algorithms on synthetic data. This is some-
thing that is important for work on shape from shading, but makes little
sense for the study of simple profile methods, except to test for errors in
the procedures used for inverting the photometric function.

0 Shape-from-shading methods easily deal with arbitrary collections of col-
limated light sources and extended sources, since these can be accommo-
dated in the reflectance map by integrating the BRDF and the source
distribution. In astrogeology there is only one source of light (if we ig-
nore mutual illumination or interflection between surfaces), so methods
for dealing with multiple sources or extended sources were not developed.

* Calibration objects are used both in photoclinometry and shape from
shading. In photocinometry the data derived is used to fit parameters to
phenomenological models such as those of Minnaert, Lommel and Seel-
iger, Hapke, and Lambert. In work on shape from shading the numerical
data is at times used directly without further curve fitting. The pa-
rameterized models have the advantage that they permit extrapolation
of observations to situations not encountered on the calibration object.
This is not an issue if the calibration object contains surface elements
with all possible orientations, as it will if it is smooth and convex.

* Normalization of brightness measurements is treated slightly differently
too. If the imaging device is linear, one is looking for a single overall
scale factor. In photoclinometry this factor is often estimated by looking
for a region that is more or less flat and has known orientation in the
cbject-centered coordinate system. In shape from shading the bright.ess
of singular points is often used to normalize brightness measurements
instead. The choice depends in part on what is known about the scene,
what the shapes of the objects are (that is, are singular points or oc-
cluding boundaries imaged) and how the surface reflects light (that is, is
there a unique global extremum in brightness).

* Finally, simple profiling methods usually only require continuity of the
surface and existence of the first derivative (unless there is an ambiguity
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in the inversion of the photometric function whose resolution requires that
neighboring derivatives are similar). Most shape from shading methods
require continuous first derivatives and the existence of second derivatives
(In some cases use is made of the equality of the second cross-derivatives
taken in different order, that is, z.y = ZYZ). This means that these meth-
ods do not work well on scenes composed of objectb that are only piecewise
smooth, unless appropriately modified"8 (but see (Malik & Maydan 891).

3.2 Profiling Methods

We have seen in section 2.5 how special photometric properties sometimes
allow one to calculate a profile by integration along predetermined straight
lines in the image. The other approach commonly used in photoclinometry
to permit simple integration is to make strong assumptions about the surface
shape, most commonly that, in a suitable object-centered coordinate system,
the slope of the surface is zero in a direction at right angles to the direction in
which the profile is being computed. Local surface orientation has two degrees
of freedom. The measured brightness provides one constraint. A second
constraint is needed to obtain a solution for surface orientation. A known
tangent of the surface can provide the needed information. Two common
cases are treated in astrogeology:

(a) features that appear to be linearly extended (such as some ridges and
grabens), in a direction presumed to be "horizontal" (that is, in the local
average tangent plane);

(b) features that appear to be rotationally symmetric (like craters), with
symmetry axis presumed to be "vertical" (that is, perpendicular to the
average local tangent plane).

In each case, the profile is taken "across" the feature, that is, in a direction
perpendicular to the intersection of the surface with the average local tangent
plane. Equivalently, it is assumed that the cross-track slope is zero in the
object-centered coordinate system.

One problem with this approach is that we obtain a profile in a plane
containing the viewer and the light source, not a "vertical" profile, one that is
perpendicular to the average local tangent plane. One way to deal with this
is to iteratively adjust for the image displacement resulting from fluctuations
in height on the surface, using first a scan that really is just a straight line in

18Methods for recovering the shapes of polyhedral objects using shading on the faces
and the directions of the projections of the edges into the image are discussed in
[Sugihara 86 and [Horn 861.
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the image, then using the estimated profile to introduce appropriate lateral
displacements into the scan line, and so on [Davis & Soderblom 84].

It turns out that the standard photoclinometric profile approach can
be easily generalized to arbitrary tangent directions, ones that need not be
perpendicular to the profile, and also to nonzero slopes. All that we need
to assume is that the surface can locally be approximated by a (general)
cylinder, that is, a surface generated by sweeping a line, the generator, along
a curve in space. Suppose the direction of the generator is given by the vector
t = (a, b, c)T. Note that at each point on the surface, a line parallel to the
generator is tangent to the surface. Then, since the normal is perpendicular
to any tangent, we have t • n = 0 at every point on the surface, or just

ap + bq = c. (24)

This, together with the equation E = R(p, q), constitutes a pair of equations
in the two unknowns p and q. There may, however, be more than one solution
(or perhaps none) since one of the equations is nonlinear. Other means must
be found to remove possible ambiguity arising from this circumstance. Under
appropriate oblique lighting conditions, there will usually only be one solution
for most observed brightness values.

From the above we conclude that we can recover surface orientation lo-
cally if we assume that the surface is cylindrical, with known direction of the
generator. We can integrate out the resulting gradient in any direction we
please, not necessarily across the feature. Also, the generator need not lie
in the local tangent plane; we can deal with other situations, as long as we
know the direction of the generator in the camera-centered coordinate system.
Further generalizations are possible, since any means of providing one more
constraint on p and q will do.

In machine vision too, some workers have used strong local assumptions
about the surface to allow direct recovery of surface orientation. For example,
if the surface is assumed to be locally spherical, the first two partial derivatives
of brightness allow one to recover the surface orientation [Pentland 84] [Lee
& Rosenfeld 85]. Alternatively, one may assume that the surface is locally
cylindrical [Wildey 84, 86] to resolve the ambiguity present locally in the
general case.

4. Review of Shape from Shading Schemes

4.1 Characteristic Strips

The original solution of the general shape from shading problem uses the
method of characteristic strip expansion [Horn 70, 75]. The basic idea is quite
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easy to explain using the reflectance map [Horn 77, 86). Suppose that we are
at a point (x, y, z)T on the surface and we wish to extend the solution a small
distance in some direction by taking a step Sx in x and 6y in y. We need to
compute the change in height 6z. This we can do if we know the components
of the gradient, because

6z= P X+qy. (25)

So, as we explore the surface, we need to keep track of p and q in addition to
x, y and z. This means that we also need to be able to compute the changes
in p and q when we take the step. This can be done using

6p = r 6x + s by and bq = s6x + t6y, (26)

where r = zzz, s = zzy = zy, and t = zyy are the second partial derivatives of
the height. It seeras that we need to now keep track of the second derivatives
also, and in order to do that we need the third partial derivatives, and so on.

To avoid this infinite recurrence, we take another tack. Note that we
have not yet used the image irradiance equation E(x, y) = R(p, q). To find
the brightness gradient we differentiate this equation with respect to x and y
and so obtain

E. =.r Rp + s Rq and EY =s Rp + t Rg. (27)

At this point we exploit the fact that we axe free to choose the direction of
the step (6x, 6 y). Suppose that we pick

& = Rp8S and by = Rq g, (28)

then, from equations (26) & (27) we have

6p= E,&8 and 6q = E, 6C. (29)
This is the whole "trick." We can summarize the above in the set of ordinary
differential equations

i = Rp, =Rq, = pRp + qRq

S= E,, = E,, (30)
where the dot denotes differentiation with respect to , a parameter that varies
along a particular solution curve (the equations can be rescaled to make this
parameter be arc length). Note that we actually have more than a mere
characteristic curve, since we also know the orientation of the surface at all
points in this curve. This is why a particular solution is called a characteristic
strip. The projection of a characteristic curve into the image plane is called
a base characteristic.

The base characteristics are predetermined straight lines in the image
only when the ratio i : y = Rp : Rq is fixed, that is when the reflectance
map is linear in p and q. In general, one cannot integrate along arbitrary
curves :n the image. Also, an initial curve is needed from which to sprout the
characteristics strips.
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It turns out that direct numerical implementation of the above equations
does not yield particularly good results, since the paths of the characteristics
are affected by noise in the image brightness measurements and errors tend
to accumulate along their length. In particularly bad cases, the base charac-
teristics may even cross, which does not make any sense in terms of surface
shape. It is possible, however, to grow characteristic strips in parallel and use
a so-called sharpening process to keep neighboring characteristics consistent
[Horn 70, 751. This greatly improves the accuracy of the solution, since the
computation of surface orientation is tied more closely to image brightness
itself rather than to the brightness gradient. This also makes it possible to
interpolate new characteristic strips when existing ones spread too far apart,
and to remove some when they approach each other too closely.

4.2 Rotationally Symmetric Reflectance Maps

One can get some idea of how the characteristics explore a surface by con-
sidering the special case of a rotationally reflectance map, as might apply
when the light source is at the viewer (or when dealing with scanning electron
microscope (SEM) images). Suppose that

R(p,q) f(p 2 + q 2), (31)

then
Rp = 2p f(p 2 +q 2 ) and Rq 2qf,(p2 + q2), (32)

and so the directions in which the base characteristics grow are given by

x = kp and y = kq, (33)

for some k. That is, in this case the characteristics are curves of steepest
ascent or descent on the surface. The extrema of surface height are sources and
sinks of characteristics. These are the points where the surface has maxima
in brightness.

This example illustrates the importance of so-called singular points. At
most image points, as we have seen, the gradient is not fully constrained by
image brightness. Now suppose that R(p, q) has a unique global maximum19 ,
that is

R(p,q) < R(po,qo) for all (p,q) $ (po,qo). (34)

A singular point (X0 , Yo) in the image is a point where

E(xo,yo) = R(po,qo). (35)

At such a point we may conclude that (p, q) = (p0, qo). Singular points in
general are sources and sinks of characteristic curves. Singular points provide

19The same argument applies when the unique extremum is a minimum, as it is in
the case of scanning electron microscope (SEM) images.
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strong constraint on possible solutions [Horn 70, 75] [Bruss 82] [Brooks 83]
[Saxberg 881.

A limb is the image of an occluding boundary, where the surface is tan-
gent to the direction toward the viewer. It has been suggested that occluding
boundaries provide strong constraint on possible solutions [Ikeuchi & Horn 81]
[Bruss 82]. As a consequence there has been interest in representations for
surface orientation that behave well near the occluding boundary, unlike the
gradient, which becomes infinite [Ikeuchi & Horn 81] [Horn & Brooks 86].
Recently there has been some question as to how much constraint occlud-
ing boundaries really provide, given that singular points appear to already
strongly constrain the solution [Brooks 83] [Saxberg 88].

4.3 Existence and Uniqueness

Amazingly, questions of existence and uniqueness of solutions of the shape-

from-shading problem have still not been resolved satisfactorily. One problem
is that it is hard to say anything in general that applies to all possible re-
flectance maps. More can be said when specific reflectance maps are chosen,
such as ones that are linear in the gradient or those that are rotationally
symmetric [Bruss 82].

It has recently been shown that there exist impossible shaded images,
that is, images that do not correspond to any surface illuminated in the spec-
ified way [Szeliski & Horn 89]. It may turn out that almost all images with
multiple singular points are impossible in this sense [Saxberg 88]. This is an
important issue, because it may help explain how our visual system sometimes
determines that the surface being viewed cannot possibly be uniform in its
reflecting properties. One can easily come up with smoothly shaded images,
for example, that do not yield an impression of shape, instead appearing as
flat surfaces with spatially varying reflectance or surface "albedo." (See also
Figure 10 in section 7.2).

4.4 Variational Formulations

As discussed above in section 2.4, in the case of a surface with constant albedo,
when both the observer and the light sources are far away, surface radiance

depends only on surface orientation and not on position in space and the
image projection can be considered to be orthographic 0 . In this case the

20The shape-from-shading problem can be formulated and solved when the viewer
and the light sources are not at a great distance [Rindfleisch 66] [Horn 70, 75],
but then scene radiance depends on position as well as surface orientation, and
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image irradiance equation becomes just

E(x,y) = R(p(x,y),q(x,y)), (36)

where E(x, y) is the image irradiance at the point (x, y), while R(p, q), the
reflectance map, is the (normalized) scene radiance of a surface patch with

orientation specified by the partial derivatives
Oz O

and q (37)

of surface height z(x, y) above some reference plane perpendicular to the op-
tical axis.

The task is to find z(x,y) given the image E(x,y) and the reflectance
map R(p, q). Additional constraints, such as boundary conditions and sin-
gular points, are needed to ensure that there is a unique solution [Bruss 82]
[Deift & Sylvester 81] [Blake, Zisserman & Knowles 851 [Saxberg 881. If we
ignore integrability21, some versions of the problem of shape from shading

may be considered to be ill-posed22 , that is, there is not a unique solution
{p(x,y),q(x,y)} that minimizes the brightness error

J (E(x,Y) - R(pq))2 dx dy. (38)

In fact the error can be made equal to zero for an infinite number of choices for
{p(x, y), q(x, y)}. We can choose one of these solutions by finding the one that

minimizes some functional such as a measure of "departure from smoothness"
+ 22 )2 y,

(p Y +p +qZ + q)dxdy, (39)

while satisfying the constraint E(x, y) = R(p, q). Introducing a Lagrange

multiplier )A(x, y) to enforce the constraint, we find that we have to minimize

JJ((p2 +p2 + q+q2)+ (x,y)(E-R))dxdy. (40)

The Euler equations are

Ap+ A(x,y)Rp =0 and Aq+ A(x,y)Rq =0. (41)

After elimination of the Lagrange multiplier A(x, y), we are left with the pair
of equations

Rq Ap = Rp Aq and E(x, y) = R(p, q). (42)

There may not be any simple convergent iterative scheme for this constrained
variational problem [Horn & Brooks 86] (compare [Wildey 75]).

the notion of a reflectance map is not directly applicable.
21A gradient-field (or needle-diagram) {p(x, y),q(x, y)} is integrable if there exists

some surface height function z(x,y) such that p(x, y) = z,(x,y) and q(x,y) =

zY(X, y), where the subscripts denote partial derivatives.
221f we impose integrability, and provide suitable boundary conditions, then the

shape-from-shading problem is definitely not ill-posed.
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We can approach this problem another way using the "departure from
smoothness" measure in a penalty term [Ikeuchi & Horn 81], looking instead
for a minimum of

(E(xY) -R(p,q)) 2 +A(p'+p2 +q2 +q2) dxdy. (43)

It should be pointed out that a solution of this "regularized" problem is not a
solution of the original problem, although it may be close to some solution of
the original problem [Brooks 85]. In any case, this variational problem leads
to the following coupled pair of second-order partial differential equations:

Ap = -(E(x,y) - R(p, q)) Rp(p, q)

Aq= - (E(x,y) - R(p, q)) Rq(p, q)

Using a discrete approximation of the Laplacian operator 23

{lAf}kl ; _2;(fak - fk4), (45)

where 7 is a local average24 of f, and e is the spacing between picture cells,
we arrive at the set of equations

IA' Pki = KA' Pki + (E(x,y) - R(p,q))Rp(p,q)

tcA'qkl = A%1f + (E(x,y) - R(p,q))Rq(p,q)

where A' = A/e2. This set of equations suggests the iterative scheme

_+1 = i + 1((xl ) -R(p(I q )Rq(p (47)

where the superscript denotes the iteration number 25.

From the above it may appear that R(p, q), Rp(p, q), and Rq(p, q) should
be evaluated using the "old" values of p and q. It turns out that the numerical

stability of the scheme is somewhat enhanced if they are evaluated instead at
the local average values 5 and [Ikeuchi & Horn 81].

One might hope that the correct solution of the original shape-from-
shading problem provides a stable point for the iterative scheme. This is not

too likely, however, since we are solving a modified problem that includes a

23 There are several methods for approximating the Laplacian operator, including
five-point and nine-point approximations. It is well known that, while the nine-
point approximation involves more computation, its lowest-order error term has
a higher order than that of the five-point approximation.

24Here oc = 4 when the local average fkl is computed using the four edge-adjacent
neighbors, while K = 10/3, when 1/5 of the average of the corner-adjacent neigh-
bors is added to 4/5 of the average of the edge-adjacent neighbors (see later).

25These equations are solved iteratively because the system of equations is so large
and because of the fact that the reflectance map R(p, q) is typically nonlinear.
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penalty term. Consequently, an interesting question one might ask about an
algorithm such as this, is whether it will "walk away" from the correct solution
of the original image irradiance equation E(x, y) = R(p, q) when this solution
is provided as an initial condition [Brooks 85]. The algorithm described here
does just that, since it can trade off a small amount of brightness error against
an increase in surface smoothness. At the solution, we have E(x, y) = R(p, q),
so that the right hand sides of the two coupled partial differential equations
(equations (44)) are zero. This implies that if the solution of the modified
problem is to be equal the solution of the original problem then the Laplacians
of p and q must be equal to zero. This is the case for very few surfaces, just
those for which

Az(x,y) = k, (48)

for some constant k. While this includes all harmonic functions, it excludes
most real surfaces, for which adjustments away from the correct shape are
needed to assure equality of the left and right hand sides of equations (44)
describing the solution of the modified problem. In general, this approach pro-
duces solutions that are too smooth, with the amount of distortion depending
on the choice of the parameter A. For related reasons, this algorithm does
well only on simple smooth shapes, and does not perform well on complex,
wrinkled surfaces.

4.5 Recovering Height from Gradient

In any case, we are also still faced with the problem of dealing with the lack
of integrability, that is the lack of a surface z(x, y) such that p(x, y) = z,(x, y)
and q(x,y) = zy(X,y) 26 . We can try to find the surface that has partial
derivatives z, and zY that come closest to matching the computed p(x, y) and
q(x, y) by minimizing

II(zz -p) 2 + (z - q) 2 ) dxdy (49)

This leads to the Poisson equation
AZ = PZ + qy. (50)

Using the discrete approximation of the Laplacian given above (equation (45))
yields

-2Zkl = -ykl - (Pz + qy), (51)

a set of equations that suggests the following iterative scheme:

(n+l ) = n) .{P,)} ') + 1,}( )  (52)
Zkl ZkL K ki Ik1 )

26The resulting gradient field is likely not to be integrable because we have not
enforced the condition py = q,, which corresponds to zzy = zyz.
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where the terms in braces are numerical estimates of the indicated derivatives
at the picture cell (k, 1).

The so-called natural boundary conditions27 here are just

czZ + sz: = cp+ sq, (53)

where (c, s) is a normal to the boundary.

Another way of dealing with the integrability issue is to directly minimize

JJ ((E(X, Y) - R~,q)2+ A (py - q.)') dx dy. (54)

This leads to the coupled partial differential equations [Horn & Brooks 86]

A (pyy - qxy) = (E(x,y) - R(p,q))Rp, (55)

A (qz -pyz) = (E(x,y) - R(p,q))Rq.

This set of equations can also be discretized by introducing appropriate finite
difference approximations for the second partial derivatives pyy, qxx and the
cross derivatives of p and q. An iterative scheme is suggested once one isolates
the center terms of the discrete approximations of py and qz.. This is very
similar to the method developed by Strat, although he arrived at his scheme
directly in the discrete domain [Strat 79]. His iterative scheme avoids the
excessive smoothing of the one described early, but appears to be less stable,
in the sense that it diverges under a wider set of circumstances.

5. New Coupled Height and Gradient Scheme

The new shape-from-shading scheme will be presented through a series of
increasingly more robust variational methods. We start with the simplest,
which grows naturally out of what was discussed in the previous section.

5.1 Fusing Height and Gradient Recovery

One way of fusing the recovery of gradient from shading with the recovery of
height from gradient, is to represent both gradient (p, q) and height z in one
variational scheme and to minimize the functional

JJ ((E(x, y) - R(p, q)) 2 +pk((z. -p)2 + (z. -q)2) ) dx dy. (56)

Note that, as far as p(x, y) and q(x, y), are concerned this is an ordinary calcu-
lus problem (since no partial derivatives of p and q appear in the integrand).
Differentiating the integrand with respect to p(x, y) and q(, y) and setting

27 Natural boundary conditions arise in variational problems where no boundary
conditions are explidtly imposed [Courant & Hilbert 621.
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the result equal to zero leads to

p = z. + -(E- R)Rp,

'(57)1qz, + ±(E - R)Rq.

Now z(x,y) does not occur directly in (E(x,y) - R(p,q)) so we actually just
need to minimize

J ((zz -p) 2 + (z. - q) 2 ) dx dy, (58)

and we know from the previous section that the Euler equation for this vari-
ational problem is just

As = PZ + qV. (59)

We now have one equation for each of p, q and z.

These three equations are clearly satisfied when p = z., q = zY and
E = R. That is, if a solution of the original shape-from-shading problem
exists, then it satisfies this system of equations exactly (whicL is more than
can be said for some other systems of equations obtained using a variational
approach, as pointed out in section 4.4). It is instructive to substitute the
expressions obtained for p and q in pz + qy:

pz + qy = zz + zy, + (E- R)(R,,p i Rpq(Py + q.) + Rqqqy) (60)

- (R'p. + RpRq(py + q.) + R 2q) + (E.Rp + EyRq)Bigr).

Since Az = (p. + qy), we note that the three equations above are satisfied
when

(R px + RpRq(py + q.) + R2q) - (E.Rp + EyRq) (61)

= (E - R)(Rppp. + Rpq(py + qx) + Rqqqy).

This is exactly the equation obtained at the end of section 4.2 in [Horn &
Brooks 86], where an attempt was made to directly impose integrability us-
ing the constraint p. = q . It was stated there that no convergent iterative
scheme had been found for solving this complicated nonlinear partial differ-
ential equation directly. The method described here provides an indirect way
of solving this equation.

Note that the natural boundary conditions for z are once again

czz + szy =cp+ sq, (62)

where (c, s) is a normal to the boundary.

The coupled system of equations above for p, q and z imm,-diately sug-
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gests an iterative scheme

(n+l) =E_)
Pk1 1- I{ +Z-(}-ikRPp

q+) ._ { Zy) + -(E- R)Rq, (63)

ki = Zkjn) E2 , .(,n+1) + {qyl(,+1))zk1+ -- z1 + - ,Pk1 qlki }

where we have used the discrete approximation of the Laplacian for z intro-
duced in equation (45). This new iterative scheme works well when the initial
values given for p, q and z are close to the solution. It will converge to the ex-
act solution if it exists; that is, if there exist a discrete set of values {zk1} such
that {Pkt} and {qkl} are the discrete estimate of the first partial derivatives
of z with respect to x and y respectively and Eki = R(pki, qkl).

In this case the functional we wish to minimize can actually be reduced
to zero. It should be apparent that for this to happen, the estimator used for
the Laplacian must match the sum of the convolution of the discrete estimator
of the x derivative with itself and the convolution of the discrete estimator of
the y derivative with itself. (This and related matters are taken up again in
section 6.2.)

The algorithm can easily be tested using synthetic height data zk1. One
merely estimates the partial derivatives using suitable discrete difference for-
mulae and then uses the resulting values pki and qkl to compute the synthetic
image Ek, = R(pkt, qkl). This construction guarantees that there will be an
exact solution. If a real image is used, there is no guarantee that there is an
exact solution, and the algorithm can at best find a good discrete approx-
imation of the solution of the underlying continuous problem. In this case
the functional will in fact not be reduced exactly to zero. In some cases the
residue may be large. This may be the result of aliasing introduced when
sampling the image, as discussed in section 6.5, or because in fact the image
given could not have arisen from shading on a homogeneous surface with the
reflectance properties and lighting as encoded in the reflectance map-that
is, it is an impossiule shaded image.

The iterative algorithm described in this section, while simple, is not very
stable unless one is close to the exact solution, particularly when the surface
is complex and the reflectance map is not close to linear in the gradient. It
can be improved greatly by linearizing the reflectance map. It can also be
stabilized by adding a penalty term for departure from smoothness. This
allows one to come close to the correct solution, at which point the penalty
term is removed in order to prevent it from distorting the solution. We first
treat the linearization of the reflectance map.
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5.2 Linearization of Reflectance Map

We can develop a better scheme than the one developed in the previous sec-
tion, while preserving the apparent linearity of the equations, by approximat-
ing the reflectance map R(p, q) locally by a linear function of p and q. There
are several options for choice of reference gradient for the series expansion, so
let us keep it general for now at (p0, q0)28. We have

R(p,q) ,R(po,qo)+(p-po)Rp(po,qo)+(q-qo)Rq(po,qo)+" (64)

Again, gathering all of the terms in Pkl and qkj on the left hand sides of the
equations, we now obtain

(pL + R )pk1 + RpRq qkl = tZ. + (E - R - poR - qoRq)Rp,P 2 (65)
RqRppki + 0i + R )qk = jzy + (E - R - poRp - qoRq)Rq,

while the equation for z remains unchanged. (Note that here R, Rp and Rq

denote quantities evaluated at the reference gradient (po, q0)).

It is convenient to rewrite these equations in terms of quantities relative
to the reference gradient (po, qo). Let

6Pkl = Pkl - PO and 6qkl - qkl - qo, (66)
6 z" =z -PO and 6z =zy - qo.

This leads to

(i + R2) 6Pkl + RpRq 6qki = ps 6z, + (E - R)Rp,P 2) (67)
RpRq 6qkt + (Ps + Rq),qkt = /u 6 zy + (E - R)Rq.

(The equations clearly simplify somewhat if we choose (z,, zy) for the reference
gradient (p0, qo).) We can view the above as a pair of linear equations for bpkl
and 6qki. The determinant of the 2 x 2 coefficient matrix,

D =( + R2+ R2)(68)

is always positive, so there is no problem with singularities. The solution is
given by

" bpki = (y + R 2) A - RpRq B,
D (69)

D 6qkl = (p + R2) B - RqRp A,

where
A = i6z. + (E - R)Rp, (70)

B = iz + (E - R)Rq.

This leads to a convenient iterative scheme where the new values are given by
(n+,) (n) n) n (n+) = = + 6qk ,  (71)

Pkl PO 6ki n qkl =0 I
28The reference gradient will, of course, be different at every picture cell, but toavoid having subscripts on the subscripts, we will simple denote the reference

gradient at a particular picture cell by (po, qo).
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in terms of the old reference gradient and the increments computed above.
The new version of the iterative scheme does not require a great deal more
computation than the simpler scheme introduced in section 4.5, since the
partial derivatives Rp and R, are needed in any case.

5.3 Incorporating Departure from Smoothness Term

We now introduce a penalty term for departure from smoothness, effectively
combining the iterative method of [Ikeuchi & Horn 81] for recovering p and
q from E(x, y) and R(p, q), with the scheme for recovering z given p and q
discussed in section 4.5. (For the moment we do not linearize the reflectance
map; this will be addressed in section 5.6). We look directly for a minimum
of

JJ( (E(x, y) - Rp )

+A(p2 + p2 + q2)q ) (72)

+ ip((z. - p)2 + (zy - q)2)) dx dy.

The Euler equations of this calculus of variations problem lead to the following
coupled system of second-order partial differential equations:

A Ap = -(E - R)Rp - pi(z. - p),

A Aq = -(E - R)Rq - p(zy - q), (73)

AZ = px + qy.

A discrete approximation of these equations can be obtained by using the
discrete approximation of the Laplacian operator introduced in equation (45):

icA
T, (pk - pkl) = -(E - R)Rp - 1(z. - Pk),
icA

-2 (qkl - qkj) = -(E - R)Rq - P(zy - qkl), (74)

- (Tk - ZkL) =Pz + 9g.

whcre E, R, Rp, and Rq are the corresponding values at the picture cell (k, 1),
while z., zy, pz and qy are discrete estimates of the partial derivative of z, p
and q there. We can collect the tcrms in Pk, qkl and Zkl on on side to obtain

(i A' + Y)Pk, = (tKA' j~k + Pz-) + (E - R)Rp,

(i A' + p)qk, = (tKA'W'k + PzY) + (E - R)Rq, (75)
K K

f2 2k Zkl (px + qy),

where A' = A/E2. These equations immediately suggest an iterative scheme,
where the right hand sides are computed using the current values of the z1,
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Pkl, and qkl, with the results then used to supply new values for the unknowns
appearing on the left hand sides

From the above it may appear that R(p, q), Rp(p, q), and Rq(p, q) should

be evaluated using the "old" values of p and q. One might, on the other hand,
argue that the local average values j5 and q, or perhaps even the gradient

estimates z_ and zy, are more appropriate. Experimentation suggests that
the scheme is most stable when the local averages p and - are used.

The above scheme contains a penalty term for departure from smooth-

ness, so it may appear that it cannot to converge to the exact solution. Indeed,

it appears as if the iterative scheme will "walk away" from the correct solution
when it is presented with it as initial conditions, as discussed in section 4.4. It

turns out, however, that the penalty term is needed only to prevent instability
when far from the solution. When we come closer to the solution, A' can be

reduced to zero, and so the penalty term drops out. It is tempting to leave

the penalty term out right from the start, since this simplifies the equations
a great deal, as shown in section 5.1. The contribution from the penalty term

does, however, help damp out instabilities when far from the solution and so
should be included. This is pprticularly important with real data, where one

cannot expect to find aai exact solution.

(Note also that the coupled second order partial differential equations

above (equation (76)) are eminently suited for solution by coupled resistive
grids [Horn 881.)

5.4 Relationship to Existing Techniques

" Recently a new method has been developed that combines the itera-
tive scheme discussed in section 4.4 for recovering surface orientation
from shading with a projection onto the subspace of integrable gradients
[Frankot & Chellappa 88). The approach there is to alternately take one
step of the iterative scheme [Ikeuchi & Horn 811 and to find the "nearest"

integrable gradient. This gradient is then provided as initial conditions
for the next step of the iterative scheme, ensuring that the gradient field

never departs fax from integrability. The integrable gradient closest to a
given gradient field is found using orthonormal series expansion and by

exploiting the fact that differentiation in the spatial domain corresponds

to multiplication by frequency in the transform domain.

* Similar results can be obtained by using instead the method described
in section 4.5 for recovering the height z(x, y) that best matches a given

gradient. The resulting surface can then be (numerically) differentiated

to obtain initial values for p(x,y) and q(x,y) for the next step of the
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iterative scheme. This works, but not as well as the new scheme described
in the previous section.

0 Next, note that we obtain the scheme of [Ikeuchi & Horn 81) (who ignore
the integrability problem) discussed in section 4.4, if we drop the depar-
ture from integrability term in the integrand-that is, when p = 0. If we
instead remove the departure from smoothness term in the integrand-
that is, when A = 0-we obtain something reminiscent of the iterative
scheme of [Strat 79], although Strat dealt with the integrability issue in
a different way.

0 Finally, if we drop the brightness error term in the integrand, we obtain
the scheme of [Harris 86, 87] for interpolating from depth and slope. He
minimizes

(A(p, +py +qr +q')+ ((z. -p)2 +(z Y - q)2)) dxdy. (76)

and arrives at the Euler equations

A Ap = -(z- p),
A Aq = -(z. - q), (77)

AZ = Pz + qy.

Now consider that
A(Az) = A(pz + qy). (78)

Since application of the Laplacian operator and differentiation commute
we have

A(Az) = (Ap). + (Aq)y, (79)

or

A A(Az) = -(z,. - p,) - (zy, - qy), (80)

and so
A A(Az) = -Az + (pz + qy) = 0. (81)

So his method solves the biharmonic equation for z, by solving a coupled
set of second-order partial differential equations. It does it in an elegant,
stable way that permits introduction of constraints on both height z and

gradient (p, q). This is a good method for interpolating from sparse depth
and surface orientation data.

The biharmonic equation has been employed to interpolate digital terrain
models (DTMs) from contour maps. Such DTMs were used, for example,
in [Horn & Bachman 78) [Horn 81] [Sjoberg & Horn 83]. The obvious im-
plementations of finite difference approximations of the biharmonic operator,
however, tend to be unstable because some of the weights are negative, and
because the corresponding coefficient matrix lacks diagonal dominance. Also,
the treatment of boundary conditions is complicated by the fact that the
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support of the biharmonic operator is so large. The scheme described above
circumvents both of these difficulties-it was used to interpolate the digital
terrain model used for the example illustrated by Figure 1.

5.5 Boundary Conditions & Nonlinearity of Reflectance Map

So far we have assumed that suitable boundary conditions are available, that
is, the gradient is known on the boundary of the image region to which the
computation is to be applied. If this is not the case, the solution is likely not
to be unique. We may nevertheless try to find a solution by imposing so-called
natural boundary conditions [Courant & Hilbert 62). The natural boundary
conditions for the variational problem described here can be shown to be

CPX+3sp =O and cq, +sqy =O (82)

and
czz + Szy = cp+ sq (83)

where (c, s) is a normal to the boundary. That is, the normal derivative of
the gradient is zero and the normal derivative of the height has to match the
slope in the normal direction computed from the gradient.

In the above we have approximated the original partial differential equa-
tions by a set of discrete equations, three for every picture cell (one each for
p, q and z). If these equations were linear, we could directly apply all the
existing theory relating to convergence of various iterative schemes and how
one solves such equations efficiently, given that the corresponding coefficient
matrices are sparse29 . Unfortunately, the equations are in general not linear,
because of the nonlinear dependence of the reflectance map R(p, q) on the gra-
dient. In fact, in deriving the above simple iterative scheme, we have treated

R(p, q), and its derivatives, as constant (independent of p and q) during any
particular iterative adjustment of p and q.

5.6 Local Linear Approximation of Reflectance Map

In section 5.2 we linearized the reflectance map in order to improve the simple
scheme developed in section 5.1. We now do the same for the more complex
scheme described in section 5.4. We have

R(p,q) R(po,qo)+(p-po)Rp(po,qo)+(q-qo)Rq(po,qo)+' (84)

Again, gathering all of the terms in Pki and qkl on the left hand sides of the
equations, we now obtain

(A" + R2)pk1 + RpRq qki

29 See [Lee 88] for a proof of convergence of an iterative shape-from-shading scheme.
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= (rA'Pkl + Pz.) + (E - R - poRp - qoRq)Rp,

RqRp pkl + (A" + R') qkl (85)

= (xV kt + pzy) + (E - R - poRp - qoRq)Rq,

while the equation for z remains unchanged. (Note that here R, Rp and Rq
again denote quantities evaluated at the reference gradient (p0, qo)). In the
above we have abbreviated A" = t' + p.

It is convenient to rewrite these equations in terms of quantities defined
relative to the reference gradient:

6pL = pi - po and 6 qki = qkt - qo

bPkI = Pl - PO and qkl = qk1 - qo (86)
6 zz = Z, PO and 6 zY = zY-qo

This yields

(A" + R2) 6pkl + RpRq bqki = rA' 6Pkl + 1p 6zz + (E - R)Rp,P 2) (87)
RpR q bqk1 + (A"l + Rq)6qkl "- KA' "i lq + it 6zy + (E - R)Rq.

(The equations clearly simplify somewhat if we choose either p and or z,
and zy for the reference gradient p0 and q0.) We can view the above as a pair
of linear equations for bPk1 and 6 qkl. The determinant of the 2 x 2 coefficient

matrix
D = Af(A" + R2 + R 2 ) (88)

is always positive, so there is no problem with singularities. The solution is

given by
" 6pki = (All + R 2) A - RpRq B,

D~PI("q~ApqB (89)"Dbqkt = (All + R2 ) B - nqnp A, (9

where
A = K' 'Pki + P 5z + (E - R)Rp, (90)
B = KA'.5qkj + p 6z . + (E - R)Rq.

This leads to a convenient iterative scheme where the new values are given by
(n+i) n) + n n) and (n"1) q(f) 6q(n) (91)

P i + h a qkl = 6+

in terms of the old reference gradient and the increments computed above. It
has been determined empirically that this scheme converges under a far wider
set of circumstances than the one presented in the previous section.

Experimentation with different reference gradients, including the old val-
ues of p and q, the local average 5 and q, as well as z. and z. showed that
the accuracy of the solution and the convergence is affected by this choice. It
became apparent that if we do not want the scheme to "walk away" from the
correct solution, then we should use the old value of p and q for the reference

p0 and qo.
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6. Some Implementation Details

6.1 Derivative Estimators and Staggered Grids

In one dimension, it is well-known from numerical analysis that the best finite

difference estimators of even derivatives have odd support, while the best
estimators of odd derivatives have even support. These estimators are "best"
in the sense that their lowest-order error terms have a small coefficient and
that they do not attenuate the higher frequencies as much as the alternative

ones. A good estimator of the second derivative of z, for example, is

1{zzz~ k -: -2(zk-I - 2 zk + Zk+1), (92)

while a good estimator of the first derivative of z is just

{zZ}k (zk+l - Zk). (93)

Note that the latter, like other estimators with even support for odd deriva-
tives, gives an estimate valid at the point midway between samples.

This suggests that one should use staggered grids. That is, the arrays
containing sampled values of p and q (and hence image brightness E) should
be offset by 1/2 pixel in both x and y from those for z (see Figure 3). This

also means that if the image is rectangular and contains n x m pixels, then
the array of heights should be of size (n + 1) x (m + 1). Appropriate two-

dimensional estimators for the first partial derivatives of z then are (see also

[Horn & Schunck 81]):

1{z }k,i ;Z -(Zk,l l - Zk,l + Zk+1,1+1 - Zk+1,1)
f 2(94)

1
Zy }k,I1 1 (Zk+l,l - Zk,1 + Zk+l,1+1 - Zk,1+1)

These can be conveniently shown graphically in the form of the stencils:

1 and 1
2e 1I _-

The results obtained apply to the point (k + 1/2,1 41/2) in the grid of discrete
values of z; or the point (k, 1) in the (offset) discrete grid of values of p and q.

Similar schemes can be developed for the first partial derivatives of p and q

needed in the algorithms introduced here, with the offsets now acting in the
opposite direction.
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Z20 Z2 1  Z2 2  Z2 3

P10 Pil P12

Zl0 Zll Z12 Z13

Poo Pol P02

Zoo Zoi Z02  Z0 3

Figure 3. It is convenient to have the discrete grid for p, q (and hence
for the image E itself) offset by 1/2 pixel in x and 1/2 pixel in y from the

grid for z.

6.2 Discrete Estimators of the Laplacian

Wealso need to obtain local averages based on discrete approximations of the
Laplacian operators. We could simply use one of the stencils

1 1 1
4 4 4

- - 2
-1 1 or -1

62 4 4 E2 
___

.11 1
4 4 4

The second, diagonal, form has a higher coefficient on the lowest-order error
term than the first, edge-adjacent form, and so is usually not used by itself.
The diagonal form is also typically not favored in iterative schemes for solving
Poisson's equations, since it does not suppress certain high frequency comupo-
nents. We can write a stencil for a linear combination of the edge-adjacent
and the diagonal versions in the form

s 1-a a
4 4 4

4 1-a -1 1-a

(a +1) E2  44

a 1-a a

4 1 4 1 4

A judiciously chosen weighted average, namely one for which a = 1/5, is
normally preferred, since this combination cancels the lowest-order error term.
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If we wish to prevent the iterative scheme from "walking away" from the
solution, however, we need to make our estimate of the Laplacian consistent
with repeated application of our estimators for the first partial derivatives.
That is, we want our discrete estimate of Az to be as close as possible to our
discrete estimate of

(zZ). + (zy)y. (95)

It is easy to see that the sum of the convolution of the discrete estimator for
the x-derivative with itself and the convolution of the discrete estimator for
the y-derivative with itself yields the diagonal pattern. So, while the diagonal
pattern is usually not favored because it leads to less stable iterative schemes,
it appears to be desirable here to avoid inconsistencies between discrete es-
timators of the first and second partial derivatives. Experimentation with
various linear combinations bears this out. The edge-adjacent stencil is very
stable and permits over-relaxation (SOR) with a = 2 (see next section), but
leads to some errors in the solution with noisefree input data. The diagonal
form is less stable and requires a reduced value for a, but allows the scheme to
converge to the exact algebraic solution to problems that have exact solutions.

The incipient instability inherent in use of the diagonal form is a reflection
of the fact that if we think of the discrete grid as a checkerboard, then the
"red" and the "black" squares are decoupled 3° . That is, updates of red squares
are based only on existing values on red squares, while updates of black squares
are based only on existing values on black squares. Equivalently, note that
there is no change in the incremental update equations when we add a discrete
function of the form

6zk, = (- 1 )k+ l  (96)

to the current values of the height. The reason is that the estimators of the
first derivatives and the diagonal form of the Laplacian estimator are com-
pletely insensitive to components of this specific (high) spatial frequency 1 .
Fortunately, the iterative update cannot inject components of this frequency
either, so that if the average of the values of the "red" cells initially matches
the average of the values of the "black" cells, then it will continue to do so.
The above has not turned out to be an important issue, since the iteration

30The "red" and "black" squares are the cells for which the sum of the row and
column indexes are even and odd respectively.

31It may appear that this difficulty stems from the use of staggered grids. The

problem is even worse when aligned grids are used, however, because the discrete
estimator of the Laplacian consistent with simple central difference estimators of
the first partial derivatives has a support that includes only cells that are 24 away
from the center. And this form of the Laplacian operator is known to be badly
behaved. We find that there are four decoupled subsets of cells in this case.
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appears to be stable with the diagonal form of the average, that is, for a = 1,
when the natural boundary conditions are implemented with care.

6.3 Boundary Conditions

The boundary conditions have also to be dealt with properly to assure con-
sistency between first- and second-order derivative estimators. In a simple
rectangular image region, the natural boundary conditions for z could be
implemented by simply taking the average of the two nearest values of the
appropriate gradient component and multiplying by e to obtain an offset from
the nearest value of z in the interior of the grid. That is, for 1 < k < n and
1 < < m, we could use

Zk,0 = Zk,1 - (pk-1,0 + pk,o)
2 -

zk,m = zk,m. 1 + -(pk-1,m-1 +Pk,m-i)

f * 2(97)
z0,1 = - -(qo,1_1 + q0,j)

z =- z=n-i, + j(qn-1,1-1 + qn-1,I)

on the left, right, bottom and top border of a rectangular image region (the
comers are extrapolated diagonally from the nearest point in the interior using
both components of the gradient). But this introduces a connection between
the "red"and the "black" cells, and so must be in conflict with the underlying
discrete estimators of the derivatives that are being used.

One can do better using offsets from cells in the interior that lie in diag-
onal direction from the ones on the boundary. That is, for 2 < k < n - 1 and
2 < I < m - 1, we use

zk,0 = 1(zk-1,1 - e(Pk-l,o - qk-1,o) + Zk+l,1 - e(pk,o + qk,o))2

Zk,m = 1(Zk-1,M-1 + f(Pk-1,m-1 + qk-l,m-I) + Zk+l,m-1 + E(Pk,m- -- qk,m-)2

Zo,1 = 1 (zij.- + E(po,i-j - qo,1-1) + z,,+1 - e(poj + qo,i))

Zn,1 = (Zn-,1-1 + e(Pn-1,l-1 + qn-1,l-1) + Zn-1,1+, - f(Pn-,l - qn-,l))

(98)
on the left, right, bottom and top border of a rectangular image region. The
comers are again extrapolated diagonally from the nearest point in the interior
using both components of the gradient. Note that, in this scheme, one point
on each side of the corner has to be similarly interpolated, because only one
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of the two values needed by the above diagonal template lies in the interior
of the region.

If the surface gradient is not given on the image boundary, then natural
boundary conditions must be used for p and q as well. The natural boundary
condition is that the normal derivatives of p and q are zero. The simplest
implementation is perhaps, for 1 < k < n - 1 and 1 < I < m - 1,

pk,O = Pk,1

Pk,m-1 =Pk,m-2 (99)

Po, = Pil

Pn-l,l Pn-2,1

and similarly for q (points in the corner are copied from the nearest neighbor
diagonally in the interior of the region). It may be better to again use a
different implementation, where the values for points on the boundary are
computed from values at interior cells that have the same "color." That is,
for 2 < k < n -2 and 2 < 1 < m -2,

1
pk,o = (pk-lj + Pk+,1),

Pk,m-1 = "(Pk-l,m-2 + Pk+l,m-2), (100)
1

Poll = _(p-1 "II + p1,1+1),

1
Pn-l,i = (Pn-2,1-1 + Pn-2,1+l),

and similarly for q. As before, the corner points, and one point on each side
of the corner have to be copied diagonally, without averaging, since only one
of the two values needed lies in the interior of the region.

6.4 Iterative Schemes and Parallelism

There are numerous iterative schemes for solution of large sparse sets of equa-
tions, among them:

0 Gauss-Seidel-with replacement-sequential update;

* Jacobi-without replacement-parallel update;

* Successive Over-Relaxation;

• Kazmarz relaxation;

* Line relaxation.

Successive over-relaxation (SOR) makes an adjustment from the old value
that is a times the correction computed from the basic equations. That is,
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for example,

Skl k1 ki k n )=Z()+ t )_Zn 1 1

where ik ) is the "new" value calculated by the ordinary scheme without over-
relaxation. When a > 1, this amounts to moving further in the direction of
the adjustment than suggested by the basic equations. This can speed up
convergence, but also may lead to instability32 . The Gauss-Seidel method
typically can be sped up in this fashion by choosing a value for a close to
two-the scheme becomes unstable for a > 2. Unfortunately the Gauss-Seidel
method does not lend itself to parallel implementation.

The Jacobi method is suited for parallel implementation, but successive
over-relaxation cannot be applied directly-the scheme diverges for a > 1.
This greatly reduces the speed of convergence. Some intuition may be gained
into why successive over-relaxation cannot be used in this case, when it is
noted that the neighbors of a particular cell, the ones on which the future value
of the cell is based, are changed in the same iterative step as the cell itself.

This does not happen if we use the Gauss-Seidel method, which accounts for
its stability. This also suggests a modification of the Jacobi method, where
the parallel update of the cells is divided into sequential updates of subsets
of the cells. Imagine coloring the cells in such a way that the neighbors of a
given cell used in computing its new value have a different color from the cell
itself. Now it is "safe" to update all the cells of one color in parallel (for an
analogous solution to a problem in binary image processing, see chapter 4 of
[Horn 86]).

Successive over-relaxation can be used with this modified Jacobi method.
If local averages are computed using only the four edge-adjacent neighbors of
a cell, then only two colors are needed (where the colors are assigned according
to whether i + j is even or odd-see Figure 4). Each step of the iteration is
carried out in two sub-steps, one for each of the cells of one color. The above
shows that the improved convergence rates of successive over-relaxation can
be made accessible to parallel implementations.

When the illumination of the surface is oblique (light source away from
the viewer), R(p, q) will tend to be locally approximately linear. This means
that the gradient of R(p, q) will point in more or less the same direction over
some region of the image. The effect of this is that influences on the adjust-
ments of the estimated gradient tend to be much smaller along a direction at
right angles to the direction "away from the light source," than they are along
other directions. This can be seen most easily when the coordinate system
is aligned with the direction toward a single light source in such a way that
32Conversely, if the basic method has a tendency to be unstable, then one can

"under-relax"--that is, use a value a < 1.
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Figure 4. The modified Jacobi method operates on subsets of cells with
different "colors" at different times. In the simplest case, there are only
two colors, one for the cells where the sum of the indexes is even, the other
for the cells where the sum of the indexes is odd.

the reflectance map has bilateral symmetry with respect to the axis q = 0.

Then Rq will be small, at least for gradients near the p-axis. Iv this case the

coefficients on the diagonal of the 2 x 2 matrix may be very different in mag-

nitude. This is analogous to a system of equations being much stiffer in one
direction than another, and suggests that the convergence rate may be lower

in this case. A possible response to this difficulty is the use of line relaxation.

6.5 Aliasing, and How to Avoid It

Discrete samples can represent a continuous waveform uniquely only if the con-
tinuous waveform does not contain frequency components above the Nyquist

rate (wo = 7r/e, where E is the spacing between samples). If a waveform is
sampled that contains higher frequency components, these make contributions

to the sampled result that are not distinguishable from low frequency compo-

nents. If, for example, we have a component at frequency w0 < w < 2w 0 , it
will make the same contributions as a component at frequency 2w0 - w. This

is what is meant by aliasing. Ideally, the continuous function to be sampled

should first be lowpass filtered. Filtering after sampling can only suppress

desirable signal components along with aliased information.

Numerical estimation of derivatives is weakly ill-posed. The continuous

derivative operator multiplies the amplitude of each spatial frequency com-

ponent by the frequency, thus suppressing low frequencies and accentuating

higher frequencies. Any corruption of the higher frequencies is noticeable,
particularly if most of the signal itself is concentrated at lower frequencies.
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This means that we have to be careful how we estimate derivatives and how
we sample the image.

Suppose, for example, that we have an image of a certain size, but that we
would like to run our shape-from-shading algorithm on a smaller version, per-

haps to obtain a result in a reasonable amount of time, or to cheaply provide
useful initial values for iteration on the finer grid. It would be quite wrong
to simply sub-sample the original image. Simple block-averaging is better, al-
though frequency analysis shows that the response of a block-averaging filter

first drops to zero only at twice the Nyquist frequency. It is better to use a
cubic spline approximation of the ideal

sin(rx/E) (102)

(irx/f)
response for filtering before sub-sampling [Rifman & McKinnon 74] [Bern-
stein 761 [Keys 81] [Abdou & Young 82]. There is nothing specific in the above
relating to shape-from-shading; these are considerations that apply generally
to machine vision.

Similar notions apply to processing of the surface itself. If we have a
digital terrain model of a certain resolution and want to generate a lower
resolution shaded image from it, we need to first filter and sample the digital
terrain model. Otherwise the result will be subject to aliasing, and some
features of the shaded image will not relate in a recognizable way to features
of the surface.

Finally, in creating synthetic data it is not advisable to compute the
surface gradient on a regular discrete set of points and then use the reflectance
map to calculate the expected brightness values. At the very least one should
perform this computation on a grid that is much finer than the final image,
and then compute block averages of the result to simulate the effect of finite
sensing element areas-just as is done in computer graphics to reduce aliasing
effects33 .

(This hints at an interesting problem, by the way, since the brightness
associated with the average surface orientation of a patch is typically not quite
equal to the average brightness of the surface, since the reflectance map is not
linear in the gradient. This means that one has to use a reflectance map
appropriate to the resolution one is working at-the reflectance map depends
on the optical properties of the micro-structure of the surface, and what is

micro-structure depends on what scale one is viewing the surface at.)

33 One can obtain good synthetic data, however, with an exact algebraic solution,
by sampling the height on a regular discrete set of pcints and then estimating
the derivatives numerically, as discussed in section 5.1. This was done here to
generate most of the examples shown in section 7.
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6.6 Measuring the Quality of Reconstruction

There are many ways of accessing the quality of the solution surface generated.
Not all are useful:

* In the case of a synthetic image obtained from a surface model, the best
test of the output of a shape-from-shading algorithm is comparison of the
surface orientations of the computed result with thse of the underlying
surface. One can either compute the root-mean-square deviation of the
directions of the computed surface normals from the true surface normals,
or just the root-mean-square difference in the gradients themselves.

" Shading is a function of the surface gradient and thus most sensitive
to higher spatial frequencies. Conversely, in the presence of noise and
reconstruction errors, we expect that the lower spatial frequencies will not
be recovered as well as the higher ones. This makes pointwise comparison
of the heights of the computed surface with that of the original surface
somewhat less useful, since errors in the lower spatial frequencies will
affect this result strongly. Also, errors in height will be a function of the
width of the region over which one has attempted to recover height from
gradient.

" Comparison of an "image" obtained by making brightness a function
of height with a similar "image" obtained from the original surface is
usually also not very useful, since such a representation is not sensitive
to surface orientation errors, only gross errors in surface height. Also,
people generally find such displays quite hard to interpret.

" Oblique views of "wire-meshes" or "block-diagrams" defined by the dis-
crete known points on the surface may be helpful to get a qualitative idea
of surface shape, but can be misleading and are difficult to compare. If
the shape-from-shading scheme is working anything like it is supposed
to, the differences between the solution and the true surface are likely to
be too small to be apparent using this mode of presentation.

" Comparing the original image with an image obtained under the same
lighting conditions from the solution is not useful, since the brightness
error is reduced very quickly with most iterative schemes. Also, a "so-
lution" can have gradient field {pki, qki } that yields exactly the correct
image when illuminated appropriately, yet it may not even be integrable.

In fact, the "surface" may yield an arbitrary second image when illumi-
nated from a different direction unless p and q are forced to be consistent
(that is, unless py = q,) as discussed at the end of section 7.3.

* If the underlying surface is known, shaded views of the solution and
the original surface, produced under lighting conditions different from
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those used to generate the input to the algorithm, are worth comparing.
This is a useful test, that immediately shows up shortcomings of the
solution method. It also is a graphic way of portraying the progress
of the iteration--one that is easier to interpret than a set of numbers
representing the state of the computation.

0 Various measures of departure from integrability may be computed. Per-
haps most useful are comparisons of numerical estimates of (z., zy) with
(p, q). Slighty 'czz useful is the difference (py - q,) o" the solution, since
the height z may still not have converged to the best fit to p and q, even
when the gradient itself is almost integrable.

6.7 When to Stop Iterating

As is the case with many iterative processes, it is difficult to decide when to
stop iterating. If we knew what the underlying surface was, we could just wait
for the gradient of the solution to approach that of the surface. But, other
than when we test the algorithm on synthetic images, we do not know what
the surface is, otherwise we would probably not be using a shape-from-shading
method in the first place! Some other tests quantities include:

" The brightness error

ff (E(xY) - R(pq)) dxdy (103)

should be small. Unfortunately this error becomes small after just a few
iterations, so it does not yield a useful stopping criterion.

* The departure from smoothness

JJP (p +p+ q' +q) dx dy (104)

also drops as the solution is approached, but it does not constitute a par-
ticularly good indicator of approach to the solution. In particular, when
one comes close to the solution, one may wish to reduce the parameters
A, perhaps even to zero, in which case further iterations may actually
reduce smoothness in order to better satisfy the remaining criteria.

* One of the measures of lack of integrability

ff (Py - q) 2 dxdy (105)

is also not too useful, since it can at times become small,or stop changing
significantly, even when z is still inconsistent with p and q.

* Another measure of lack of integrability

JJ((z -p) 2 + (z - q))dxdy (106)
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appears to be very useful, since it drops slowly and often keeps on chang-
ing until the solution has converged.

* One can also keep track of the rate of change of the solution with itera-
tions

.- + d dxjdy. (107)

One should not stop until this has become small. In most cases it helps
to continue for a while after the above measures stop changing rapidly
since the solution often continues to adjust.

Some of the implementation details given above may appear to be extraneous.
However, when all of these matters are attended to, then the iterative algo-
rithm will not "walk away" from the solution, and it will find the solution,
to machine precision, given exact data (and assuming that boundary condi-
tions for p and q are given, and that A' is reduced to zero as the solution is
approached). Convergence to the exact solution will not occur when some-
thing is amiss, such as a mismatch between the discrete estimators of the first
derivative and the discrete estimator of the Laplacian. It is not yet clear how
significant all of this is when one works with real image data, where there is no
exact solution, and where the error introduced by incorrect implementation
detail may be swamped by errors from other sources.

7. Some Experimental Results

The new algorithm has been applied to a number of synthetic images of simple

shapes (such as an asymmetrical Gaussian, a sum of Gaussian blobs, and a
sum of low frequency sinusoidal gratings) generated with a number of different
reflectance maps (including one linear in p and q, Lambertian with oblique
illumination, and a rotationally symmetric one). These synthetic images were
small (usually 64 x 64 picture cells) in order to keep the computational time
down. Typically the surface normals would be within a degree or two of the
correct direction after a few hundred iterations. With appropriate boundary
conditions, the computed shape would eventually be the same (to machine
precision) as the shape used to generate the synthetic image. In each case,
the brightness error decreased rapidly, while the integrability of the estimated
gradient decreased much more slowly.

7.1 Graphical Depiction of Solution Process

For help in debugging the algorithm, and for purposes of determining a good
schedule for adjusting the parameters y and A', it is useful to print out the
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(run-schedule 2)
Larsbdaz 1.090 Mlu: 9.1990 Eps: 1.0000 Alpha-pp; 1.7999 Alpha-z: 1.780 Cor-pq 3.2589 Cor-i 1.9999 (64 X 64)

Iter: G) Grad E: 2.99619 Bright E: 0.52579 tnt-i E: 9.99999 (tnt-pp E: 9.99099) Unsnot,: 3.24685
1ter: 4 Grad E: 0.68296 Bright E: 9.17914 tnt-i E: 1.39119 (tnt-pp E: 0.474S9) Unsmooth: 0.66932 dpa:1.091998 dz:2.173221
Iter: 8 G;rad E: 8.27103 Bright 2: 0.97793 tnt-z E: 8.32173 (tnt-pp E: 9.99847) Unanooth: 0.19669 dpp:9.292286 dz:0.522765
Lamsbda: 9.5088 Mlu: 9.1999 Eps: 1.9999 Alpha-pa: 1.7999 Alpha-i: 1.7009 Car-pp 9.2599 Cor-i 1.9999 (64 X 64)
Iter: 14 Grad E. 0.213493 Bright E, 9.03495 tnt-i E: 9.98297 (tnt-pp E: 9.92512) Unamooth: 9.96249 dop:9.944399 dz:9.979357
Iter: 29 Grad E: 0.29982 Bright E: 9.93317 tnt-i E: 9.96189 (Int-pg E: 9.91987) Unmnoth: 9.05529 dpp:e.996952 di:0.024019
rter: 26 Grad E: 0.29821 Bright E: 9.93297 Int-i E: 9.95496 (tnt-pg Ei 8.91918) Unamoath: 095599 dpp:9.092919 dx:9.916154
Iter: 32 Grad E: 9.29792 Bright E: 9.93269 tnt-i E: 9.05877 (tnt-pp E: 0.01886) Unarsooth: 9.95519 doQ:8.001293 di:0.012275
Lambda% 9.2999 Mlu: 9.199 Epa: 1.090 Alpha-pa: 1.7999 Alpha-i: 1.7998 Cor-pq 0.2599 Car-i 1.9999 (64 X 64)
Iter: 49 Grad E: 9.19785 Bright E: 9.92212 tnt-i E: 9.94226 (tnt-pp E: 9.92146) Unsoath: 0.06969 dpQ:9.e92513 dz:9.011044
tar: 49 Grad E: 9.19496 Bright E: 0.02193 tnt-i E: 0.93885 (tnt-pp E: 9.92111) Unanoath: 9.97909 dpp:0.900822 di:9.807575
Iter: 56 Grad E: 9.18334 Bright E: 0.02174 tnt- _z2: 0.93689 (tnt-pp E: 9.92991) Unsmaoth: 0.97819 dpp:9.008601 dz:9.006001
Iter: 64 G;rad E: 9.19226 Bright E: 0.02169 tnt-i E: 9.83562 (tnt-pq E: 9.92977) Unsmooth: 9.80922 doQ:0.9485 di:0.005006
Lambda: 9.1099 Mlu: 9.1999 Eps: 1.9999 Alpha-pa: 1.7999 Alpha-i: 1.7999 Car-pp 0.25e@ Car-f 1.9999 (64 X 64)
Iter: 99 Grad E: 9.16694 Bright E: 9.91523 tnt-i E: 9.92934 (tnt-pp E: 9.92169) Unsmooth: 0.08152 dpp:9.000535 dz:0.884617
tter: 96 Grad E: 9.16446 Bright E: 9.01516 tnt-i E: 9.02801 (tnt-pp E: 9.92143) Unar900th: 8.99167 dpQ:9.000324 di:0.802881
tter; 112 Grad E: 0.16301 Bright E: 0.01514 tnt-i E: 9.92736 (tnt-pp E: 9.92136) Unsnooth: 0.99179 dpp:0.898252 di:0.002305
Iter: 129 Grad E: 9.16195 Bright E: a.01513 tnt-i E: 0.92696 k1nt-pp E: 9.92131) Unsnooth: 0.98179 dpp:9.080294 dz:0.001920
Lambda: 9.0500 flu: 9.1999 Eps: 1.9999 Alpha-pa: 1.7000 Alpha-i: 1.7999 Car-pp 9.2599 Car-i 1.6999 (64 X 64)
tter: 169 Grad E: 9.14655 Bright E: 9.91822 Int-i E: 9.92194 (tnt-pa E: 9.92962) Unanoath: 0.99233 dop:Q.Ge8219 di:9.091501
tter: 192 Grad E: 8.14411 Bright E: 9.01921 tnt-i E: 9.92155 (tnt-pa E: 9.92956) Unanoath: 0.99246 doa:0.900142 dz:0.891074
tter: 224 Grad E: 9.14252 Bright E: 9.91921 tnt-i E: 9.92138 (tnt-pp E: 0.92052) Unanoath: 8.99253 dpp:9.9917 di:0.000839
hter: 256 Grad E: 9.14139 Bright E: 9.91921 tnt-i E: 9.02129 (tnt-pp E: 9.02049) Unsmoath: 9.99257 dpa:0.999994 dz:0.890673
Lambda: C.929 flu: 9.9899 Eps: 1.9999 Alpha-pa: 1.7999 Alpha-i: 1.799 Car-pp 9.2599 Car-i 1.9909 (64 Xi 64)
tter: 328 Grad E: 8.12432 Bright E: 9.88573 tnt-i E: 0.01760 (tnt-pa E: 9.91893) Unanoath: 9.10434 dop:9.090101 dzt9.620698
tter: 394 Grad E: 9.11974 Bright E: 9.90394 tnt-i E: 9.91262 (Int-pq E: 9.01359) Unanoath: 9.11393 dpp:G.009586 dzz9.901413
tter: 448 Grad E: 9.19616 Bright E: 9.99426 tnt-i E: 9.91341 (tnt-pa E: 9.91483) Unamooth: 9.11413 dpq:8.0l9938 dz:0.804026
Iter: 512 Grad E: 9.1992 Bright E: 9.80391 tnt-i E: 9.91189 (tnt-pa E: 9.91326) Unsnaoth: e.11442 dop:9.99997 di:9.808526
Lambda: 9.9199 Mlu: 0.0500 Epa: 1.9999 Alpha-pp: 1.7999 Rlpha-i:. 1.7999 Car-pa 9.2599 Car-i 1.0099 (64 X 64)
tter: 649 Grad E; 9.99924 Bright E: 0.00378 tnt-i E: e.01167 (tnt-pQ 2: 0.91319) Unamooth; 2.11467 dpp:9.000068 dz:0.009432
Iter: 769 Grad E: 9.99649 Bright Et 9.99376 tnt-i E: 9.91153 (tnt-pp E: 9.91399) Unsnoath: 9.11514 dpa:9.099933 dz:9.900251
tter: 996 Grad E: 9.99519 Bright 2: 9.09374 tnt-i 2: 0.91147 (tnt-pp E: 9.91392) Unsnoath: 9.11537 dpp:e.eee221 dz:8.e9a164
tter:1624 Grad E: 0.09459 Bright E: 9.00373 tnt-i E: 0.91144 (tnt-pp E: 9.91299) Unanoath: 9.11551 dpp:9.89914 dz:9.009111
Lambda: 9.9959 flu: 9.9399 Epa: 1.9999 Alpha-pp: 1.7999 Alpha-i: 1.7999 Car-pp 9.2599 Car-i 1.699 (64 X 64)
tter:1299 Grad E: 9.19298 Bright E: 9.00292 tnt-i E: 9.01598 (tnt-pp E: 9.9195e) Unsnaath: 9.11612 dpp:9.93722 di:0.000633
tter:1536 Grad E: 9.10339 Bright E: 9.09201 tnt-i 2: 9.91592 (tnt-pp E: 9.91941) Unsmaath: 9.11698 dpa:9.893155 dz:0.080624
ItertI792 Grad 2: 9.19336 Bright 2: 9.99291 tnt-2 6: 9.01599 (tnt-pq 6: 9.91939) Unemooth: 9.11609 dpq:9.993297 dz:9.@Ge635
Iter:2948 Grad E: 9.19348 Bright E: 9.88201 tnt-i E: 9.91598 (tnt-pp E: 9.91839) Unsnaath: 9.11607 dpp:9.803141 dz:0.000629
Lambda: 0.9929 flu: 9.9299 Epa: 1.909 Alpha-pp: 1.7999 Alpha-i: 1.79 Car-pp 9.2599 Car-i 1.999 (64 X4 64)
Iter:2304 Grad E: 0.99930 Bright E; 9.99111 tnt-i E: 9.91341 (tnt-pp E: 9.91576) Unsnoath: 9.12242 dpq:0.287526 di:0.991322
Iter:2568 Grad E: 9.8954 Bright E: 9.99119 tnt-i E: 9.91337 (tnt-pp E: 9.91579) Unsnaath: 9.12259 dpa:0.807359 di:0.00129
tter:2B16 Grad E: 9.99932 Bright E: 9.09118 tnt-i E: 0.81336 (tnt-pp E: 9.91569) Unsmaath: 9.12264 dpp:0.007298 dz:0.901277
tter:3972 Grad E: 9.98924 Bright E: 9.09119 tnt-i E: 9.01336 (lot-pp E: 9.91567) Unsmoath: 9.12267 dpa:0.807276 dz:0.001273
Lambda: 9.091 flu: 9.0199 Epa: 1.999 Alpha-pp: 1.7999 Alpha-i: 1.7999 Car-pp 9.2599 Car-i 1.9999 (64 19 64)
tter:3329 Grad E: 9.99969 Bright E: 9.9086 tnt-i 2: 9.91434 (tnt-pp E: 9.01679) Unsnaath: e.12387 dpp:0.811513 dr:9.902398
tter:3584 Grad E: 0.8866 Bright 2: 9.99096 tnt-i 2: 0.91433 (tnt-pp E: 9.91679) Unanoath: 9.12399 dpa:0.011497 di:9.002395
tter:3849 Grad E: 9.08865 Bright 2: 9.99886 tnt-i 6: 9.91433 (tnt-pp 2: 9.91678) Unanoath: 9.12399 dpp:9.011493 di:0.002394
tter:4096 Grad E: 9.99864 Bright E: 9.90086 tnt-i E: 9.01433 (tnt-pq E: 9.91679) Unanaath: 9.12399 dpp:0.911492 di:0.202394
Lamsbda: 9.9995 flu: 9.0999 Epa: 1.9999 Alpha-pp: 1.7909 Alpha-i: 1.7999 Car-pp 9.2599 Car-i 1.0999 (64 X9 64)
tter:4352 Grad E: 9.97698 Bright E: 0.00059 tnt-i E: 9.91111 (tnt-pp E: 9.91299) Unanoath: 9.12955 dpa:0.0137626 dg:0.001396
tter:4608 Grad E: 0.07620 Bright E: 9.9849 tnt-i E: 9.01108 (tnt-pa E: 9.91295) Unsnaath: 9.12875 dpa:0.907546 di:9.001378
tter:4864 Grad E: 0.97597 Bright E: 9.99949 tnt-i E: 9.91197 (tnt-pa E: 9.81284) Unanoath: 9.12992 dpp:9.007509 dz:0.001371
tter:51213 Grad 2: 0.97599 Bright E: 9.0949 tnt-i E: 9.01197 (tnt-pp E: 8.01293) Unsmaath: 9.12995 dpp:0.997494 dz:9.901368
Lambda: 9.903 flu: 9.9979 Epa: 1.0000 Alpha-pp: 1.7999 Alpha-i: 1.7099 Car-pp 9.2599 Car-i 1.9999 (64 X4 64)
Itr:5376 Grad E: 0.06687 Bright E: 0.99030 tnt-i 2: 0.9999 (tnt-pp E: 9.91926) Unanoath: 9.13258 dpa:9.905249 dz:9.099933
tter:5632 Grad E: 9.96629 Bright E: 9.8903e tnt-i E: 9.9987 (tnt-pa E: 9.91922) Unsaoth: 9.13279 dpp:O.e85163 di:8.000917
tter:5999 Grad E: 9.96599 Bright 2: 9.00039 tnt-i E: 9.09887 (tnt-pp 2: 9.91921) Unsmaath: 9.13285 dpa:9.805119 dz:9.0899
tter:6144 Grad E: 9.36599 Bright E: 0.99030 tnt-i E: 9.98896 (tnt-pp E: 9.91929) Unsmaath: 9.13299 dpq:0.095099 di:9.999996
Lambda: 9.9992 flu: 0.0959 Epa: 1.9999 Alpha-pp: 1.7999 Alpha-i: 1.7099 Car-pp 9.2599 Car-i 1.0989 (64 X9 64)
tter:6656 Grad E: 9.96406 Bright E: 9.99925 tnt-i E: 9.99861 (tnt-pp E: 9.99988) Unanaath: 9.13379 dpp:9.995282 di:e.eee968
Itr:7169 Grad E: 9.96399 Bright E: 9.9992 tnt-i 6: 9.99869 (tnt-pp E: 9.09889) Unanaath: 0.13381 dpp:9.005278 di:9.999966
tter:7682 Grad 2: 9.96398 Bright E: 9.99925 tnt-i E: 9.99969 (tnt-pa E: 9.99988) Unnaoth: 9.13391 dpp:9.805269 di:0.009965
Itr:9192 Grad 2: 9.96397 Bright E: 9.99925 tnt-i 2: 9.99969 (tnt-pp E: 9.99988) Unanoath: e.13392 dpp:9.995268 di:9,999965
Lambda: 9.999 flu: 9.9929 Epa: 1.9999 Alpha-pp: 1.7999 Alpha-i: 1.7999 Car-pp 9.2599 Car-i 1.9999 (64 M4 64)
Itr:8704 Grad 2: 9.96941 Bright E: 9.99932 tnt-i E: 0.91912 (tnt-pp 2: 9.91162) Unanoath: 9.13186 dpq:0.007721 di:0.991530
Iter:9216 Grad E: 9.96955 Bright E: 9.99932 Int-i E: 0.91912 (tnt-pp E: 9. 91163) Unsmaath: 0.13182 dpa:@.0740 di:0.801535
tter:9729 Grad 2: 0.06958 Bright E: 9.99932 tnt-i E: 9.91912 (tnt-pp E: 9.01163) Unanoath: 9.13181 dpp:9.eO7744 di:0.901536
tter:19240 Grad E: 9.96958 Bright E: 9.9932 tnt-i 6: 9.91912 (tnt-pp E: 9.91163) Unanaath: 0.13199 dpa:0.87744 di:9.991536
Lambda: 9.8999 flu: 9.8919 Epa: 1.9999 Alpha-pa: 1.7999 Alpha-i: 1.7999 Car-pa 9.2509 Car-i 1.9999 (64 14 64)
tter:19752 Grad 6: 9.91967 Bright E: 9.99891 tnt-i E: 9.90186 (tnt-pp E: 9.99992) Unanaath: 9.16093 dpp:9.000962 di:9.909185
tter:11264 Grad E: 9.09742 Bright E: 9.9099 tnt-i E: O9939 (tnt-pp E: e.00039) Unanaath: 9.16351 dpp:0.009913 di:9.989962
Iter:11776 Grad E: 9.99366 Bright E: 9.9890 tnt-i 2: 9.99917 (tnt-pp E: 9.99914) Unanaath: 0.16446 dpp:0.9985 di:9.999025
Itr:12288 Grad 6: 9.99189 Bright E: 8.99999 tnt-i 6: 9.99996 (tnt-pp E: S.0999) Unamaath: 9.16488 dpp:e.ee9993 di:9.999911

Figure 5. Diagnostic trace of various error measures. This sequence of
results corresponds to the reconstruction of the sharp-edged crater shape
shown in Figure '7. This kind of presentation is important, but must be
supplemented by some graphic depiction of. the evolving solution surface.
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diagnostic measurements discussed in sections 6.6 and 6.7. But it is hard
to tell exactly what is going on just by looking at a large table of numbers
such as that shown in Figure 5. It is important to also provide some graphic
depiction of the evolving shape as it is computed. To make shaded images
of the reconstructed surface useful, however, they must be illuminated from
a direction different from the direction of illumination used for the original
input image34 . Shown in Figure 6, is such a sequence of shaded images gener-
ated during the reconstruction of the surface of a polyhedral object, starting
from a random field of surface orientations. Here the image provided to the
algorithm3 5 corresponded to illumination form the Northwest, while illumi-
nation from the Northeast was used to display the reconstruction. Note how
the edges become sharper as A', controlling the contribution of the penalty
term for departure from smoothness, is made smaller and smaller. This ex-
ample also illustrates the algorithm's ability to deal with surfaces that have
discontinuities in surface orientation.

Because of the interest in application to astrogeology, a crater-like shape
was also reconstructed, as shown in Figure 7. In this case, the algorithm
rapidly found a shape that was generally correct, except for flaws in places on
the rim of the crater in the Northwest and Northeast. These are areas where
there is little contrast between the inside and the outside of the crater in the
input image"6 . It took the algorithm a considerable number of additional
iterations to determine the correct continuation of the shape computed in
other image areas.

7.2 Emergent Global Organization

Often progress towards the correct solution is not as uneventful. Frequently
small internally consistent solution patches will establish themselves, with

discontinuities in surface orientation where these patches adjoin. Also, coni-

cal singularities form that tend to move along the boundaries between such

regions as the iterative solution progresses. Conversely, boundaries between
solution patches often form along curves connecting conical singularities that

form earlier. After a large enough number of iterations, patches of local orga-

nization tend to coalesce and lead to emergent global organization. This can

34The test illumination should be quite different from the illumination used to
generate the original image-preferrably lying in a direction that differs from the
original source direction by as much as ir/2

35 The input image is not shown, but is just like the last image in the sequence
shown, except that left and right are reversed.

36 Again, the input image is not shown, but is like the last image in the sequence
shown, except that left and right are reversed.
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be observed best when V is smaller than what it would normally be set to for
rapid convergence. In Figures 8 and 9, for example, are shown a sequence of
shapes leading finally to a spherical cap on a planar surface. Within some re-
gions, solution surface patches quickly establish themselves that individually
provide good matches to corresponding parts of the input image. The bor-
ders between these internally consistent regions provide error contributions
that the algorithm slowly reduces by moving the boundaries and incremen-
tally changing the shapes within each of the regions. Too rapid a reduction
of A' can remove the incentive to reduce the creases and kinks and to freeze
the solution in a state where some unnecessary discontinuities remain. If, for
example, A' were to be set to zero with a "solution" consisting of a spherical
cap with an inner disk inverted, as in the right hand image of the middle
row of Figure 9, there would be no incentive to further reduce the length of
the circular discontinuity, and the smooth solution for this part of the image
would not be found.

The algorithm was also applied to impossible shaded images. Suppose,
for example, that we are dealing with a Lambertian surface illuminated by
a source near the viewer and that there is a dark smudge in the middle of a
large planar region facing us (which appears brightly lit). It turns out that
there is no surface with continuous first derivatives that could give rise to a
shaded image with a simply connected, bounded dark region in the middle
of a bright region [Szeliski & Horn 89]. In Figure 10 we see what happens
when the algorithm attempts to find a solution. Patches grow within which
the solution is consistent with the image, but which yield discontinuities at
boundaries between patches. Conical singularities sit astride these boundaries.
For all random initial conditions tried, the algorithm eventually eliminates all
but one of these conical singularities. The computed surface is in fact a
"solution," if one is willing to allow such singularities.

The graphical method of presenting the progress of the iterative solutions
illustrated above was very helpful in debugging the program and in determin-
ing reasonable schedules for reduction of the parameters A' and t. Shown in
Figure 11 are some examples of what happens when things go wrong. In the
top row are shown instabilities arising in the solution for the crater-like shape,
near the points where there is low contrast between the inside and the outside
of the crater-that is, where there is no local evidence for curvature. These
instabilities can be suppressed by reducing A' more slowly. In the middle row
are shown patterns resulting from various programming errors. Finally, in the
bottom row is shown the propagation of an instability from a free boundary
when A' is set to zero. It appears that the process is not stable when there
are neither boundary conditions for the height nor for the gradient.
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Figure 11. Graphical depiction of instabilities and the effects of pro-

gramming errors. In the top row are shown instabilities resulting from too
rapid reduction of the penalty term for departure from smoothness. The
middle row shows the results of various programming errors. The bottom
row shows waves of instability propagating inwards from a free boundary.
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In the past, shape-from-shading algorithms have often been "tested" by
verifying that the computed gradient field actually generates something close
to the given input image. To show just how dangerous this is, consider Fig-
ure 12, which demonstrates a new non-iterative method for recovering a "sur-
face" given a shaded image. In Figure 12(a), is the input to the algorithm,
while Figure 12(c) is what the gradient field that is constructed by this al-
gorithm looks like when illuminated in the same way as the original surface.
Now Figure 12(b) shows what the original surface looks like when illuminated
from another direction. As a test, we should check that the computed gradi-
ent field looks the same under these illuminating conditions. But behold, it
does not! In Figure 12(d) we see what we get when we use the other illumi-
nating condition. The "trick" here is that the problem of shape from shading
is heavily undercons trained if we are only computing a gradient field and not
enforcing integrability. There are many solutions and we can, in fact, impose
additional constraints. The underlying gradient field here was computed by
solving the photometric stereo equations [Woodham 78, 79, 80, 89] for the two
images in Figures 12(c) and (d) under the two assumed lighting conditions.

The new algorithm has also been applied to synthetic images generated
from more complicated surfaces such as digital terrain models (DTMs) used
earlier in research on interpretation of satellite images of hilly terrain [Horn &
Bachman 78] [Sjoberg & Horn 831 and in automatic generation of shaded over-
lays for topographic maps [Horn 81]. These synthetic images were somewhat
larger (the one used for Figure 1 is of size 231 x 178, for example). In this
case, the simple algorithm, presented in section 5.3, using a regularizing term
would often get trapped in a local minimum of the error function after a small

number of iterations, while the modified algorithm presented in section 5.6,
exploiting the linearization of the reflectance map, was able to proceed to a
solution to machine precision after a few thousand iterations. Most of the
surface normals typically were already within a degree or so of the correct
direction after a few hundred iterations.

The closeness of approach to the true solution depends on several of the
implementation details discussed earlier. In particular, it was helpful to use
the old values of p and q for the reference point in the linearization of R(p, q),
rather than any of the other choices suggested earlier. Also, it helps to use
the diagonal averaging scheme iii Lhe iteration for height rather than the one
based on edge-adjacent neighbors.

7.3 Rating the Difficulty of Shape-from-Shading Problems

Experiments with synthetic shaded images suggests that certain shape-from-
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shading problems are relatively easy, while others are quite difficult. First
of all, basso-relievo37 surfaces (those with only low slopes) are easy to deal
with (see also section 2.6) in comparison with a1to-relievo surfaces (those with

steep slopes). The digital terrain model used for the experiment illustrated
in Figure 1 falls in the latter category, since the sides of the glacial cirque are
steep and the individual gullies steeper still.

Typically the brightness of a surface patch increases the more it is turned
towards the light source. If it is turned too far, however, it becomes so steep
that its brightness once again decreases. There is a qualitative difference
between shape-from-shading problems where none of the surface patches are
turned that far, and those where some surface patches are so steep as to have
reduced brightness. In the latter case, there appears to be a sort of two-
way ambiguity locally about whether a patch is dark because it has not been
turned enough to face the light source or whether it has been turned too far.

This ensures that simplistic schemes will get trapped in local minima where
patches of the solution have quite the wrong orientation. Similarly, the more
sophisticated scheme described here takes many more iterations to unkink the

resulting creases.

The transition between the two situations depends on where the light
source is. The difficulty is reduced when the illumination is oblique (see also
section 2.6). Conversely, the problem is more severe when the light source is
at the viewer, in which case brightness decreases with slope independent of
the direction of the surface gradient. This explains why the algorithm took
longer to find the solution in the case of the spherical cap (Figure 8) since

it was illuminated by a source near the viewer. Tt was more straightforward

to find the solutions for the truncated hexahedron and the crater-like surface
(Figures 6 and 7), both of which where illuminated obliquely. The above
dichotomy is related to another factor: problems where the relevant part of
the reflectance map is nearly linear in gradient are considerably easier to deal
with than those in which the reflectance map displays strong curvatures of

iso-brightness contours.

Smooth surfaces, particularly when convex, can be recovered easily. Sur-
faces with rapid undulations and wrinkles, such as the digital terrain model
surface (Figure 1) are harder. Discontinuities in surface orientation are even

more difficult to deal with. Note that, with the exception of the digital terrain
model, all of the examples given here involve surfaces that have some curves
along which the surface orientation is not continuous. The spherical cap, for
example, lies on a planar surface, with a discontinuity in surface orientation

37 For more regarding the terms basso-relievo, mezzo-relievo and alto-relievo, see
[Koenderink & van Doorn 801.
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where it touches the plane.

Problems where boundary conditions are not available, and where there
are no occluding boundaries or singular points, are ill-posed. Not too surpris-
ingly these tend to lead to instabilities in the algorithm, particularly when
one attempts to reduce the penalty term for departure from smoothness. In
these cases instabilities can be damped out to some extent by enforcing the
image irradiance equation on the boundary by iterative adjustment of the
gradient computed from the discrete approximation of the natural boundary
conditions for p and q. But results have not been promising enough to discuss
here in more detail.

The number of iterations to converge to a good solution appears to grow
almost quadratically with image size (number of rows or columns). This is
because some effects have to "diffuse" across the image. This means that the
total amount of computation grows almost with the fourth power of the (lin-
ear) image size. It is well known that ordinary iterative schemes for solving
elliptic partial differential equations quickly damp out higher spatial frequency
errors, while low frequency components are removed very slowly. The way to
deal with this problem is to use computation on coarser grids to reduce the

low spatial frequency components of the error. This is the classic multigrid
approach [Brandt 77, 80, 84]. It is clear that a true multigrid implementation

(as opposed to a simple pyramid scheme)3" would be required to pursue this
approach further on larger images. This is mostly to cut down on the com-
putational effort, but can also be expected to reduce even further the chance
of getting caught in a local minimum of the error function. Implementation,
however, is not trivial, since the equations are nonlinear, and because there
are boundary conditions. Both of these factors complicate matters, and it is
known that poor implementation can greatly reduce the favorable convergence
rate of the basic multigrid scheme [Brandt 77, 80, 84].

Alternatively, one can apply so-called direct methods for solving Poisson's
equations [Simchony, Chellappa & Shao 89].

8. Conclusion

The original approach to the general shape-from-shading problem requires
numerical solution of the characteristic strip equations that arise from the
first-order nonlinear partial differential equation that relates image irradiance
to scene radiance [Horn 70, 75]. Variational approaches to the problem instead

38A naive approach has one solve the equations on a coarse grid first, with the
results used as initial conditions for a finer grid solution after interpolation. True
multigrid methods are more complex, but also have much better properties.
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minimize the sum of the brightness error and a penalty term such as a measure
of departure from smoothness. These yield second-order partial differential
equations whose discrete approximation on a regular grid can be conveniently
solved by classic iterative techniques from numerical analysis. Several of these
methods, however, compute surface orientation, not height, and do not ensure
that the resulting gradient field is integrable [Ikeuchi & Horn 811 [Brooks &
Horn 85]. One thus has, as a second step, to find a surface whose gradient
comes closest to the estimated gradient field in a least-squares sense (see
[Ikeuchi 84], chapter 11 in [Horn 86], and [Horn & Brooks 86]).

The two steps can be combined, and the accuracy of the estimated surface
shape improved considerably, by alternately taking one step of the iteration for
recovering surface orientation from brightness, and one step of the iteration
that recovers the surface that best fits the current estimate of the surface
gradient. This idea can be formalized by setting up a variational problem
involving both the surface height above a reference plane and the first partial
derivatives thereof. The resulting set of three coupled Euler equations can be
discretized and solved much as the two coupled equations are in the simpler
methods that only recover surface orientation.

Such an iterative scheme for recovering shape from shading has been
developed and implemented. The new scheme recovers height and gradient at
the same time. Linearization of the reflectance map about the local average
surface orientation greatly improves the performance of the new algorithm
and could be used to improve the performance of existing iterative shape-
from-shading algorithms. The new algorithm has been successfully applied to
complex wrinkled surfaces; even surfaces with discontinuities in the gradient.
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