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Abstract

By considering the electron interactions in polyacetylene, it is found

that there exist two gap states in charged solitons of trans-polyacetylene:

one is deep level, and the other is shallow level. The deep one shifts 0.23

eV down (for a positive soliton) or up (for a negative soliton) from the

center of the gap, while the shallow onA is 0.06 eV under the bottom edge of

the conduction band (positive soliton) or above the top edge of the valence

band (negative soliton). These results agree with the absorption spectra of

trans-polyacetylene. Other shallow states outside the energy bands are also

predicted.
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I. Introduction

The most novel concept in conducting polymers is perhaps the soliton

carrier with reversed relation between charge and spin, that is, the charged

1
soliton does not have spin, but the neutral soliton has spin 1/2. Studying

various properties of the soliton is important for understanding many peculiar

2
traits of conducting polymers. One topic is the electron states of the

solLton, especially the bound states trapped by the soliton. Trans-

polyacetylene possesses two-fold degenerate dimerized ground states, phase A

and phase B. When a chain of tran-polyacetylene contains phase A in some part

of the chain and phase B in the rest, a domain wall appears between phases A

and B, which is the soliton. Within phase A or phase B, atoms are arranged in

a periodically dimerized lattice in which electrons move in extended states.

In the region of the domain wall, however, the atomic distribution deviates

from the periodic structure of the dimerization and produces a distortion

potential on electrons. Then the electron can be trapped by this distortion

potential to form bound states around the soliton. The levels of these bound

states are located in the gap, which is the skeleton picture for the origin of

gap states. The problem is to determine how many bound states can exist

around the soliton and where are the locations of their levels. A simple

Hamiltonian to show the soliton is the Su, Schrieffer and Heeger (SSH) model,

in which the electron-electron interaction is neglected. Based on the

electron-lattice interaction alone (the SSH model), it is well known that

there exists a mid-gap state in the electron spectrvm of the soliton. The

level of this bound state sits at the center of the gap. The question is

whether there are any other gap states. We attempt to answer this question in

the present paper.



The difficulty with the SSH model is that it can not be solved

analytically. In order to get a rigorous solution of the soliton, Takayama,

Lin-Liu and Maki (TLM) have introduced the continuum model 3 which can be

solved analytically. For the TIl model it has been rigorously proven that the

soliton has one and clly one electron bound state, which sits at the middle of

the gap. Since then, people have tended to think that the soliton has only

one gap state. Experimentally, both the dopant-induced absorption4 and the

photo-induced absorption 5 in trans-polyacetylene have shown a second

absorption peak whose energy is about half of that of the main peak. It

provides the evidence for the gap state of a soliton produced by the dopants

or the incident photons. Absorption spectra actually indicate that the energy

of the second peak is not exactly equal to one half of the gap, but is about

0.25 eV smaller than half of the gap. It means that the level of the gap

state is shifted from the center of the gap. Such a shift is caused by the
6

electron-electron repulsion, which has to be considered before a reliable

answer can be obtained about the number and locations of bound states of the

soliton.

It should also be pointed out that the TI1 model is a continuum model in

which the molecular structure of the polymer chain has been smeared out.

However, the real polymer chain consists of discrete atoms. The continuum

approximation made in the TLM model may have lost some bound states existing

in the chain with discrete structure. In fact, an earlier work using the SSH

model has revealed that the discrete structure can possnss some shallow
7

electron bound states if the electron-lattice coupling is strong enough. On

the other hand, the photo-induced absorption spectrum demonstrates that there
5

is a cusp sitting on the left-hand side of the main absorption peak. The

separation between the cusp and the top of the main peak is about 0.06 eV.

I
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Such structure in the absorption spectrum also indicates that there is a level

near the band edge. Therefore, both the theory and the experiment suggest

that there are some other bound states in the gap. In order to find a

definite answer, we must include both the electron-lattice and electron-

electron interactions in our investigations of the electron spectrum of the

soliton and consider the discrete structure of the chain.

II. Theoretical formulation

As usual, the electron-lattice and electron-electron interactions are

described by the SSH model H0 and Hubbard model H',

H- t _ ( +(,n )Ct C + Ct, +1_ 2}0  O ( n n+ls n,s n,s n+l,s A n

n,s n

H'- (U/2) Ct C Ct  C (2)
n,s n,s n,-s n,-s

n,s

and the total Hamiltonian is

H - H0 +H' , (3)

where t0 is the hopping constant, A is the electron-lattice coupling constant,

n is the dimensioless displacement of .attice, C t  and C are creation
n n,s n,s

and annihilation operators, respectivley, of an electron on site n with spin

s, and U is the strength of the electron interactions. In the case of

polyacetylene,

t 0- 2.5 eV , A - 0.2 , U - 5 eV (4)
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In the Hartree-Fock approximation, the eigenequation of Hamiltonian (3)

is

,s " to[l + (-1)n(,n + n )Z s

n-I s s(5)toi +('~nl(n +n-1) n-1, $ n. s n., &

where e and Z are the eigenenergy and wave function of the electron in the
P n,p

eigenstate p with spin s, and

X - <Ct  C > (6)
n,s n,-s n,-s

is the self-consistent ground-state average of the electron occupation at site

n with spin -s. The lattice displacement #n is determined by minimizing the

total energy,

.0+r(I , S ,S "Z+
n 4-n+l n!( M)n n -p

;A, sfn u, s
(occ.) (oct.)

(7)

s

Combining Eqs. (5), (6) and (7), and the energy spectrum e and wave

function Zs  of the electron can be obtained by solving these closedn,p

equations numerically. In our calculation, we take a chain with 201 atoms.

For charged solitons, each level is either doubly occupied (negative soliton)

or empty (positive soliton). In this case, the electron states are spin

independent:
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S sS -S

z - Z~s  and e -e . (8)
n,/S n,juA A

III. Results and discussion

The energy spectra of positive and negative solitons are shown in Figs.

1 and 2, respectivley. There are two gap states: deep level ed and shallow

lcvel e s The deep level does not sit at the center of the gap, but shifts

0.23 eV down (positive soliton) or up (negative soliton) from the center of

the gap. The shallow level is 0.06 eV beneath the bottom edge of conduction

band (positive soliton) or above the top edge of valence band (negative

soliton).

For the case of a positive soliton (Fig. 1), both deep and shallow

levels are empty, and the electrons in the valence band can be excited into

higher levels. There are three ways to make a transition: (1) going to the

conduction band, which corresponds to the main absorption peak; (2) going to

the deep level edo which is the second absorption peak, whose energy is 0.23

eV smaller than half of the gap, and which agrees with the dopant and photo-

induced absorption; and (3) going to the shallow level es forming a cusp

which is separated by 0.06 eV from the top of the main peak. The photo-

3
induced absorption has shown evidence of such a cusp.

For the case of a negative soliton (Fig. 2), both deep and shallow

levels are occupied. There are also three transitions: (I) from the valence

band to the conduction band, which is the main absorption peak; (2) from a

deep level ed to the conduction band, which is the second absorption peak; and

(3) from a shallow level e to the conduction band, which is the cusp. The

frequencies of these three transitions are exactly the same as those of a

positive soliton.
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The wave functions Z n, and Zn,d of the shallow and deep levels are

shown in Fig. 3. As expected, the width of the wave function Zn,d of the deep

level is smaller than that of the wave function Z of the shallow level.n,s

Based on the above results, we can theoretically give a schematic

absorption spectrum for the charged solitons shown in Fig. 4, where three

features appear: (1) the main peaks, (2), the second peak and (3) the

shoulder. These features correspond to three absorption lines with some

uncertain broadenings. The strength and broadening of these absorption lines

depend on the density of solitons and the interaction between the solitons and

the surroundings. Further study is needed in order to obtain more details.

Apparently, the skeleton features of our theoretical absorption spectrum are
5

in accord with the photo-induced absorption. In the dopant absorpcton,

besides the main peak and the second peak, there also appears a shoulder near

the main peak.
4

It should be mentioned that there are two more shallow levels c' and e"
s s

sitting outside the bands. For a positive soliton, these two shallow levels

are underneath the bottom edge of the valence band (see Fig. i). For a

negative soliton, they are above the top edge of the conduction band (see Fig.

2). The wave functions of these two shallow levels are shown in Fig. 5.

These two shallow levels will give more features of the absorption spectrum in

the energy region of 5-6 eV. It is therefore of great interest to carry out

experiments to observe the absorption spectrum in that energy region.
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Figure Captions

1. Energy spectium of an electron in a positive soliton.

2. Energy spectrum of an electron in a negative soliton.

3. Electron wave functions of a deep gap state Znd and shallow gap state

Zs

4. Schematic absorption spectrum for the charged solitons.

5. Electron wave functions of two outside shallow states Z' and Z
n,s n,s

r.ij
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