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INTRODUCTION

The search for “optimal” shell finite elements has been underway for necarly two decades.
In recent years, it has further accelerated in light of significant progress in the technology of
shear-deformable C° bending elements (e.g., Refercnces 1-19). Although the main obstacles
for these developments, known as shear and membrane locking phenomena, have been
addressed extensively and several remedial schemes havc been proposed, a viable three-node
doubly curved shear-deformable element, which is the most desirable element for general shell
analysis, has not yet been developed. The purpose of this effort is to derive such an element.

We base our finite element derivation upon Reissner-Mindlin plate theory which will con-
stitute the bending part of the element. To account for the membrane deformations and the
membrane-bending coupling associated with the shell-elemeat curvatures. we shall resort to
Marguerre's shallow shell equations.  Shallow shell elements of this type specialized o the
axisymmetric response proved effective in discretizing shallow as well as deep shell struc-
tures.'* The major advantage of this analytic approach over general shell formulations (c.g..
References 5 and 18) is its inherent simplicity. Herein, the displacements and stress resul-
tants are attributed to the element reference plane. Consequently, integrations are carried
out across the reference plane rather than the curved surface as in the general shell elements.

According to Reissner-Mindlin theory,zo'22

expressed as:

the strain-displacement relations can be

€= (Kpr Kpos Ky} = La(0) ()

T

Y={Y s Y.}

Xz yz = Lz(W) + 16 (2)

where x and y are, respectively, the curvature and transverse shear strain vectors, 8 is the
bending rotation vector

T "
9 = {ey’ex} (*’)

with 8, and 6, denoting the bending rotations about the x and y axes, respectively, w is the
transverse displacement (refer to Figure 1), and the superscript T denotes transpose: L, and
L, are thec lincar differential operators, and I is an identity matrix:
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The Marguerrc membrane strain-displacement relations for a thin shallow shell have the
form:*3
) € = Li(u) + L(E)L,(w) (5)
with
al = {u,v) (6)




where u and v are thc membrane displaccments in the x and y coordinatc directions, respece-
tively; and & = & (x, y) is the initial height ot the shallow shell.

\ Reference Plane

Figure 1. Shallow sheil notation.

One important aspect, which in previous attempts to merge Reissner-Mindlin and
Marguerre theories has not been addressed,”'? is the conceptual difference in the transverse
displacement variables appearing in Equations 2 and 5. In Equation 2, w is a weighted aver-
age transverse displacement across the thickness, whereas in Equation 5, w represents the mid-
surface transverse displacement. The former variable comes into play due to the inclusion ot
shear deformation in Reissner-Mindlin theory; the latter one is a consequence of the Kirch-
hoff thin-regime assumption, which neglects shear deformation. Utilizing Equation 2, the
Kirchhoff thinness constraint reads:

La(w) = - I0. (7)

Replacing Equation 7 into Equation 5 yields the Marguerre membrane strains consistent with
the Reissner-Mindlin strains:

£ = Lx(u) = L1(£)9- ()

The stress resultants, which are attributed to the reference plane of the shell. are related
to the strains through the constitutive law:

T

N = {Nxx’ Nyy’ ny} = Ae M
T _

M= {M_, Myy, Mxy} = Dk (10)
T =

Q= {q,. Qy} = Gy (1n

where A, D, and G are, respectively, the membrane, bending, and transverse shear constitutive
matrices. For an isotropic shell of constant thickness, t, the constitutive matrices arc given by:
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where E is Young's modulus, G is the shear modulus, and v is Poisson’s ratio; k“ = 5/6 is
Reissner’s shear correctivn factor.??

The principle of virtual work can then be employed to derive the finite clement stitfness
equilibrium equations:

H (N'se + Mok + QToy - qéw) dA = O

A
where q is the distributed transverse load'ng, A is the reference plane area, and § denotes
the variational operator.

(12)

FINITE ELEMENT ISSUES

The development of effective curved shear-deformable shell elements is severely hampered
by the “locking phenomena” (extreme stiffening), reflecting the inability of the shell to bend
without stretching (“membrane locking”) and transverse shearing (“shear locking™). The two
phenomena are directly linked to the penalized strain energy which, in its nondimensional
form, can be expressed as:

U(k,Y,€) = Ub(nc) + asUS(Y) + u.mUm(e) (13)

in which Uy(x), Ui (Y), and Uy(€) denote the nondimensional bending, transverse shear, -and
membrane energy integrals; and @ and a, are the nondimensional shear and membrane pen-
alty parameters, respectively. Note that a; = OA*t?) and @ = O[(lcskz)zlt‘:l], where 4 and «:
are, respectively, some characteristic span and curvature of the shalfow shell.™™'*  As the shell
thickness, t, diminishes to zero, both ag and a, approach infinity, thereby enforcing the vanish-
ing shear and membrane strains:

Lo(w) » -18 (Kirchhoff constraints) (14a)

Li(u) » L,;(£)8 (Membrane inextensibility constraints). (14b)

The particular appeal of this theory is that the variational statement, Equation 12,
requires a class of C° continuous approximations for the w, u, and 8 fields (since their high-
est spatial derivative in Equation 12 is of order one) and, therctore. simple shape functions
can be used. On the other hand, constraints, Equation 14, when imposed at the clement
level, posc severe limitations on the kinematic freedom attainable by cach clement. often
resulting in shear and/or membrane locking.




For a successful discretization of the theory, a consistent resolution of the locking deficien-
cies must be sought. In Reference 4, we have elaborated on an approximation strategy deal-
ing effectively with the aforementioned difficulties, which involves a redefinition of the
penalty parameters to allow relaxation of Equation 14 at the element level and an implementa-
tion of appropriate interpolation schemes which may best accommodate Equation 14. We
shall pursue both of these avenues in deriving our three-node shallow shell element.

Review of Penalty Relaxation Concept

The first facet of our approximating strategy deals with the issue of relaxing the enforce-
ment of penalty constraints at the element level.

Concurrently with the element displacement approximations denoted as w", u". and 8"
(hencetorth, h signifies a charactcristic length scale of the discretization), we approximate the
constitutive matrices A and G by incorporating the “clement penalty relaxation™ parameters:

N = 82 As?, Q° - 02 6", M= D" (15)

where the element strains are

h h

Y= L) + 16", W= L, (8" (16)

€h= L1(uh) - L;(E)eh,
and the penalty relaxation parameters are nondimensional positive quantities of the form:
-1
2 £ i=
L (1 + C.a)) (i= m,s) (7

where C; are posmve element constarts, and «; are element analytic penalty parameters.

Note that a; = O(h %) and ap = Of(xe hh2y2? ], where x5 represents some characteristic ini-
tial curvature of the element. The corresponding principle of virtual work for a single cle-
ment approximation takes the form:

fj () Tse® + ) Toel (@) Tsy - qow) da = 0

Ae

where intcgration extends over the element reference plane with A® denoting the clement ref-
erence arca. The resulting element strain energy appears in the basic form of Equation 13,
except that all quantitics are superscribed with h (i.e., element approximations); however, the
element penalty parameters take a fundamentally different torm:

a? =a. /(1 +C.e) (i= m,s). (19)

(18)

An heuristic argument in support of Equation 19 may be stated as follows. As t—=0.

some degree of relaxatlon of constraints, Equation 14, may be upeued as now a', approach
finite penalty values C;’', which for low order elements are of O(1).* These thin-regime pen-
alty numbers (C;') can be scen to be clemcnt/mtcrpolauon dependent.  Thus, higher order
kinematic interpolations may neccessitate larger C (i.e., smaller C,), which will ensure stricter
clement-level enforcement of the vanishing penalty comlramls Equation 14. Conversely. low
order kincmatic interpolations may require smaller C;! to allow for greater element-level relax-
ation of Equation 14. Clearly, in the limiting case when the clement kinematic freedoms are




sufficient to capture the cxact solution of the problem, C;'' can be very large (or simply,
C; = 0), in which case Equation 19 takes on the analytic (unrelaxed) form.

From a practical computational perspective, C; can simply be selected once and for all
(for a pamcular element) from a rather limited series of numencal tests. As the kinematic
approximations improve with the h-refinement (le as h-0, «;¢ —»0) a" approach their ana-
lytic values «;, thus ensuring convergence to the “true” solution both in the constitutive and
kinematic sense.*®''!*  As will be demonstrated by our numerical examp'ss, the penalty
parameter of Equation 19 is responsible for removing whatever spurious constraining may
have existed in the “unrelaxed” element kinematics.

Anisoparametric Interpolation Scheme

A complementary means for enhancing element behavior is by way of appropriate kine-
matic interpolations, termed anisoparametric,!® which can best accommodate the requirements
of Equation 14. The anisoparametric strategy suggests distinctly different degree polynomials
for w, 8, and u to reflect the differences in the order of the differential operators L, and I
in Equation 14a and, likewise, L, and L{(§) in Equation 14b. (These contrast the well-
established isoparametric interpolations; identical degree polynomials for all kinematic vari-
ables.) The specific aim is to design out the unwanted “spurious” constraint equations that
may arise from Equation 14.

To represent the bending gart of the shell element, we adopt the threc-node
anisoparametric plate element, * in which 6, and 6y are interpolated linearly, while w is rep-
resented by a complete quadratic polynomial; throughout the formulation, area-parametric coor-
dinates { = (§;, §, 3) are used as a basic for all interpolations (refer to Figure 2):

h_ (1) ch (2)_h
or= N "'o;

where ND and N@® are the row vectors of linear and quadratic shape functions, respectively.
and

(I=x,y), w'=N (20)

h

WHT = h

={w

CoRERTLNY b (I=x,ys 31,2, k=l,...,6) (20
J

are the vectors of nodal dof.

Adopting the shell clement of constant curvature [i.c.. interpolating § (t) parabolically].
constraints, Equation 14b, necessitate a complete 10-term cubic polynomml tor the u and v
displacements:

= N30 (3) h

, v =N (22)

where N is a row vector of cubic shape functions, and
p

h (vh)T h

(WMT = {u K = {v (k=1,...,10) (23)

i)

are the vectors of nodal dof.




i= (a) Triangle Area-Parametric Coordinates

3 wh Nodal Patterns

Eqs(24) ib) w" Initial and Constrained Nodai Patterns
»—>

Eqs(27) (¢) u" and v" Initial and Constrained Nodal Patterns
b e

initial Constrained
Figure 2.

Evidently, the anisoparametric interpolations produce the same degree polynomial represen-
tations for the left- and right-hand sides of the constraint equations, Equation 14; the condi-
tion that is paramount to improving element behavior in the vanishing thickness regime.

Edge Shear Constraints

Although the initial w" rests on six w" dof (i.e., three corner and three midcedge dot). a
kinematically consistent elimination of the midedge dof is possible a priori to the clement suf-
ness derivation. To obtain a three-node pattern, w" can be constrained by the once-
dimensional cdge constraints: (1)

(k) _ a h h ~ _ ;
Ysz, = E—[ w (S)’s+ en(s) :l = O (k—l’2’3) ("4)

where s denotcs a coordinate running along the k™ Ldg_,c of the trmnuular LleLnl reterence
plane; and 6",(s) is the tangential edge rotation which is related to o «(s) and 8"(s) via an
orthogonal transformallon From Equatlon 24, there results three dctouplcd equations in
terms of the midedge w" dof, which give rise to the constraints:

wi= Wl woel 4w el (25)
c o X X yy

where Wi (q = o, x, y) are 3 x 3 transformation matrices, and

0




hT _ .. h hT _ . h _ A
(Hc) = {wj+3}. (W) = {wj} (3=1,2,3). (26)
Upon substituting Equation 25 into Equation 20, we obtain a three-node intcrpolation for
the transverse displacement.

Edge Membrane Constraints

In the manner analogous to the above dof reduction for wh one-dimensional edge con-
straints can be devised to condense out the intraedge u" and v" dof. The following con-

straint equations provide four edge-compatible relations for each edge:

() (k)
2 [e (9] 3,2' er o
- == °n = 0 (k=1,2,3; p=1,2) (27)
8s” |y  (s) 3s - M ghl gh gh
S n n S S

where uh(s) and vh(s) are cubic displacement fields along and normal to the k-th edge. respec-
tively, and

52 E Eh(C)»q (q= s,n; k=lv2r3\

(28)

are the k-th edge slopes.

By the use of appropriate orthogonal transformauons Equation 27 is expressed in terms
of the shell element variables of interest. namely, u", v", 8", and 0" dof, and algebraically
solved for the intraedge u" and v" dof:

h_ . h h h

u =Uu +U0U6 +U6
c o X X yy
29
vh=Vvh+V6h+V9h (
c o X X vy
where
h,T
(uh) = {uh}, (vh)T = {vb} (i=4,...,9) (30)
C 1 [od 1

and Ug and V, (9 = o. x, y) are 6 x 3 transtormation matrices. Equation 29 is substituted
into the initial interpolations, Equation 22, to give the constrained fields for the membrane
displacements in terms of the corner-node dot and two centroidal dot. The la‘ter dof are con-
densed out statically after the formation of the clement stiffness matrix and consistent load
vector. Consequently, a three-node, 15 dof element pattern is achieved.

Note that the edge constraint procuduru Just described preserve the original polynomial
order ot the constrained variables (w u", and v"); morcover. one can show that the con-
strained fields are fully compatible across clement edges, and they allow for rigid body motion
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without straining. For further details on this procedure and for the explicit form of the
shape functions, refer to references 13 and 14.

The remainder of the formulation follows standard finiie element procedures. Application
of the virtual work statemeni, Equation 18, while performing exact integration (normal quadra-
ture rule,') throughout, yields the element stiffness equations. The issue of the rotational vari-
able normal to the reference plane, 6",, needed to prevent mathematical singularities in the
global coordinates, produces three additional dof for the element (e.g., see Reference 10).

NUMERICAL EXAMPLES

An important step in completing the relaxation methodology of the Finite Elcment Issucs

Section is to obtain appropriate a, parameters and the values tor C, (i = m, s). Hcerein we
adopt the approach developed in Reference 13, where a; are defined as:
- 8 8 o _ . a
e, = pX ki/ b .kb (i=s,m; b - bending) (31)

in which koi' and kob denote tk-: element diagonal stiffness coefficients associated with 8", and
8", dof for the unrelaxed case, i.e., #% = 1. As far as the “optimal” values for C, and C,
these are determined from numerical testing. The shear relaxation constant, C; = 2, has
already been established to ensure free of locking plate-element behavior;'®> C,, = 1 was cho-
sen from the numerical resuits of the present study.

The present element was tested on a series of challenging thin shell problems,‘“‘25 and a
moderately thin shell. To ascertain the influence of the membrane penalty relaxation and the
membrane anisoparametric kinematic field upon element behavior, three versions of the ele-
ment were tested. They are:

e MIN3: A facet triangle (k" = 0) with the shear relaxation (Cs = 2), possessing con-
stant membrane strains, no membrane-bending coupling, and no membrane relaxation
(¢°m = 1)

e MIN3S: A curved triargle with the shear relaxation only (Cs = 2, Cn = 0).

e MIN3SM: A curved element with both the shear and membrane relaxations (Cs = 2,
Cm = 1).

Our findings are summarized as follows.

Test of Rigid-Body Motion: A spectral analysis was performed on the element stitfness
matrix for the facet, singly curved, and doubly curved element geometry, to check MIN3’s abil-
ity to move as a rigid body without incurring any straining. Under all conditions tested. there
resulted six requisite zero eigenvalues associated with rigid body motion.

Thin Cantilevered Arch: A simple test of both membrane inextensibility and shearless
deformation is a 90° thin circular arch clamped at one end and loaded by a bending moment
at the other (Figure 3). An additional modeling difficulty here is that the arch is rather nar-
row (radius/thickness ratio: R/t = 272; width/thickness ratio: B/t = 1), hence the element
aspect ratios arc large. At all discretization levels, a constant value of the applicd bending
moment is recovered in cach element, with all other stress resultants vanishing.  Figure 4
depicts a convergence study of the tip bending rotation, which 1s also a direct measure ot the

8




strain energy for this problem. Note that while MIN3S exhibits considerable membrance stiffen-
ing, MIN3 and MIN3SM experience no such difficulty, converging rather rapidly, with the

facet element being slightly more flexible. Both MIN3 and MIN3SM yield results of accept-
able engineering accuracy, even under coarse discretizations.

CANTILEVERED ARCH

Figure 3. 90° thin cantilevered arch under tip moment (Rt = 272).
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Figure 4. 90° thin cantilevered arch; convergence
study of tip rotation under applied moment.

Open-Ended Pinched Cylinder: The open-ended cylindrical shell subjected to two radial
torces 180 degrees apart (Figure 5) is a widely used test problem to establish how well a sin-
gly curved shell element can represent inextensional bf:nding.l‘5 As t/R-0, pure inextensional
state of deformation is attained in the cylinder.

Figure 6 depicts a nine-node-per-side discretization (128 elements) and its deformed shape
for a symmetric octant of the cylinder. Figures 7 and 8 show convergence studies of the
deflection under the load for the moderately thin (R/t = 50) and thin (R/t = 2000) cylinders.
The present results ar. .ompared with exact solutions and those obtained with three reduced
and one fully integ: *:++ Reissner-Mindlin quadrilateral clements. These elements are:

e 9H-S2: Ninc-n.wde " cterosis clement with selective integration.




e 8S-U2: Eight-node serendipity element with uniform integration.
e 4L-S1: Four-node Lagrange element with selective intcgration.

e 16L-U4: Sixteen-node T agrange fully integrated element.

For specific details on these elements and references thereof, refer to References 1 and 5.

PINCHED CYLINDER WITH OPEN ENDS

0.3
953
0.5% 10
3125

[am 5]

1
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Figure 5. Pinched, open-ended circuiar cylinder.
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Figure 6. Pinched, open-ended circular cylinder;
triangular element discretization for symmetric
octant, Undeformed and deformed shapes.
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Figure 7. Moderately thin-pinched cyiinder (Rt = 50); convergence
study of tip displacement under applied force.
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Figure 8. Thin-pinched cylinder (R/t = 2000); convergence
study of tip displacement under applied force.

Clearly, all three MIN3 versions perform very well, with MIN3 being the stiffest of the
three while MIN3SM exhibits the most tlexible behavior.  Evidently, MIN3SM is cqually com-
petitive with the best performing quadrilateral (9H-S2) for this problem.

Scordelis-Lo Roof: The geometric description, loading, and material data for this mem-
brane-response dominated cylindrical shell are presented in Figurc 9.°° In Figure 10, a
thirteen-node-per-side mesh and the corresponding deformed shape are shown for a svmmctric
quadrant of the shell. Figure 11 shows a convergence study ot the vertical dis‘plucc.m«.nl a
the midpoint of the (ree edge of the cylinder. The finite elcmc.nt displacement is normalized
with respect to a converged numerical solution, V = 0.3024. =S

The results obtained with four dllfc.rcnl membrane-strain approximations tor the Discrete
Kirchhoff Triangic (DKT) element”’ (taken from Refcrence 25). arce also included in this
study. Note that DKT is strictly a thin bending clement (no shear detormation included).
Briefly, the tour DKT clements arce:

11




e DKT/CST: A ftacet triangle (no membrane/bending coupling) with constant membrane
strains.

e DKT/CST*: A constant-strain trianzgle but which includes membrane/bending coupling
via a membrane projection scheme.

e DKT/LST: A facet triangle (no membrane/bending coupling) which incorporates a lin-
ear membrane field and reduced integration of the membrane strain energy.”

) DKTé%)B: A facet triangle (no membrane/bending coupling) with a lincar membrane
field.

The best performing elements for this problem are DKT/OB, DKT/LST, and MIN3SM:;
DI'T/CST and DKT/CST* exhibit considerable membrane stitfening, showing a very slow rate
of convergence. Also note that MIN3 and MIN3S, although somewhat stiffer than MIN3SM.
perform comparably and converge rapidly.

SCORDELIS-LO ROOF

UNIFORM VERTICAL LOAD = 90.0 / UNIT AREA
5.0
P

< Moo
LU T T I T I 1}

Figure 9. Scordelis-Lo roof; vaulted roof under dead uniform
load supported by rigid diaphragms.

Figure 10. Scordelis-Lo roof; triangular element discretization for
symmetric quadrant. Undeformed and deformed shapes.
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Figure 11. Scordelis-Lo roof; convergence study of vertical
displacement at midpoint of free edge.

Pinched Hemisphere: A thin hemispherical shell under self-eguilibrating radial forces is a
rather challenging test problem for doubly curved shell elements.”> The shell is in the state
of near extensional bending, having large rigid-body rotations in the deformed configuration.
Many commonly well-behaved elements, both of quadrilateral and triangular shapes, exhibit sig-
nificant membrane stiffening when modeling this problem.>®

Figure 12 depicts a nine-node-per-side discretization of a symmetric quadrant of the hemi-
sphere. Figure 13 shows a convergence study for the radial displacement under the applied
force which is normalized with respect to an analytic solution.>® For comparison, results with
the four DKT elements are also included. It is evident that both DKT/OB and MIN3S
exhibit excessive membrane stiffening, while the other elements suffer no such deficiency and
converge rapidly; MIN3SM again evolves as a reliable performer.

PINCHED HEMISPHERE

FIXED
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Figure 12. Pinched hemisphere; triangular element discretization
for symmetric quadrant.
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Figure 13. Pinched hemisphere; convergence study of
displacement under applied force.

Semicircular Moderately Thick Arch: A moderately thick semicircular arch (R/t = 8),
clamped at both ends and subject to a central vertical force (Figure 14), is known to exhibit
significant membrane and shear deformations.!! The arch can be analyzed, for example, using
meshes for the pinched cylinder problem, with the appropriate boundary conditions and load-
ing as shown in Figure 14. Additionally, to ensure the x-y plane deformations only, all out-of-
plane global degrees of freedom are restrained in the model (i.e., w = 6, = 6, = 0). The
analytic solution for the deflection under the load can be found in a straightforward manner
according to the Timoshenko beam theory, and it will serve as a benchmark in studying con-
vergence for this problem. Figure 15 shows convergence results for the deflection under the
load, which is normalized with respect to the thin (inextensional) solution, V;,. Also shown
is the exact solution, Ve, = 1.2015 Vi, (which includes shear and membrane deforma-
tions), and the extensional solution, Vg, = 1.1299 V., (which ignores shear deformation).
Note that all three element versions converge to the exact solution, with MIN3SM yielding
the most accurate results.

Qre

Figure 14. Semicircular moderately thick arch under vertical
force (Rt = 8). Undeformed and deformed shapes.
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Figure 15. Semicircular moderately thick arch; convergence study
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CONCLUSIONS

A three-node, constant curvature shallow shell element (MIN3SM) has been formulated
by way of properly merging the Reissner-Mindlin theory of shear-deformable plates and
Marguerre’s shallow shell equations for the membrane strains. The issues of thin-regime
shear and membrane locking have been addressed via shear and membrane penalty relaxation
parameters and edge-constrained anisoparametric interpolations. The element is fully inte-
grated and, hence, kinematically reliable; it possesses six requisite rigid-body modes and has
no “spurious” zero-energy modes.

Solutions to several locking-sensitive singly and doubly curved thin shell problems have
demonstrated the element’s excellent modeling capabilities, devoid of both shear and mem-
brane locking. Our numerical tests have shown that MIN3SM is con8istently competitive with
the best DKT elements. However, MIN3SM has a practical advantage of having a wider
range of applicability which extends to moderately thick shells.
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