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SECTION I

INTRODUCTION

This report focuses first on the rapid solidification behavior of alloys, then on the
formation and behavior of dispersed second phases. The first consideration is to assist in
producing alloys which under rapid cooling form a compositionally uniform, fine grained
solid. Then, conditions are derived for forming a fine, second phase dispersoid which is
stable against coarsening and dragging by migrating grain boundaries. Conditions under
which particles or pores will pin a grain boundary are also derived.

Dispersed phases precipitated from the molten alloy are seldom very useful either in
strengthening or in limiting grain size in structural materials, as such particles tend to be
coarse and heterogeneously distributed. The fine, uniform particle dispersions which may
be formed by precipitation from solid solutions are almost always much more beneficial.(1)
In addition, many desirable effects may be obtained from solute which is left in solid
solution, including increases in strength and modulus, decreased alloy density, and
avoidance of undesirable second phases.(2-6) Desirable changes may also be effected in
magnetic and electrical properties. The amount of solute which can be retained in solid
solution is thus a basic limiting factor in determining a number of important properties of
alloys.

There is no unique definition of terminal solid solubility extension (TSSE). A
simple, operational definition would define solubility extension as the amount of solute left
in solution after the alloy is cooled to room temperature. This solubility is easily
determined by lattice parameter measurement. However, such a definition would not
include material in solution after solidification is complete, but which precipitated from
solid solution during subsequent cooling. A second, conceptually simple but non-
operational definition of the extended solubility is the concentration of solute in solid
solution the instant that solidification is complete. This solubility depends only on events
which take place during melting and solidification. Unfortunately, experimental results are
reported in terms of the first definition whereas theoretical analyses use the second.

The importance of TSSE is such that inevitably there have been a number of criteria
proposed to predict the conditions of cooling and alloy composition which will give
solubility extension. These criteria may be divided into three broad groups: kinetic,
thermodynamic, and crystal chemistry. All three criteria involve thermodynamics. It is
therefore useful to introduce some of the thermodynamic concepts relevant to TSSE.

Figure 1 shows a simple binary eutectic phase diagram with limited terminal solid
solubility and no intermediate phases. Under equilibrium cooling conditions Cg is the
maximum solute concentration which may be retained in the a phase. One goal of highly
nonequilibrium rapid solidification is to defeat this equilibrium limit and retain a greater
solute content in solid solution.




Cg >

Figure 1  Simple binary eutectic phase diagram showing temperatures relevant to
rapid solidification of an alloy of composition C. See text for
definitions of temperatures.

The following temperatures are relevant in solidification of a melt of composition:
t e.
C>Cy
. Tﬁ, the melting point of pure A
* Ty, the liquidus temperature, where the first solid o forms

* T, the temperature of the eutectic reaction

* Ty, the temperature at which the free energies of solid and liquid of
composition C are equal. Below Ty, it is thermodynamically possibl'e to have
massive solidification, where the solid is uniformly of composition C.

. TNA‘, the temperature where a vertical line at C intersects the extrapolated B
liquidus. Below this temperature  phase may form from the liquid .




* T, the extrapolated a solidus. Although massive solidification of a phase is
thermodynamically possible at any temperature below Ty, between Tq and T
formation of a mixture of B-poor a and B-rich liquid gives the lowest free
energy. Below Ts, a of composition C has a lower free energy than any
combination of a and liquid.

Figure 2 shows schematic free energies corresponding to a simple eutectic phase
diagram of the type shown in Figure 1. Figure 2 corresponds to Ty, where the first solid
forms from a melt of composition C. The effect of decreasiny temperature may be
represented in an approximate way by translating Gy upward with respect to Gg and Gg.
The appropriate vertical translation of Gj to give alignment of the intersection of Gj with

temperatures shown on the ordinate will give the configurations corresponding to Ty, T,
T and Ts.

Figure 2 Schematic sketch of free energy of liquid and solid o and B
phases which would produce the phase diagram in Figure 1.
Shifting Gy upward relative to Gy and Gp corresponds to a
lowering of the temperature.




At T), the tangent to G; at C' is common to Go. At Te, equilibrium between the
solid @, liquid, and solid B requires that G, G), and Gp have a common tangent. At T,
liquid and o have the same free energy so Gj and Gg intersect at C'. At TNgc it is first
possible to nucleate B from liquid, so the tangent to G, at C' is common to Gp. At Tg, the
tangent to G at C' is common to Gy, and equilibrium solidification gives a of the same
composition as the liquid.

Rapid solidification is often an effective means of producing a fine grained solid.
Accordingly, a means of predicting grain size from cooling rate and alloy chemistry is
needed. Boswell and Chadwick (7) produced the first theory to predict grain size in rapid
solification. They assumed homogeneous nucleation of solid the same compostion of the
melt (massive solidification) followed by isotropic crystal growth. This current analysis
builds upon their theory to derive an analytical expression for the temperature for the onset
of massive solidification in rapid cooling. Improved expressions are derived for the
thermodynamic and kinetic quantities involved in nucleation and growth. Finally, an
improved method is developed for predicting grain size in rapid solidification.

Modem, high temperature materials are expected to serve at temperatures well over
half the absolute melting point, where diffusion in alloys is rapid and nonequilibrium
structures tend to quickly relax to near equilibrium. Such common strengthening
techniques as cold work, precipitate formation, solid solution additions, and grain size
reduction are generally ineffective at such high operating temperatures. Such near
equilibrium structures as single crystals or very large grain size materials are often used in
such applications. One microstructural modification which is often effective at high
temperatures is the introduction of a fine distribution of insoluble dispersoid particles such
as carbides, oxides, nitrides, or borides (1,8-11). Equilibrium is thwarted for useful
periods of time by the low solubility of the dispersoid in the matrix, which gives vastly
slower coarsening rates than would obtain for the phases commonly used in precipitation
hardening.

The dispersoid particles are sometimes introduced extrinsically, as by co-
comminution of powders of the matrix and dispersoid phases, or by precipitation of the
dispersoid on particles of the matrix phase, as is done for thoria-dispersed (TD) nickel.
This report focuses on in situ, dispersoid formation in an alloy or intermetallic compound
matrix and subsequent dispersoid behavior during processing and service. Coarsening,
dragging of particles by the migrating grain boundary, and pinning of the grain boundary
by particles or pores are also considered.

Evaluation of the equations derived in this report require knowledge of a range of
thermodynamic and kinetic data, much of which is currently unavailable. Expressions are
presented herein which allow calculation of these needed ancillary data.




SECTION II

THERMODYNAMIC MODELLING

This report models terminal solid solubility extension in rapid solidification,
dispersoid formation and stability, and grain size prediction. In each case, modelling
requires knowledge of thermodynamic and kinetic parameters which often have not been
measured. Free energies of solid and liquid solutions and of intermetallic compounds are
required throughout the study. In addition, surface energies and diffusion energies are
needed to model nucleation, growth, and coarsening processes.

1. MIEDEMA MACROSCOPIC ATOM MODEL

The models developed in this report require as ancillary data knowledge of phase
boundaries and free energies of both stable and metastable phases. Phase boundaries
involving only stable phases have in many cases been measured. Determination of
metastable phase boundaries, such as extrapolations of the liquidus or solidus curves,
must be done on the basis of the free energies of stable and metastable phases. Solid and
liquid phase free energy measurements are much less likely to be available than are the
associated phase diagrams. Free energies of metastable phases are usually not amenable to
measurement; accordingly, determination of such quantitites as T, TNQ"’ and Ts (see
Figure 1) usually involves modelling of liquid and solid solution thermodynamics.

The ideal thermodynamic model would allow us to calculate accurately the energies
from only the properties of the individual atoms. Most solution models fall far short of this
ideal. Calculations based on atomic properties alone tend to be highly approximate, and the
more accurate models tend to require information on solution energetics which is frequently
not available.

This lack of either thermodynamic measurements or an accurate model has for
years impeded theoretical studies of such kinetic processes as nucleation, growth, spinodal
decomposition, and coarsening, as well as rapid solidification. Fortunately, the
"macroscopic atom" model developed over the past decade by Miedema and his co-
workers (12-17) comes close to satisfying the stated ideal of an accurate model based on
atomic properties only. Miedema's technique gives only the enthalpy; the entropy of the
solution or compound may be estimated by one of several techniques to allow calculation
of the free energy by the relationship.

AG = AH - TAS Q)]

Miedema’s approach gives mixing enthalpies of binary liquids or enthalpies of
formation of binary compounds to an accuracy comparable to that of calorimetry. Mixing
enthalpies of solid solutions are obtained to a lower accuracy. However, knowledge of the

5




ohase diagram and of the free energy of a coexisting liquid or compound phase allows
calculation of the free energy of the solid solution. The model may also be used to calculate
surface energies and energies of vacancy formation in liquids and solids.

Figure 3 shows the essentials of Miedema's "macroscopic atom" approach.
Elemental A and B are taken to be separated into Wigner-Seitz atomic cells, and then
reassembled into the liquid or solid solution or intermetallic compound.

B8 B B AlAJA]A
AlAJA|A
8 8 B + A|lA[A]A
A[A[A]A
B B B

°°

Figure 3 Schematic illustration of Miedema's "macroscopic atom"”
thermodynamic model. Atoms of elemental A and B are separated at
the Wigner-Seitz cell boundary and reassembled into a solid or
liquid solution or a compound. The terms in the equation for the
enthalpy of mixing are explained in the text.

2. BULK QUANTITIES

In the case of liquid solutions or intermetallic compounds, the enthalpy of mixing is
given by

AHa - P(AG*)2 + Q(An}3)2 - R + AHLrans (2)

where

AQ@* = difference in electron potcntials of the elements

6




-

Anyg = difference between electron densities of the elements at the Wigner-Seitz
cell boundary.

The first two terms contribute to the enthalpy in all cases. Unequal electron
densities at the Wigner-Seitz boundary (ny,s) must be evened out, which gives a positive
contribution to the enthalpy, and unequal electron potentials (@*) cause charge transfer and
a negative enthalpy contribution. The constant R is due to the electron hybridization which
occurs when d-valence electrons of wransition metals hybridize with s or p valence electrons
of polyvalent nontransition elements. R is the order of 1eV/atom (100 kJ/mol) for such
alloys, depending somewhat on which nontransition element is involved, and is zero in all

: other cases. The substantial negative contribution of R to the enthalpy of alloy or
‘compound formation explains why transition metals have a strong tendency to form
compounds with such polyvalent nontransition elements as boron, carbon, and nitrogen,
while many other metals do not.

The calculation applies only for metallic elements; AHUans js the enthalpy required
to transform a nonmetallic component (e.g. silicon) into a hypothetical metallic state. The
values of @* may be adjusted slightly to fit the measured heats of mixing, but nys is a
basic, measurable quantum mechanical quantity. The constants P, Q, and R depend on
which groups in the periodic table the alloying elements are from; the ratio P/Q is the same
for all solutions and compounds.

Miedema has tabulated enthalpies of mixing for virtually all binary liquids involving
metals and for a range of compounds of metals with metals, semimetals, and
nonmetals.(12,13) Eq. (2) may be multiplied by an appropriate function of composition to
give an equation for enthalpy of mixing vs composition. Miedema has in fact
revolutionized the thermodynamic inodelling of solutions and compounds involving metals.
His results are invaluable in predicting TSSE by RS, as they are in a variety of other fields.

Figure 4 plots @* and nl{3 for most metals and a number of semimetals and
nonmetals. Miedema's approach is limited to metals, so the @* and nys for semimetals and
nonmetals are for the element in the thermodynamically unstable metallic state. The
(positive) enthalpy needed to transform the element from the metallic state must then be
added to the enthalpy of mixing. These values are shown in Figure 4. Divalent elemental
Eu and Yb are often trivalent in alloys; the appropriate enthalpy of transformation must then
be added to the calculated enthalpies of mixing.

The Miedema plot has the following significance for liquid solutions and
compounds which do not involve d-electron hybridization or nonmetals.

* Elements lying very near one another will have very similar alloying and
compound forming characteristics and near-zero enthalpies of mixing or for
compound formation with one another.
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* Elements which may be connected by lines of the slopes shown at the left side
of the plot will have small enthalpies of mixing and form near ideal solutions
with complete liquid-phase miscibility.

* Alloys of elements with large horizontal separations will have large positive
enthalpies of mixing and tend toward phase separation in both the liquid and
solid states.

* Alloys of elements with large vertical separations will have large negative
enthalpies of mixing and tend to form compounds.

The hybridization which occurs in alloys of transition metals and polyvalent non-
transition metals will tend to make the mixing enthalpies more negative and favor more
compound formation.

The Miedema plot is an extremely powerful tool in that it gives a two parameter plot
(@* and nlf) characterizing the alloying behavior of the various elements. That the plot
becomes more complicated and must be used with a bit more care in alloys involving
electron hybridization or nonmetals is a modest price to pay for the power of this global
technique.

3. SOLID SOLUTIONS

Miedema calculated enthalpies of liquid solutions and compounds to the accuracy of
calorimetry but was significantly less successful with solid solutions due to difficulty in
estimating strain energy. Fortunately the free energy of mixing of a solid solution may be
obtained from phase diagram information and the thermodynamics of a coexisting phase for
which the free energy has been measured or can be calculated, typically a liquid or
intermetallic compound. Figure 5 shows the case for equilibrium between a line compound
of free energy AG¢, and a solid solution a, of free energy AGg. The co-existing
compositions are X and Xe, respectively. Assuming the regular solution model (18) for
simplicity:

AGg= Q2 X(1-X) + RT[XInX + (1-X)In(1-X)] 3)

where the regular solution coefficient, g, is also the partial molar enthalpy of mixing of B
in A. The standard states are pure, solid A and B. The regular solution model has known
shortcomings, but is usually adequate for relatively dilute o, say X £ 1. AG; may be
obtained from Miedema's calculated enthalpies by adding a term for entropy of compound
formation.




Figure 5 Schematic figure showing equilibrium between a solid solution, a,
and a compound, C. The regular solution coefficient, £, may be
obtained from G and the coexisting compositions X, and X,.

Equilibrium requires a common tangent to AG. at X; and AGgy at Xe. Then:

Qg = AG - RT[XcInXe + (1-Xo)In(1-Xe)][Xe? - 2XcXe + X1 4)
or for the case of dilute o

Qq = AG¢ / X - RTInXe (5)

The thermodynamic properties of solid & may thus be calculated in terms of quantities
which may easily be measured or calculated.

The second case, that of a of compositon X, in equilibrium with a liquid of
composition X is shown in Figure 6. AG;j is assumed to be known, at least in the vicinity

of Xe, either from measurement or from calculation.

We again assume a regular solution and take pure solid A and B as the standard
states. Then we may write for liquid and solid:

10




Figure 6  Schematic figure showing equilibrium between a liquid and a solid.
The regular solution constant, of a, )y , may be obtained from G

and the coexisting compositions Xq and X.

u}’; = Q) (1-:Xp2 + RT InX| + Ay (6a)

uo= Qqu(1-Xg)2 + RT In Xq (6b)
where

Apg =Lg (TB-Ty/T8, @)

and L. (>O) is the heat of fusion of B and TE" is the melting point of B. Equating the
chemical potential of B in coexisting liquid and & phases and assuming dilute solutions
gives:

Qq = Q) + Apg + RT In(X / Xq) (8)

11




Now Qg may be calculated easily from ] (obtained from Miedema's formulation),
the partitioning coefficient, k = Co/Cj, and the melting temperature and enthalpy of fusion
of pure B. Eq. (8) leads to the surprising conclusion that for Qg to be temperature
independent for dilute, regular solutions, k must be a function of temperature.

The technique just described, combined with phase diagram information which is
usually available and Miedema's calculation of enthalpies of liquids and compounds can
provide a fairly complete picture of the thermodynamics of any phase of interest.

4. UNDERCOOLED MELTS

This section derives equations for T,, the temperature at which solid and
supercooled liquid of the same composition have the same free energy, and for AGy, the
driving force for massive solidification. A regular solution model is assumed for
convenience. In addition, the heat capacity of the solid and liquid alloy is assumed to be the
same as that of the equivalent amounts of elemental melts. The calculation could readily be
extended to a more complex solution model.

We consider one mol of alloy, with atomic fractions of A and B of XA and Xp,
respectively. Calculations are based on the cycle shown in Figure 7. The free energy
change for cooling and solidifying the alloy (Step 4) is equal to the sum of the changes of
Steps 1 through 3.

The free energy change for un-mixing in Step 1 is

AGy = - QI XaAXB - RT(XalnX A + XgInXB)

A+ B(D) AlD)+B ()
AG,
£G4z Gy AG,
¥
Als) +B(s) A(s) + B(s)
AG;

Figure 7 Cycle used for calculating Tq for a molten alloy.
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In the second step, pure A and B solidify.
AGy =-XaA LA LTA-XgLp AT
where L, Lp are the (positive) heats of fusion,
ATA = (Tfj - D/TY

ATp = (T - Ty

Tii and Ta are the melting points of A and B, respectively. In the third step, the solid
elements are combined to form the a solid solution.

AG3 = Qg XA XB + RT(XalnX A + XBInXp)
We then take  AGy = AG4 = AG) + AG2 + AG3 to obtain:
AGy = (Qq - Q) XaXp -XBLBATR -XALAATA 9)
The mixing entropy terms have cancelled

At T, the highest temperature at which massive solidification may occur, AG4 =
O, and

To = [(Q - Qu)XaXp + XaLla + XgLgl (XaALA/T{i + XgLp/TE)! (10)

The ratio of heat of fusion to absolute melting point is approximately constant for most
metals, being about 10J/mol-K. In that case, Eq. (10) may be simplified to give:

To=Tii Xa + Tit Xp - Tid Qo - ) Xa Xp/LA (10a)
A low T, for a given solvent is thus favored by a large value of (Qq - £2]) and by a low
melting solute. We may obtain a simple expression for a AGy as a function of the
supercooling below T,

AGy = AHW(T, - T)/T,

Taking AH, = (Q] - Qg) XAXp + XaLa + XpLp and substituting Eq. (10a ) for To
in the denominator, we find,

AGy = ( XALA/T{§ + XpLp /TH X(T-To) (1)

Egs. (10,11) provide remarkabiy simple expressions for To and AGy. Only the properties
of the elements and the supercooling below T, are involved.

13




We now consider the factors which govern T, and AGy. In the case of an ideal
solution, Q = Qo =0, and T, is the composition weighted average of the melting points of
elemental A and B. Deviations from this simple condition are produced by € - Qg # O.
Having Qg >> Q) sharply depresses To. The reason, of course, is that Qg >> ) implies
that the alloy is more stable as a liquid than as a solid: Ty, is therefore depressed.

Examination of Eq (11) for AGy shows that the properties of the liquid and solid
alloys enter only implicitly, through To. As noted earlier, L/Ty, is approximately a
constant for all metallic elements, so that:

AGy =L (T-To)/Tiy (12)

Such metalloids as Si and Ge are likely to have values of L/Ty, different from that
characteristic of metals. For metal-metalloid alloys the longer expressions for Tg and AGy
must therefore be used, (Eqs (9,10)).

The solidification behavior of alloys of metals and metalloids (e.g., Al-Si and Al-
Ge) is of considerable interest. In that the expressions derived earlier, apply to metal-metal
solutions, we here derive expressions for T'm and L' for metalloids in the fictitious metallic
state. The prime is used to denote quantities calculated for the metallic state.

Let us take Si as an example and indicate the metallic, nonmetallic and liquid phases
by Si(m), Si(nm) and Si(l), respectively. All three phases are for simplicity assumed to
have the same heat capacity.

The transformation Si(1) = Si(m) may be accomplished by the steps: Si(1) — Si
(nm) — Si (m). Enthalpy is a state function, so

L'si = Lsj - AH"™"
where AH'Y3"S is the enthalpy for the transformation Si(nm) — Si(m). Miedema has
calculated AH}"*‘“s for Si, Ge, and other non-metallic elements. In that Si (nm) is the stable
solid phase, L s;: is considerably less than Lg;
We may calculate T'r, from the following processes:
1. Si@) = Si(nm)at Ty AG1 =Lsi(Tm - Tm)/Tm
2. Si(nm) — Si(m)at Ty AGy = AHTans
3. Si(m) 2 Si(l) atTm: AG3=0

Since the three steps form a complete cycle and AG) + G2 + G3 =0

14




T =Tm (1 - AH"/Lg;) (13)

Eq. (13) shows that the melting point of the metastable metallic element is
depressed below that of the stable non-metal by an amount proportional to AH¥3"S/L,
When the ratio of enthalpies is unity, the solid metal would be stable against melting only at
absolute zero. Eq. (13) allows us to use Eqs. (9,10) to calculate Ty and AGy for
solidification of metal-metalloid solutions. The regular solution constants may be
calculated by the method of Miedema taking the metalloid to be in the fictitious metallic
state.

Manipulation of Eq. (13) gives :
L/Tm =L/Tn (14)

The ratio of enthalpy of melting to melting point is thus the same for metallic and non-
metallic forms of the element. This ratio is usually different for metals and nonmetals. So
we should not take the ratio L'/T ', as equal to that for normal metals. Accordingly, the
long equations (9,10) must be used in calculating Ty and AGy, for metal-metalloid melts.

5. SURFACE ENERGIES

Energies of interfaces involving only fluid phases are readily measured to a high
degree of accuracy. Measurement of energies of interfaces involving solid phases is
difficult and often inexact. A theoretical model for the energies of such interfaces is highly
desirable.

Surface energy is the work needed to expand surface area and as such is inherently
related to interatomic forces. Consequently, such material parameters as the heat of fusion
or evaporation, hardness, elastic modulus, and melting temperature provide a rough guage
of the surface energy (19,20).

Even though there is no perfect model, several theoretical approaches have been
introduced for the calculation of the solid-vacuum (21-25), liquid-vacuum (26,27) solid-
liquid, (28-34), and solid-solid (32) interfacial energies. In some cases theoretical values
of surface energies show good agreement with experimental values. However, almost all
the models deal with pure metal systems. So far, only a few models have been presented
for liquid metal-compound systems. In this section, the models of Miedema and Warren
are reviewed briefly.

The "macroscopic atom"” model developed over the past decade by Miedema and his
coworkers (26,32) and described in Section II.1 provided for the first time an accurate
energetic model based on atomic properties only which may be used to calculate surface
energies.

The liquid-vacuum surface energy Y, is sometimes taken as proportional to the
enthalpy of vaporization of the liquid, AHyap. Indeed, a roughly linear relationship exists
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between Y} and AHyap. Miedema noted, however, that AHyap depends in part on the
properties of the free atoms in the gasous state. Certain gaseous atoms, in particular Hg,
have very stable electron configurations which lead to anomalously low AHyap. Atoms at
the liquid-vacuum interface do not have this low energy electron configuration, so the
proportionality between AHyap and Y is destroyed. The value of nys is a much more
accurate measure of the degree of disruption of the electron gas on creating a surface.
Miedema found significantly better proportionality between ¥} and nys than with AHyap.
Surface energies of the divalent metals (such as Hg) with anomalous heats of vaporization
are no longer exceptions.

Subsequently, Miedema showed that there was little difference between solid-
vacuum and liquid-vacuum surface energies, and that in fact Yg/ ¥; = 1.13 for all pure metals.
He refined his surface energy model to better account for the number of valence electrons per
atom to obtain:

Ys = const n33 / (B* - 0.6eV)? (15)
Eq. (15) may then be used with confidence to obtain YsorY; for any metallic element.

Miedema and den Broeder calculated solid-liquid surface energies for one and two
component metallic systems. The calculation is predictably more complex than it was for
liquid-vapor and solid-vacuum surface energies. For a one component system, the atoms

in the first 2tomic layer in contact with the melt are increased in enthalpy by a fixed fraction
of the enthalpies of fusion so that

Yg! = 25x 109 Lyv23 (16)

where V is the molar atomic volume of the solid. To this is added an entropic term, S*,
due to the added disorder in the surface layer:

YU = §* Ty V23 a7
where S* = 0.52 x 107 J/K.
Then

Yg = Yg! + Yl (18)

Somewhat surprisingly, the Miedema and den Broeder values for ¥ fit the empirical
Skapski (22) relation:

Ya=%-" (19)

fairly accurately.

16




romh»oomaommmmiimmmmmm///

Using Miedema's values for Yg and v},

Y9 =013 ¥, (20)

For binary interfaces of solid metal A against liquid metal B,

'yslAB - (Ysl I)B +( Ysl II)B + 'ysl 111 @2n
where Yg! and Yy Il are given by Eqgs. (16) and (17), respectively. The enthalpy term
(Yg 1) is for the solid A and the enthalpy term (Yg 1) is for liquid B. To these two terms is

added a chemical term due to interactions between A and B atoms:

Yg I =2.5x 10 AH/V (22)

where AH is the heat of soluticn of A in B or of B in A in the liquid phase. Since AHA/V A
and AHp/Vp are slightly different, an averaged value is used. The heat of solution may be
easily calculated by Eq. (2).

Miedema's model for Yy is easily extended to the case of massive solidification of

alloys.
Yal =2.5x 109 [LaAXA/VA23 + LpXp/Vp2A] (23)
Then:
Va Vs
and

Ya1 I =,

In Warren's treatment (33), a thermodynamic model of the solid-liquid metallic
interface in a binary system is extended to a pseudo-binary system which is composed of a
metallic liquid and a stable solid carbide or oxide phase. This model assumes that a finite
value of the interfacial energy exists because a region in the neighborhood of the interface is
disturbed from the bulk equilibrium states of both solid and liquid. Disturbances in the
chemical composition and structure are treated as separate contribution.

The chemical contribution of the interface atoms to the interfacial energy is taken to
be the difference between equilibrium molar free energy, Gs in Figure 8, of the atoms in an
equilibrium two-phase mixture without an interface, and Gg, their energy when forced exist
together as a liquid of composition X' in a two atomic layer interface. Then the chemical
contribuion to the interfacial energy per unit area, ¥g.), becomes

17




Ysic) =n (Gs - G5) /N (25)

where N is Avogadro's number and n is the number of interface atoms per unit area, which
is equal to the sum of the solid molecules and liquid atoms at the interface, ng + n1. For
simplicity and as a rough approximation, the disturbed region is considered to extend over
only two atomic layers. Assuming a simple cubic arrangement of atoms, then

G4 1ﬁ
Gg3
L %6

0 ! 0
A=TT - :GZ
1 |Cs

Gy | L
A X1 X' X2 B

Figure 8  Free energy vs composition for the pseudobinary A-B, where A
is a metal and B is a compound.
ng = (N/V s)zB (26)

where Vj is the effective molar volume of atoms in the solid. The effective molar volume
Vs, is given by

Vg=X2Vpb!2 4+ (1-X2)Va Q27N

18




where VB is the molar volume of the compound B, b is the number of atoms in the
molecules, and V4 is the molar volume of liquid A. Similarly,

n1 = (N/V)2R (28)
where V) is the average molar volume of atoms in liquid and given by

Vi=X1Ve b2+ (1-X1) Va (29)

If the solubility of B in A is low, then G5 approaches zero, giving

Ysi(c) = nGg/N (30)
with

Ge = G3 (X)2 + RT [X'InX' + (1-X)In(1-X)] - RT [X' (1-X) ) In X7 (31)

where G3 is the free energy of fusion of the solid B and to a good approximation can be
written as

G3 =Lg (T5, - TV/Th, (32)
where Lp is the latent heat of fusion and TE, is the melting temperature of B. When
measured values are not available, the heat of fusion for cubic ionic solids can be estimated
from the following empirical relationship:

Lp=25T8 (33)
where L is in J/mol, and T3 in K. The interface composition is given by

X' = (n1X; + nsX2)/(n1 + ng) (34)

Eq. (34) shows that X is relatively insensitive to changes in X| ; therefore, Ysi(c) 1s directly
proportional to - In Xj.

The structural contribution to Y5 can be calculated from the empirical relationship:
YsiB) = kTE /b(Vp/b)H3 (35)

where k is an empirical constant and lies between 5x10 and 8x104, when Yy is given
in J/m2.

When adequate thermodynamic data are not available for the systems of interest,
they may be calculated by the methods in Section II.
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6. DIFFUSION IN LIQUIDS

Diffusion coefficients in pure liquid metals are usually the order of 10-% m2/s at the
melting point. Diffusivities in molten supercooled alloys must be much lower, or rapid
quenching could not give either massive solidification or glass formation. In that massive
solidification which usually takes place at temperatures far below the liquidus, calculation
of nucleation and growth rates requires accurate values of the diffusion coefficient in highly
supercooled liquid.

Faber (35) has noted that the enthalpy of vacancy migration in liquids is zero.
Atomic motion thus requires only creation of a hole, or vacancy large enough for a
neighboring atom to fit into.

Miedema found a remarkably good correlation between crystallization temperature
of metallic glasses and the enthalpy to form a hole the size of the smaller atom in the liquid.
Massive solidification is somewhat intermediate between equilibrium solidification and
crystallization of glasses; it is thus reasonable to take the atomic mobilities governed by the
enthalpy of forming a vacancy the size of the smaller atom.

Volume changes on mixing liquid metals are generally small -- the order of a few
percent, at most. Accordingly, partial atomic volumes in the molten alloy will be very
nearly equal to the atomic volumes in the respective molten elements.

Following is an outline of the Miedema calculation for vacancy formation in alloys,
AHjy. Interestingly, AHyy is the same for solids and liquids, excluding volume effects.
The greater atomic mobilities in liquids are then due to the zero enthalpy of vacancy
migration.
Miedema (14,15) gives for the enthalpy of monovacancy formation,
273
AHyy =V %$/Qs (36)

where

Vm= molar volume

Ys = energy of solid:vacuum interface
Qs = 8.5 x 109 for nontransition metals
Qs = 7x10-9 for transition metals.

The enthalpy of vacancy formation in alloys is a weighted average of the values for
the elements (14). For a vacancy the size of the B atom,

AH1y =CB AHB +(1-CB) (‘{%)S/%H{‘v (37)

20




where C? is the surface concentration of B around the hole:

CgV
C,V + CyVL

S =

No distinction is made between vacancy formation in liquids and solids. A random
solution is assumed, though a similar calculation of AH;y may be performed for
intermetallic compounds.

It is now possible to calculate the enthalpy of vacancy formation, hence of
diffusion, for any liquid alloy. If we take Dg = 104 m2/s, the values of Dj for elemental
metals at the melting point are approximately an order of magnitude greater than the 10-9
m2/s usually measured. It is thus reasonable to take Dg = 10-5 m2/s. In any event, D,
should be about the same for all elements and any uncertainty would cancel out in
comparisons of grain size or temperature of crystallization.

7. OTHER ANCILLARY DATA

Mass transport in solids is by diffusion, which may occur either in the matrix,
along dislocation lines, or in grain boundaries. Diffusion coefficients have been measured
for many solid solution alloys of interest (36). Brown and Ashby (37) present correlations
based on crystal structure for activation energies for matrix diffusion which are useful
when data are not available.

Fewer measurements have been made of diffusion coefficients in dislocations and
interfaces. Where measured values are not available, it is reasonable to estimate the
activation energy for diffusion of substitutional solute along dislocations or grain
boundaries as about half that for volume diffusion and take the preexponential factor, Dy as
104 m2/s (1 cm?/s).

Grain boundaries contain regions of disorder which may accommodate atoms
which do not fit well into lattice sites. Atoms which are not very soluble in the matrix thus
tend to be strongly absorbed at the boundary. Hondros (38) showed that bulk (C) and
boundary (Cp) concentrations are related approximately by

Cp/C = 1/Xe (38)

where X, = solubility limit of the element in the matrix, in atomic fraction, at the
temperature of interest. Very sparingly soluble elements will thus absorb very strongly at
grain boundaries. Similarly, elements with a large matrix solubility will not be strongly
adsorbed at the grain boundary.

The reader is referred to Smithell's Metals Reference Book (39) for densities and
viscosities of molten metals, to the Handbook of Chemistry and Physics (40) for enthalpies

of melting, to Niessen, et al (13) for tables of @*, nl, AHYanS and enthalpies of mixing
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and compound formation. Enthalphies of vacancy formation are given by Miedema (15)
and values for Y are given by Miedema and den Broeder (32). The American Institute of
Physics Handbook (41) is a valuable source of physical data.

22




SECTION 111

TERMINAL SOLID SOLUBILITY EXTENSION

A number of criteria have been proposed to predict whether or not TSSE will occur
for a given combination of alloy chemistry and cooling rate. Figures 1 and 2 show the
phase diagram information and free energies relevant to TSSE.

1. THERMODYNAMIC CRITERIA

Above T, the temperature at which solid and liquid of the same composition have
the same free energy, massive solidification cannot occur. Formation of solid of the same
composition as the liquid would give an increase in free energy and is therefore
thermodynamically impossible. Below Ty, the extrapolated solidus, massive solidification
leads to the minimum free energy state of the alloy. Solidification to form a two-phase
mixture gives a free energy between that of the supersaturated liquid and that of the
massively solidified phase. In addition to having a higher free energy than the massively
solidified phase, the two-phase mixture requires long range diffusion in the liquid to form.
Thus, although not forbidden, formation of a two-phase mixture below T is at both a
thermodynamic and kinetic disadvantage and seems unlikely.

Between Tg and T, massive solidification is thermodynamically possible, but
results in a higher free energy than does formation of the equilibrium two-phase mixture.
However, massive solidification occurs without long range diffusion, which is required for
equilibrium solidification. Thus, in the temperature region Ts<T<T,, massive solidification
has a kinetic advantage and thermodynamic disadvantage vis-a-vis two-phase equilibrium
solidification.

One strong argument against massive solidification above Tj is that it violates local
equilibrium, one of the most valued principles of the materials scientist. Local equilibrium
requires each component to have the same chemical potential in the liquid as in the solid.
Between Tg and Tj, equilibirum requires that solid and liquid have different compositions,
as given by the phase diagram.

However, Baker and Cahn (42) showed that local equilibrium at the interface does
not always apply during solidification. Zinc-rich Zn-Cd alloys have a retrograde solidus,
i.e. the concentration of Cd in solid in equilibrium with Zn-rich alloys reaches a maximum
above the eutectic temperature and then decreases with decreasing temperature. This
behavior is in sharp contrast to that shown in Figure 1, where the solidus concentration
increases with decreasing temperature.

Baker and Cahn rapidly quenched Zn-Cd alloys of Cd contents greater than the

maximum in the soliudus and obtained a single phase solid solution. Because of the
retrograde solidus, massive solidification must have taken place in the two-phase region
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where local equilibrium could not be attained. The Cd atoms underwent an increase in
chemical potential during solidification as they were dragged into the solid phase by the Zn.

Local equilibrium has been observed to apply in many solificiation experiments. It
is thus not clear whether the Baker-Cahn result is an anomaly, or whether rapid
solidification will frequently violate local equilibrium.

It is useful to note the controversy of a few years ago over local equilibrium in solid
state massive transformation. Ultimately, the solid-state massive transformation was found
to occur usually, but not always under conditions of local equilibrum at the interface. It
remains to be seen whether or not the same is true for massive solidification.

Anantharaman, et al (43) presented a review of rapidly solidified Al-based alloys in
which they proposed that solutes with favorable Hu:ne Rothery size factors (within 15% of
the solvent) should be amenable to TSSE. They noted, however, that 6 of the 17 such
solutes (Au, Sn, Ti, V, Zn, and Zr) had TSSE to 4 a/o or less. They sought a basis for this
anomaly in thermodynamic considerations, as reflected in the phase diagram. They noted
for simple eutectic systems showing small deviations from ideal solution behavior (such as
Figure 1), it should be easy to supercool the liquid below T, and obtain massive
solidification. For solid solutions with large positive deviations from ideality, however,
they noted that even at absolute zero the free energy of the solid might be greater than that
of the liquid, rendering massive solidification and TSSE thermodynamically impossible.
Anantharaman et al also argued that in some cases TSSE will be limited by nucleation of an
adjacent stable or metastable solid phase. They proceeded to develop their ideas { several
cases depending on whether the terminal solid solution and adjacent phase are formed
eutectically or peritectically. Anantharaman et al thus implicitly assumed that only cooling
to T, was required for massive solidification, and that violation of local equilibirum was
not a consideration.

2. KINETIC CRITERIA

Various authors have attempted to prescribe conditions for segregation-free
solidification in terms of various kinetic parameters, particularly liquid and interfacial
diffusion coefficients and atomic attachment rates at the solid: liquid interface. The criteria
are of two basic types, appealing to either absolute interface stability or solute trapping.

Segregation-free solidification may occur even with equilibrium solute partitioning
between liquid and solid if the interface is stable. Such solidification is illustrated in Figure
9. The liquid concentration at the interface rises to C/k, where k = partition coefficient,
and the solid has the same composition as the bulk liquid. At very low velocities, the
interface is stable against breakdown giving cells or dendrites with the associated
segragation. For most solidification rates, the interface is unstable and solute segregation
occurs.

Very high growth rates give a condition known as absolute interface stability. At
such growth rates the interface is moving too rapidly for solute diffusion in the liquid to
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Figure 9  Steady-state segregation-free solidification with equilibrium
solute partitioning. Such solidification is possible only below
Ts, the extrapolated solidus.

give long wave length instabilities. The solute simply cannot diffuse rapidly enough. At
the same time, short wave length instabilities which are kinetically possible give very sharp
curvatures which are thermodynamically unstable. The interface is therefore stable, and
segregation-free solidification occurs. There is, however, still equilibrium solute
partitioning at the interface, as shown in Figure 9.

Midson and Jones (44) proposed absolute interface stability as a criterion of
extension of solid solubility. Boettinger, et al (45,46) and Juarez-Islas and Jones (47)
discussed the role of absolute stability in producing segregation-free solidification.
Boettinger, et al found the velocities needed to give segregation-free solidification in Ag-Cu
alloys to be in reasonable agreement with those predicted on the basis of absolute interface
stability. They noted that their interface velocities were lower than those usually needed for
solute trapping and attributed their result to absolute interface stability.

Juarez-Islas and Jones studied solidification of Al-Mn alloys in a Bridgmann
furnace, so that interface velocity could be fixed by the rate of ingot withdrawal. In this
experiment interface velocity was measured. The combinations of temperature,
composition, and velocities giving segregation-free solidification were in good agreement
with the theory of absolute stability.
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Absolute interface stability thus appears to be a valid criterion for segregation-free
solidification in at least some alloy systems. How general the criterion is remains to be
seen. There is also a problem in applying the criterion to alloys and quenching processes
of practical interest. It is not at all easy to determine whether or not solidification of a
particular alloy in some given process will give absolute interface stability. Furthermore,
as will be discussed next, while absolute interface stability may be a sufficient condition for
segregation-free soldification, it certainly is not a necessary condition.

A common assumption in the modelling of solidification is that the partition
coefficient is independent of interface velocity. That is, the combination of temperature and
solid and liquid composition at the interface is that given by the phase diagram. Baker and
Cahn (42) showed this assumption to not always be true. As discussed earlier, Zn-rich,
Zn-Cd alloys have a retrograde solidus, so alloys with more Cd than the solidus maxium
cannot be cooled below Tg, the extrapolated solidus. Accordingly, segregation-free
solidification with equilibrium solute partitioning in such alloys is impossible. Since Baker
and Cahn obtained segregation-free solidification, some mechanism other than absolute
interface stability must have been operative. Baker and Cahn appealed to a solute trapping
mechanism, whereby Cd atoms are incorporated into the solid, though they undergo an
increase in chemical potential in the process. The actual partition coefficient is then unity,
resulting in massive solidification.

Boettinger, et al. (45,46) discussed the various theories which give a velocity-
dependent partition coefficient. Figure 10 shows the predictions of these theories. In each
case, the partition coefficient increases monotonically from the equilibrium value (0.44) to
unity as the interface velocity increases. The dimensionless velocity is § = Vag/D, where
V = velocity, ag = lattice constant, and D is a diffusion coefficient, which in the various
models ranges from that in the liquid to that in the interface. In all theories the inflection
point in k occurs at about B = 1, where the time for the interface to move one lattice spacing
equals the time for an atom to diffuse one lattice spacing in the liquid or in the interface.
For higher velocities, the interface simply outruns the diffusing atoms and solute
segregation is impossible.

The theories for a velocity dependent partition coefficient are not terribly well
developed. In addition, the ancillary data on diffusivities and interface kinetics needed to
calculate k are often not available. In addition, as noted by Baker and Cahn, some
solidification theories predict that k will decrease with velocity, whereas others predict an
increase.

Crystallization of amorphous alloys and TSSE by solute trapping are similar in that
both are related to the ease of atom movement in the noncrystalline phase. As such, our
knowledge of the former may teach us something about the latter. Buschow (48) and
Miedema, et al (14) related the temperatuire of crystallization of glassy alloys to the
enthalpy to form a hole in the glassy phase the size of the smaller atom. Vacancies in
liquids or glassy alloys are thought to have a near-zero enthalpy of migration (35) so the
diffusion coefficient is determined by the hole concentration.
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Figure 10 Dependence of partitioning coefficient on dimensionless interface
velocity as predicted by various theories. For B S1, the solute
cannot diffuse rapidly enough to avoid being trapped by the
moving interface. (After Boeitinger, et al, (45)).

Miedema used his macroscopic atom theory to calculate the enthalpy of hole, or
vacancy formation in solid or liquid alloys (15). If the hole concentration has the usual
exponential dependence on AHyy, the enthalpy of hole formation, then crystallization
would occur at a particular ratio of AHyy/T. A semi-empirical relation was in fact found to
connect Ty, the absolute temperature of crystallization and AHy :

Tx = 7.5 AHyy (39)
where AH;y is kJ/mol holes.

Figures 11 and 12 plot Tx vs AHyy for a number of amorphous alloys. The data fit
Eq. (39) very well, with some deviation toward crystallization temperatures slightly lower
than predicted. The fit is good enough to conclude that the kinetic criterion is adequate in
predicting the temperature of crystallization of amorphous alloys.

We might expect that the temperature of crystallization is related in some way to
solution thermodynamics, that a stable compound would form even at relatively low
temperatures, giving crystallization. Figure 12 also plots the heat of compound formation
vs composition for a number of alloy systems. No correlation exists. Meidema, et al
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Figure 11  Dependence of the crystallization temperature Ty in various
amorphous alloys A1.xNix on the formation enthalpy of a hole
the size of the smaller atom. (After Miedema, et al, (14)).

found a similar lack of dependence of Tx on the enthalpy of mixing of the liquid alloy, so
solution thermodynamics appear not to play a major role in determining the crystallization
temperature of amophous alloys.

Since solute trapping above T requires that solutes not diffuse ahead of the

solid:liquid interface, AH}y and the conditions for TSSE may in some cases be related.
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Figure 12 Plot of experimental crystallization temperatures Tx in various Aj.
xFex amorphous alloys versus the corresponding heats of hole
formation in the solid staie. The enthalpies of compound formation
are also shown for comparison. (After Miedema, et al, (14)).

3. CRYSTAL CHEMISTRY CRITERIA

Several criteria to predict equilibrium solid solubility have been devised in terms of
such elemental crystal properties as Wigner-Seitz or Goldschmidt atomic radius, or
electronegativity, or in the case of Miedema, electron density at the boundary of the
Wigner-Seitz cell and electron potential. These criteria have some predictive power for
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equilibrium solubility, and it is reasonable to suspect that they might be useful in predicting
nonequilibrium solid solubility under rapid solidification.

Darken and Gurry (49) located the metallic elements on a two dimensional plot of
electronegativity and atomic radius. Elements with significant solubility in a host metal
tended to be clustered in an elliptical region around the host. The separation of solutes into
soluble and insoluble is shown in Figure 13 for an aluminum host. The elements are
separated by solubility into three groups of appoximately equal size. The plot of
electronegativities and radii is from Chelikowsky (50). Solubilities are from the Metals
Handbook (51), Hansen (52), Elliott (53) and Shunk (54). Figure 14 is the same plot, but
for RS extended solubility in an aluminum matrix. Solubilities are from Jones (55) and
Murray (56) for high cooling rates. In both cases soluble elements are clustered around the
Al host, but so are some insoluble elements, whilc some soluble elements are located well
away from the host. In Figure 13, soluble elemens Mn, Cr, and Re are located among the
insoluble elements, while highly and moderately soluble elements are well mixed. Much
the same kind of mixing is seen in Figure 14 for RS extended solubility. In both cases, the
Darken and Gurry coordinates provide valuable guidance as to which elements may or may
not be soluble, though leading to the conclusion that coordinates which better characterize
solid state solubility are to be desired.
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Figure 13  Darken-Gurry plot of electronegativity vs atomic radius
showing equilibrium solubility in aluminum. Coordinates are
from Chelikowsky (50). More soluble elements are clustered
in an ellipitical region around the host Al.
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Figure 14  As for Figure 13, but nonequilibrium solubility under rapid
solidification. Solubilities are from Jones (55) and Murray (56).

In Figures 13 and 14, the Pauling atomic radii are used. Other choices of radius
would give slightly different plots, and depending on the system, slightly better or worse
separation into soluble and insoluble elements.

Jones (57) analyzed equilibrium solid solubility in terms of the Wigner-Seitz atomic
radius and Miedema's values for the heat of solution of the solute in the matrix. In a study
of magnesium as a solvent Jones found a better division between soluble and insoluble

solutes than was obtained by either Darken-Gurry coordinates or the Meidema coordinates
of @* and nlf3.

Jones also found that the plot gave an excellent separation between elements with
high and low equilibrium solubility in aluminum, and proceeded to apply the coordinates to
nonequilibrium solidification. Figure 15 shows his -esults for equilibrium and Figure 16
for nonequilibrium solidification of Al-based alloys. A reasonable separation between
elements on the basis of solubility is effected in both cases. We should note, however, that
the Darken and Gurry plots and the Miedema plots involve only two crystal chemistry
parameters. Jones plots are of atomic size vs enthalpy of mixing, which involves at least
two crystal chemistry parameters. Thus, the Jones plots involve three parameters to the
other plots' two and would be expected to fit the data better.

Chelikowsky (51) compared the effectiveness of Darken-Gurry and slightly
modified Miedema plots as predictors or equilibrium solubility in divalent hosts. He found
the Miedema coordinates systematically superior, even for Mg-based alloys, where the
Darken-Gurry coordinates are most successful.
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separation into soluble and insoluble elements is far from perfect.
(After Jones, (5)).
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Figure 17 shows a Miedema plot for equilibrium solubility in aluminum. The
solubilities are divided into three approximately equal groups. Solutes with 0.5 a/o or
greater solubility are clustered nicely around the host Al. Sparingly soluble solutes, with
0.05 a/o < Ce < 0.5 a/o tend to cluster just farther out, but are mixed in with some
insoluble (Ce < 0.05 a/o) elements. The Miedema plot thus gives a good, but not perfect
separation into the three solubility groups.
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Figure 17  Miedema plot of equilibrium solid solubility in an aluminum host.
Soluble elements are clustered around the host element in a region
of convex curvature. Slightly soluble elements are somewhat
mixed with insoluble elements. A boundary is drawn around
highly soluble elements as an aid to the eye.

The separation is better than that obtained on a Darken-Gurry plot (Figure 13) or on
a plot of heat of solution in solvent vs Wigner-Seitz radius (Figure 13). Clearly the
Miedema coordinates reflect substantially the fundamental factors governing equilibrium
solid solubility.
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Chelikowski (51) found that the Miedema coordinates were remarkably successful
in predicting nonequilibrium site preference under low temperature ion implantation.
Injected ions cannot precipitate out of solution, but may enter solid solution in three
different ways: in substitutional sites, or in octahedral or tetrahedral interstitial sites.
Figures 18 shows the results for ion implantation in a beryllium host. The injected
elements separate without exception into three regions separated by smooth convex
borders. This remarkable separation is even better than found by Chelikowsky for
equilibrium solubility in Mg or as shown in Figure 15, for equilibrium solubility in Al.
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Figure 18  Miedema plot of site preference of implanted solutes in a beryllium
host. The plot gives a perfect separation into three regions with
smoothly curved borders. (After Chelikowsky, (51)).
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The success of the Miedema plot in predicting equilibrium solubility and predicting
site selection in ion implanted solids and crystallization in metallic glasses suggests its
extension to TSSE. Figure 19 shows such a plot, again with the solubilites separated into
three comparable groups. The ability of Miedema coordinates to separate the results into
three regions is striking, and superior to the other schemes just discussed. The separation
is perfect except that cerium with an extended solubility of 1.9 a/o is included with solutes
in the 2-10 a/o range. Furthermore, the boundaries of the solubility regions are convex and
smoothly curved, unlike the star-shaped boundaries found using other coordinates. Clearly
the two Miedema coordinates do an excellent job of characterizing whatever forces govern
TSSE in Al
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Figure 19  Miedema plot of terminal solid solubility extension in rapidly
solidified Al-based alloys. A near-perfect separation into highly
soluble, moderately soluble, and relatively insoluble solutes is
effected. Boundaries are drawn as an aid to the eye. Solubilities
are from Jones (55) and Murray (56).

We may consider the meaning of the clean separation of the elements on the
Miedema plot into three regions by two convex contours. First, for illustration, consider
the heats of mixing of liquids, and ignore the nonmetals and pairs of metals which have p-d
or s-d hybridization. Then for mixing a particular host element with various other
elements:
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AHa - P(AG*)? + Q(AnlR)? (40)

Setting AH = const, we may solve for some function f(A@, Anl2) = 0 which may be
plotted on the @*, nl2 plane. We could not, for example, construct such contours for the
heats of mixing of solids because Ad* and ¢n)2 are not sufficient to determine the solid
solubilities. This point is illustrated by Figure 16 where only a very tortuous, nonphysical
contour could separate the high and low solubility elements.

Any attempt to construct more contours would result in intersections of contours of
different solubility. Such intersections would have elements with the same values of A@*
and An)f3 giving different solid solubilities, which proves that those two variables alone do
not determine solid solubility. The smooth, nonintersecting contours for TSSE indicate
strongly that for aluminum, at least, the extended solubility under RS is governed by A@*
and Anl3. Why A@* and An}/3 should have this predictive power for TSSE and what the
functional relationship is, is not known.

Figures 20 and 21 present existing TSSE data for Mg- and Ti-based alloys on
Miedema plots. Neither system is nearly as well investigated as Al-based alloys, which
have long been the standard for rapid solification studies. In the case of Mg-based alloys,
Al, Ga, and Y all show large solubilities under rapid solidification, and all are located in an
elliptical region near the Mg host on the Miedema plot. In addition, the elements showing
lesser solubilities are all outside this region. There are, however, too few data to conclude
on the effectiveness of the Miedema coordinates in predicting TSSE under RS for Mg-
based alloys.

Figure 21 shows that somewhat the same situation exists for Ti-based alloys. The
elements found to exhibit high solubilities under RS are located in an elongated ellipti-al
region around the Ti-host. However, Ti exhibits significant solid solubility for most
metals. (52,53,54). The only other RS data set lower limits of 0.5-2 at.% on solubilities
of the rare earths under RS. The equilibrium solubilities are in the vicinity of 1 a/o, so it is
unclear whether or not RS has significantly increased the solubilities of the rare earths in
Ti. As for the Mg-based alloys, the data are too few to make any conclusions regarding the
effectiveness of the Miedema coordinates in predicting TSSE under RS. The coordinates
might, however, be useful in planning future RS experiments.
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Figure 20 Miedema plot for TSSE in rapidly solidified Mg-based alloys.
The X indicates the Mg solute. There are too few data for a good
test of the criterion. (Data from Ref. 4).
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Figure 21 Same as Figure 20, except for Ti-based alloys. (Data from Ref. 4).
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SECTION IV

GRAIN SIZE PREDICTION IN RAPIDLY SOLIDIFIED ALLOYS

The calculations in this section use the grain size prediction technique of Boswell
and Chadwick (7) as a starting point. The calculation for grain size after massive
solification begins with the Uhlmann (58) expression for fraction solidified, x:

x =1 - exp(-mtJV3t4 /3) (41)

where J = steady-state nucleation rate of solid
V = growth velocity
t

time

Homogenous nucleation of massive solidification and isothermal, isotropic growth are
assumed. However, solidification during rapid quenching is hardly an isothermal process.
Boswell and Chadwick used the technique developed by Grange and Kiefer (59) to
calculate fraction transformed during continuous cooling on the basis of isothermal
transformation kinetics.

1. KINETICS OF SOLIDIFICATION

Isothermal transformation kinetics are characterized by the so-called T-T-T diagram,
shown schematically as Figure 22. The figure uses temperature and time as coordinates,
with the latter usually plotted on a log scale. The contours of constant fraction transformed
are plotted here: 1% and 99%. Normally such diagrams are obtained empirically. Given
analytical expressions for nucleation and growth rates, however, the diagram may be
calculated. According to Eq. (41), tg9 = 5tg1, SO once initiated, the transformation goes
to completion very rapidly.

In the present case fraction transformed varies as the product of nucleation rate (J)
times the growth rate (V) cubed (Eq. 41). The growth rate decreases rapidly with
decreasing temperature, whereas the nucleation rate is zero at T, and increases rapidly
with decreasing temperature. The result is the characteristic "C" - curve (Figure 22).

Isothermal transformation curves apply only to cases where the sample is quenched
instantaneously from a high temperature then held at a constant reaction temperature. More
usually the sample is cooled continuously during transformation. Such is certainly the case
for rapid solidification, where heat transfer to a cold substrate initially gives an
approximately constant cooling rate. Release of latent heat will of course slow the cooling
rate, and possibly even give a temperature rise.
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Figure 22  Schematic isothermal transformation diagram showing lines
for 1% and 99% completion of reaction.

Grange and Kiefer (59) wrote a classic paper showing how to calculate a
continuous cooling transformation curve (CCT) from the corresponding TTT curves.
Figure 23 shows the TTT diagram with an assumed cooling curve. In the Grange-Kiefer
technique, the cooling curve is broken into a number of small segments. The fraction
transformed during cooling from, say Ty to T¢ during the time interval t¢ - tj is assumed
equal to the amount which would have transformed isothermally on holding t. - t sec. ata
temperature (T¢ + Ty)/2. The CCT curve is thus shifted downward and to the right from the
isothermal transformation curve. '

In that TTT curves are usually obtained experimentally, the CCT curve is obtained
graphically. In the present case of massive solidification at large undercoatings, one may
reasonably assume homogeneous nucleation and an isotropic, size-independent growth rate
to calculate the TTT curves. The calculation of the 1% line is particularly straightforward
since the solid particles will be growing independently of one another. The time for 1%
isothermal transformation may be obtained from Eq. (41) as:

1/4

Y G
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Figure 23  Schematic plot illustrating Grange-Kiefer technique for

obtaining a continuous cooling transformation diagram from
an isothermal diagram.

The corresponding point on the CCT curve will lie at coordinates (tc T¢) such that (t¢ - tp)
and (T + Ty )/2 lie on the isothermal curve. The cooling curve for the sample intersects the
1% TTT line at t;, T;. Time and temperature during continuous cooling are related by the
cooling rate, T:

Te=Ti- Tltc-1) (43)
which gives

(Te+Tp2= Ty~ T (-2 (44)

Then:
B 3 1/4
(tc- ) = (o57v7) (45)

where J and V are to be evaluated at (T + 1 ()/2

Equation (45) may then be solved by iteration to determine the time and temperature
(1, Te) at which 1% of the liquid hxs solidified during continuous cooling. Boswell and
Chadwick showed that from this point on, solidification proceded nearly isothermally.
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The nucleation rate increases rapidly with decreasing temperature. Accordingly, we
may assume that most crystal nuclei form at a temperature very near T, the maximum
undercooling. The grain size may then be calculated as

d __( )1/4 (46)

where V and J are evaluated at Tg.

The steady-state rate of homogeneous massive solidification may be written as:

— Dy *
J = E-exp(-AG /kT) 47
* l6ﬂy3i
where AG* = —= (48)
3kT AG2
and Dy = liquid diffusivity
a = lattice spacing
Ys1 = solid: liquid interfacial energy
AGy = thermodynamic driving force for massive solidification.

The growth rate in massive solidification is given by:
1
V=_l(-exp(- L(RTT»)

For the usual case of the substantial undercoolings below T, needed to obtain
homogeneous nucleation, we may write:

V=Di/a 49)
All the ancillary data needed to calculate J and V may be obtained from expressions
presented earlier in Section II. The grain size in massive solidification during continuous

cooling may then be calculated for any alloy and cooling rate of interest.

Combining Eqs (42, 47, 49) gives
32 *
tor = ﬁexp (AG"/4kT)

Using Eq (48) for AG* and taking
D) =105 exp (-AH1y/kT) (m?fs)

and a2 = 1019 m?2
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gives to good approximation:

§€T2V2 AH)
1 = QMM - 334 50
ntop Y (T-To) T (50)

The calculation of t ), uses the experimental result that for most metals AG*/kT =
60 at Ty = 0.8, (T = T/To) that Dy = 10 -9 m2/s at Tr, and that AH;y/kTr, = const. Then
the generic calculation is performed for a pure metal, and a metal with alloy addition
reducing T, to 0.8Tyy,; and 0.6 Ty. The alloy additions are assumed not to change LM, 7Ysi,
and AH,,.

Figure 24 shows the results of the calculation. Alloy additions are seen to shift the
TTT curves strongly downward and to the right. Cooling trajectories are shown for
quenches from T at a rate of 103Tp/s, which corresponds to 2 x 106 K/s for Ti-based
alloys and about 106 K/s for Al-based alloys.

0.9+

TTn o7

0.6

0.4 -

0.3 L '

Log t(s)

Figure 24 Isothermal transformation diagram for 1% solidification for metal
in pure state and with alloy additions which reduce Ty t0 0.8 Ty
and 0.6 Ty,.
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The quench totally misses the nose of the lowest TTT curve, so that a glass should
be formed. The cooling trajectories are nearly perpendicular to the t o) curves for Tg = Tpy
and Ty = 0.8 Tm. We noted earlier that once initiated, solidification proceeds very rapidly.
As such, very nearly T¢ = Ty and t; = t], and solidification may be assumed to occur at Tj,
where the cooling trajectory intersects the 1% transformation line on the TTT curve. The
Grange and Kiefer calculation of T¢ and t¢ is necessary only when the cooling trajectory is
nearly tangent to the TTT curve.

We may combine Eq(s) (46, 47, 49) for d, Jand V to obtain
= AG*
d = 1
a exp (Z'k'l‘_c) (51)

The diffusion cocfﬁcxent thus affects d only implicitly through T.. Figure 25 plots d/a vs
Tr. Smce AG™/KT scales as T, a plot of Log d/a vs Tr is the same for all alloys which
have AG*/kT = 60 at Tr=0.8.

Figure 25 shows that Log d increases rapidly with Tr. The larger d will probably
not be observed because heterogeneous nucleation will produce many grains. The noses of
all three TTT curves lie at about Ty = 0.65, where Log d /a = 2.6, or d= 0.1um, which
is the minimum grain size obtainable through continuous cooling.

Figure 26 plots Log d/a vs T. Pure Al must be quenched at a nonphysically high
rate of T >10%K/s to obtain a 0.1um grain size. Quenching an Al -based alloy with
To = 0.8Tm, material at 109 K/s will give the 0.1pm grain size, whereas a quench of just
over 105K/s gives 0.1um grains in the Tg = 0.6 Tr, material.

Figure 26 also shows that d = 6 x 108 T-lum for Aland d = 1.5 x 109 T-lym
for Ti. Curved plots with a greater quench rate dependence of a on T were obtained for
the alloys. Boswell and Chadwick calculated d =3 x 106 T-3/4 um for Al. Their
equation predicts a 3um grain size in Al for T = 108 K/s whereas ours predicts 6um
grains. The factor of two difference is hardly important. The difference in d is probably
due to Boswell and Chadwick using a non-Arrhenius equation for Dj.

The finest grained crystalline material is not obtained by continuous cooling, but by
isothermal transformation at a temperature near T;/3, where AG*/4KT is a minimum. In this
range, grain sizes in the 10nm range should be achievable. Alloys with Ty between 600K
and 1,500K will lie between 0.5 and 0.2 T, at room temperature. For these materials, a
fast enough quench to miss the nose of the TTT curve, followed by isothermal
solidification at room temperature will give ultra-fine grained material.

The diffusion-coefficient must be on the order of 10-24m2/s, or greater, to give a
reasonable rate of crystal growth, which implies a melting point below about 1,500K for
the base metal. Higher melting metals which are quenched past the nose of the TTT curve
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Figure 25  Predicted grain size vs. isothermal solidification temperature for
the alloys in Fig. 24. The nose tempe: *“ures of the isothermal
transformation diagram are shown. The finsst possible grains
may be obtained in the pure metal, but only through presently
unattainable cooling rates.

would tend to form glasses which could, in turn, be heat treated to form microcrystalline
material.

We may, short of computer calculations, examine the relevant equations to
determine which factors will shift the isothermal transformation curve to longer times and
give a lower solidification temperature and finer grain size. By far the most important
material factor in determining T¢ and the temperature of solidification is T,. Nucleation
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Figure 26  Calculated grain size vs cooling rate for melts based on pure Al
(To = Tm) and Al with alloying additions to reduce To t0 0.8 Ty
and 0.6 Ty,. Surface energy, diffusivity, and enthalpy of fusion
are assumed to be unchanged by alloying.

rates scale roughly with Ty = T/To, where T is the temperature at which G) = Gg. The 1%
transformation curve is therefore shifted to the right by lowering To without changing Dy,
so that rapid nucleation occurs at lower temperatures where growth rates are slower.

Eq. (10) shows that Tq for an alloy is the composition weighted average of the

melting points of the elements, modified by a term proportional to Qg — €2). Thus, a low
melting solute and a large positive value of Qg ~ Q) both reduce T, and depress the onset
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of nucleation to lower temperatures. The electronic interactions between dissimilar atoms
do not differ much between liquid and solid. As such, the best way to obtain a large
positive Qq — € is to have a large misfit in the solid solution.

We may also estimate T, for alloys from the phase diagram. Generally T, lies at a
composition about halfway between those of the liquidus and solidus. Eq. (8) shows that
low solute solubilities in & at the eutectic temperature indicates a large Qg — Q) and a
rapidly decreasing To. Alloys systems in which the T line (see Figure 1) drops rapidly
with solute content are thus good candidatates for obtaining a fine grained solid or a glass
by rapid solidification.

Examination of Eq. (42) shows that the time for 1% transformation is inversely
proportional to D). Clearly, reducing the diffusion coefficient without changing Ty, Y1 or
Lm will shift the 1% transformation curve to the right and promote fine grain size. Eq. (37)
shows that for a given solvent, AHyy for the alloy is increased and Dj decreased by addition
of an element with a large AHjy in the pure liquid state. Eq. (37) may be used to calculate
AH1y. However, as AH)y for elemental metals generally scales with Ty, a high-melting
solute would tend to have a large AHjy and retard diffusion in the liquid alloy.

An increase in Yg) or decrease in Ly makes nucleation more difficult and lowers the
solidification temperature. However, these changes also give a higher AG*/KT (at a given
temperature) which tends to increase the grain size. The grain size obtained by solidification
during continuous cooling is thus affected very little by the values taken for Y5 and L. Of
course a large enough Y or a low enough Ly, may make it possible to miss the nose of the
TTT curve and form a glass.

2. COMPARISON OF THEORY AND EXPERIMENT

Several investigators have measured grain sizes in RS foils. We now compare
these measurements summarized in Table 1 to the predictions of theory.

Figure 26 shows that a 108K/s cooling rate would give a 6um grain size in pure Al.
Jones (3) alluded to a 0.1um grain size in pure RS Al but also reported a 2.6um grain size
for pure Al in a study of piston - quenched Al-Zr alloys. In the absence of any description
of the experiment leading to a 0.1um grain size, we accept the 2.6um grain size as
characteristic of piston - quenched Al.

The 2.6um grain size after a 108K/s quench lies very close to both the 3um grain
size predicted by Boswell and Chadwick and the 6um predicted herein. The disagreement
with either calculation is minor and certainly within the uncertainties in the model, material
parameters, and quench rate.

Appropriate adjustments in L, Ys1, and Dy will give solidification at a lower

temperature and produce a finer grain size. A 15% increase in Y51 would cause
solidification to begin at approximately SOOK, where isothermal solidification would
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Al

Ti

AQ

AQ-2.7 a/JoZr

AQ-2a/oFe

Al -33 a/o Ge

Ag-50 a/o -Cu

Ti-22 w/o Fe

Ti-28 wio W

Ti-11.5Mo-6.5Zx-

4.5Sn (w/0)

Ti-6AQ -4V (w/0)

Table 1

Grain Size in Rapidly Solidified Alloys

Observation
d = 3x 105 T34 um (Theoretical)
d= 6x 108 T-1 um (Theoretical)
d= 1.5x109T! um (Theoretical)
d = 2.6 um (Piston Quench)
d = 0.6 um (Piston Quench)
d= 03 um, T =108K/s
d=10pum, T =108K/s
d=3 pm, T =108K/s
d=3x104T62 um, 105K/s < T <107 K/s
d=33x105T7 um, 105K/s < T < 107 K/s

o= 3opmat T = 107 Kfs,
d= 7umat T = 105 K/s

d=31x106T-93%12 ym, 104 K/s <T < 107 K/s
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produce a 0.1um grain size. However, the 108K/s cooling trajectory would intersect the
I'TT curve very near the nose, resulting in incomplete solidification.

An arbitrary 20 fold reduction in Dy would cause solidification to commence at
650K, where isothermal solidification would give a 0.1um grain size. However, again,
650K is very near the nose of the TTT curve, and incomplete solidification would again
occur. There is thus no adjustment of material parameters which would give an 0.1pum
grain size in pure Al quenched at 108K/s.

Boswell and Chadwick concluded that the minimum grain size attainable under RS
was about 0.4um. They did not calculate T, and AGy, as was done herein. They may well
have assumed implicitly that AHyy scales with Ty, which Miedema has shown generally
not to be the case.

Boswell and Chadwick (7) report a 3nm grain size in a RS Ag - 50 at % Cu alloy
and Ramachandrarao et al (60) report a 10nm grain size in a RS Al-33 at % Ge alloy. Let
us compare these results with theoretical predictions.

Eq. (8) for Qq — 1 may be evaluated for Ag-Cu assuming either Ag or Cu to be
the solute. Taking an Ag solute gives Qg — Q) = 11.5 kJ/mol, whereas taking Cu to be the
solute gives Qg — ) = 19.5 kJ/mol. Substituting the average of these values into Eq.
(10) gives To = 906K (1,172F) , or To/Ty = 0.67 based on Cu or 0.73 based on Ag.

In the case of the Al-Ge alloy, Eqgs (13,14) were used to calculate Ty, = 338K and
Lm = 10kJ/mol for metallic Ge. The low Ty, reflects the thermodynamic instability of the
metallic Ge phase. Based on Eqs. (8,13,14) Qg — Q) = -4.1 kJ/mol for Al-Ge. Eq (10)
then predicts To = 672 K, or To/TmAl = 0.72. Figure 4 shows that n}3 is nearly the same
for Al and Ge. Then assuming Ge is the larger atom in the liquid as it is in the solid, we
would predict AHjy, hence D) would be approximately the same in Al-Ge alloys as in pure
Al

Figure 24 shows that a 108K/s quench would completely miss the nose of the TTT
curve for T = 0.6 Ty, and would probably only graze the nose of the TTT curve for Tg =
0.7 Tm. Thus, either the Ag-Cu or Al-Ge alloy would be largely or totally a glass
immediately after the quench and would crystallize at or near room temperature. Figure 25
shows that room temperature crystallization would give about a 10nm grain size, as
compared to the experimental values of 3nm for the Ag - 50 at % Cu and 10nm for the Al -
33 at % Ge alloy. Agreement between theory and experiment is certainly satisfactory.

Jones (3) reported that a 2.7 at. % Zr addition to Al reduced the grain size in piston
quenched material from 2.6pum to 0.6um. The Al-Zr phase diagram shows that the Zr
addition changed T, hardly at all. Miedema calculated that AH,y is nearly three times
higher ir Zr than in Al. Eq. (37) shows that AH}, for the alloy is a composition and molar
volume weighted average of the constituents. As such, AHjy should be significantly
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higher in the alloy than in pure Al. This increase is predicted to give a significant decrease
in the RS grain size, in agreement with experiment.

Jones (61) shows a micrograph of a gun-quenched Al - 2 at % Fe extended solution
with 0.3um grains. The phase diagram indicates that the 2 at % Fe addition would
decrease significantly T, below TAL Addition of the higher melting Fe would decrease Dj.
The predicted result of the Fe addition is a significant decrease in grain size, as observed.

Figure 26 gives d = 1.5 x 109 T -1um for Ti, which predicts a 150um grain size for
pure Ti quenched at 107/s. Several studies (62-65) have measured the grain size in RS Ti
alloys quenched at rates from 103 K/s to 107 K/s. Krishramurthy, et al (64) determined

d=3.3 x 105 T-79 for Ti - 28 w/o W and Baeslack, et al (65) determined d = 3 x 104 T-62
for Ti-22 w/o Fe. Both alloys would yield grain sizes in the 1um range after a 107 K/s
quench, two orders of magnitude lower than theory predicts for pure Ti.

The phase diagram shows that T, for Ti - 22 w/o Fe is near 1,400K (2,061F), so
that To/Tm = 0.7. Miedema calculates nearly the same AH1y for Fe and Ti. However, in
the liquid state Vre/VTi = 0.7. The enthalpy to create a hole the size of the Ti atom is
slightly increased by the Fe addition. However, AH1y for a hole the size of the Fe atom is
only about 2/3 that for the Ti atom. If D) for the smaller Fe atom controls nucleation and
growth, a grain size in the 100pm range is predicted. If Dj for the Ti atom is operative, a
107K/s quench should intersect the TTT curve modestly above the nose and give a grain
size in the micron range, as observed.

The Ti = 28 wt. % (~10 at. %)W alloy has T, = 2125 K, so that To/Ty, = 1.06.
However AH1y for W is 3/2 that for Ti. Smithells Reference book (39) gives
VW/VIi < 0.9. The net result of the W addition would be a significant decrease in Dj.
Theory would predict that d would be reduced significantly below the 150pum
characteristic of pure Ti quenched at 107 K/s, but probabl; not to the =1um grain size
observed.

Broderick, et al (62) found d = 3.1 x 106 T-93+.12um for Ti-6 Al-4V, which
gives d=lumat T = 107K/s. The alloy additions give To/Tm = 0.98, which would have
a minor effect on the grain size. The addition of the low melting Al and the smaller V to Ti
should give a modest increase in D). The net result of the alloy addition would be to give a
modest increase in grain size over the 150um predicted for pure Ti quenched at 107K/s.
Theory and experiment in this case differ by a factor of over 100.

Broderick, et al (62) quenched Ti - 11.5M, - 6Zr - 4.5Sn and determined d =
40pmat T = 103K/s and d = 2-4um at T = 105K/s. The alloy additions should give T =
1.02 Ty and would have only a modest effect on Dy, so at T= 105K/s the predicted grain
size is in the cm range, 104 times the observed value.
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The Ti-6Al1-4V alloy is a near-a alloy which presumably solidified as [ phase, then
ransformed to . The final grain size is that produced by the solid-state B to o phase
transformation, and not by rapid solidifications. The Ti-11.5 Mo-6Zr-4.5 Sn alloy is
f-phase at room temperature and presumably solidifies in that structure. The fine grain size
obtained at a relatively low cooling rate remains a mystery.

It is clear that the theory developed herein is effective in predicting RS grain size in
Al-based and Ti-based alloys except for Ti-6Al-4V and Ti-11.5 Mo-6Zr-4.5Sn. In those
two alloys, the alloying elements reduce the grain size far below that expected in pure Ti
quenched at the same rate, but do so without changing significantly T, and Dj, the two
parameters which most strongly affect the grain size.
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SECTION V

DISPERSOIDS IN ALLOYS

1. BOUNDARY PINNING

We know ‘hat a fine dispersoid is highly effective in limiting grain growth and
thereby stabilizing a fine grain size. Not surprisingly, various authors have developed
theories to explain and predict this phenomenon.(66)

We may, for simplicity, consider a spherical particle of diameter d lying on a grain
boundary. Pulling the grain boundary away from the stationary particle (steps a,b,c in
Figure 27) requires "filling" a hole in the grain boundary of area nd2/4 of surface energy
Yp. The driving force for grain growth must be great enough to supply this energy;
otherwise the grain boundary is immobile and grain growth stops.

Growth of a grain at the expense of the surrounding grains involves three free
energy charges:

1. Anincrease in the grain boundary energy of the growing grain.
A decrease in the grain boundary energy of the surrounding grains.

3. Creation of grain boundary energy as the boundary is pulled away from
second phase particles.

Let us approximate the growing grain as a sphere. Then the variation of area with
grain volume is dA1/dV =4 /D. The change in grain boundary area of the surrounding
grains is hard to calculate directly. We note, however, that grain growth will not occur if
D=D, where D is the average grain size. Therefore, dA2/dV =4 /D and,

d(Gy+Gp) _ , 1 1.
— o TGP

If the free energy increased linearly as the boundary moved from the particle
equator to the south pole, dG3/dV = 2fyy/Dp, where Dp = second phase particle

diameter. There is, however, a maximum in dG3/ dV, so that dG3/dV = 3fo/Dp.
Setting d(G; + G2 + G3) / dV =0, we may write for Dm, the limiting grain size:

Dm /Dp=4(0-1)/3f (32)

where o =Dy, /D and f = volume fraction dispersoid.
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Figure 27  Schematic illustration of grain boundary pinning by a particle.
The boundary is (a) at equilibrium, (b) on the verge of breaking
away, (c) free after breaking away.

Hillert (67) derived an identical expression by a different route. The original
expression of Smith (68) was Dm / Dp = 3/4f which is equivalent to Eq. (52) if a =
25/16. Hillert has shown that in normal grain growth a may take values up t0 2. The
value of a = 25/16 is thus not unreasonable. As written, however, the Smith expression

gives the diameter of the smallest isolated particle which would not spontaneously shrink to
nothing.

53




Rios (69) recently took a different approach to particle pinning. He ignored the
energy to fill the hole (Figure 26) and assumed that each passing grain boundary deposited
a layer of interface on the particle with energy nD%Yb . Rios considered the energy change
as the grain size increased to obtain Dy / Dp = 1/6f which again does not involve D.
Certainly the spread in grain size must have an important role in determining Dp,.

The idea that the particle, matrix interfacial energy, Ypm increases as the grain
boundary passes is interesting and has some merit if the particle originally has a low energy
coherent interface with the original grain. Certainly this coherency will be lost as the first
grain boundary passes and Ypm will increase. However, passage of the second and
succeeding interfaces will not further increase Ypm. Matrix and pinning may then only
occur by the mechanism shown in Figure 27. This requirement of "filling in" grain
boundary holes was ignored by Rios. In addition, if the the particle: matrix interface is
largely incoherent, Ypm will not be changed by passage of even the first grain boundary.

Pulling a grain boundary away from a pore also involves creation of nD%Yb/d, grain
boundary energy. By the models of Smith and Hillert, pores should be as effective as
particles in limiting grain growth. Rios' model, on the other hand, predicts that pores
would have no effect in limiting grain growth, a prediction contrary to experience.

Certainly one pore or particle will not stop the growth of a grain. Effective pinning
requires approximately one pore or particle per face, which has been shown to occur if

Dm/Dp 2 f 03 (53)

For a typical volume fraction f= .01, the inequality is satisfied by Dy, /Dp 2 10. The
inequality may in fact be somewhat too stringent. If, for instance, only 1/3 - 1/2 of the 14
faces of a cube-octahedron were pinned, the grain could only grow by taking on a high
surface to volume ratio and a higher than minimum free energy.

2. FORMATION

We first consider the conditions required for precipitation of a few volume percent
of a dispersoid compound AB in a solid alloy, M. Introduction of the needed amounts of A
and B into solution in liquid M requires the following:

* A and B each are soluble to several percent in the liquid M.

+ Neither A nor B forms a compound with the constituents of M which is more
stable than AB.

* A and B do not react with one another in liquid M to form AB or another
compound of A and B.
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Dissolving significant amounts of A and B into solution in the liquid requires first
that the heats of solution of both A and B in M not be too positive or too negative. A large
positive heat of solution would prevent A or B from dissolving. A large negative heat of
solution of A or B would lead to compound formation with one or more of the constituents
of M, so that the second condition would not be satisfied.

The tendency toward compound formation in the liquid is primarily determined by
AHpe;, the enthalpy change on forming the compound from elements in solution.

AHper = AHf - AHyp - AHp (54)

where AHf is the enthalphy change on forming AB from elemental A and B, and AHA and
AHp are the partial molar heats of solution of A and B in M, respecuvely The
interpretation of Eq. (54) is straightforward: the enthalpy of formation of AB from A and B
in solution is the enthalpy of formation of AB from the elements minus the enthalpy change
on dissolving elemental A and B in the solution.

A large, negative AHyey will tend to cause AB formation in the liquid, producing a
coarse, heterogeneously distributed dispersoid of no benefit in the alloy. However, we
will see later that a large, negative AHy in solid M is needed both to give a high nucleation
rate and to produce a coarsening-resistent dispersoid. The only way to prevent formation
in the liquid of a dispersoid with a large, negative AHg is for AH A+ AHp in the liquid to be
negative and fairly large. At the same time, neither AHA nor AHp may be so negative as
to give u reaction of A or B with one or more of the constitutents of M.

Formation of a fine particle dispersion in the solid requires first of all that A and B
be distributed uniformly in the solid at the end of solidification. This objective usually can
only be obtained by solidification rapid enough to give terminal solid solubility extension
and little segregation (2-5). Slow solidification would tend to lead to segregation,
producing coarse, inter-dendritic AB in the liquid and coarse, heterogeneously distributed
AB formed during cooling of the solid. Neither kind of particle is likely to be beneficial in
either strengthening or grain size control.

Formation of a fine, uniform distribution of dispersoid in the solid requires a high
homogeneous nucleation rate, which in turn requires a high enthalpy of compound
formation. The relevant enthalpy is given by Eq. (54), except AHA and AHp now refer to
the erthalpies of solution of A and R in solid M. We are now faced with a dilemma: we
earlier required the enthalpies of solution of A and B in liquid M to be significantly
negative, and now we want the same elements to have positive, or at least less negative
enthalpies of mixing in solid M.

The electronic interactions which govern the enthalpies of mixing liquids and in
soluds are essentially the same (12). However, solid solutions usually have a contribution
to the enthalpy missing in liquids, namely a positive strain energy due to atomic misfit.
Then if A or B, or preferably both, do not fit well into the solid M lattice, AH 4 and AHg in
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the solid may be substantially less negative than in the liquid. Then AHpe; will be
considerably more negative for AB formation in the solid than in the liquid.

Formation of a high number density of fine dispersoid particles requires a high
homogeneous nucleation rate. It is enough to note here that any phase which is
thermodynamicaily stable enough to have a large enough AHj to resist high temperature
coarsening will have a large enough driving force for precipitation to exhibit very rapid
homogeneous nucleation from solid solution. A time-temperature cycle may then be
chosen to give the desired combination of particle number density and mean particle size.

3. THERMAL STABILITY

Dispersoids formed in situ will usually be produced in rapidly solidified (RS) alloys
which typically solidify in the form of fine powders, flakes, or thin strip or ribbon (70).
These products are consolidated into bulk form by various combinations of cold and hot
pressing and hot extrusion. The dispersoid particles thus must be stable against coarsening
not only during service, but during hot working operations.

Particle coarsening is driven by differences in solubility between large and small
particles (71). The solubility of a small elemental particle of radius r is elevated over that of
the bulk phase according to

T € ZYVm
C=C eXP—RT (55)

where

¢ CFand C° are solubility of the particle and of the bulk phase, respectively
* v is particle: matrix interfacial energy

¢V is molar volume in the particle

» RT s gas constant times absolute temperature.

Coarsening of a distribution of particles occurs as shown in Figure 28. The matrix
concentration of solute will be fixed at sor .e value corresponding to the average particle
size, T, and particles such as (2), with r < T will shrink by losing solute into the matrix.
Particles such as (1) with r>t will grow by capturing solute from the matrix.

Solute may follow several different diffusion paths in producing coarsening; we
consider these in tumn.

A. Volume Diffusion Control
Wagner (72) and Lifshitz and Slyozov (73) presented detailed analyses of the

evolution of particle distributions because of volume diffusion controlled coarsening. The
two studies concluded that the mean particle radius, T, varied as
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Figure 28  Schematic representation of particle coarsening. The small particle
(2) with r<t dissolves into the matrix and the large particle (1)
with r>1 grows.
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where

T ,=meanradiusatt=0
D = diffusivity of solute in the matrix, in m?/s

C® = equilibrium solubility of bulk particle phase in the matrix in mol/m3
t time, sec.

The other variables were defined earlier. The coefficient of t in Eq. (2) may be
defined as a coarsening rate constant, K.

3

- _-3_
P’-t; =Kt (57)

Inserting typical values for Y, Vin , and T gives:
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K =4x1015DC® m3/s (58)

We note here that in volume diffusion controlled coarsening, 1"3at, whereas for
growth, Pat . Coarsening is thus a much slower process. Equation (56) has been tested
in a number of alloy systems and found generally valid, though some details are yet in
question (71).

Equation (56) for elemental precipitates was modified by Bhattacharyya and Russell
(74) to describe compound dispersoid AB particles which add or lose A and B atoms only
in stoichiometric proportions. The dependence of solubility on particle size is given by:
2‘YVm

CACE= CACR(=Rx) (59)

where the equilibrium solubility product is given by
CACR o exp(AHpeykT) (60)
with

C%. C§ = matrix concentrations of A and B in equilibrium with bulk AB

AHye, is defined by Eq. (54).

CA, Cg = concentrations of A and B in equilibrium with an AB particle of
radius, r.

It is important to note that in both solubility products, one concentration may be set
arbitrarily, but then the other is fixed by the requirement of a constant product.

Bhattacharyya and Russell (74) showed that transport of one component would
usually be much more difficult than the other; the harder to transport, or rate controlling
component would then have a concentration gradient as shown in Figure 28. The matrix
concentration of the other species would then be constant right up to the particle:matrix
interface. The coarsening equation for AB particles in M then becomes:

8< DC > yVmZ2t
B 6D

r’-r
where

<DC> = _DAaCADECR
DACCA+ DBC’%

(62)
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The quantity <DC> is equal to the smaller of D,C§ and DgC§, except for rare cases
where the two are nearly equal.* In most cases the matrix concentrations of A and B are
not in stoichiometric proportion. The matrix concentration of the more abundant element
(say A) fixes CY, and the solubility product fixes C§. The coarsening law for compound
parucles thus differs significantly from the elemental case in a different choice for diffusion
coefficient and solubility.

Eq. 61 may be used to select an optimum dispersoid for stability against volume
diffusion controlled coarsening. First, AHpe, should be as negative as possible, to
minimize solubility. Either A or B, or preferably both should be slow diffusers in the
matrix. Then the coarsening rate in the system is minimized (at a given temperature) by
adding a large excess of the faster diffusing element (say A). This excess A greatly
depresses the concentration of the slower diffusing B atoms and gives the lowest possible
value of <DC> and thereby of the coarsening rate.

B. Short Circuit Diffusion Control

Particles may be located on grain boundaries or dislocation lines, both of which are
usually high diffusivity paths. Diffusive processes, including coarsening, may then occur
at an accelerated rate by taking place in the high diffusivity region. Figure 29 shows a
particle of radius, r, located on a grain boundary of thickness, 8, where § is the order of the
lattice spacing. Mass transport along ‘he grain boundary gives solute addition only on a
belt of thickness, 8, around the particle equator.

/ | Matrix
Particle [<— Boundary
T Matrix

)

Figure 29  Representation of growth of a particle by diffusion of solute
along a grain boundary of thickness, d.

Speight (75) derived an equation for coarsening of particles on grain boundaries.
His expression depended on particle shape and volume fraction of the particulate phase, but
for the present case of spherical or near spherical particles present at 1-10 vol %, the
equation reduces to

* Eq. (62) is modified by factors not far from unity for compounds which are not 1:1 in A
and B. Eqgs. (61,62) are adequate for describing any but the most precise experiments.
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- DpdC
L _ti{"[‘ﬂ Vo2t (63)

where Dp = diffusivity in the grain boundary and Cp = particle solubility in the grain
boundary.

Thus, T is proportional to t for grain boundary coarsening. Kirchner (76) and Ardell (77)
later derived similar but more complicated expressions for grain boundary coarsening of
elemental precipitates.

Equation (63) may be modified by the method of Bhattacharyya and Russell (74) o
describe coarsening of compound precipitates on grain boundaries to give

, _ <Dy Gy, >8yV 2t
ﬁ-?g-——b—b————RT L (64)

where <DpCyp> is given by a relationship equivalent to Eq. 62, except written in terms of
boundary concentrations and diffusivities.

We may now compare the rates of coarsening by volume diffusion and by
boundary diffusion to see which is more rapid and will therefore dominate. Differentiating
Egs. (61,64) with respect to time gives two expressions for the rate of average particle
growth by the two diffusion mechanisms. Equating the two growth rates gives

. < Dy Cp >
P= 8D ©3)

as the crossover radius where the two rates are equal. Boundary diffusion will control the
coarsening rate at smaller particle sizes and volume diffusion at larger. Boundary diffusion
controls at small sizes because solute can add onto a larger fraction of the particle surface.

Figure 30 plots Eq. (65) with the assumption that 8 = 3 -+ 10-10m. Boundary
diffusion will dominate for 30-nm particles if

< Dy Cyp >
—<DpCs 2 1%
and for 3-pum particics if

<Dp Cp>
—<pc 2

Such ratios should certainly obtain at processing or service temperature of ca. Tyy/2
or below. We show in Section II that for substitutional solutes at Try/2 where D is the
order of 10-20 m2/s, very roughly Dp = 10-12 mZ/s. The ratio
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Figure 30  Plot showing the conditions of particle radius, diffusivity, and
concentration giving volume diffusion control vs boundary
diffusion control.

<DpCp>
—Ddc 21
even if Cp = C. Since in most cases Cp > C or Cp >> C (see Section II), particles on
houndaries should undergo accelerated coarsening unless they are very large. Even near
the melting point Dp/D = 104, so that submicron particles on grain boundaries would
undergo accelerated coarsening even near Tp,.

Diffusion may also be accelerated by enhanced diffusion along dislocation lines,
which may, in turn, alter coarsening in two different ways. In the first case, atoms move
many tumes between dislocation and matrix, and the diffusion coefficient is the weighted
average of the two (78).

The result of Hart (78) may be written as
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where D is the operative diffusion coefficient. Here

Dy = volume diffusion coefficient
Dp = diffusivity in pipe

Pp = dislocation density, m/m3
Ap = area of dislocation pipe.

The dislocation lines will accelerate coarsening if

Dp/Dv >

1
ApPp

An annealed material will have Pp = 1010/m? and a cold worked material will have

Pp = 1014/m2. The high diffusivity path should be a few atoms in cross section, giving Ap
= 10-19m2, so that pipe diffusion will enhance coarsening in annealed material if Dp/Dy >
109 and in cold worked material if Dy/Dy > 103. Section II shows that typically Dp/Dy =
108 at Tp/2 and Dp/Dy = 104 at Tyy. Therefore, a high dislocation density, as might exist
during such a thermomechanical treaiment as extrusion, could give greatly enhanced
coarsening even at temperatures above half the absolute melting point. Movement of
dislocations as occurs during extrusion greatly facilitates meeting the requirement that the
atoms move many times between dislocation and matrix. The dislocations in annealed
material, on the other hand, probably would give appreciably enhanced coarsening only at
temperatures well below Tpy/2.

Coarsening may also be accelerated by diffusion down dislocation lines which
intersect the particle surface. However, the concentration of solute in the dislocation cores
will usually be very small so that solute exchange with the matrix would be needed for
appreciable coarsening. Solute would then diffuse from the surrounding matrix into the
dislocation, then diffuse rapidly along the dislocation to a growing particle. The reverse
process would occur for a shrinking particle. This "collector line" mechanism is analogous
to the "collector plate” mechanism postulated by Aaron and Aaronson (79) for growth or
dissolution of particles located on grain boundaries. The needed analysis has not yet been
done to permit calculation of coarsening rates by the collector line mechanism.

4. DRAGGING BY GRAIN BOUNDARIES

Dispersoid particles are sometimes observed on only one side of grain boundaries
after grain boundary migration during high temperature deformation (80). Such denuded
zones suggest that particles were dragged along by the moving grain boundaries during
deformation. Such dragging would be deleterious to the material properties as the
boundary would sweep up particles, which could then undergo accelerated coarsening due
to boundary diffusion. The denuded zone would also constitute a weakened region in the
material.
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Several authors have analyzed particle dragging. Shewmon (81) derived an
expression for the migration rate of bubbles in a temperature gradient. Ashby and Palmer
(82) and Koch and Aust (83) discussed early observations of particle dragging by
migrating grain boundaries. Ashby and Centamore (84) made an experimental and
theoretical study of the dragging of small oxide particles by migrating grain boundaries in
copper. Noncrystalline oxides (B203, GeO7, SiO2) moved by viscous flow of the particie.
Crystalline Al,O3 did not move; Ashby and Centamore concluded that diffusion through
the particle was needed to give migration. Diffusion in Al2Oj is extremely slow even at the
melting point of copper, so the particles could not be expected to move by that mechanism.
The solubility of Al203 in Cu is probably too low to give migration by Al2O3 dissolution
from the back of the particle and re-precipitation at the front. Ashby and Centamore noted
that AlpO3 was partly coherent with the Cu matrix. The presence of such coherency is
presumably the reason why they did not consider the possibility of migration of the particle
by diffusion of copper from in front of the particle to the rear. Noncrystalline particles
could move by such matrix diffusion, but crystalline particles almost always have some
coherency with a crystalline matrix (85). Such coherency would almost always preclude
sliding at the particle:matrix interface and thereby prevent particle movement by atom-by-
atom migration of the matrix material.

This report is concerned with dragging of crystalline dispersoid particles which
certainly have some coherency with the matrix. Our concern is therefore with particle
migration by dissolution of material from the rear of the particle, diffusion through the
particle:matrix interface, and deposition onto the particle front. Ashby (86) calculated the
velocity for the simpler case of dragging a pure, one-component particle by a migrating
boundary by such dissolution, boundary diffusion, and reprecipitation.

Pulling the grain boundary from the particle equator to the south pole (see Figure
31) involves creation of grain boundary energy. The grain boundary initially had a "hole"
of area 7t r2; pulling the boundary to the particle south pole requires filling this hole with
grain boundary of energy AG = 4nr2Y,, where Y, is grain boundary energy.

Creation of the boundary energy causes the boundary to exert a force on the
particle; atoms in the particle may respond to this force by diffusing from the back and
sides of the particle to the front. Diffusion could be either through the matrix, the particle,
or the interface; the last path is considered more probable due to much higher diffusivities.

The free energy difference may be converted in a straightforward way to a solubility
difference between rear and front of:

3% Vm

8Ch = Cp * it (68)

where C} = equilibrium solubility in the interface given by the solubility product and the
other terms were defined earlier.
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Figure 31  Representation of particle dragging by a moving grain boundary. The
particle moves by dissolution of material from the rear, which diffuses
along the interface and reprecipitates on the front.

The flux in the interface is

= DA _ DGy
J=-Dv 3= T

where the concentration gradient has been linearized over the nr path length between poles.
The rate of mass transport is g= J-A where A = 2nrd represents the cross-sectional area of
interface through which mass transport occurs. Then:

. <D
= 3Wm?RT bCo> mol/sec.

Dividing q by the number of mols/particle gives the rate at which the particle translates one
diameter, and multiplying by the diameter gives the particle velocity (87):

Ve o 9Y<DpCp>V2S
max = = 2me3RT

m/s (69)

Eq. (69) is the desired equation: if simplified to describe the elemental case by setting
CoVm = 1, it and Ashby's equation differ by the trivial factor of 9/2x.

Vmax is the maximum velocity the particle can maintain while being dragged by a
grain boundary. As Vgp = Vmax, the boundary will be on the verge of breaking away
from the particle. For Vgh > Vmax the particle must be left behind. For Vgp << Vpax, the
grain boundary will be near the particle equator and the particle can follow easily at a very
low driving force.

The boundary diffusivity, Dy, is expected to be the order of 10-12 m2/s at Tm/2
(see Section IT). The particle solubility in the interface is not well known, and could even
be hard to define. However, an upper limit to C§ is the concentration in the particle itself,
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approximately 105 mol/m3. Figure 32 is a plot of Eq. (69) with Dp = 10-12m2/s and C§, of
105 mol/m3, 102 mol/m3, and 0.1 mol/m3 as representative of high, intermediate, and low
solubilities, respectively, and typical values for Vp,, T, and y. The plot gives the upper
limits for the rate at which a crystalline particle may be dragged at Tpy/2 when migration is
by boundary diffusion of substitutional solute.

Figure 32 shows that a maximum dragging velocity of 1 pum/hr is possible for 1,
10, and 100 nm radius particles of low, intermediate, and high solubility, respectively.
Such a migration rate should give observable boundary dragging of particles during
thermomechanical treatment. The low and intermediate solubilities should roughly bracket
' the solubilities of most dispersoid particles at Tyy/2.

Viay > M/S

Figure 32 Plot of maximum dragging velocity vs particle size for several
particle solubilities. A temperature of Ty, /2 is assumed.




5. COMPARISON OF THEORY WITH EXPERIMENT

We here compare the theoretical predictions of this section with experimental
studies on grain size limitation and on particle coarsening and dragging.

Froes, et al (88) recently studied grain growth in Ti-6A1-4V samples produced by
blending of the powdered elements (BE) and in conventional wrought plate. The plate had
an initial grain size of 4.7um compared to 9.5um for the BE material. Annealing at
1,310K (1,900F) or 1,477K (2,200F) gave very extensive grain growth in the plate while
the grain size in the BE material remained unchanged.

The major microstructural difference in the starting materials was 1 vol.% of
approximately 0.5um diameter pores in the BE stock. The spread in grain size in the BE
stock was very small, giving a = 1.1. Eq. (52) predicts a limiting grain size to pore
diameter ratio of Dy / Dp = 13, compared to the measured Dp, / Dp = 20, which is certainly
satisfactory agreement. However, since no grain growth occurred in the BE material, the
pore dispersion might have been capable of stabilizing an even finer grain size. All we may
in fact conclude is that experimentally D / Dp < 20. The actual value could be determined
by experiments with finer grained material or material with a larger spread in grain size.

A number of authors have studied particle coarsening and dragging. Here we
restrict ourselves to studies involving a - Ti based and Ti3Al based alloys because these
systems are of particular current interest. Table 2 summarizes the coarsening
measurements from a number of investigations. The experiments were conducted in
several ways: Whang, et al (89,90) and Konitzer and Fraser (91) studied coarsening in heat
treated foils, whereas Rowe, Sutliff and Koch (92, 93) and Sutliff and Rowe (94) studied
coarsening which occurred during extrusion or hot isostatic pressing. Coarsening in the
foils should be controlled by volume diffusion. The other studies involve grain boundary
migration and creation of dislocations, so the particles could exhibit enhanced coarsening
rates by grain boundary and dislocation pipe diffusion.

Figure 33 shows a microstructure produced by HIP, extrusion, and aging.
Denuded zones and enhanced coarsening of particles on grain boundaries are clearly
visible. Whang (90) studied the coarsening of TisSi3 particles in a Ti-Al-Si matrix and of
LazSn particles in a Ti-Sn-La matrix. The LazSn particles were extremely small, with
diameters in the 10 nm range, and the TisSi3 particles were about 10 times larger. A Pt
relationship was found in both cases, which in the absence of a high dislocation density
indicated matrix diffusion controlled coarsening. The 2.1 x 10-27 m3/s constant for
coarsening TisSi3 at 973K (1,292F) corresponds to C = 0.5 mol/m3, or about 0.5 x 10-3
at. %, which is reasonable for sparingly soluble dispersoid particles.

Whang found that at 1,073K (1,472F), LaSn coarsened much slower than did
TisSi3. The rate constant was approximately 300 times smaller, so that <DC> for LaSn is
1/300 that for Ti5Si3. Whang, Lu, and Giessen (96) had estimated from coarsening data
that the Si diffusion coefficient in a -Ti was about an order of magnitude higher than the
self diffusion coefficient in a -Ti. Whang attributed the high coarsening rate to this high
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Figure 33  Denuded zones and enhanced coarsening of particles on a
grain boundary in melt extracted Ti-8.9 Al-1Sn - 1.5 Zr-1 Er
(a/o) after HIP and extrusion at 1,113K (1,545F) and aging at
1,023K (1,382 F) for 2 hours. (Figure from Ref. (95)).

Si diffusivity. However, at 1,073K LaSn has a 300 times lower coarsening rate than does
Ti5S13. Unless La and Sn are anomalously slow diffusers in a-Ti, it is more likely that the
decreased coarsening rate is due in large part to LapSn being less soluble than TisSi3. This
disagreement could be settled by obtaining values for heats of formation of TisSi3 and
LaSn and for heats of solution of Si, La, and Sn in -Ti and calculating the appropriate
solubility products.

The remainder of the coarsening studies are of a more approximate nature wherein
the authors usually only state whether coarsening occurred not at all, moderately, or to a
large extent. Konitzer and Fraser (91) observed that a distribution of ~10 nm radius Erp03
particles in a Ti3Al matrix did not coarsen in 10 hr at 1,073K (1,472F) or 1,173K
(1,652F). Appreciable coarsening did occur in 10 hr at 1,273K (1,832F), with T going
from about 10 nm to 50 nm.

"No coarsening” may be interpreted roughly as less than ~20% increase in the initial
10 nm particle radius in the 10-hr heat treatment or a coarsening constant of K < 2 x 10-29
m3/s. Coarsening of the ErO3 particles from 10 nm to 29 nm radius in 10 hr at 1,273K
(1,832F) (just above the B transus) indicates 2 coarsening rate constant of about 2 x 10-28
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m3/s. Most solutes diffuse faster in B-Ti than in «-Ti, so the particles would tend to
coarsen faster above the B-transus than below.

Sutliff and Rowe (94) studied alloys of Ti3Al and 0.5 at. % Er to which additions
of 0,5,6 and 7.5 at. % Nb had been made. Ribbons were melt-spun and aged and
consolidated by hot isostatically pressing (HIP) and HIP plus extrusion. The as-spun
ribbons contained a fine dispersion of 20-40 nm ErpO3 particles. Aging of the ribbons for
I hr at 1,023K (1,382F) resuited in further EroO3 precipitation, with particles 5-20 nm in
diameter. Particles in the grain interior did not coarsen during aging of ihe 5 at. % N»
ribbons at 1,173K (1,652F) for 1 hr. This stability at 1,173K (1,652F) is consistent with
the results of Konitzer and Fraser (91). Particles at or near the grain boundaries coarsened,
and a particle-depleted zone was observed. Figure 33 shows an example of such depleted
zones and enhanced coarsening at grain boundaries. This observation is consistent with
enhanced coarsening by grain boundary diffusion, as discussed earlier. The denuded
zones are probably due to large particles on the grain boundary consuming smaller, less
stable particles in the matrix. Grain boundary dragging of particles is unlikely to have been
a factor during the purely thermal anneal.

HIP at 1,173K (1,652F) did not give particle coarsening, so the coarsening
constant is less than about 2 x 10-29 m3/s, consistent with the results of Konitzer and
Fraser (91). Alloys HIP at 1,123K (1,562F) and extruded at 1,143K (1,598F) showed
marked coarsening. Most particles were located near grain bounlaries, and the average
particle size was 500 nm. Extrusion at 1,198K (1,698F) gave even heavier coarsening.
Niobium content did not affect coarsening during extrusion.

Analyzing the coarsening dal obtained for 1,143K (1,598F) extrusion on the basis
of volume diffusion control gives K = 10-20 m3/s, a value some nine orders of magnitudc
greater than determined during thermal annealing on material HIP at 1,173K (1,652F), a
30K (54F) higher temperature.

Rowe, Sutliff, and Koch (92, 93) studied the coarsening of dispersoids in TizAl
based alloys to which 0,5,6,7.5 and 10.5 at. % Nb had been added. Erbium was addec o
some of the alloys to produce an Er2073 dispersoid while in others cerium and sulfur
additions produced a dispersoid of CeS3 and possibly Ce404S3 particles. The alloys were
solidified by melt spinning; the as-spun Nb-bearing alloys had the B, ordered BCC
structure, whereas the Ti3Al was oy, ordered HCP. The as-spun ribbons contained 10-50
nm diameter particles; aging for I hr at 1,023K (1,382F) produced a second distribution of
particles one third to one fifth this size.

HIP of the alioys at 1,123K (1,562F) gave severe coarsening of the ErpO3 particles
located on or near grain boundaries. Addition of niobium diminished the degree of particle
coarsening. Some grain boundaries showed dispersoid coarsening on one side but not the
other, an effect attributed to boundary dragging. The EryOs3 particles in the study were less
than 50 nm diameter, and according to Eq. (69) could be dragged by moving grain
boundaries.
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Extrusion of the HIP alloys at temperatures near 1,198K (1,692F) caused severe
coarsening to an average ErpO3 particle diameter approaching 0.5 um. Such heavy
coarsening during the brief extrusion implies a coarsening constant of K = 10-20 m3/s,
Clearly scmething occurred during extrusion which promoted coarsening so powerfully as
to overcome the higher temperatures and longer times of coarsening during HIP. The
pressures exerted during HIP are not high enough to significantly retard diffusion. The
authors suggested that adiabatic heating may have heated the alloy above the estimated
ext.usion temperature. The coarsening rate increases rapidly with temperature (Eq. 61), so
a temperature excursion could give greatly increased coarsening. However, 2 simple
energy balance shows that a 100 MPa (15,000 psi) extrusion pressure could give at most a
S0K (90F) temperature rise. The associated ca. five fold increase in volume diffusion
coefficient would be significant, but the temperature increase would last only a few seconds
so little extra coarsening would occur. A higher extrusion pressure, say 1 GPa (150,000
psi) could give a 500K (900F) temperature increase and a ca. 103 increase in diffusivity.
Such adiabatic heating could sharply increase the degree of coarsening. However, the
presence of almost all the particles on grain boundaries indicates that the enhanced
coarsening is due to a combination of grain boundary dragging and boundary diffusion
enhanced coarsening. An extrusion temperature of 1,143K (1,598F) corresponds to 0.64
Tm, so that grain boundary dragging of the particles is certainly possible.

The Ce,S3 dispersoid showed much less coarsening than did the ErpQ3, under
identical HIP and extrusion conditions. HIP of the Ce;S3-bearing alloys at 1,173K
(1,652F) gave only limited grain boundary coarsening. Extrusion of the Ce3S3 bearing
alloys at about 1,198K (1,692F) gave little coarsening, though there was evidence of a
small amount of particle dragging by grain boundaries.

Rowe, et al (92,93) gave the following qualitative interpretation of their results,
which is generally consistent with the more quantitative treatment in this section. The
presence of denuded regions and large particles near grain boundaries were attributed to
particle dragging and to coarsening enhanced by boundary diffusion. The coarsening
resistance of the Ce3S3 as compared to ErpO3 was attributed not to a more negative
enthalpy of formation of the Ce2S3, but to oxygen having a more negative heat of solution
in Tiz3Al than does sulfur. The very negative heat of solution of oxygen leads to easy
dissolution of ErpO3, and thereby a high solubility and rapid coarsening.

Niobium additions were found to st ongly suppress ErpO3 coarsening in the grain
boundary. Rowe, et al attributed this effect to either a decreased diffusivity or interfacial
energy. The former is far more likely. Addition of Nb could easily give a large decrease in
diffusivity or in solubility, either of which would strongly suppress coarsening. A greater
than about 50% decrease in interfacial energy is most unlikely, and even a 50% reduction
would have only a modest effect on the coarsening rate.
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SECTION VI

CONCLUSIONS

1. TSSE in Al-based alloys is predicted well by the Miedema crystal chemistry
coordinates.

2. A theory was developed for coarsening and dragging of compound precipitates
and found to agree with experiment.

3. A theory was developed which predicts that a fine grain size in RS alloys is
obtained by solute additions which sharply depress To. Good agreement with most

experimental results was found.

4. Conditions for forming a high number density of fine dispersoid particles
conflict with conditions for thermal stability.

5. Ancillary data needed for the calculation of nucleation, growth, and coarsening
rates may be calculated from the Miedema macroscopic atom model.
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