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TRIPLE-DECK STRUCTURE SOLUTION
TO THE PROBLEM OF SEPARATING FLOWS

Yang Maozhao,
China Aerodynamic Research and Development Center

Within the range of the triple-deck structure theory,
we used the inner layer equation to find a solution to the
problem of separating flow over backfacing steps and
compression corners. We obtained results identical with
those of the Naviqr-Stokes numerical solution and
experimental wind-tunnel values. In this paper we use the
upwind scheme with third-order accuracy and Gauss-Seidel
iteration with the relaxation factor; this permits an
increase in the accuracy of the numerical calculationr and
in the convergence rate. --

1. Introduction

The problem of separating flow over backfacing steps and compression

corners has been successfully solved with the Navier-Stokes numerical solution

method [10,11]. If the scale of disturbance, including the step height h and

the angle of the compression corner a, is relatively small, using the Reynolds

number of the flow, we obtain hfx,=O(e'), a-O(e') , and for the flow-direction

range of the disturbance Lfx,= O('), where r=Re_-l' 8. Using Stewardson's

triple-deck structure method [1], it is possible to solve the problem more

simply and economically than with the Navier-Stokes method. Following the

reasoning in Stewardson's article [1], flow along the surface of a wall is

divided into an inner layer, a main layer, and an outer layer; these three

dissimilar regions are described by different flow equations, and they are

linked up by matching conditions. The inner layer region, in particular, has

a range of 0(t5 ) and is governed by a viscous boundary layer equation.

However, the outer fringe conditions are completely different from the

formulation for the classical boundary layer problem; in addition to being

matched with the non-viscous, swirling main layer, it also necessarily has a

relationship with the outer layer. In actual practice, passing through the

Translator's Note:
Note in original: This article was received 3/13/86; the revision was

received 9/5/86.
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main layer, a pressure displacement relation occurs, which can be regarded as

a supplement to the inner layer boundary layer equation. This constitutes the

whole inner layer problem. Because independent flow parameters like X-, R-,

and TWIT. are contained in the scale parameter, and the inner layer equation

only contains the disturbance scale parameters b and a, there is great

interchangeability, and application is possible for a nuaber of flow regions

with supersonic and hypersonic flow in which separation occurs; the numerical

solution is also very convenient and quick. Nevertheless, it generally is

effective only in a small disturbance range, and put to expanded use its

limitations become apparent. Furthermore, it is not yet applicable to cases

of severe turbulence or three-dimensional flow; these problems await

investigation.

Using the triple-deck structure method to study the problem of separating

flow for small backfacing steps and small-angle corners in surface

burnt/etched images, to obtain the distribution of pressure and shearing

stress in a small separation area, and to establish at intervals the

aerodynamic model of the surface burnt/etched images, is, it appears, a very

promising route. Because this kind of burnt/etched image is generally located

within the boundary layer's inner layer, where the disturbed flow range is

small, and where the inner layer equation numerical value method is easy to

implement, and because little computer time is used, it is doubtlessly very

beneficial to develop this kind of investigation.

The numerical solution for inner layer problems has been investigated

[2,6]; the time-interrelation method is used to obtain numerical results for

backfacing steps and compression corners. However, because an upwind scheme

with first-order accuracy is used for the flow, when tle flow direction step

length is enlarged, it is inevitable that a rather large numerical value

viscosity is introduced. Based on our experimental calculation on compression

corners, using this kind of first-order accuracy scheme makes it very

difficult to obtain pressure distribution results identical with those

obtained from the Navier-Stokes equation and experimentation. For this

reason, we have switched to the use of the third-order accuracy upwind scheme
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for the convection term, which improves the accuracy of the entire

calculation. After the corresponding scale parameter is used to calculate the

physical plane, a wall surface pressure distribution and friction coefficient

distribution are obtained that are identical with the results from the Navier-

Stokes equation and with experimentation. At the same time, after the inner

layer equation is matched with the main layer pressure displacement relation,

the equation in fact becomes elliptical; in considering just this peculiarity,

we have accelerated the weakening process of the time-interrelation method for

the wall value relaxation, using Gauss-Seidel iteration.

Below, we first discuss the numerical calculations for the inner layer

problem, and then we consider the use of this method and a comparison of some

sets of calculated results. Finally, we provide a concise summary.

2. Numerical Calculation Method for the Inner layer Region Problem

Reference [i uses an unusual perturbation method to group the derived

inner layer momentum equation with the energy equation and non-coupled

equation for the non-compressible boundary layer.

()U (2)V
+ 0

U K+ V aU +P &U'
aU - 6- Y ay -- --'+a--T (2)

U T +V aT I V T

- (3)
()Py+ 0 (4)

Here the boundary conditions are:

1) the pressure displacement relations matching the main layer:

2) the wall's condition of having no sliding displacement:

U V- O, T-O (6)

3) the upstream condition of having the disturbance disappear:

U-wY, T-.Y, when X4-- (7')
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4) the downstream condition of having the disturbance disappear:

U (or T)- Y+H, for backfacing steps when -+- (8')

U (or T)->Y-aX, for compression corners when X-"+-

In the actual calculation, conditions (7)' and (8)' undergo modification. For

backfacing steps, using the boundary region layer inflation solution,

considering it the original upstream section, located on the step shoulder

region, in order to match it with th, main layer pressure value condition,

adjustments are made with every iteration. For compression corners, [7]'s

asymptotic equation used upstream by derivation gives the following condition:
or of J TI), when x-.-oo (7)
ax

For the downstream condition, using [8)'s algebraic attenuation asymptotic

equation, we derive:
r / 1=11- whe X-*e

6en X (8)~(8)

Here, K and 0 are constants.

Using wall surface condition (6) in equation (2), it is possible to

derive the wall surface pressure tolerance relationship:

dP [ ]
dX [ 3Y' J-. (9)

Thus, formulas (l)-(9) represent a complete formulation of the inner layer

problem. Here the use of the unusual formula (5) causes the inner layer

momentum equation (2) to become, in fact, an elliptical equation. Therefore,

we have made use of the time-interrelation, wall surface relaxation Gauss-

Seidel iteration for a solution; this takes care of the instability of the

return flow region calculations, and also accelerates the convergence process.

In simplifying the wall surface boundary condition, the following

transformations are introducedr_-"

y for XSO

Zf= f+H (backfacing steps), for X>O (10)

-aX (compression corners), for X>O
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W=fV for X<O (11)

iV-aU for X>O

(11) is only used for compression corners. The linkage and momentum equations

do not change with the transformation. Afterwards, formula (2) is rewritten

in the form of shearing stress -'s conveyance equation; making r --.. , weinT

have: of + or + r &V
at ((X a T " 412)

For the other corresponding quantities we have:

r (X, Z) dZ (13)

W -X,)di
(14)

P ) IM1j.. (15)

For the time derivative, we use the preceding to write equation (12) as

follows: [ j L' ,

U:()' . + w:.. ,(& ) ~ (16)
.3 k ,W-0a. ,- k-27),

here making

As a result , : , -=Ar : + ]. ,(17)

To take care of several insufficiencies of the first-order accuracy upwind

scheme, we use the third-order accuracy upwind scheme for the convection term
[9).

+._34_,+ 34. - W.., + 0

in which

2 2

Using (18) in (16), after adjustment, we produce

Ara,", +B(j)Ar:., +(19)



Here,

Cj)=1 2At +1 At,

B(j) =[_w; .At  ,- At/AZ' ]/C(

A _ ,- AZ I

A W) - g -1 I At /A Z IC (1)
J 2 AZ

D() - 6xAt u (2Ar" ,-6Ar:: _. 7+Ai:_ . )

At
6AX

t6AX Eur2Or,+ . ,+3r',,, i-- . ,

1At -2(2 , ri . -+r, +

+ A
I At" : ,T ., , r . -) C(i)

Formula (19) is a triple diagonal equation group, but the right-most term

includes an unknown quantity .,, Ar:.'* , ; we therefore use the Gauss-

Seidel iteration method to solve from the acceleration program. The first

iteration makes the right-most term's
.,= Arl'. ,=0

Afterwards, we substitute the previous iteration's result, until we obtain a

satisfactory convergence criterion solution Ar, ; hereupon, for the

internal poirnt we have: ,

Border region conditions (7)-,(9) must also be subjected to further

refinement, relaxation factor W for wall surface valuer approaching a super

relaxation of 1.0. After adding a low relaxation of 4)=0.25 to the pressure,

and adjusting the initial section value, it is possible to obtain a good

result for acceleration of convergence.
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3. Calculated Results and Comparisons

As we stated in our introduction, because the inner layer equation does

not contain an independent flow parameter, but only contains disturbance scale

H or a, the calculated results, when transformed through mcale relations, can

give practical values for corresponding independent curreat conditions. For

backfacing steps, we have calculated a set of results for 04.32, which are

typified on Fig. 1 through Fig. 5.

Fig. 1. Flow coefficient isopleths. Fig. 2. Velocity sections.

From Fig. 1 and Fig. 2 it is possible to see clearly the flow conditions in

the return flow region existing in the inner portion. Figure 3 shows the

distribution of shearing force along the inner wall, and shows that the value

forr in the return flow region is negative; that at the rear halt point the

value of '., =0; and that it then rises into the positive range. The value of

X at the rear halt point is 2.8. Figures 4 and 5 show the distribution of

thermal current and inner wall pressure. The thermal current is greatest at

the rear halt point. Within the return flow region the pressure is negative.

Leaving the step back wall, the negative pressure rises quickly; after passing

through the rear halt point, it again tends to change slowly. Because there

has not yet been found a suitable backfacing stair experiment and Navier-

Stokes numerical solution result, no calculations have been undertaken for a

comparison of the physical plane.

7



0.~

dl

AX-O.3S, AY-O.18i H-4.22 . AX.el A Y-O.i H-4.32'

Fig. 3. Wall surface shearing stress Fig. 4. Inner wall thermal current
distribution, distribution.

For compression corners, two sets

of supersonic flow conditions were

calculated with a=2.2 and a=2.76.

After scale relation transformation

calculations, a comparison was

undertaken with the Navier-Stokes -.

equation numerical results in [10] and

[12] and with wind tunnel experimental -a.

results. See Fig. 6, 7, and 8. A - .U

hY-6.l8i

It was discovered from the H-4.2.

comparison that the artificial Fig. 5. Inner wall pressure

consumption member introduced from the distribution.

upwind scheme with third-order accuracy

not only had a numerical stabilizing effect, but also had a certain influence

on the accuracy of the solution. The broken line shown of Fig. 8 is twice as

high as the artificial viscosity value shown by the solid line, showing that

the artificial viscosity value is too high, which gives the calculated results

a rather larger deviation from the experimental results. In Fig. 6 and 7, the

upstream and downstream pressure values and the friction obstruction values

are rather far from the Navier-Stokes solution; the reason for this may be

that, at the time of calculation, the upper and lower reaches used asymptotic
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conditions. The flow line and velocity section of the other corner separation

flow region are more clearly reasonable, and show the reliability of the

calculations.

- 11Y!1 1

0.

I. .

Re . sxi,O I Re- ,.l 0l,j
0e N: 1.(8 0l I

Fig. 6. Wall surface pressure Fig. 7. Wall surface friction
distribution. Key: (1) Our co,.fficient. Key: (1) Our
calculations; (2) Navier-Stokes calculations; (2) Navier-Stokes
solution [10). solution [10].

4. Conclusion M.

Within the range of the triple- L
deck structure theory, using the inner

layer equation to solve the problem of

two-dimensional backfacing step and_- .-."b-4" o

0i=. "0.0

co p e s on con er( ' k 0ea at n flow, it M)

is possible to obtai reasonable . all sfc frti

results, identical with those obtainede ey (1Ou
by the Navier-Stokes equation and - Na-ier-Stoke

experimental wind tunnel values. O $-ac,].(1)

Because the equation is simple and the Fig. 8. Comparison of wall surface
solution is economical, the required pressure and wind tunnel experiment.

Key: (4)Our calculations; (2)
computer time is only ca /10 of the Experiment [9].
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time required for the complete Navier-Stokes method. Our method can be used

for preliminary analysis and study. The numerical value experiment shows that

the third-order accuracy upwind scheme and the Gauss-Seidel iteration with

wall surface value relaxation factor are useful in raising the accuracy and

effectiveness of calculations.

During these studies and calculations, we had many valuable discussions

with comrade Wang Mingzhi. We wish to express our gratitude at this time.
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