ADVANCED DOUBLE LAYER CAPACITOR

Prepared by:

Anthony B. LaConti, Ph.D.
Philip Lessner, Ph.D.
S. Sarangapani, Ph.D.

GINER, INC.
14 Spring Street
Waltham, MA 02254-9147
(617)899-7270

August, 1989

4th Quarter Interim Technical Report

February 1, 1989 to April 30, 1989

Contract No. N00014-88-C-0391
ARPA Order No. 9526

Prepared For:

OFFICE OF NAVAL RESEARCH
Department of the Navy
800 N. Quincy Street
Arlington, Virginia 22217

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE. ITS DISTRIBUTION IS UNLIMITED WITH THE EXCEPTION OF THE APPENDIX WHICH IS LIMITED TO GOVERNMENT PERSONNEL.
TABLE OF CONTENTS

TABLE OF CONTENTS ... i

LIST OF TABLES AND FIGURES .. ii

1. TECHNICAL OBJECTIVES ... 1

2. EXPERIMENTAL METHODS ... 1
 2.1 Preparation and Characterization of RuO₅ Powders 1
 2.1.1 Preparation .. 1
 2.1.2 Surface Area ... 1
 2.1.3 Transmission Electron Microscopy 1
 2.1.4 Mercury Porosimetry ... 1
 2.2 Preparation of Membrane and Electrode Assemblies 2
 2.3 Electrode Testing ... 2

3. RESULTS AND DISCUSSION .. 3
 3.1 Preparation and Characterization of RuO₅ Powders 3
 3.1.1 Preparation .. 3
 3.1.2 Characterization .. 3
 3.2 Electrode Characterization .. 10
 3.2.1 Cyclic Voltammetry .. 10
 3.2.2 2" x 2" Hardware .. 14

4. FUTURE WORK .. 14

5. REFERENCES .. 15

APPENDIX .. 16
LIST OF TABLES AND FIGURES

Table I RuO$_x$ Preparations .. 3

Figure 1 TEM of 50 m2/g RuO$_x$ Particulate 4

Figure 2 SAED Pattern of 50 m2/g RuO$_x$ 5

Figure 3 TEM of 3 m2/g RuO$_x$.. 7

Figure 4 SAED of 3 m2/g RuO$_x$.. 8

Figure 5 Mercury Porosimetry on a Teflon-Bonded RuO$_x$ Electrode .. 9

Figure 6 Capacitance vs. RuO$_x$ Loading for M and Es Made from Powder 363-49 .. 11

Figure 7 Capacitance vs. RuO$_x$ Loading for M and Es Made from Different RuO$_x$ Powders 11

Figure 8 Voltammogram of High-Loading RuO$_x$ Electrode Made by the Painting Method 12

Figure 9 RuO$_x$-Nafion Interface ... 13

Figure 10 Structure of an 1100 EW Nafion Ionomer 14

Accession For
NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/

Availability Codes

Dist:

Avail and/or
Special

A-1
1. **TECHNICAL OBJECTIVES**

The overall goal of this project is to develop electrochemical capacitors with no liquid electrolyte present. The liquid electrolyte is replaced by a solid ionomer electrolyte. An advantage of these devices over conventional electrochemical capacitors containing free acid would be greater safety and reliability.

In the fourth quarter, we concentrated our efforts in three areas: 1) preparation and characterization of RuO\textsubscript{x} powders, 2) preparation of membrane and electrode (M and E) assemblies with high capacitance, and 3) scale-up of M and E structures to 2" x 2" size.

2. **EXPERIMENTAL METHODS**

2.1 **Preparation and Characterization of RuO\textsubscript{x} Powders**

2.1.1 **Preparation**

The thermal method was used to prepare RuO\textsubscript{x}. The effect of temperature and method of dispersing the RuCl\textsubscript{3} precursor on powder physical properties were studied.

2.1.2 **Surface Area**

Surface area measurements on RuO\textsubscript{x} samples were done using a Micromeretics FlowSorb II 2300 apparatus, as described in the 3rd Quarterly Technical Report.

2.1.3 **Transmission Electron Microscopy**

Transmission electron microscopy (TEM) was done to determine the fine structure of the RuO\textsubscript{x} powders. The RuO\textsubscript{x} samples were dispersed on Holey Film supports. Some samples were also examined by small area electron diffraction (SAED) to determine the degree of crystallinity in the sample. All TEM work was done at Eastern Analytical Laboratories (Billerica, MA).

2.1.4 **Mercury Porosimetry**

Mercury porosimetry was used to obtain information on inter- and intraparticle pore sizes. In this technique, mercury is forced into the sample pores by a constantly increasing pressure. The pore diameter can be calculated using:
\[d = \frac{-4 \gamma \cos \theta}{p} \]

where \(\gamma \) is the surface tension, \(\theta \) is the contact angle, and \(p \) is the pressure. The volume of mercury in the pores is measured directly and the surface area is calculated by assuming cylindrical pores. The cumulative pore volume and pore surface area are plotted against pressure or pore diameter.

A sample of a Teflon bonded RuO\(_x\) electrode was sent to Micromeretics (Norcross, GA) for mercury porosimetry.

2.2 Preparation of Membrane and Electrode Assemblies

Electrodes were formed by suspending RuO\(_x\) particulates in a Nafion 117 solution (containing isopropyl alcohol and water). This suspension was used as a "paint" to make electrodes.

Initially, membrane and electrode assemblies were made by painting the RuO\(_x\)-Nafion mixture directly on a Nafion 117 membrane. After drying, a current collector screen was hot pressed into the assembly. M and E's were successfully prepared by this method, but the electrodes were somewhat uneven due to the difficulty of painting onto a wet membrane. Loading of the RuO\(_x\)-Nafion mixture was also difficult to determine. A modified method was developed that solved both these concerns and is described in the Appendix.

2.3 Electrode Testing

Electrode testing was done as reported in the 3\(^{rd}\) Quarterly Report. A cell of 2\" x 2\" (25 cm\(^2\)) size was built. The design was similar to the liquid electrolyte-free cell for 1 cm\(^2\) M and E's described in the 3\(^{rd}\) Quarterly Report.
3. RESULTS AND DISCUSSION

3.1 Preparation and Characterization of RuO$_x$ Powders

3.1.1 Preparation

Several preparations of RuO$_x$ were done during the 4th Quarter. Table I lists the preparation conditions and surface areas obtained. The baseline method (Powder 363-49) consisted of mixing RuCl$_3$ and NaNO$_3$ and crushing and grinding the mixture with a mortar and pestle. The mixture was then placed into a porcelain dish and heated to 500-550°C for 3 hours and allowed to cool inside the furnace. Powder 363-49 had a surface area of 18 m2/g which was considerably lower than the 50 m2/g powder made during the 3rd Quarter (using a similar method). This low surface area was attributed to poor temperature control by the furnace temperature controller. The controller was replaced. Powder 363-57 prepared in the furnace with the new controller gave a powder with a surface area of 58 m2/g.

Table I: RuO$_x$ Preparations

<table>
<thead>
<tr>
<th>Powder No.</th>
<th>Mixing Method</th>
<th>Temperature (°C)</th>
<th>Time (hr)</th>
<th>Surface Area (m2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>363-49</td>
<td>Crush/Grind</td>
<td>550</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>363-57</td>
<td>Crush/Grind</td>
<td>500</td>
<td>3</td>
<td>58</td>
</tr>
<tr>
<td>363-74</td>
<td>Slush</td>
<td>500</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>363-82</td>
<td>Slush</td>
<td>500</td>
<td>3</td>
<td>73</td>
</tr>
</tbody>
</table>

The crushing/grinding method was not giving a very good dispersion of RuCl$_3$ in the NaNO$_3$. An improved method was developed that is described in the Appendix. Powders 363-74 and 363-82, made by this improved method, gave surface areas of 95 and 73 m2/g, respectively.

3.1.2 Characterization

Figure 1 shows a TEM photograph of a RuO$_x$ particle from the 50 m2/g powder made during the 3rd Quarter. The particles have considerable internal porosity with crystallites on the order of 200 Å in size. The SAED pattern (Figure 2) shows weak diffraction rings indicating the material has some crystallinity.
Figure 1: TEM of 50 m²/g RuOₓ Particulate.
The 50 m²/g powder was heat treated at 700°C. Its surface area was reduced to 3 m²/g. The TEM photograph of this heat-treated powder (Figure 3) shows that intraparticle sintering of the crystallites has occurred and the sintered particles are on the order of 0.1 µm in size. The SAED pattern in Figure 4 shows much more intense diffraction rings in the 3 m²/g material indicating a stronger degree of crystallinity.

The mercury porosimetry results are plotted in Figure 5. About half the pore volume is contained in pores greater than 0.5 µm. Almost all of the surface area is from pores less than 0.01 µm (100 Å) in diameter.

From the surface area, X-ray diffraction (see 3rd Quarterly Report), SEM (see 3rd Quarterly Report), TEM, and mercury porosimetry results, a consistent picture of the structure and morphology of the RuOₓ powder begins to emerge. The powder is primarily RuO₂. It is made up of particles of less than 1 µm to over 100 µm in size. These particles are porous and consist of partially sintered crystallites. Assuming spherical crystallites, the surface area can be calculated from:

\[SA = \frac{6}{dR} \]

using \(d = 7 \text{ g/cm}^3 \) for RuO₂ and \(R = 100 \text{ Å} \) (from Figure 1) gives \(SA \approx 40 \text{ m}^2/\text{g} \) which is in good agreement with the 50 m²/g measured by nitrogen adsorption.

The mercury porosimetry results and TEM photographs show that most of the surface area is in the pores between the crystallites. These pores are less than 100 Å in diameter.

This type of morphology of the oxide is not unexpected. The density of RuCl₃ is 3.1 g/cm³, while RuO₂ has a density of 7 g/cm³. When the decomposition reaction is accompanied by a large decrease in specific volume (as is the case here) the final product has the external shape and dimensions of the precursor, but with many small voids (Volpe and Boudart, 1985). This appears to be the case here.
Figure 5: Mercury Porosimetry on a Teflon-Bonded RuO$_x$ Electrode: Cumulative Pore Area and Cumulative Pore Volume vs. Pore Diameter.
3.2 Electrode Characterization

3.2.1 Cyclic Voltammetry

Capacitance of electrodes bonded to a Nafion membrane with no Nafion impregnation are near 0.1 to 0.2 F/cm². This capacitance arises because of the interfacial contact area between the RuOₓ and membrane. By adding Nafion to the electrode structure, we hope to create the analog of a "floated" electrode where the entire depth of the electrode is utilized. To determine whether the painting method was producing such electrode structures, M and E's were made with different loadings of RuOₓ (and a constant 5 wt% Nafion). If a three dimensional structure is being formed, then the capacitance should be proportional to the RuOₓ-Nafion loading.

Figure 6 shows capacitance vs. RuOₓ loading for M and E's made from Powder 363-49. At loadings up to 20 mg/cm², capacitance is linearly proportional to loading. At higher loadings, it tends to level off.

Figure 7 shows a composite plot of capacitance vs. loading of M and E's made from several different RuOₓ powders. Capacitances of up to 0.6 F/cm² were achieved at the highest loadings. Although a clear linear proportionality can be seen at loadings of 20 mg/cm² and below, considerable scatter in the data exists (even for M and E's made with the same RuOₓ powder). There is only a small improvement from making electrodes from higher area powder.

Electrodes with higher loading of RuOₓ, made by the painting method, sometimes had impurity peaks in their voltammograms. Figure 8a shows a voltammogram of one such electrode. A large cathodic peak was evident at 150 mV. We found that this peak could be removed by boiling the membrane in a dilute H₂O₂ solution. Figure 8b shows that this peak has been substantially removed by this treatment. The peak is probably due to an organic impurity which is then oxidized by the H₂O₂.
Figure 6: Capacitance vs. RuO$_x$ Loading for M and E5 made from Powder 363-49.

Figure 7: Capacitance vs. RuO$_x$ Loading for M and E5 made from different RuO$_x$ Powders.
Figure 8: Voltammogram of High-Loading RuO$_x$ Electrode Made by the Painting Method.

a) Before H$_2$O$_2$ Treatment; b) After H$_2$O$_2$ Treatment
It was found that electrodes made by painting RuO$_x$-Nafion mixture give capacitance higher than electrodes with no Nafion, but electrodes made by mixing RuO$_x$ and Nafion, drying the powder and then fabricating electrodes do not. This fact can be explained by the requirements of the electrode-electrolyte interface necessary in a liquid electrolyte free cell. Figure 9 shows a representation of the RuO$_x$-Nafion interface. To effectively utilize the RuO$_x$ in the interior of the electrode, a continuous ionic path must extend from the membrane to the RuO$_x$ particulate. By painting, a continuous composite of RuO$_x$ and Nafion can be formed. On the other hand, the previous method of mixing the RuO$_x$ and Nafion, drying the powder and fabricating into an electrode likely lead to a non-continuous ionic path.

Figure 9: RuO$_x$-Nafion Interface.

The higher surface area powders do not seem to produce electrodes with much higher capacitance than a lower surface area powder (at similar total loadings). Most of the surface area of the RuO$_x$ is developed in pores of less than 100 Å in size (see...
Figure 5). Nafion is a polymeric electrolyte. Although the equivalent weight of Nafion 117 is 1100, the molecular weight is probably greater than 2×10^5 daltons. Figure 10 shows the structure of Nafion 117. In its solid (membrane) form, the units are intertwined. When solubilized, the weak bonds between units are broken apart, but the covalent bonds are not broken. Aldebert et al. (1986) have used small angle neutron scattering to show that Nafion units in solution are 20-40 Å in diameter and 200-400 Å long. Thus, the Nafion molecules probably cannot penetrate into the small pores between RuO$_x$ crystallites.

![Structure of Nafion Ionomer](image)

Figure 10: Structure of an 1100 EW Nafion Ionomer.

3.2.2 2" x 2" Hardware

2" x 2" M and Es were prepared and tested in the cell hardware built during this quarter. A 20 mg/cm2 loading of RuO$_x$-5% Nafion electrode gave a capacitance of 14 Farads (0.56 F/cm2).

4. Future Work

The liquid electrolyte-free cell hardware allows us to test M and Es with no liquid electrolyte present. However, a water reservoir is still needed to keep the membrane hydrated. During the 5th Quarter, we will develop sealed cell hardware.

Characterization during the first year of this contract has been mostly done on single electrodes using cyclic voltammetry or AC impedance methods. We will be transitioning into evaluating capacitance by charging and discharging of the complete RuO$_x$ electrochemical cell.
S. REFERENCES
