DTIC/TR-89/16 AD-A211 941

DOD GATEWAY INFORMATION SYSTEM (DGIS)
COMMON COMMAND LANGUAGE:
A RETROSPECTIVE ON THE INTRODUCTION OF PROLOG
AS THE DEVELOPMENT TOOL

AD-A211 941

DAITC/TR-89/6

DucT. Tran
Allan D. Kuhn
Randy L. Bixby

el
i
|

- May 1989

Defense Applied Information Technology Center

1800 North Beauregard Street
‘ndria, Virginia 22311
(703) 998-4787

8 q 9 ," 0 8 6 No. (703) 931-3968

]

2a. SECURITY CLASSIFICATION AUTHORITY

UNCLASSIFIED
ECURITY CLASSIFICATION OF THR PA
REPORT DOCUMENTATION PAGE
|72 REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED

3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited

4.

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

DAITC/TR-89/6 DTIC/TR-89/16
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION

Defense Applied Information (If applicable)

Technology Center Defense Technical Information Center
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

1800 N. Beauregard Street Cameron Station

Alexandria, VA 22311-1784 Alexandria, VA 22304-6145

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

. TITLE {Include Security Classification)

DoD Gateway Information System (DGIS) Common Command Language: A Retrospective on the
Introduction of PROLOG as the Development Tool

12.

PERSONAL AUTHOR(S)
Duc T. Tran, Allan D. Kuhn, Randy L. Bixby

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S. PAGE COUNT

FROM TO 8905 20

16.

SUPPLEMENTARY NOTATION

17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP PROLOG,/Artificial Intelligence,” Common Command Language,
5 2 CCL, Networks, Gateways, Interfaces, DoD Gateway
12 5 Information System, DGIS

/

1 19.

ABSTRACT (Continue on reverse if necessary and identify by block number)

The introduction of PROLOG into the Common Command Language (CCL) development is reviewed.
The advantages of using PROLOG as an artificial intelligence tool for developing fifth-
generation programs are shown, in comparison with doing traditional third-generation
programming. A brief is given on actual PROLOG programming, then the reasons for going to
PROLOG are explained. The approach to CCL as using knowledge bases and blackboard
architecture is described. The goals of CCL as an interface on the DoD Gateway
Information System (DGIS) are to provide a standard program for accessing databases,
provide maintainability with syntax and semantic changes as they occur, and provide
adaptability to future requirements and enhancements. | . .

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

21. ABSTRACT SECURITY CLASSIFICATION
CluncLassiFieomunumited @ SAME AS RPT. [J OTIC USERS UNCLASSIFIED

223. NAME OF RESPONSIBLE iINDIVIDUAL 22b. TELEPHONE (incfude Area Code) | 22¢. OFFICE SYMBOL

Allan D. Kuhn (703) 998-4600 DAITC Hyp Lab

DD FORM 1473. 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED

DOD GATEWAY INFORMATION SYSTEM (DGIS)
COMMON COMMAND LANGUAGE:
A RETROSPECTIVE ON THE INTRODUCTION OF PROLOG
AS THE DEVELOPMENT TOOL

Duc T. Tran e = ————
Allan D. Kuhn Fueens.ca for |
Randy L. Bixby pHhiS o skl %

¢ LI TER
: Ui.=anoanced O
Pdetiitetten
P SR _..._______.____.1‘
May 1989 ST
foec i Ty Tedes
—. T A /orA
Dict | Iz oinad

A

DAITC Hypermedia Laboratory Report Number 4
DTIC CCL Report No. 4

The Hypermedia Laboratory

Defense Applied Information Technology Center
Alexandria, VA 22312

Defense Technical Information Center
Alexandria, VA 22304

DOD GATEWAY INFORMATION SYSTEM (DGIS) COMMON COMMAND
LANGUAGE: A RETROSPECTIVE ON THE
INTRODUCTION OF PROLOG AS THE DEVELOPMENT TOOL

Duc. T. Tran, Allan D. Kuhn, and Randy L. Bixby

May 1989

Keywords: PROLOG, Artificial Intelligence, Common Command Language, CCL, Networks, Gateways,
Interfaces, DoD Gateway Information System, DGIS

Abstract: The introduction of PROLOG into the Common Command Language (CCL) development is
reviewed. The advantages of using PROLOG as an artificial intelligence tool for developing fifth-
generation programs are shown, in comparison with doing traditional third generation programming. A
brief is given on actual PROLOG programming, then the reasons for going to PROLOG are explained.
The approach to CCL as using knowledge bases and blackboard architecture is described. The goals of
CCL as an interface on the DoD Gateway Information System (DGIS) are to provide a standard program
for accessing databases, provide maintainability with syntax and semantic changes as they occur, and
provide adaptability to future requirements and enhancements.

DOD GATEWAY INFORMATION SYSTEM (DGIS) COMMON
COMMAND LANGUAGE: A RETROSPECTIVE ON THE
INTRODUCTION OF PROLDG AS THE DEVELOPMENT TOOL

Duc T. Tran, Allan D. Kuhn, and Randy L. Bixby

Hypermedia Laboratory
Defense Applied Information Technology Center (DAITC)

1. BACKGROUND

The Defense Technical Information Center (DTIC) has sponsored gateway technology
development for the Department of Defense (DoD) since 1982. The machine for the DoD Gate-
way Information System (DGIS) was installed in January 1986. The purpose of DGIS is to provide
users in the Department of Defense a simple, efficient, and yet powerful means to access informa-
tion residing in governmental and commercial databases. Within the system the user not only has
help in accessing the information but also can manipulate the resuits afterward. The DGIS Com-
mon Command Language (CCL) is a project generated from the realized need within the DGIS
user community to access the multiplicity of information systems with a standard command
language. DTIC therefore began the CCL project in 1986.

The DGIS Common Command Language (CCL) is a database manipulation language for
querying databases in remote and diverse information systems. The DGIS CCL program accepts
user-input in CCL and translates it into the command language of the target database. The DGIS
CCL development was done to support the mission of DGIS, which is to give users an easy-to-use
means of accessing the multiplicity of databases and collect information from them.

The DGIS is a UNIX-based system. Initially, the CCL began with UNIX/C programming.
There are two language development tools for developing transtators in the UNIX environment:

LEX -- a lexical analyzer that accepts lexical rules specified in BNF forms to determine
tokens.

YACC -- a compiler-compiler; it consists of the syntax rules and the actions to be taken in
recognizing a sequence of input tokens.

The input of LEX is the language to be translated. The output of LEX is a sequence of
tokens that will be the input of YACC. Based on the tokens of LEX, YACC produces the
translated language or error messages.

Together these two programs are standard tools for translation. They are also table-driven,
that is, lexical and syntactical rules are specified in BNF grammar and thus, they should be easy
to adapt and port to for different but similar translation jobs. The “ditferent but similar* describes
the circumstances of CCL.

A critical problem for a common command language interface, however, is establishing CCL
command sequence memory in accessing external databases with the interface. Without this
capability a command continuity sequence cannot take place in querying the remote database.

-2.

The DGIS would consider every command invoked by the DGIS CCL interface a new and original
command. Consequently, each command would be a unique function entity to the database.

A simple example for the need to have a command continuity sequence is in using the
"COMBINE' results function of the CCL interface. Without having a command continuity sequence
in the interface, there are never any previous results to combine.

By no means not disregarding the usefulness of LEX and YACC in third generation level C
programming, in this paper we present the advantages of PROLOG for fifth generation program-
ming in resolving the needs of CCL. The next section of this paper is a brief introduction to PRO-
LOG for those who are not familiar with it.

2. INTRODUCTION TO PROLOG

PROLOG is a programming language based on logic. PROLOG programming language is
based on first order logic. First order logic means that predicates can occur only as predicates, a
term referring to fact assertion (see further). In logic programming language each statement is
expressed as a first-order-logic axiom and the computation is a constructive proof of a goal state-
ment from the program. PROLOG software packages are implementations of PROLOG logic pro-
gramming language. Such a package should have a complete development environment that
includes a debugger, an interpreter, a compiter, and an editor.

In this section we introduce PROLOG and its employment of logic programming by showing
examples*. Logic concemns the methods and principles used to distinguish correct from incorrect
reasoning. First consider, therefore, the following classic Greek example of logical thinking:

Every human is mortal.
Socrates Is 2a human.
Therefore, Socrates Is mortal.

This can be rephrased in logical terms as
For every X, X is mortal If X is a human.
Socrates Is a human.
Therefore, Socrates is mortal.

in PROLOG the first two statements are rewritten as

mortai(X) :- human{X).
human(socrates).

In these statements "X" is a variable and "socrates" is a constant. The first statement is a general
rule about the deductive relationship between the predicates mortal and human. A "predicate” is
something that asserts a fact about one or more entities. The second statement is a fact. A “fact"
refers to a set of possible states of affairs. These two statements form a complete PROLOG pro-
gram that can be used to answer questions, such as

"Is Socrates mortal ?"
which transiated into PROLOG is

* There are several versions of PROLOG with some syntactical differences. All the examples in this paper are
written in the syntax of the Edinburgh PROLOG.

A TN U N E AN 0 BE E e

?- mortal(socrates).
to yield the answer
yes
and another question
?- mortal(X).
which reads "Is there a mortal?" (which equates to "human") that yields

X = socrates

Suppose we add one more fact into our PROLOG program above:
human(aristotie).

then we get the following session
?- mortal(X).

X = socrates
X = aristotle

Another example is the program to append two lists to form another list. We define a predi-
cate of the form append(X,Y,Z), where X, Y, Z are lists, and Z is the result of appending Y to X.
The program can be written in PROLOG as

append([], L, L).
append({XiL 1], L2, [X|L3]) :- append(L1, L2, L3).

The first rule is for the base case where the first list is an empty list. The second rule is for the
general case. These rules are the following points written in PROLOG:

[1] The first element of the first list (X) will be the first element of the third list.

2] The tail of the first list (L1) will recursively concatenate to the tail of the second list to give
the tail of the third list.

Executing the append program we would have

?- append({a,b,c], [d,e], X).
X = [a,b,c,d,e].

More interestingly

?- append(X, [d,e}], [a,b,c,d,e]).
X = [a,b,c].

?- append([a,b,c], X, [a,b,c,d,e])-
X = [d,e].

?- append([a,b,c], [d.e], [a,b,c,d,e]).
yes

and finally

?- append(X, Y, [a,b]).
X=[]
Y =[a,b]

X =[a]
Y = [b]

X =[a,b]
Y={]

which are the three possible sets of answers for the third argument as [a,b] of the append pro-
gram.

The append program demonstrates several important characteristics of PROLOG:

- PROLOG supports recursion. "Recursion” is a mechanism in which a program module can
call itself as a subfunction either directly or indirectly. The module eventually terminates
once a non-recursive execution is made.

- PROLOG can provide more than one answer. These answers are provided one at a time
when a PROLOG predicate is repeatedly executed. Traditional programming provides only
one answer, that is always the same answer.

- PROLOG programs are invertible. For instance, the append program can be used both to
append two lists if the first two terms of the lists are bound, or it could break a list into two
smaller lists if only the third term is bound.

These aspects of PROLOG are discussed further in the context of CCL.

3. PROLOG AS A TOOL FOR LANGUAGE TRANSLATION

We now consider the problem of parsing a natural language sentence using PROLOG.
Since the program involves testing to see if something is a sentence, let us define the predicate
sentence. We will give it a meaning as follows:

sentence(X) means that:
X Is a sequence of words forming a grammatical sentence.

We also introduce the predicates noun_phrase, and verb_phrase to express the following
meanings:

noun_phrase(X) means that:
sequence X Is a noun_phrase.

verb_phrase(X) means that:
sequence X is a verb_phrase.

Then we can put together a definition of sentence in terms of these predicates. A sequence Xis
a sentence if it decomposes into two subsequences Y and Z; Y is a noun_phrase and Z is a
verb_phrase. Since we are representing a sequence as lists, we can use the predicate append of

-5-

the previous section to decompose one list into two others. We then can writet
sentence(X) :- append(Y,Z,X), noun_phrase(Y), verb_phrase(Z).
Similarly,
noun_phrase(X) :- append(Y,Z,X), determiner(Y), houn(Z).

verb_phrase(X) :- append(Y,Z,X), verb(Y), noun_phrase(Z).
verb_phrase(X) :- verb(X).

append([], L, L).
append([L1|L2], L, [L1]L3)) :- append(L2, L, L3).

Finally, we supply a set of facts:
determiner([the]).

noun([apple]).
noun([man]).

verb([eats]).
verb([sings]).

and the program is completet. It will successfully answer the question:

?- sentence({the,man,eats,the,apple]).
yes

This, in effect, shows the features in PROLOG programming for establishing CCL translation pre-
cepls, as explained next.

4. USING PROLOG AS THE CCL DEVELOPMENT TOOL

Using PROLOG as a tool to translate a CCL command into a command of a target database
consists of writing a PROLOG predicate translate(X,Y) where X is a CCL command to be
translated into Y, a command of a target database.

The translate predicate inherits several characteristics of a PROLOG program:

- if X is instantiated as a CCL command, then transiate produces Y as an equivalent com-
mand of a target database, and there may be more than one such Y.

- if Y is instantiated as a command of a target database, then transiate produces X as an
equivalent CCL command, and there may be more than one such X.

t+ This parsing program demonstrates the point, and it works though rather inefficienty.
1 For the sake of simplicity this parsing example assumes that a sentence has been broken into words
represented in a list. In practice, a front end is needed to preprocess the raw sentence into words.

-6-

- if X (or Y) is partly instantiated, then translate produces Y (or X) as an equivalent com-
mand, and there may be more than one such Y {or X).

- if X and Y are both instantiated, then translate will determine if Y is the translation of X
and vice versa.

One single PROLOG program translate, therefore, can provide translation in both direc-
tions -- from CCL to the command language of the target database and from the command
language of the target database to CCL.

Now assume that we have two databases DB1 and DB2, and two PROLOG predicates
translateDB1 and translateDB2 to translate a CCL command into a command of the respective
databases DB1 and DB2. Then the predicate translate defined as

translate(X,Z) :- translateDB1(Y,X), transiateDB2(Y,2).

is a PROLOG program that translates a DB1 command to DB2 commands. With this feature the
user can use his favorite command language of his familiar database (e.g., of DB1) to query the
another database (e.g., DB2).

PROLOG is equipped also with the built-in predicate consult to read in a stored program
from an external file. The read-in statements are added to the main memory database of PRO-
LOG to affect the execution of later translations. This feature is ideal for customizing the CCL
translation to a particular database or a particular user.

PROLOG is primarily an Artificial Intelligence language. One of its important applications
has been the language for developing Expert Systems. It has been demonstrated that it is rela-
tively a simple task to sugar-coat PROLOG to provide the capability to expl/ain its action, provide
the history of execution, and aiter the behavior of the program by adding and deleting PROLOG
statements. This is certainly desirable since in CCL we want to have capability in real-time to
confirm the translated command, examine the translation process, and resubmit the translation
with a modified translator.

5. LOOKING AT PROLOG
PROLOG -- An Atftificial Intelligence Programming Tool

Per the Caralogue of Artficial Intelligence, Alan Bundy, Springer-Verlag 1986:

PROLOG is . . . A simple but powerful and practical programming language based on the idea of
programming in logic. PROLOG programs may be viewed as logical clauses and the interpreter as
an efficient resolution theorum prover. PROLOG may be looked on as an extension of LISP in that it
provides as primitives pattern directed procedure invocation and non-determinism (backtracking).

It provides general recursive (tree-like) data structures that are accessed by pattern-matching rather
than by explicit selector functions. There are no destructive operations on these data structures, but
structures may contain empty slots (uninstantiated logical variables) which can be filled in later.
There is also an assertional database which is used for relatively long-lived or permanent data.

The Hypermedia Laboratory’s entry into Artificial Intelligence (Al) came from its experiences
in the development of the DGIS Common Command Language in UNIX/C on the DGIS VAX
11/780 during 1986-87. After assessing the rigidity of third generation programming (C, with UNIX
utilities), coupled with the requirement for universality and a more human-like human-machine
interface, we decided to make the jump to Al in April, 1387. A review of the Al tools relative to the

-7-

needs of CCL led to the decision to restructure the DGIS CCL in PROLOG, still in a mainframe
environment (VAX 11/780). The reasons were as follows:

The Reversibility of PROLOG: Logic programming concerns the relationships of objects (or
terms). In determining the truth of relations, we can have reversibility in programs, that is, one can
write a program and have its inverse for free (with some restrictions). This feature provides a
tremendous advantage to CCL, for example, in that CCL concerns the translation of a multiplicity
of diverse search languages.

The Database Capabllity of PROLOG: PROLOG has its own internal database capability. This
feature allows programs to manipulate codes as relations that can be assertted or deleted. The
feature can aiso be extended to external databases (e.g., via a RDBMS), to achieve the fiexibility
of storing knowledge in both PROLOG internal databases and traditional external databases. We
thus take advantage of database technology for performance and ease of use. (Commercial data-
bases are equipped with a several utilities to maintain and access their data.)

The Separation of Logic and Control: This separation is encouraged in PROLOG. PROLOG
programs can be considered an an amalgamation of rules and facts. They are governed by the
default execution control of the PROLOG language, i.e., backtracking by left to right and top to bot-
tom execution. This control can be easily supplemented or replaced by more powerful meta-rules,
coded also in PROLOG.

Object Inheritance & Message Passing: These are two powerful programming features in
object language methodology. Object inheritance and message passing are easily implemented
and embedded within PROLOG. Object language methodology has been used in CCL, in con-
junction with the above capabilities of logic programming language.

SN U E G B TE U Uh = e

Per the Catalogue/Bundy:

Since it's adoption as a base language for the Japanese Fifth Generation Project, PROLOG has
exhibited a remarkable rise in popularity. Commercial andior research implementations are now
available for almost every conceivable architecture, ranging from home micros to large scale main-
frames.

There are several PROLOG Compilers/interpreters available for running in UNIX environ-
ments. When selecting a particular implementation for CCL, we were interested in the following
features:

PROLOG Must:
- be available as compiler and interpreter,
- interface to other high-level languages (e.g., C).

- include in its built-in functions IO compatibility with the UNIX environment, that is, /O
redirection, piping, etc.

PROLOG Shouid:

- follow the Edinburgh PROLOG syntax as the industry standard.
- have good debugging facilities.

- include user-friendly interfaces (e.g., windows).

There are two basic implementation versions in PROLOG. One is its implementation as
commercial versions, the other as university versions. Following are examples, one of each.

-8-

QUINTUS PROLOG -- A Vendor Package Version

Quintus Prolog is a PROLOG commercial implementation by Quintus Computer Systems,
Inc., Mountain View, California. Quintus was started by a group of researchers that wrote the
world's first PROLOG compiler at University of Edinburgh, Scotland.

The Quintus implementation of PROLOG is fast and efficient and it is available on a number
of UNIX computers and the DEC VMS operating system. We selected Quintus in 1987 after a
period of evaluation and testing. A version of Quintus Prolog was installed on our VAX 11/780,
and it has been used to implement the DGIS Common Command Language System (CCLS) and
hypertext systems. In October 1988 we obtained on loan Quintus ProWINDOWS for evaluation.
ProWindows is an object-oriented PROLOG-based package for Sun workstations. It could be
used for implementing a bitmapped user-interface to CCLS, hypermedia, and Neural Network
applica’’ans. We observed the ease of programming and expressibility provided by this product
that is not generally provided elsewhere.

The major teatures of Quintus Prolog include:

* Afast, efficient implementation.

* Easy program entry and debugging using the Emacs text editor intertace.

* Interface with programs and modules written in other languages, such as C.

* High degree of compatibility with the industry standard of PROLOG (Dec-10 PROLOG).

* On the Sun workstation Quintus provides ProWINDOWS, an object-oriented programming
package that enables programmers using Quintus Prolog to quickly and easily create
window-based user interfaces for their PROLOG application programs.

With Quintus Prolog on the VAX, the Hypermedia Laboratory, in addition to CCLS, has
created several PROLOG-based programs. One is an implementation of hypertext processes,
available as a shared computing resource (vis-a-vis a PC standzlone package). Those programs
in essence have changed the VAX to a hyperVAX system, and put the PROLOG-based pro-
grams into a di~tributed programs environment. In this application we structure the PROLOG pro-
grams as processes separate from the VAX's C frontend process. The communication protocoi
between PROLOG and C to send requests and retrieve answers is provided by Quintus Prolog.
This facility is based on standard BSD UNIX sockets and it is useful for several reasons:

* It allows PROLOG to function as a back-end component of another system written in
another language.

* It takes advantage of the computing power of a network of computers by allowing the con-
struction of a set of cooperating PROLOG processes running on multiple machines.

* It permits PROLOG 1o control distributed processes.

A strong advantage in acquiring a commercial package is the inclusion of vendor maintenance
and support, such as software updates, documentation updates, and vendor conferral support.
This maintenance is especially critical for leading-edge technologies, such as PROLOG as an
Attificial Intelligence tool, as they continue to evolve.

NU-PROLOG -- An Example of a University Version

NU-PROLOG is an example of a university PROLOG development application, vis-a-vis a
commercial development. A university version is a research development made available mostly
for non-commercial uses, whereas a commercial version is vended as a frozen version, to include
options for maintenance, training, and later updates. A second major difference between univer-
sity and vendor versions is that a university version usually is relatively low cost, does not include

-9-

maintenance and training, but reflects the state-of-the-art of the technology.

NU-PROLOG is a development of the Machine Intelligence Project of the University of Mel-
bourne, Australia. The Hypermedia Laboratory's interest in this particular version stems from its
capability to be installed on the Pyramid 98x, the DTIC/DAITC operational DGIS machine; con-
tains features reflecting the latest advances in the logic programming field; and is compatible with
Quintus PROLOG, the vendor package on the DAITC VAX 11/780. At the time of the transition
from the VAX to the Pyramid in August, 1988, Quintus had not modified a package for the
Pyramid. A review of PROLOG packages during May-June preceding brought up NU-PROLOG.

NU-PROLOG succeeds an earlier MU-PROLOG, and moves PROLOG closer to the ideals
of Logic Programming by allowing the user to program in a style closer to first order logic. It pro-
vides substantial performance gains over the earlier interpreted systems such as MU-PROLOG,
with the following features+:

* Compiles PROLOG programs into machine code for an enhanced version of the Warren
abstract machine.

* Incorporates a database system based on superimposed codeword indexing which can store
general PROLOG terms in external databases for fast retrieval; the database system makes use
of the superjoin algorithm to perform efficient join operations.

* Uses "when" declarations (successor to "wait") to control execution of programs according to
the availability of data.

* Implements a large set of built-in predicates, including many Quintus PROLOG predicates;
most DEC-10/Edinburgh/MU-PROLOG library predicates are available through compatibility
libraries.

The NU-PROLOG system contains the following major components:

* "nc", the NU-PROLOG compiler.

* "np", a simple interpreter-style interface which implements the standard Edinburgh PROLOG
style debugging facilities and has a sophisticated query language for accessing external database
predicates.

* “"nac”, a program for adding control information to programs written in a purely logical style.

* “nit", a program for reporting common errors in programs (¢f. UNIX/C’s "lint").

The NU-PROLOG 1.3 release includes an improved interpreter and debugger that under-
stand “when" declarations, floating point arithmetic, an interface to foreign functions on many
machines, and the usual large collection of bug fixes. NU-PROLOG runs under UNIX System V
and Berkeley BSD UNIX 4.[23]. 1t has been implemented on the VAX 11/780, Pyramid 98x, Elxsi
6400, Perkin Elmer 3240, Sun workstations, and Integrated Solutions Workstations. The Hyper-
meche ‘.aboratory has Suns that in turn communicate with the central VAX and Pyramid of the
Coote

6. MOVING TO PROLOG

DGIS offers the user access to many information systems. Each of these systems is
equipped with its own command language and procedures to access information. Often the
differences between the command languages are substantial enough to pose a barrier to both
casual users and professional librarians. Furthermore, the command languages are maintained

* NU-PROLOG descriptive information has been picked up verbatim from information provided by the
University of Meibourne.

-10 -

by a variety of vendors and government agencies wherein changes may be introduced without
warning to users.

The goal of the CCL project is to solve the above problem by introducing a single command
language access to bibliographic databases through the DGIS. CCL will incorporate procedures
to ensure its correctness concerning changes and availability of features in a database.

The project started with the commitment to carry out the proposed CCL standard of the
National Information Standards Organization (NISO). This standard evolves from the most often
needed and the most popular features of existing bibliographic databases. In early 1987, several
quick DGIS CCL prototypes were successfully implemented in C using the standard UNIX tools of
LEX and YACC for language translation. These prototypes established the feasibility of the pro-
ject and insights into the problem.

The current phase of the project uses Attificial Intelligence techniques of blackboard archi-
tecture and knowledge-based driven knowledge sources. Quintus PROLOG has been chosen to
be the primary implementation language coupled with some low level system related support func-
tions written in C. The introduction of PROLOG requires the implementation of CCL as a
knowledge based system because this fits well with the anticipation of its gradual migration from a
structured command language of NISO to a natural language.

7. THE APPROACH
The incorporation of PROLOG in CCL implementation has several design goals:

1) Provide a single CCL program for bibliographic data bases.

2) Provide a high degree of maintainability with the syntax and semantic changes of both
CCL and the underlying command languages.

3) Provide adaptability to future enhancements being planned to the current version of CCL.

Based on these design goals, the DGIS CCL is structured as a knowledge-based system.
CCL can be thought of as a black box between the user and the host database. The controt pro-
gram of CCL, called CP, is a blackboard-based architecture PROLOG program that controls the
interaction between the CCL agents and the communication agents (we use the term "knowledge
source” rather than "agent” to be consistent with the literature on blackboard systems). The CCL
knowledge sources are the experts based on knowledge-based systems.

Typically there are two types of CCL knowledge bases. One is pertinent to user information,
and the other is the knowledge base about databases. The user knowledge base (UKB) system
stores information relevant to a particular user, or a group of users. Examples of this information
are one’s areas of interest (database names), short-hand (CCL scripts, aliases), ones privileges,
etc. All this information is needed by the CCL to intelligently converse with and interpret com-
mands from the user. The database knowledge base (DKB) contains information needed to
transiate CCL commands into host database commands and to understand the returning results
and errors from the database.

The control program (CP) is a typical blackboard based program. It is a PROLOG imple-
mentation of an object-oriented system where the blackboard is nothing more than a general
object that registers and monitors progress of the related knowledge sources. Each knowledge
source is an object that is activated and deactivated by messages. The knowledge source’s pro-
gress and results are also composed of messages whenever possible for the blackboard of the
CP.

The DGIS environment provides an important communication facility called Network Access
Machine (or NAM). CCL uses NAM to do the DGIS-to-host connections. The results from NAM

B U h B R B B U aE

-11 -

are packaged in messages to be processed by CCL.

The construction of CCL knowledge bases is the result of the cooperation with the domain
experts provided by the sponsor, DTIC, to interpret the command languages and capture the
librarian usage of command languages. Several PROLOG tools that help maintain and validate
knowledge bases were also implemented.

8. SUSTAINING DIRECTIONS

DGIS CCL is an on-going project. Several models of the above described system have
been prototyped. Work is in progress to improve the following aspects:

1) the command translation between two command languages are sometimes not one-to-
one. To provide a truly uniform capability across various host databases, CCL attempts to
fill in the gap of capabilities not provided by the host command language. Often this means
that CCL has to maintain temporary files and results. The program also decomposes a
CCL command into several primitive host commands. The execution of those host com-
mands are structured as a planning process of actions. Each action is the execution of a
single primitive host command, and the success and failure of the action can cause different
plans to be considered or aborted.

2) DGIS CCL is envisioned for the gradual migration of CCL from a structured language of
NISO CCL to natural language. We have prototyped a version of a bottom parser (based on
the Japanese’ BUP parser). [t is intended to have this parser to fully cooperate with a black-
board system of the CP.

3) DGIS CCL is currently limited to a single database access. We are investigating the pos-
sibility of simultaneous database accessing. This extension will allow the user to converse
with a CCL that is coupled with a directory of databases for meta-information about data-
hases, which could then activate several CCL executions. The results would then be com-
bined and intelligently presented to the user.

4) The design of the knowledge bases on which DGIS CCL relies has a boundaried degree
of efficiency. We are investigating the knowledge base interface to a relational database
system and database machine to optimize that efficiency.

The DGIS CCL now interfaces with five major information systems. Two are governmental:
DROLS (Defense RDT&E On-Line System), which is maintained by the Defense Technical Infor-
mation Center for the Department of Defense, and NASA/RECON, maintained by the National
Aeronautical and Space Administration. Three are vendor-supplied: BRS, DIALOG, and ORBIT.
These are the base systems of the project. Additional systems are expected to be added, inciud-
ing foreign, as DGIS gains access to them. The basic goal of CCL is not only to provide a means
of searching systems in a standard, universal manner, but also to provide a means for the user to
search unfamiliar systems.

9. SUMMARY

By incorporating PROLOG, The DGIS CCL has the capability to read in a program in
accessing an external file. The read-in statements are added to the main memory database of
PROLOG to affect the execution of later CCL command translations. This application will permit

-12-

the DGIS CCL to have the command continuity that is required to search remote databases, and
do the same thing that is done in the remote databases as is done in their native command
languages.

Additional advantages are:

a. PROLOG application will eventually allow reciprocal CCL-native command language transla-
tion, i.e., use of CCL or the native command language.

b. Because of the above, PROLOG application will eventually include cross-transtation of
native command languages. This will incorporate the capability to use the native command
language of one database in another. Otherwise, this capability, originally intended in the CCL
project, would take place as a later development.

c. Integrating PROLOG with UNIX on DGIS allows development of combinational features, i.e.,
UNIX windowing and PROLOG-applied CCL invocations.

The DGIS Common Command Language is to serve as an interface between the user and
the information he seeks in the multiplicity of diverse information systems. Because of the intro-
duction of PROLOG into the Common Command Language development, the door is now open to
future artificial intelligence applications in DGIS and DTIC. The applications of artificial intelli-
gence to information accessing and retrieval will allow DoD R&D managers, engineers, and scien-
tists to overcome the barriers of user-system communications. They will be able to more easily
access and collect the information they need. The availability of that information will make users
more efficient, and help them avoid the high costs of duplicating or ignoring pertinent work. The
incorporation of Al applications in DGIS will make the human-machine interface on DGIS more
human-like in its functions and responses, and tolerant of human frailties that are caused by the
complexities of the human mind.

The compelling rationale for going to PROLOG was to achieve the Al-based human-
machine interface for the DGIS common command language. That is, an interface that simulates
to a degree the processes that we think function in the human mind. Comparing our third genera-
tion C-programmed prototypes with the potential capabilities of fifth generation constructions, we
saw that:

Third generation programming operates strictly in an algorithmic manner; it functions
sequentially, based on yes-no decision points with known and predefined goals as results.

* Fitth generation programs - artificlal intelligence - function conceptually in a concurrent
processing manner; there are many parallel decision points, none of them “yes"-or-"no",
but rather "this" or "that".

In algorithmic programming the programming language is the program.
* In Al the information Is the program.

Algorithmic programming provides information.
* Al information programming provides knowledge.

Algorithmic programming gives you an item of information, or it doesn't.
* Al gives you information that may or may not be pertinent toward making a decision.

* These processes mimic how we think the mind works.

Al BN B BN I I B O E e

-13 -

DGIS/vax[1]% ccl
Loading NASA knowledge base ...
Loading User Profile Knowledge Base ...
CCL > choose
NASA-RECON identifies its databases by number or by letter. Please consult system documentation for
proper database identification.
Illegal CCL command !!
CCL > choose a
You have chosen NASA-RECON file a
CCL > find
select [] <<<<Thisisthe echo target database (NASA) entry
SELECT
TERM IN SELECT COMMAND NOT IN DICTIONARY
ENTER:
CCL > find artificial intelligence
select artificial intelligence <<<<echo
1 2718 2718 ST/ARTIFICIAL INTELLIGENCE
ENTER:
CCL > display
Invalid CCL command.
CCL > explain display
The DISPLAY command initiates an online display of results from the immmediately preceding search
results set. Three DISPLAY commands are currently available on CCL NASA-RECON. These are: -etc.-
CCL > display short 1-3
The DISPLAY command in CCLS NASA requires specification of a set number. Please re-enter your
DISPLAY command in the format:
DISPLAY <set no.> <format> <items>
CCL > display 1 short 1-3
browse 1/6/1-3 <<<<echo
BROWSE 1/6/1
88A29425 ISSUE 11 PAGE 1738 CATEGORY 61 87/00/00 176 PAGES In
RUSSIAN UNCLASSIFIED DOCUMENT COPYRIGHT
UTTL: Pattern recognition and natural language understanding by a computer ---
Russian book
AUTH: A/FAIN, VITALIl SAMOILOVICH
-etc.-

CCL > start

Current system must be terminated before another system can be started.
CCL > stop

el GOOdbye R

[End of Prolog execution]

*** GOODBYE ***

DGIS/vax[2]%

DGIS CCLS prototype: a sample CCL search and retrieval session, including mistaken entries with CCLS
responses.

-14 -

.‘QT.IP, DOD GATEWAY INFORMATION SYSTEM

COMMON COMMAND LANGUAGE SYSTEM - CCLS
Decision for Al

e Heterogeneous universe
e Third generation rigidity
e Potential for universality

¢ Human-machine interface

CCLS - Al
Application

e CCLS Integration with other DGIS functions
e CCLS planning capability
¢ Simultaneous DB access
e CCLS learning capability

e Migration to natural language

To assist the user to navigate all systems

CCLS - Al
DGIS
USER CCLS/PROLOG

PROLOG cPh B TARGET
CCLS f”' ‘1 DB
' wos Ty * !

D8 USER B
cL PROFILE
KBs KB

-15-

READING REFERENCES

The Art of PROLOG : Advanced Programming Techniques.
Leon Sterling and Ehud Shapiro. MIT Press, 1986.

Artificial Intelligence Developments RE: DoD Gateway Information System (DGIS) & Defense Applied
Information Technology Center (DAITC).

Allan D. Kuhn. Defense Technical Information Center, 1987, AD-A181 101.
Catalogue of Artificial Intelligence Tools.

Alan Bundy. Second Revised Edition. Springer-Verlag, 1986.
The DoD Gateway Information System.

Gladys A. Cotter. Defense Technical Information Center, 1985, AD-A161 701.
The DoD Gateway Information System: Prototype Experience.

Gladys A. Cotter. Defense Technical Information Experience, 1986, AD-166 200.

DoD Gateway Information System (DGIS) Common Command Language: The First Prototyping and the
Decision for Artificial Intelligence.
Allan D. Kuhn, Randy L. Bixby, and Duc T. Tran. Defense Technical Information Center, 1987,
AD-A185 950, Presented at and published without appendices in the Ninth National Online Meet-
ing, New York, May 10-12 1988, pp. 169-183.
DoD Gateway Information System (DGIS): Common Command Language Mapping.
Randy L. Bixby. Defense Technical Information Center, 1987, AD-A 185 951.

DoD Gateway Information System (DGIS) Common Command Language: PROLOG Knowledge Base
Profile.

Duc T. Tran. Defense Technical Information Center, 1987, AD-A150 150.

DoD Gateway Information System (DGIS) Common Command Language: The Decision for Artificial Intel-
ligence.

Allan D. Kuhn, Randy L. Bixby, and Duc T. Tran. Hypermedia Laboratory, Defense Applied Infor-
mation Technology Center, 1988, AD-A199 215. Presented at and published in RIAO88 Conference
- User-Oriented Content-Based Text and Image Handling, Massachusetts Institute of Technology,
Cambridge, March 21-24 1988, pp. 863-882.
“The DoD Gateway Information System (DGIS): The Department of Defense Microcomputer User’s Gate-
way to the World." Microcomputers for Information Management: An International Journal for Library
and Information Services, v5 n2, June 1988, pp. 73-92.

Allan D. Kuhn and Gladys A. Cotter. Defense Applied Information Technology Center, 1988, AD-
203 351.

DoD Gateway Information System (DGIS): The Development Toward Artificial Intelligence and Hyper-

media in Common Cummand Language.
Allan D. Kuhn. Defense Applied Information Technology Center. 1988, AD-A203 674. Presented
at and published in ONLINE INFORMATION 88: 12th International Online Information Meeting,
Proceedings, London, England, 6-8 December 1988, pp. 691-704.

Global Scientific and Technical Information Network.
Gladys A. Cotter. Defense Applied Information Technology Center, 1988, AD-A201 902.
Presented at and Published in ONLINE INFORMATION 88: 12th International Online Information
Meeting, Proceedings, London, England, 6-8 December 1988, pp. 611-618.

Intoduction to Artifical Intelligence.

Eugene Charniac, Brown University, and Drew McDermott, Yale University. Addison-Wesley Pub-
lishing Company, March 1986,

-16-

Introduction to Logic - Fifth Edition.
Irving M. Copi, University of Hawaii. MacMillan Publishing Co., Inc., 1978.
Proposed American National Standard for Information Sciences -- Common Command Language for
Online Interactive Information Retrieval.
National Information Standards Organization [Z39), National Bureau of Standards. Z39.58-198x
(1988].
The Scientific and Technical Information Network (STINET): Foundation for Evolution.
Gladys A. Cotter. Defense Technical Information Center, 1987, AD-A189 750. Also presented at
and published in NATO/AGARD Conference: Barriers to Information Transfer and Approaches

Toward Their Reduction, AGARD-CCP-430; as Paper 5, "Information Retrieval Systems Evolve -
Advances for Easier and More Successful Use."

Scientific and Technical Information Network (STINET) & DoD Gateway Information System (DGIS):
Reference Publications Bibliography.

Allan D. Kuhn. Defense Applied Information Technology Center, 1988, AD-A203 926.

Toward an Artificial Intelligence Environment for DTIC: Staffing Qualification Criteria for Al Application
Development.

Allan D. Kuhn and Duc T. Tran. Defense Technical Information Center, 1987, AD-A181 100.

Toward an Artificial Intelligence Environment for DTIC: Proposed Tasks, Recommended Configurations,
Projected Start-up Costs.

Allan D. Kuhn. Defense Technical Information Center, 1987, AD-A181 103.

L----------

