
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

DTIC
FUIECTE

VLSI Memo No. 89-538 SEP 0 5 1989D
May 1989,,. D%
Redundancies and Don't Cares in Sequential Logic Synthesis

Srinivas Devadas, Hi-Keung Tony Ma, and A. Richard Newton

Abstract

The relationships between redundant logic and don't care conditions in combinational
circuits are well known. Redundancies in a combinational circuit can be explicitly
identified using test generation algorithms or implicitly eliminated by specifying don't cares
for each gate in the combinational network and minimizing the gates, subject to the don't
care conditions.,

In this paper, we explore the relationships between redundant logic and don't care
conditions in sequential circuits. Stuck-at faults in a sequential circuit may be testable in
the combinational sense, but may be redundant because they do not alter the terminal
behavior of anon-scan sequential machine. The sequential redundancies result in a faulty
State Transition Graph (STG) that is equivalent to the STG of the true machine.

We present a classification of redundant faults in sequential circuits composed of single or
interacting finite state machines.-"&fe-a-ci f thbedffevent.classcs of redundancies, we
define don't care sets which if optimally exploited will result in the ipillcit elimiination of
any such redundancies in a given circuit. We present systematic methods for the" r,
exploitation of sequential don't cares that correspond to sequences of vectors that never
appear in cascaded or interacting sequential circuits. Using these don't care sets in an
optimal sequential synthesis procedure of state minimization, state assignment and
combinational logic optimization result in fuly testable lumped or interacting finite state p
machines. We present experimental results which indicate that irredundant sequentialcircuits can be synthesized with no area overhead and within reasonable CPU times by

exploiting these don't cares.

PlMTRIEUMiN STAIMME14T A

i:89 9 01039
. Ditriution Unlimited

Microsyste"s Massachusetts Cambrdge Telephone
Research Cen, er InsttJte Massachusetts (6171 253-8138
Poor. 39-321 of Tecrnnologv 02139

Acknowledgements

To be presented at the International Test Conference, Washington, D.C., Aug. 1989. This
work was supported in part by the Defense Advanced Research Projects Agency under
contract number N00014-87-K-0825.

Author Information

Devadas: Department of Electrical Engineering and Computer Science, Room 36-848,
MIT, Cambridge, MA 02139. (617) 253-0454.

Ma and Newton: Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA 94720.

Copyright 0 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form "private
communication." For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

Redundancies and Don't Cares in Sequential Logic Synthesis
Srinivas Devadas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

Hi-Keung Tony Ma and A. Richard Newton
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract Sequential test generation and sequential logic synthesis aI-
gorithno are much less developed than their combinational

The relationships between redundant logic and don't care con- counterparts. The observation that the absence of a test is as-
ditions in combinational circuits are well known. Redundan- socia with redundancy holds for sequential circuits as well.
cies in a combinational circuit can be explicitly identified using While test generation algorithms can conceivably be used to
test generation algorithms or implicitly eliminated by specify- produce irredundant sequential circuits, by explicitly identi-
ing don't cares for each gate in the combinational network and fying and eliminating redundancy, such an approach would
minimizing the gates, subject to the don't care conditions. require astronomical CPU time for anything but the smallest

In this paper, we explore the relationships between redun- circuits, given the efficiency of state-of-the-art sequential test
dant logic and don't care conditions in sequential circuits, ex- generation algorithms.
tending the results of [5]. Stuck-at faults in a sequential circuit The relationships between don't care conditions and re-
may be testable in the combinational sense. but may be re- dundancies in sequential circuits are not well understood at
dundant because they do not alter the terminal behavior of present. Intuitively, one would expect that sequential redun-
a non-scan sequential machine. These sequential redundan- dancies are intimately related to representations of don't cares
cies result in a faulty State Transition Graph (STG) that is in the various steps of sequential logic synthesis, namely, state
equivalent to the STG of the true machine. minimization, state assignment andcombinational logic opti-

We present a classification of redundant faults in sequen- mization.
tial circuits composed of single or interacting finite state ma- In [7] and [4], constrained synthesis procedures that result in
chines. For each of the different classes of redundancies. we fully and easily testable finite state machines were presented.
define don't care sets which if optimally exploited will result These procedures effectively involve the addition of extra logic
in the implicit elimination of any such redundancies in a given to produce an easily testable machine. In [5], a classification of. circuit. We present systematic methods for the exploitation redundancies in sequential circuits composed of a single finite
of sequential don'Y cares that correspond to sequences of vec- state machine was presented. An optimal synthesis procedure
tors that never appear in cascaded or interacting sequential that results in a fully testable sequential machine was given.
circuits. Using these don't care sets in an optimal sequential In the work presented in [5], each of the different classes
synthesis procedure of state minimization, state assignment of redundancies in single FSMs was shown to be tied to a
and combinational logic optimization results in fully testable don't care set, which if optimally exploited results in the im-
lumped or interacting finite state machines. We present ex- plicit elimination of that form of redundancy. The work in [5]
perimental results which indicate that irredundant sequential was restricted to single finite state machines (FSMs). Multi-
circuits can be synthesized with no area overhead and within level sequential circuits composed of interacting finite state
reasonable CPU times by exploiting these don't cares. machines, are common in industrial chip designs and are more

complicated. The types of possible redundancies and their cor-
responding don't care sets in cascaded/interconnected FSMs

1 Introduction are likewise more complicated.
We show in the cascaded machine case that sequential don't

The connection between logic minimization and test gener- cares, corresponding to sequences of vectors that never occur,
ation for combinational circuits is well known and has been at the inputs (outputs) of the driven (driving) FSM have to
systematically investigated [2] [1]. The connection rests on be used to optimize the driven (driving) machine, in order to
the simple observation that the absence of a test is associated eliminate certain kinds of redundancies. We present system-
with redundancy in the logic network. atic methods of exploiting sequential don't cares in cascaded

The sources of redundancy in combinational circuits are well circuits. Interacting finite state machines can be viewed as sep-
understood and algorithms are available for making represen- arate occurrences of cascades and don't care sets can be itera-
tations of incompletely specified combinational logic functions tively used on the different cascades to eliminate redundancy.
irredundant. The algorithms in [11) determine a don't care set Finally, we present experimental results which indicate that
for each gate in a multi-level network and minimize the logic fully testable interacting FSMs can be produced from State
function corresponding to the gate, subject to these don't care Transition Graph descriptions via optimal sequential logic syn-
conditions to produce an irredundant, fully testable circuit. thesis with reasonable CPU time expenditure.
Combinational test generation algorithms (e.g. [8], [11]) can In the next section, basic definitions and notations used
be used to explicitly identify redundancies in a logic circuit, are given. In Section 3, we classify redundancies in single
which can then be eliminated. finite state machines and the don't care sets required to elim-

Redundancies in sequential machines may alter the func- inate these redundancies. We present new algorithms for the
tionality of the combinational logic in the (non-scan) sequen- systematic exploitation of sequential don't cares in cascaded
tial machine, while maintaining the terminal behavior of the circuits in Section 4. The implicit elimination of redundan-
machine. Thus. a stuck-at fault may be testable from a com- cies in cascaded finite state machines is the subject of Section
binational point of view, but may be sequentially redundant. 5. Iterative optimization procedures for interacting FSMs are
This redundant fault results in a faulty State Transition Graph discussed in Section 6. Preliminary experimental results are)des
(STG) that is equivalent to the true STG. presented in Section 7.

,t or
Dis specia

C,

2 Preliminaries P1 PO

A variable is a symbol representing a single coordinate of the >
Boolean space (e.g. a). A literal is a variable or its negation Combinedional
(e.g. a or U). A cube is a set C of literals such that z E C
implies F C (e.g., {a,b,F} is a cube, and {a, 5) is not a Logic
cube). A cube represents the conjunction of its hterals. The PS
trivial cubes, written 0 and 1, represent the Boolean functions
0 and 1 respectively. An expression is a set f of cubes. For
example. {{fi}, {b, F} is an expression consisting of the two FF's
cubes {a} and { , F}. An expression represents the disjunction ! S
of its cubes.

A cube may also be written as a bit vector on a set of vari-
ables with each bit position representing a distinct variable. (a)
The values taken by each bit can be 1, 0 or 2 (don't care),
signifying the true form, negated form and non-existence re-
spectively of the variable corresponding to that position. A 1/0
minterm is a cube with only 0 and 1 entries. SS

A finite state machine is represented by its State Transi-
tion Graph (STG), G(V. E. W(E)) where V is the set of ver- 0/0
tices corresponding to the set of states S, where 11SJ1 = N, is
the cardinalitv of the set of states of the FSM. an edge joins vi
to v. if there is a primary input that causes the FSM to evolve 0 0/
from state t, to state t; - and W(E) is a set of labels attached
to each edge, each labei carrying the information of the value
of the input that caused that transition and the values of the 0/1
primary outputs corresponding to that transition. In general,
the W(E) iabels are Boolean expressions. The number of in-
puts and outputs are denoted N, and N. respectively. The
input combination and present state corresponding to an edge 1/1
or set of eiges is (i. s). where i and s are cubes. The fanin of a
state. q is a set of edges and is denoted fanin(q). The fanout
of a state q is denoted fanout(q). The output and the fanout
sta•, of an edge (i. s) E E are o((i, s)) and n((i. s)) E V
respectiv-l\.

Given ., inputs to a machine. 2
-N*, edges with minterm input

labels fan out from each state. A STG where the next state
and output labels for every possible transition from every state (
are defined corresponds to a completely specified machine. (b)
An incompletely specified machine is one where at least
one transition edge from some state is not specified. Figure 1: A Sequential Circuit

A starting or initial state is assumed to exist for a machine,
also called the reset state. Given a logic-level finite state ma-
chine with A76 latches. 2Nb possible states exist in the machine, nationally redundant. A sequentially redundant fault
A state which can be reached from the reset state via some is a fault that cannot be detected by any input sequence and
input vector sequence is called a valid state in the STG. The is not combinationally redundant.
input vector sequence is called the justification sequence To detect a fault in a sequential machine, the machine has to
for that state. A state for which no justification sequence be placed in a state which can then excite and propagate the ef-
exists is called an invalid state. Given a fault F, the State fect of the fault to the primary outputs. The first step of reach-
Transition Graph of the machine with the fault is denoted GF. ing the state in question is called state justification. The
Two states in a State Transition Graph G are equivalent if ?e"nI step is called fault excitation-and-propagation.
all possible input sequences when the machine is initiall in . t. *dge in a State Transition Graph of a machine is said
either of the two states produce the same output response. t c orrupted by a fault if either the fanout state or out-

A State Transition Graph G, is said to be isomorphic to p;- oel of this edge is changed because of the existence of
another State Transition Graph G2 if and only if they are the tault. A path in a State Transition Graph is said to be
identical except for a renaming of states. corrupted if at least one edge in the path has been corrupted.

The fault model assumed is single stuck-at. A finite state A sequence of vectors VS, is said to contain another se-
machine is assumed to be implemented by combinational logic quence VS 2 (written as VS, ;? VS 2), if VS 2 appears in VS 1 .
and feedback registers. Tests are generated for stuck-at faults A cascade of two machines A and B is denoted A - B.
in the combinational logic part. A is the driving machine and B the driven machine.

A primitive gate in a network is prime if none of its inputs
can be removed without causing the resulting circuit to be
functionally different. A gate is irredundant if its removal 3 Redundancies in Single Finite
causes the resulting circuit to be functionaLly different. A gate-
level circuit is said to be prime if all the gates are prime and State Machines
irredundant if all the gates are irredundant. It can be shown
that a gate-level circuit is prime and irredundant if and only A sequential circuit S, comprised of a single FSM is shown in
if it is 100% testable for all single stuck-at faults. Figure 1(a). The State Transition Graph corresponding to the

We differentiate between two kinds of redundancies in a se- circuit is shown in Figure 1(b).
quential circuit. If the effect of the fault cannot be observed Redundant faults in S may be combinationally redund
at the primary outputs or the next state lines, beginning from (CRFs) or sequentially redundant (SRFs). Sequentially
any state. with any input vector. the fault is deemed combi- dundant faults can be classified into three categories.

1/0

1/ S1 , ,,

s2 /1" 0/1

1/1 -3/1

11

-/1 Figure 4: A Type 3 SRF

a multi-level network, stuck-at faults could conceivably pro-
Figure 2: A Type 1 SRF duce an isomorphic faulty STG.

There are many ways of ensuring that isomorphism does not
1/0 ,occur in multi-level networks. Isomorphism due to a fault is

_. 1 S essentially due to a sub-optimal state assignment. The new
encoding corresponding to the isomorph represents a better
machine (one with the redundant line removed). A locally
optimal state assignment across any given set of states can
ensure that isomorphism does not occur in multi-level circuits,

0/ 1/1 0/1 across this set of states. It is worthwhile to note that optimalstate assignment corresponds to the optimal usage of don't
0(i 'cares - one does not care what the codes of the different states

0/1 Iare so long as they are distinct.

s3.2 Eliminating Type.2 SRFs
1/1, The codes corresponding to invalid states can be used as don't

L cares during logic optimization. A type 2 SRF is due to the
sub-optimal usage (or no usage) of these don't cares. These

"/0 redundancies will not exist if the combinational logic is made
* .)......... irredundant under this don't care set.

3.3 Eliminating Type 1 SRFs
FTpe I SRFs are related to redundant states in a sequential

machine. Given a reduced machine, a fault that corrupts a
single edge going to a faulty but valid state cannot be redun-1. The fault causes the interchange/creation of equivalent dant, since all states are distinguishable. Thus, an initial statestates in the STG. minimization will preclude the occurrence of the SRF of the

2. The fault does not corrupt any fanout edge of a valid state form in Figure 2. However, we may have a case where the fault
in the STG. results in a faulty invalid next state that is equivalent to the

true next state. This is illustrated in Figure 5. We have the
3 The fault results in a fauhv machine that is isomorphic true STG in Figure 5(a), that is state minimal. The invalid(ith au dfrets eing o f t machine.tht i ismorhi state 84's code has been used as a don't care and s4 is equiva-(with a different encoding) to the original machine. lent to state s2 after logic minimization under this don't care

In [53. it was shown that no other kind of sequential redun- condition. A fault could result in the scenario shown in Fig-
ny cou exisstf ure 5(b), where a single corrupted edge whose true next stateIn Figure l(b). states s and s4 are equivalent states. A is s2 produces a faulty next state, s4. The fault is redun-Iyp 1 SRF in S may produc the efaulty STG of Figure 2, dant. This redundancy exists because we have not exploitedwhte onSy cruptedue (how int d otted linesge to the don't care corresponding to the edge (0, s3) - we canwhere the only corrupted edge (shown in dotted lines) goes to specify n(0, s3) = (s4, 2) and not just s2. The followings4 instead of s2 and does not change the terminal behavior procedure of repeated logic minimization (modified from [5]

of S. A faulty STG corresponding to a type 2 SRF is shown pure pte logic m at (moi fm[5in Figure 3. Only fanout edges from an invalid state have guarantees upon convergence that type 2 SRFs don't exist and
been corrupted. In Figure 4. an isomorphic faulty machine that single edge corrupting and certain kinds of multiple edgebequivalent to the tre machine) is shown where s and se corrupting type I SRFs don't exist. The use of extended don't(iale bee to interchanged, cares at Step A guarantees the elimination all possible of typeI SRFs, but these don't cares are not requiredin practice to

produce irredundant machines.
3.1 Eliminating Type 3 SRFs eliminatetypel/2-SRFs(S

In O5. it was shown that sturk-at faults in a sequential machine {
implmented by a two-level combinational network could not iter = I
cause isomorphism. For a sequential machine, implemented by if (iter = 1) G = extract-stg(S

1/3
Figure 6: Interacting Finite State Machines

10 3

B. Let the number of intermediate/pipeline latches in L1 be

N.

1. A may or may not assert all 2
t ' possible output combina-

tions. If a certain binary combination, cl never appears
0/ 0/1 at LI, then B can be made incompletely specified - the

transition edges corresponding to an input of cl need not
011 Cbe specified, whatever state B is in (We don't care what

0/1 .happens when B receives the input cl).

s2. A more general case of (1) is when a certain combination
c2 never appears at LI, when B is in some set of states

1/1 QE E SB. It does appear when B is in states other than
QB. In this case, the states in QB will have C2 unspecified

Figure 5: A Complex Type I SRF (If an edge on C2 exists in QB, it can be removed)

3. A more complicated sequential don't care is associatqiwith vector sequences that never appear at LI, thoui
else G = extract-stg(S") all 2 N separate vectors appear. A does not produce alw
do { possible output sequences. This type of don't care does

foreach (valid state q E G) { not have a straightforward interpretation. Edges in the
Find all valid states (vi, .. =,_) q State Transition Graph of B cannot be removed or left
Find all invalid states (ivl. .. iv,,) - q unspecified directly.
A: FADC I fanin(q) = (q, vi. v, im, iv,) Both (1) and (2) can be easily exploited via the use of stan-

S' =optimize(S. FAp c) : dard state minimization algorithms that handle incompletelyIt' extrac p iai -s t (SA specified machines [10]. However, exploiting the don't care
IV = extract-invalid-states S') input sequences is more complicated and systematic methods
5" = optimize(', IV Dc) have not been proposed to date.
iter = iter + 1 : In Figure 7, a State Transition Graph corresponding to a

}while(S S"): possible B machine is shown. The machine is state minimal.
We assume that each transition edge in B is irredundant, i.e.
B makes every transition with appropriate input sequences.

It can be proved that state minimization, a locally opti- A don't care input sequence is shown below the Graph. Such
mal state assignment and the procedure eliminate-typel/2- a don't care sequence implies that certain sequences of transi-
SRFs() produces an irredundant sequential machine [5]. lions will not be made by B.

A don't care input sequence is assumed to have a length
greater than 1. Given a don't care sequence DC, all sequences

4 Exploiting Sequential Don't Cares SE such that SE D DC are also don't care sequences. We
define an atomic don't care sequence as one that does not

In Figure 6. we have a machine A driving another machine B contain any other don't care sequence. Thus, any subsequence
via a set of latches LI (We neglect C for the moment). For the of an atomic don't care sequence is a care sequence. In the
purposes of the discussion here, we assume that all the latches sequel, we consider only atomic don't care sequences.
in LI are not observable. In practice, a subset of the latches Our problem lies in exploiting this form of don't care, so as
may be observable, to optimize B. In the general case, we will have a set of don't

care sequences. We can state the following lemma.

4.1 Don't Care Inputs for the Driven Ma- Lemma 4.1 : Given a machine B and a set of don't care
chine sequences DCj , 1 < j < Nc, if two states in B, sl and s

have distinguishing sequences Ih , 1 < i < ND such that
There are several don't care conditions associated with the each k, Ik Q_ DC for some 1, then sl and s2 are equivalent*
intermediate lines corresponding to LI, which are inputs to B under the DCI.

-0/1 -0/0 -0/1 1/0

01/0 S1 s2 01S -/ 2

11/0 -0/1 11/011010

s3 s4r,9 rsy4'"

11/0 -0/0 11/1 110-/ -0 1/

s5 $6

(11, 11) Figure 8: Expanding the Original Machine

Figure 7: Input Don't Care Sequences
-0/1 -0/0

Proof Since the DCj can never occur, it means the I can "--1 S1 0

never occur. Therefore. sl and s2 in B are equivalent under . 0/1
DC,- Q.E.D. 01

An approach to exploit don't cares based on Lemma 4.1 11/0
would entail producing all distinguishing sequeL:es for every s s4
pair of states in B and checking for the containment condition.
Pairs satisfying the condition can be merged. This is poten-
tiallv very time consuming: a pair of states may have many 11/ -0 1
distinguishing sequences and we have to find them for every "0
possible pair. A more efficient approach is now outlined.

In this approach. given a set of don't care sequences. B
is transformed into a new machine B' which has a greater s s6
number of states. but is more incompletely specified than B.
B' is state minimized to obtain B" (l1SB" < tSBJ). The -0/0
pseudo-code below illustrates the procedure.

exploit-input-dc(B. DC); Figure 9: State minimization after Expansion
{

B' = B:
foreach (don't care sequence DC,) When i = p < K in the for loop above, the fanout of sp

foreach (depth-first path P = ei, .. eK E B') { is duplicated for the states s. and s" - the edge ep is also
if (P D DC,) { duplicated. Hence, at the next iteration, one of the ep fans

for(i = 2: i < K: i = i + 1) { into s,+I and the other ep (as well as the remaining fanout
s, es- > f anout ; edges from s' and s",) into sp+ .make states sand s,' ,An illustrative example is given in Figures 8 and 9. T .fanin(s) = e,_ 1 ; machine and the don't care sequence of figure 7 produce at.
fanin(s' #) = fanin(si) - ei- 1 expanded machine, shown in Figure 8. State minimizing this
if (fanin(s,') = 6) delete s' machine produces the result of Figure 9, which has one less
if (i < Iv) state than the original machine of Figure 7.

fanout(s,) = fanout(s') = fanouf(s,) Given a cascade, we need to generate the set of sequences
else { that the driving machine in a cascade A - B never asserts,

fanout(s = fanout(s.) - e,- 1 so as to optimize the driven machine B as in Figures 8 and
fanout(s,') = fanout(s,) 9. This is done by generating don't care sequences of increas-

ing length, beginning from a length of 2. Starting from each
delete s, : possible state in A, all possible 2-vector sequences are found.

Single vectors that don't occur are added to this set and the} set is "complemented" to find the atomic 2-vector sequences
that don't occur. Next, all sequences of length 3 that A asserts} are found. The single-vector and 2-vector don't care sequences

B" = state-minimize CB' re added to this set and the union is complemented to find
the atomic don't care sequences of length 3.

The procedure is effectively producing a machine where the 4.2 Don't Care Outputs for the Driving Ma-
don't care sequences are not specified. but otherwise has the chine
sane functionality as the original machine. This means that
if any two states in B satisfy the conditions of Lemma 4.1, The sequential don't cares discussed thus far are a product of
these two states will not possess a distinguishing sequence in the constrained controllability of the driven machine B in a
B' and will thus be compatible during state minimization. A cascade A - B. There is another type of don't care due to
smaler machine B" will be obtained after state minimization, the constrained observability of the driving machine A. We

ii sal sa2 INT1 INT1 qbl qb2 out1 where the possible output combinations of the fanout ,ges
of q, 92 E SM intersect leading to a compatibility relation

2 sa1 sa3 INT2 INT2 qbl qb3 ot2 q - q2, with similar compatibility relations q2 -q and
il sa2 sal INT2 INT1 qb2 qb2 out3 q - s. However, the three-way intersection between the

possible output combinations of the fanout edges of q1, q a
i2 sa2 sa3 INT1 INT2 qb2 qb2 oWt3 q3 may be a null intersection, implying that qi, and qsa
ii sa3 sal INTl INT1 qb3 qb2 out4 not be merged into a single state, even thou allthe req e

pairwise compatibility relations exist. In the binary-valued
i2 sa3 sa2 INT1 INT2 qb3 qb3 out1 output case,ifte possible output combinations can be repre-

sented as a single cube, then such a situation will not occur,
A7 B since the three-way intersection ofa set of three cubes has

Figure 10" Output Expansion to be non-empty if the pairwise intersections are non-empty.
But, in the case of multiple cubes or Boolean expressions spec-
ifying the output combinations for fanout edges, an additional

focus on the individuall state minimized tables of Figure 1. chek has to be performed during state minimization during
Tousnthe inediidlsate inputved be g ive 10. the selection of the compatibility pairs to see if three or more
The intermediate inputs/outputs have been given symbolic sets of states can, in fact, be merged, preserving functionality.
codes. Given that .4 feeds into B, it is quite possible that for
some transition edge eI E A. it does not matter if the output
asserted by this particular transition edge is, say, INTi or 5
INTj. In fact. in Figure 10, the 3rd transition edge can be Fully Testable Cascaded Finite
eithei I.\T1 or INT2. without changing the terminal behavior State Machines
of . B. This is a don't care condition on A's outputs. It is
quite possible that making use of these don't cares can reduce In this section, we present a classification of redundant faults
the number of states in A. In fact, if one replaced the output in a cascade. We define don't care sets tied to each of these
of the 3rd edge in A (Figure 10) by INTl instead of INT2, forms of redundancy and give a synthesis procedure that pro-
we would obtain one less state after state minimization. (sa2 duces an irredundant cascade.
becomes equivalent to saS).

Given a cascade A - B. we give below a systematic pro-
cedure to detect this type of don't care. i.e. expand the output 5.1 Redundancies in a Cascade
of each transi-ion edge of A to the set of all possible values Redundancies in a cascade A - B can be classified into four
that it can take while maintaining the terminal behavior of categories. The intermediate lines are denoted INT.
4 .- . Standard state minimization procedures can ex-
ploit d.-n't care outputs. represented as cubes. However, state 1. F E A that cannot propagate to the intermediate lines
minirmi:ation procedures have to be modified in order to ex- INT.
ploit transition edge outputs represented as arbitrary Boolean
expressions (multiple cubes). 2. F E A that propagates to INT but not PO, the primary
output-expansion-l(A., B):outputs of B.

3. F E B that does not propagate to PO, but would have
foreach (edge el E A) { INT were completely controllable.

OU:T(1) =universe:foreach (state ql e QB) { 4. F E B that does not propagate to PO and would not

if (B can be in q, when A makes transition el) { have even if INT were completely controllable.
find largest set of output combinations Obviously, there can be no other class of redundancy.
cl 3 ciD ei- > output && It is easy to see that redundancies of type (1) and (4) are

fanin(cl. qf), output(cl, qj) are unique; associated with the single machines A and B. If A and B are
OUT(el) = OUT(e1) fn c; irredundant, these redundancies will not appear in a cascade

} A - B. It is convenient to further classify the redundancies
} of type (2) and (3).e 1- > output = OUT(e1):S > p2. Redundancies of type 2 can be classified into

A = state-miniize(A (a) F E A produces a intF 6 int (a faulty output not

equal to the true output) that is a specified output
A transition edge el in A is picked. The set of states that B for all states that B can be in. intF elicits the same

can be in when A makes this transition is found. Given this response as int from B for all of these states and
set of states. the largest cube (or set of output combinations) therefore F is redundant.
that covers the output of the edge and produces a unique next (b) F E A produces an unspecified or invalid output
state and a unique output when B is in any one of the possible intF for the states B can be in and elicits the same
states is found (corresponds to OUT(ei)). The output of el rn fro m B In be n e m elicit the
is expanded to the cube. The process is repeated for all edges response from B. In this case, one may elicit thestat miimiatin prcedre nf ensame response from B or B might be moved to an
in A. invalid state that is equivalent to the true state re-

The state minimization procedure proposed in [10] can be sulting in redundancy.
used for incompletely specified finite state machines. However,
after output expansion, we may have a multiple-output FSM (c) A more complicated case of 2(a)/(b), where A pro-
in which a transition edge has an output that can belong to a duces a sequence of faulty outputs intl F , .. intNF
subset of symbolic or binary values, rather than the universe instead of infl, .. intN, such that the first output
of possible values (as in the incompletely specified case). moves B into an invalid state that is not equivalent

In the state minimization procedure of [10], two states are to the true state, but this state effectively becom
deemed to be compatible if the output combinations that equivalent to the true state due to int2F , ..intN F
can be asserted by each pair of corresponding fanout edges
of the two states intersect. One can envision a situation 3. Redundancies of type 3 can be classified into

(a) F E B requires a transition edge in B that cannot be of A or the next state lines. If all test vectors for F propa-
justified for excitation/propagation to the primary gate F to the output lines alone and produce valid/specified
output or next state lines, faulty outputs (if even one vector produces an invalid out-

(b) A transition edge that propagates F E B to the next put, F cannot be redundancy of type 2(a)), then because

state lines exists and the faulty state produced is we have exploited the output don't cares for each transition

a valid state. The faulty fault-free state par i edge in A, we are guaranteed that at least one of the vectorsa*aidsae.Tefteyfal-festaepirs
possess a distinguishing sequence (which constitutes (edges) corrupted by F will elicit a different response for some

part of a test sequence), but this sequence cannot be state that B can be in. (By different response we mean that

produced at the outputs of A. B goes to a different state or produces a different output).
On the other hand, if F ii propagated to the next state lines

(c) Same as above, except that the faulty state that is alone, then a corrupted vector will exist such that it produces
produced is an invalid state. a faulty state that can be distinguished from the true state

Redundancies 2(a) and 2(b are associated with single-vect uder the osvlrat don't com aet. This mesm we have a di*-
ishi n: iput vector sequence to A) such that themutil M Jo) uistatthifnadon't care outputs of A. f course, one may have multiple ty output necessarily elicits a different response from B or

occurrences of faulty output vectors producing the same re- is an invalid/unspecified output. If F is propagated to both
sponses for a fault F of type 2(a) or 2(b). Redundancy 2(c) the outputs and the next state lines then for some test vector
is associated with don't care output sequences (multiple vec- either the faulty output will directly elicit a different response
tors) of A. Redundancy 3(a) is associated the simple form from B or the faulty fault-free state pair will possess a distin-
of input don't care described in Section 3.1, where transition guishing sequence that eventually elicits a different response
edges in B need not be specified. Redundancies 3(b) and 3(c) from B. Thus, F is testable or is not a redundancy of type
are associated with don't care input sequences to B. 2(a). Q.E.D.

Eliminating type 1 SRFs in a single machine required it-

5.2 A Synthesis Procedure for Irredundant erative optimization due to the existence of invalid states.
Cascaded Machines In a cascade, we have a similar situation where eliminating

type 2(b) and 3(c) redundancies (which might result in B
The procedure presented below represents a one-pass opti- moving to an invalid state) requires a two-pass optimization.
mization for a cascade and eliminates a large number of re- This is because expanding the outputs of A to include in-
dundancies in a cascade. valid/unspecified outputs may introduce additional don't care

optimize-cascade(A. B): input sequences to B.

irredundant-cascade(A, B):
output-expansion- (A, B); {
irredundant-l(A) : for(iter = 1; iter < 2; iter = iter + 1) {
exploit-input-dc (B, DCA) if (iter = 1) output-expansion-1 (A, B);
irredundant-l(B): else output-expansion-2 (A, B);

} irredundant-l(A) ;) irredudant-l(exploit-input-dc (B, DC A);
Don't care outputs of A and don't care inputs to B are ex- irredundant-2(B, DCA

ploited. The procedure irredundant-l() uses the techniques }
described in the previous section to make a single machine
irredundant in isolation.

The procedure output-expansion-2() is an enhanced ver-
Theorem 5.1 The procedure optimize-cascade) produces sion of output-expansion-l(). There are two enhancements
a cascade .4 - B that ts irredundant for all type 1, type corresponding to the don't cares for type 2(b) and type 2(c)
'(a). type 3(a). typ. 3(b) and type 4 faults, redundant faults.

Proof: Type 1 and type 4 faults cannot exist, since A and B 1. Given an optimized B, for each valid state, all the invalid
are irredundant in isolation. states that are equivalent to this state are found. We

After the procedure exploit-input-dc() has been used, might have a situation where for a particular transition
each remaining (specified) edge in the machine B, can bejus- edge in A, an output different from the edge's output
tified, by some input sequence to A. After B has been made places B in an invalid state that is equivalent to the true
prime and irredundant. we are guaranteed that at least one of valid state. This output represents a don't care for theprimetransition edge and is detected in output-expansion-2()
the originally specified edges is a test vector in the combina- (but not in output-expansion-(). We also have the
tional sense for any fault F E B. That is, we have a vector s itatin of A poducin a f eult o hatewas
that excites and propagates F to the primary outputs of B or oignlly un f t steBiin , eicitig the
the next state lines. This vector can be reached controlling A originally unspecified for the state(s) B is in, eliciting the
alone. Therefore. F cannot be a redundancy of type 3(a). same response from B. The output of the transition edge

Next, consider redundancies of type 3(b). After the proce- can be expanded to this unspecified combination.
dure exploit-input-dc0 has been used on B with a complete 2. Don't care output sequences are detected for A. The de-
don't care input sequence set. each pair of valid states remain- tection of these sequences is performed by checking if in-
ing in B possess a distinguishing sequence that is not in the valid states in B, that are not equivalent to valid states
don't care input sequence set. This means that each pair of and reached by unspecified outputs from A, produce the
valid states can be distinguished via an input sequence to A. same response in B due to the corruption of other transi-
Therefore. if F E B produces a faulty fault-free state pair such tion edges in A. The corrupted outputs represent a don't
that the faulty state is a valid state, then we have a distin- care output sequence for edges in A. A 2-vector don't
guishing (test) sequence for F and F cannot be a redundancy care sequence is shown below.
of type 3(b). However. the same cannot be said of faulty states
that are invalid and F may be a redundancy of type 3(c). o(et), O(e2)) = (el- > op, e2- > op) V

O Redundancies of type 2(a) cannot exist because output ex-

pansion has been performed on 4. using output-expansion- F - F
1i . A fault F E A can be initially propagated to the outputs el- > o e2- > OP

Current iu6ic minimizers are restricted in their capability to
exploit don't cares. Don't care output sequences of the form PL
of Eq.* 1 cannot be optimally exploited, other than by exhaus-
tive search. Fortunately, these don't cares are not required in
practice - we have not encountered a single occurrence of a
type 2(c) redundancy in a cascade, even if only single-vector
don't care outputs have been used.

The r -ocedure irredundant-2() is also an enhancement on
procedure irredundant-l0.
Irredundant-2() uses eliminate-typel/2-SRFs() with an
additional don't care set at Step A. At Step A, we have

A: FADC I f a nin(q) = (q, vl, .. vm, ivi, .. ivn, nil, .. nil) P L

where vl, ..v.. and ivi, .. iv,, are valid and invalid states
respectively, that are equivalent to q when B is viewed in
isolation, i.e. deemed completely controllable. nil, ..nil are
states not equivalent to q when B is viewed in isolation, but
equivalent to q under the don't care set DCA.

Figure 11: A Cascade Chain
Theorem 5.2 The procedure irredundant-cascade() re-

sults zn an irredundant cascade.

care sets required for synthesizing irredundant cascades itera-
Proof The procedure irredundant-cascade() is an en- tively to eliminate all redundancies in the circuit.
hanced version of the procedure optimize-cascade() and the We first focus on the cascade chain of Figure 11. There are
arguments that type 1, type 2(a), type 3(a). type 3(b) and two individual cascades corresponding to A -- B and B -
type 4 faults are testable hold here as well. We focus on pos- C. It is easy to see that if one optimizes A - B first and
sible redundancies of types 2(b), 2(c) and 3(t). then B - C, then we obtain the entire set of don't care input

Th cre output t-expansion-2() uses the additional sequences to C, but not vice versa. This is because optimizing
don't care outputs for A corresponding to the invalid states B with its don't care input sequences may produce additional
in B that are equivalent to valid states and which are reached don't care input sequences for C. Thus, an appropriate order
by outputs other than the transition edge outputs of A. Using of optimization of individual cascades is required. However,
these don't cares ensures that type 2(b) redundancies don't optimizin o -- dividual cascades is reui However
exist. The argument is similar to the argument of Theorem 5.1 some don't care outputs for output exansion, as illustrated in
for the type 2(a) redundancy. A fault F E A will immediately Figure 12. Wae o fragments of the tate Transition Graphs
or eventually produce an invalid/unspecified output such that corresponding to A, B and C in Figure 12. We would raise
the invalid output elicits a different response from B. If B the outputs of the edge in A only ig we optimized B -
is moved to a faulty invalid state we are guaranteed that the before A -ut B.
invalid state is not equivalent to the true state. Thus, F is We have thus a conflict between the order of optimizationo'
testable or is not a redundancy of type 2(b). the individual cascades. if we wish to make use of all the don't

Redundancies of type 2(c) are associated with don't care care sets. This conflict is resolved in the cascade chain case
output sequences for A. That is, it does not matter if A asserts quite simply, by an optimization A - B, B - C and A -
one particular sequence or another due to its constrained ob- B. The case of Figure 6, a more general case where global
servability. If the don't care sequences corresponding to Eq. 1 feedback exists, is more complicated and requires iteration to
are exploited in the output expansion procedure, we are guar- convergence of the three individual cascades, A - B, B -
anteed that the corrupted sequence does not elicit the same C, C - A. Iteration to convergence is required because the
response as the true one from B. ad- global feedback may result in, say additional don't care inputs

Finally. we consider redundancies of type 3(c). Thea- to B after the do:r.t care inputs to A have been exploited,
ditional don't care set at Step A in ellmninate-typel/2- which in turn are dependent on the output don't cares of C
SRFs() will guarantee, after B has been made prime and and so on.
irredundant, that any faulty faulty-free state pair that is pro- Given an arbitrary interconnection of FSMs, the elimination
duced due to a fault F, regardless of whether the faulty' state of all redundancies entails the optimization of every path from
is valid or invalid, will possess a distinguishing sequence not the primary inputs to the primary outputs using the input
in DCA. This means that the pair can be distinguished from don't .are sets. Similarly, every reverse path from the primary
the inputs of A and F cannot be a redundancy of type 3(c). outputs to the primary inputs has to be optimized for output
Q.E.D. don't cares. Iterative optimization to convergence is required

in the case of feedback paths. If this is done and the machines
Testable Interacting Finite are all irreduidant in isolation, the interconnection will be

irredundant. Any fault, F, in any machine M, will possess
State Machines a test sequence at M's inputs whose effects can be observed

at M's outputs. Exploiting don't care input sequences from
Interacting finite state machines are common in industrial chip the primary inputs outward to the primary outputs ensures
designs. In Figure 6, an example sequential circuit composed that this test sequence can be produced at the inputs of M.
of three interacting finite state machines was shown. In this Exploiting the don't care outputs from the primary outputs
section, we describe iterative optimization strategies for the inward to the primary inputs ensures that the effect of the test
synthesis of irredundant interacting finite state machines. sequence will be propagated to the primary outputs.

The don't care sets associated with a set of interacting
FSMs are essentially the same as those in a cascade. At
any given set of intermediate lines or latches that are not ob- 7 Results
servable/controllable we have don't care input and output se- 9
quences. We can view an arbitrary set of interacting machines In this section, we present some preliminary results obtaine
as several occurrences of individual cascades and use the don't using the synthesis procedures described in Section 5 and 6.

A B C Ex I UKIjr INAL P uTrIMIZE
yuI rz covI lit lic I T7 u cov -

I I time I jtime time
Sex* 5.m 1i qi 2m 7. .41r!

ex2 4.m W7 ' -IE- m "m 71W 7 __
i~ /jl jlk j 101 0 @W-. m -9r.4 I929 I Vr n 18.3m I Ii

s2 q Table 2: Reults using Don't Care Exploitation Algorithms

irredundant. STALLION either aborted or identified the un-
detected faults in the original circuits to be redundant. While

Si q 1 the CPU times required for logic optimization are typically
larger than the test generation times, the alternative of ex-

S k2plicitly identifying redundancies in the original circuits via

i"/01, j2) jl/(kl, k2) test generation would expend considerably more CPU time.
Redundant lines corresponding to redundant stuck-at faults

j2/(kl, k2) can only be removed one at a time. Futhermore, removing
a redundant line may introduce new redundancies and so all

s2 q2 faults have to be checked for redundancy on each removal.
Thus, the implicit elimination of redundancies via the use of
don't care sets represents a much more efficient approach to

Figure 12: Order of Optimization for Don't Care Outputs the synthesis of irredundant interacting sequential machines.

x pi po ma I la I #states 8 ConclusionsII rt I I ' I r
IQ 2 1T 14 25 20 48 - In this paper, we explored the relationships between redundant
w 1 -1 0 1 t-p logic and don't care conditions in sequential circuits. Redun-

2 1 2 dancies in non-scan sequential circuits may be testable from
e~x 4 7-17 a combinational viewpoint. but may produce a faulty State

"-1 _79,_ Transition Graph (STG) that is equivalent to the STG of the~true machine.

We presented a classification of redundant faults in sequen-

Table 1: Statistics of Examples tial circuits composed of single or interacting finite state ma-
chines. Don't care sets can be defined for each class of redun-
dancy and optimally exploiting these don't care conditions
results in the implicit elimination of any such redundancies

Intensive optimization is necessary to obtain fully testable de- in a given circuit. In cascaded and interconnected sequen-
signs. If this optirmzation can be carried out, then the syn- tial circuits, sequential don't cares are required to eliminate
thesized machine(s) will occupy minimal area. There is no redundancies.
area/performance overhead associated with this procedure. We presented preliminary experimental results which indi-
However. the CPU time requirements have to be evaluated. cate that medium-sized irredundant sequential circuits can be

Ve chose some examples in the MCNC 1987 Logic Syn- synthesized with no area overhead and within reasonable CPU
thesis Workshop as test cases, whose statistics are given in times by exploiting these don't cares.
Table 1 Ttnese machines were interconnected in various ways.
In Table I, the number of primary inputs (pi) and primary
outputs (po). the number of separate machines (ma) and the 9 Acknowledgements
number of states in each machine in the circuit (#states) are

indicated for each example. The number of intermediate, non-
observable/non-controllable lines (il) and the total number of The interesting discussions with Pranav Ashar, Robert Bray-
literals (#lit) after state assignment using MUSTANG [6] and ton, Kurt Keutzer and Alberto Sangiovanni-Vincentelli on
multi-level combinational optimization using MIS [3] are also sequential machine testability are acknowledged. This work
given. The total number of latches (1a) corresponds to a min- was supported in part by the the Defense Advanced Research
imum bit encoding for each machine and the pipeline latches Projects Agency unde; contract N00014-87-K-0825.
In the intermediate lines.

The program STALLION [9] was used initially to generate
tests for the original circuits. The results are given under the References
column ORIGINAL. The time in CPU minutes required for
test generation (TPG time), the fault coverage obtained by [1] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby,
STALLION (fcov). and the original literal count for each cir- C. R. Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli.
cuit (lit) are indicated. The circuits were optimized using the and A. R. Wang. Multi-level logic minimization using
various don't cares described in the previous sections. The implicit don't cares. In IEEE Transactions on CAD,
CPU time required for logic optimization (logic time), test pages 723-740, June 1988.
generation (TPG time), fault coverage obtained by STAL-
LION (fcov) and the final literal counts (lit) are indicated [2] D. Brand. Redundancy and don't cares in logic synthe-
under the column OPTIMIZE for each circuit. sis. In IEEE Transactions oui Computers, pages 947-952,

All the circuits have been reduced in complexity and made October 1983.

[31 R. Brayton, R. Rudell. A. Sangiovanni-Vincentelli, and A.
Wang. Mis: a multiple-level logic optimization system. In
IEEE Transations on CAD, pages 1062-1081, November
1987

[4) S. De-adas, H-K. T. Ma, and A. R. Newton. Easily
Testable PLA-ba .,i Finite State Machines. In Proc. of
19th Fault Tolerant Computing Symposium, June 1989.

[5] S. Devadas, H-K. T. Ma, A. R. Newton, and A.
Sangiovanni-Vincentelli. Irredundant sequential ma-
chines via optimal logic synthesis. In Elecfronics Research
Laboratory Memorandum M88/5, University of Califor-
nia, Berkeley, August 1988.

[6] S. Devadas, H-K. T. Ma, A. R. Newton, and A.
Sangiovanni-Vincentelli. Mustang: state assignment of
finite state machines targeting multi-level logic implemen-
tations. In IEEE Transactons on CAD, pages 1290-1300,
December 1988.

'7 S. Devadas. H-K. T. Ma. A. R. Newton, and A.
Sangiovanni-Vincentelli. Synthesis and optimization pro-
cedures for fully and easily testable nequential machines.
In Proc. of International Test Conference, pages 621-630.
September 1988.

[S' P. Goel. An implicit enumf ration algorithm to generate
tests for combinational logic circuits. In IEEE Transac-
tions on Computers. pages 215-222, March 1981.

i H-K. 1. Ma. S. Devadas, A. R. Newton, and A.
Sangiovanni-Vincentelli. Test generation for sequential
circuits. In IEEE Transactions on CAD, pages 1081-
1093. October 1988.

"10' M C. Paul and S. H. Unger. Minimizing the number
of states iu incompletely specified sequential circuits. In
IRE Transactions on Electronic Computers, pages 356-
357. September 1959.

11' J. P. Roth. Diagnosis of automata failures: a calculus and
a method In IBM journal of Research and Development,
pages 278-291. July 1966.

