AD-A211 931

(8 CUpy
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLS! PUBLICATIONS
, ELECTE %
VLSI Memo No. 89-538 R, SEP 051983

May 1989

D%

Redundancies and Don’t Cares in Se‘tju‘eﬁtia.l Logic Synthesis

Srinivas Devadas, Hi-Keung Tony Ma, and A. Richard Newton

Abstract

The relationships between redundant logic and don’t care conditions in combinational
circuits are well known. Redundancies in a combinational circuit can be explicitly
identified using test generation algorithms or implicitly eliminated by specifying don’t cares
for each gate in the combinational network and minimizing the gates, subject to the don't

care conditions. -
e

In this paper, we explore the relationships between redundant logic and don’t care
conditions in sequential circuits. Stuck-at faults in a sequential circuit may be testable in
the combinational sense, but may be redundant because they do not aiter the terminal
behavior of anon-scan sequential machine. The sequential redundancies result in a faulty
State Transition Graph (STG) that is equivalent to the STG of the true ma%,

e T —— o - Rl

We present a classification of redundant faults in sequential circuits composed of single or
interacting finite state machines.“Fot €ach of the differeatclasses of redundancies, we
define don’t care sets which if optimally exploited will result in the implicit elimination of
any such redundancies in a given circuit. We present systematic methods for the™ .
exploitation of sequential don't cares that correspond to sequences of vectors that never
appear in cascaded or interacting sequential circuits. Using these don’t care setsinan *
optimal sequential synthesis procedure of state minimization, state assignment and
combinational logic optimization result in fully testable lumped or interacting finite state
machines. We present experimental results which indicate that irredundant sequential
circuits can be synthesized with no area overhead and within reasonable CPU times by
exploiting these don’t cares.

| DISTRAIEUTION STATEMCINT A

mpooves o e e 89 9 01 039

Ay, Disuibution Unlimited

Microsyste™s Massachusetts Cambridge Telephone
Research Center Insttute Massachusetts (617) 253-8138
Room 39-321 of Tecrnalngy 02139

i

-

-
7\

B

)

Acknowledgements

To be presented at the International Test Conference, Washington, D.C., Aug. 1989. This
work was supported in part by the Defense Advanced Research Projects Agency under
contract number N00014-87-K-0825.

Author Information

Devadas: Department of Electrical Engineering and Computer Science, Room 36-848,
MIT, Cambridge, MA 02139. (617) 253-0454.

Ma and Newton: Department of Electrical Engineering and Computer Science, University
of California, Berkeley, CA 94720.

Copyright® 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form “private
communication.” For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

Redundancies and Don’t Cares in Sequential Logic Synthesis

Srinivas Devadas
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge

Hi-Keung Tony Ma and A. Richard Newton

Department of Electrical Engineering

and Computer Sciences

University of Californis, Berkeley

Abstract

The relationships between redundant logic and don’t care con-
ditions in combinational circuits are well known. Redundan-
cies in a combinational circuit can be explicitly identified using
test generation algorithms or implicitly eliminated by specify-
ing don’t cares for each gate in the combinational network and
minimizing the gates. subject to the don’t care conditions.

In this paper, we explore the relationships between redun-
dant logic and don’t care conditions in sequential circuits, ex-
tending the results of [5]. Stuck-at faults in a sequential circuit
may be testable in the combinational sense. but may be re-
dundant because they do not alter the terminal behavior of
a non-scan sequential machine. These sequential redundan-
cies result in a faulty State Transition Graph (STG) that is
equivalent to the STG of the true machine.

We present a classification of redundant faults in sequen-
tial circuits composed of single or interacting finite state ma-

_ chines. For each of the different classes of redundancies. we

define don’t care sets which if optimally exploited will result
in the implicit elimination of any such redundancies in a given
circuit. We present systematic methods for the exploitation
of sequential don't cares that correspond to sequences of vec-
tors that never appear in cascaded or interacting sequential
circuits. Using these don’t care sets in an optimal sequential
synthesis procedure of state minimization, state assignment
and combinational logic optimization results in fully testable
lumped or interacting finite state machines. We present ex-
perimental results which indicate that irredundant sequential
circuits can be synthesized with no area overhead and within
reasonable CPU times by exploiting these don’t cares.

1 Introduction

The connection between logic minimization and test gener-
ation for combinational circuits is well known and has been
systematically -investigated [2] [1). The connection rests on
the simple observation that the absence of a test is associated
with redundancy in the logic network.

The sources of redundancy in combinational circuits are well
understood and algorithms are available for making represen-
tations of incompletely specified combinational logic functions
irredundant. The algorithms in [1] determine a don’t care set
for each gate in a multi-level network and minimize the logic
function corresponding to the gate, subject to these don’t care
conditions to produce an irredundant, fully testable circuit.
Combinational test generation algorithms (e.g. RS]. [11]) can
be used to explicitly identify redundancies in a logic circuit,
which can then be eliminated.

Redundancies in sequential machines may alter the func-
tionality of the combinational logic in the (non-scan) sequen-
tial machine. while maintaining the terminal behavior of the
machine. Thus. a stuck-at fault may be testable from a com-
binational point of view, but may be sequentially redundant.
This redundant fault results in a faulty State Transition Graph
(STG) that is equivalent to the true STG.

Sequential test generation and sequential logic synthesis al-
gorithms are much less developed than their combinational
counterparts. The observation that the absence of a test is as-
sociate? with redundancy holds for sequential circuits as well.
While test generation algorithms can conceivably be used to
produce irredundant sequential circuits, by explicitly identi-
fying and eliminating redundancy, such an approach would
require astronomical CPU time for anything but the smallest
circuits, given the efficiency of state-of-the-art sequential test
generation algorithms.

The relationships between don’t care conditions and re-
dundancies in sequential circuits are not well understood at
present. Intuitively, one would expect that sequential redun-
dancies are intimately related to representations of don't cares
in the various steps of sequential logic synthesis, namely, state
minimization, state assignment and combinational logic opti-
mization.

In [7] and {4}, constrained synthesis procedures that result in
fully and easily testable finite state machines were presented.
These procedures effectively involve the addition of extra logic
to prodpuce an easily testable machine. In (5], a classification of
redundancies in sequential circuits composed of a single finite
state machine was presented. An optumal synthesis procedure
that results in a fully testable sequential machine was given.

In the work presented inS[5, each of the different classes
of redundancies in single FSMs was shown to be tied to a
don’t care set, which if optimally exploited results in the im-
plicit elimination of that form of redundancy. The work in }5]
was restricted to single finite state machines (FSMs). Multi-
level sequential circuits composed of interacting finite state
machines, are common in industrial chip designs and are more
complicated. The types of possible redundancies and their cor-
responding don’t care sets in cascaded/interconnected FSMs
are likewise more complicated.

We show in the cascaded machine case that sequential don’t
cares, corresponding to sequences of vectors that never occur,
at the inputs (outputs) of the driven (driving) FSM have to
be used to optimize the driven (driving) machine, in order to
eliminate certain kinds of redundancies. We present system-
atic methods of exploiting sequential don’t cares in cascaded
circuits. Interacting finite state machines can be viewed as sep-
arate occurrences of cascades and don’t care sets can be itera-
tively used on the different cascades to eliminate redundancy.

fully testable interacting FSMs can be produced from State

P

Finally, we present experimental results which indicate that ’

Transition Graph descriptions via optimal sequential logic syn-
thesis with reasonable CPU time expenditure.

In the next section, basic definitions and notations used
are given. In Section 3, we classify redundancies in single

finite state machines and the don’t care sets required to elim- -

inate these redundancies. We present new algorithms for the -
systematic exploitation of sequential don’t cares in cascaded
circuits in Section 4. The implicit elimination of redundan-
cies in cascaded finite state machines is the subject of Section
5. Iterative optimization procedures for interacting FSMs are

a
a

discussed in Section 6. Preliminary experimental results are \des

presented in Section 7.
Dist

A |

Special

——

.{or

2 Preliminaries

A variable is a symbol representing a single coordinate of the
Boolean space X‘ g a). A literal is a variable or its negation
(e.g. a or T). cube is a set C of literals such that z € C
implies ¥ ¢ C (e.g., {a,b,¢} is a cube, and {a,d)} is not a
cube). A cube represents the conjunction of its literals. The
trivial cubes, written 0 and 1, represent the Boolean functions
0 and 1 respectively. An expression is a set f of cubes. For
example, {{nd}, Eb,é}} is an expression consisting of the two
cubes {a} and {b,7}. An expression represents the disjunction
of its cubes.

A cube may also be written as a bit vector on a set of vari-
ables with each bit position representing a distinct variable.
The values taken by each bit can be 1, 0 or 2 (don't care),
signifying the true form, negated form and non-existence re-
spectively of the variable corresponding to that position. A
minterm is a cube with only 0 and 1 entries.

A finite state machine is represented by its State Transi-
tion Graph (STG), G(V. E.W(E)) where V' is the set of ver-
tices corresponding to the set of states S, where ||S}| = N, is
the cardinality of the set of states of the FSM. an edge joins v;
to v. if there is a primary input that causes the FSM to evolve
from state v; to state v;, and W(E) is a set of labels attached
to each edge, each label carrying the information of the value
of the input that caused that transition and the values of the
primary outputs corresponding to that transition. In general,
the (L) iabels are Boolean expressions. The number of in-
puts and outputs are denoted N; and N, respectively. The
input combination and present state corresponding to an edge
or set of edgesis (1. s). wheret and s are cubes. The fanin of a
state. g s a set of edges and is denoted fanin(gq). The fanout
of a state ¢ is denoted fanout(q). The output and the fanout
state of an edge (i. s) € E are o((i. s)) and n{(i. s)) € V
respectively.

Given \, inputs to a machine. 2 edges with minterm input
labels fan out from each state. A STG where the next state
and output labels for every possible transition from every state
are defined corresponds to a completely specified machine.
An incompletely specified machine is one where at least
one transition edge from some state is not specified.

A starting or initial state is assumed to exist for a machine,
also called the reset state. Given a logic-level finite state ma-
chine with A" latches. 2 possible states exist in the machine.
A state which can be reached from the reset state via some
input vector sequence is called a valid state in the STG. The
input vector sequence is called the justification sequence
for that state. A state for which no justification sequence
exists is called an invalid state. Given a fault F, the State
Transition Graph of the machine with the fault is denoted G¥.
Two states in a State Transition Graph G are equivalent if
all possible input sequences when the machine is initially in
either of the two states produce the same output response.

A State Transition Graph G is said to be isomorphic to
another State Transition Graph G, if and only if they are
identical except for a renaming of states.

The fault model assumed is single stuck-at. A finite state
machine is assumed to be implemented by combinational logic
and feedback registers. Tests are generated for stuck-at fau%ts
in the combinational logic part.

A primitive gate in a network is prime if none of its inputs
can be removed without causing the resulting circuit to be
functionally different. A gate is irredundant if its removal
causes the resulting circuit to be functionally different. A gate-
leve] circuit is said to be prime if all the gates are prime and
irredundant if all the gates are irredundant. It can be shown
that a gate-level circuit is prime and irredundant if and only
if it is 100% testable for all single stuck-at faults.

We differentiate between two kinds of redundancies in a se-
quential circuit. If the eflect of the fault cannot be observed
at the primary outputs or the next state lines, beginning from
any state. with any input vector. the fault is deemed combi-

Pl PO

—

PS

Combinational
Logic

FF's

N

(a)

(b) ‘

Figure 1: A Sequential Circuit

nationally redundant. A sequentially redundant fault
is a fault that cannot be detected by any input sequence and
is not combinationally redundant.

To detect a fault in a sequential machine, the machine has to
be placed in a state which can then excite and propagate the ef-
fect of the fault to the primary outputs. The first step of reach-
ing the state in question is called state justification. The
=eron step is called fault excitation-and-propagation.

Ar odge in a State Transition Graph of a machine is said
t be -orrupted by a fault if either the fanout state or out-
p.. el of this edge is chan;;}d because of the existence of
the tault. A path in a State Transition Graph is said to be
corrupted if at least one edge in the path has been corrupted.

A sequence of vectors VS, is said to contain another se-
quence V S, (written as VS, D VS,), if VS, appears in VS;.

A cascade of two machines A and B is denoted A — B.
A is the driving machine and B the driven machine.

3 Redundancies
State Machines

A sequential circuit S, comprised of a single FSM is shown in
Figure 1(a). The State Transition Graph corresponding to the
circuit is shown in Figure 1(b).

Redundant faults in S may be combinationally redund’
(CRFs) or sequentially redundant (SRFs). Sequentially
dundant faults can be classified into three categories.

in Single Finite

Figure 2: A Type 1 SRF

Figure 3: A Type 2 SRF

1. The fault causes the interchange/creation of equivalent
states in the STG.

2. The fault does not corrupt any fanout edge of a valid state
in the STG.

3. The fault results in a faulty machine that is isomorphic
(with a different encoding) to the original machine.

In {3]. it was shown that no other kind of sequential redun-
dancy could exist.

In Figure 1(b). states s2 and s§ are equivalent states. A
type 1 SRF in S may produce the faulty STG of Figure 2,
where the only corrupted edge (shown in dotted lines) goes to
s4 instead of s2 and does not change the terminal behavior
of S. A faulty STG corresponding to a type £ SRF is shown
in Figure 3. Only fanout edges from an invalid state have
been corrupted. In Figure 4, an isomorphic faulty machine
(equivalent to the true machine) is shown where s2 and s3
have been interchanged.

3.1 Eliminating Type 3 SRF's
In [3]. it was shown that stuck-at faults in a sequential machine

implemented by a two-level combinational network could not
cause isomorphism. For a sequential machine, implemented by

Figure 4: A Type 3 SRF

a multi-level network, stuck-at faults could conceivably pro-
duce an isomorphic faulty STG.

There are many ways of ensuring that isomorphism does not
occur in multi-level networks. Isomorphism due to a fault is
essentially due to a sub-optimal state assignment. The new
encoding corresponding to the isomorph represents a better
machine (one with the redundant line removed). A locally
optimal state assignment across any given set of states can
ensure that isomorphism does not occur in multi-level circuits,
across this set of states. It is worthwhile to note that optimal
state assignment corresponds to the optimal usage of don’t
cares — one does not care what the codes of the different states
are so long as they are distinct.

3.2 Eliminating Type 2 SRFs

The codes corresponding to invalid states can be used as don’t
cares during logic optimization. A type 2 SRF is due to the
sub-optimal usage (or no usage) of these don't cares. These
redundancies will not exist if the combinational logic is made
irredundant under this don’t care set.

3.3 Eliminating Type 1 SRFs

Type 1 SRFs are related to redundant states in a sequential
machine. Given a reduced machine, a fault that corrupts a
single edge going to a faulty but valid state cannot be redun-
dant, since all states are distinguishable. Thus, an initial state
minimization will preclude the occurrence of the SRF of the
form in Figure 2. However, we may have a case where the fault
results in a faulty invalid next state that is equivalent to the
true next state. This is illustrated in Figure 5. We have the
true STG in Figure 5(a), that is state minimal. The invalid
state s{’s code has been used as a don’t care and s{ is equiva-
lent to state s2 after logic minimization under this don’t care
condition. A fault could result in the scenario shown in Fig-
ure 5(b), where a single corrupted edge whose true next state
is s2 produces a faulty next state, s§. The fault is redun-
dant. This redundancy exists because we have not exploited
the don’t care corresponding to the edge (0, §3) — we can
specify n(0, 83) = &4, 52) and not just s2. The following
procedure of repeated logic minimization {modified from [SB
guarantees upon convergence that fype £ SRFs don’t exist an
that single edge corrupting and certain kinds of multiple edge
corrupting type I SRFs don’t exist. The use of extended don't
cares at Step A guarantees the elimination all possible of type
1 SRFs, but these don’t cares are not required in practice to
produce irredundant machines.

eliminate-typel /2-SRFs{ S):

iter = 1;
if (iter = 1) G = extract-stg(S) ;

(a)

Figure 5: A Complex Type 1 SRF

else G = extract-stg(S")
do {
foreach (valid state g€ G) {
Find all valid states (v;, .. vtm) = ¢ ;
Find all invalid states (ivy. .. fvg) = ¢ ;
A: FAPC | fanin(q) = (g. v1. .. vm» iv1, . ivg) ;

S’ = optimize(S. FAPC).

IV" = extract-invalid-states(S’) ;
5" = optimize(§'. IVPC).

iter = 1iter + 1

} while(S # 5") :

It can be proved that state minimization, a locally opti-
mal state assignment and the procedure eliminate-typel/2-
SRFs() produces an irredundant sequential machine |5).

4 Exploiting Sequential Don’t Cares

In Figure 6. we have a machine A driving another machine B
via a set of latches L1 (We neglect C for the moment). For the
purposes of the discussion here, we assume that all the latches
in L1 are not observable. In practice, a subset of the latches
may be observable.

4.1 Don’t Care Inputs for the Driven Ma-
chine

There are several don't care conditions associated with the
intermediate lines corresponding to L1, which are inputs to

PO

L
\3 C .
F—D—]L

2
L PO
A L B

Pl

Figure 6: Interacting Finite State Machines

B. Let the number of intermediat;é/pipe]ine latches in L1 be
N.

1." A may or may not assert all 2" possible output combina-
tions. If a certain binary combination, ¢; never appears
at L1, then B can be made incompletely specified — the
transition edges corresponding to an input of ¢; need not
be specified, whatever state B is in (We don't care what
happens when B receives the input ¢;).

2. A more general case of (1) is when a certain combination
¢, never appears at L1, when B is in some set of states
Qp € Sp. It does appear when B is in states other than
Q5. In this case, the states in Qg will have ¢, unspecified
(If an edge on ¢ exists in @, it can be removed).

3. A more complicated sequential don’t care is associat,
with vector sequences that never appear at L1, thou
all 2V separate vectors appear. A does not produce a
possible output sequences. This type of don’t care does
not have a straightforward interpretation. Edges in the
State Transition Graph of B cannot be removed or left
unspecified directly.

Both (1) and (2) can be easily exploited via the use of stan-
dard state minimization algorithms that handle incompletely
specified machines {10]. However, exploiting the don’t care
input sequences is more complicated and systematic methods
have not been proposed to date.

In Figure 7, a State Transition Graph corresponding to a
possible B machine is shown. The machine is state minimal.
We assume that each transition edge in B is irredundant, i.e.
B makes every transition with appropriate input sequences.
A don’t care input sequence is shown below the Graph. Such
a don’t care sequence implies that certain seguences of transi-
tions will not be made by B.

A don’t care input sequence is assumed to have a length
greater than 1. Given a don’t care sequence DC, all sequences
SE such that SE D DC are also don’t care sequences. We
define an atomic don’t care sequence as one that does not
contain any other don’t care sequence. Thus, any subsequence
of an atomic don’t care sequence is a care sequence. In the
sequel, we consider only atomic don’t care sequences.

Our problem lies in exploiting this form of don’t care, so as
to optimize B. In the general case, we wiil have a set of don’t
care sequences. We can state the following lemma.

Lemma 4.1 : Given a machine B and a set of don’t care
sequences DC; , 1 < j < Nc, if two states in B, sl and s
have distinguishing sequences I; , 1 < 1 < Np such that [’
each k, I O DC, for some l, then s1 and 52 are equivalent

B under the DC;.

(11,11)

Figure 7: Input Don’t Care Sequences

Proof: Since the DC; can never occur, it means the I; can
never occur. Therefore. s1 and s2 in B are equivalent under
DC,. Q.E.D.

An approach to exploit don't cares based on Lemma 4.1
would entail producing all distinguishing sequer-es for every
pair of states in B and checking for the containment condition.
Pairs satisfying the condition can be merged. This is poten-
tially very time consuming: a pair of states may have many
distinguishing sequences and we have to find them for every
possible pair. A more efficient approach is now outlined.

In this approach. given a set of don’t care sequences. B
is transformed into a new machine B’ which has a greater
number of states. but is more incompletely specified than B.
B’ is state nunimized to obtain B” ({{Sg~|i < |{Sg||). The
pseudo-code below illustrates the procedure.

exploit-input-de(B. DC):
B = B:

foreach (don't care sequence DC,) {
foreach (depth-first path P=¢;, ..ex € B') {

if (P2 DC,) {
for(1=2.i<h:i=i4+1){
si = ei— > fanout ;
make states s; and s ;
fanin(s)) = e, ;
fanin(s) = fanin(s;) — ei_1;
if (fanin(s!') = o) delete s/ ;
f(i<h)
fanout(s)) = fanout(s)) = fanout(s;) ;
else {
fanout(s,;) = fanout(s,) — e, ;
fanout(s]') = fanout(s;) ;
delete s, :
}
}
}
} .
B" = state-minimize (B’) ;

}

The procedure is effectively producing a machine where the
don’t care sequences are not specified. but otherwise has the
same functionality as the original machine. This means that
if any two states in B satisfy the conditions of Lemma 4.1,
these two states will not possess a distinguishing sequence in
B’ and will thus be compatible during state minimization. A
stalier machine B” will be obtained after state minimization.

Figure 9: State minimization after Expansion

When i = p < K in the for loop above, the fanout of s,

is duplicated for the states s, and s, — the edge e, is also

duplicated. Hence, at the next iteration, one of the e, fans
into 5,4, and the other e, (as well as the remaining fanout

edges from s, and &) into sy ;.

An illustrative example is given in Figures 8 and 9. Tk-
machine and the don’t care sequence of Figure 7 produce ar.
expanded machine, shown in Figure 8. State minimizing this
machine produces the result of Figure 9, which has one less
state than the original machine of Figure 7.

Given a cascade, we need to generate the set of sequences
that the driving machine in a cascade A — B never asserts,
so as to optimize the driven machine B as in Figures 8 and
9. This is done by generating don’t care sequences of increas-
ing length, beginning from a length of 2. Starting from each

ossible state in A, all possible 2-vector sequences are found.
ging]e vectors that don’t occur are added to this set and the
set is "complemented” to find the atomic 2-vector sequences
that don’t occur. Next, all sequences of length 3 that A asserts
are found. The single-vector and 2-vector don’t care sequences
are added to this set and the union is complemented to find
the atomic don’t care sequences of length 3.

4.2 Don’t Care Outputs for the Driving Ma-
chine

The sequential don’t cares discussed thus far are a product of
the constrained controllability of the driven machine B in a
cascade A — B. There is another type of don't care due to
the constrained observability of the driving machine A. We

1t sal sa2 INT1
i2 sal sa3 INT2
i1 sa2 sal INT2
i2 sa2 sa3 INT1

INT1 gb1 @b2 outt
INT2 gb1 gb3 out2
INT1 gb2 qb2 out3
INT2 gb2 gb2 out3
INT1 qb3 qb2 out4

i1 sa3 sal INT1
i2 sa3 sa2 INT1 INT2 gb3 gb3 outt
N

A 7 B
Figure 10- Output Expansion

focus on the individually state minimized tables of Figure 10.
The intermediate inputs/outputs have been given symbolic
codes. Given that A feeds into B, it is quite possible that for
some transition edge e; € A. it does not matter if the output
asserted by this particular transition edge is, say, INTt or
INTj. In fact. in Figure 10, the 3rd transition edge can be
either INT'1 or INT2. without changing the terminal behavior
of A — B. Thisis adon’t care condition on A’s outputs. It is
quite possible that making use of these don’t cares can reduce
the number of states in 4. In fact, if one replaced the output
of the 3rd edge in A (Figure 10) by INT1 instead of INT2,
we would obtain one less state after state minimization. (sa2
becornes equivalent to sa8).

Given a cascade A — B. we give below a systematic pro-
cedure to detect this type of don't care. i.e. expand the output
of each transition edge of 4 to the set of all possible values
that it <an take while maintaining the terminal behavior of
4 —— 3. Standard state minirmuzation procedures can ex-
ploit don't care outputs. represented as cubes. However, state
minimization procedures have to be modified in order to ex-
ploit transition edge outputs represented as arbitrary Boolean
expressions {multiple cubes).

output-expansion-1{ A, B):

foreach (edgee; € A) {
OU'T(e1) = universe :
foreach (state ¢; € Qp) {
if (B can be in ¢; when A makes transition e;) {
find largest set of output combinations
¢y ey Dey— > output &&
fanin(e;. ¢1). output(c,. q) are unique ;

OUT(e1) = OUT(ey) N 1 ;
}

e;— > output = OUT(e,):

}
A = state-minimize(4) :

}

A transition edge e, in A is picked. The set of states that B
can be in when A makes this transition is found. Given this
set of states. the largest cube (or set of output combinations)
that covers the output of the edge and produces a unique next
state and a unique output when B is in any one of the possible
states js found {corresponds to OUT(e;)). The output of e,
is expanded to the cube. The process is repeated for all edges
in A.

The state minimization procedure proposed in [10] can be
used for incompletely specified finite state machines. However,
after output expansion. we may have a multiple-output FSM
in which a transition edge has an output that can belong to a
subset of symbolic or binary values. rather than the universe
of possible values (as in the incompletely specified case).

In the state minimization procedure of [10], two states are
deemed to be compatible if the output combinations that
can be asserted by each pair of corresponding fanout edges
of the two states intersect. One can envision a situation

where the possible output combinations of the fanout cdges
of g1, g2 € Sas intersect leading to a compatibility relation
@1 — g3, with similar compatibility relations ¢; — ¢s and
¢1 — qs. However, the three-way intersection between the
poasible output combinations of the fanout edges of g1, ¢2
¢gs may be a null intersection, implying that ¢i, ﬁz and ¢s ¢

not be merged into a single state, even thoug% all the req
pairwise compatibility relations exist. In the binary-valued
output case, ? the possible output combinations can be repre-
sented as a single cube, then such a situation will not occur,
since the three-way intersection of a set of three cubes has
to be non-empty if the pairwise intersections are non-empty.
But, in the case of multiple cubes or Boolean expressions spec-
ifying the outgnt combinations for fanout edges, an additional
check has to be gdormed during state minimisation during
the selection of the compatibility pairs to see if three or more
sets of states can, in fact, be merged, preserving functionality.

5 Fully Testable Cascaded Finite
State Machines

In this section, we present a classification of redundant faults
in a cascade. We define don’t care sets tied to each of these
forms of redundancy and give a synthesis procedure that pro-
duces an irredundant cascade.

5.1 Redundancies in a Cascade

Redundancies in a cascade A — B can be classified into four
categories. The intermediate lines are denoted INT.

1. F € A that cannot propagate to the intermediate lines
INT.

2. F € A that propagates to INT but not PO, the primary
outputs of B.

3. F € B that does not propagate to PO, but would have.
INT were completely controllable.

4. F € B that does not propagate to PO and would not
have even if INT were completely controllable.

Obviously, there can be no other class of redundancy.

It is easy to see that redundancies of type (1) and (4) are
associated with the single machines A and B. If A and B are
irredundant, these redundancies will not appear in a cascade
A — B. 1t is convenient to further classify the redundancies
of type (2) and (3).

2. Redundancies of type 2 can be classified into

(a) F € A produces a int” # int (a faulty output not
equal to the true output) that is a specified output
for all states that B can be in. int¥ elicits the same
response as inf from B for all of these states and
therefore F' is redundant.

(b) F € A produces an unspecified or invaelid output
int” for the states B can be in and elicits the same
response from B. In this case, one may elicit the
same response from B or B might be moved to an
invalid state that is equivalent to the true state re-
sulting in redundancy.

(¢) A more complicated case of 2(a)/(b), where A pro-
duces a sequence of faulty outputs int1¥, .. intNF
instead of intl, .. intN, such that the first output
moves B into an invalid state that is not equivalent
to the true state, but this state effectively beco:

equivalent to the true state due to int2F, ..intN“}e'
3. Redundancies of type 3 can be classified into

(a) F € B requires a transition edge in B that cannot be
justified for excitation/propagation to the primary
output or next state lines.

(b) A transition edge that propagates F € B to the next
state lines exists and the faulty state produced is
a valid state. The faulty fault-free state pair in B
possess a distinguishing sequence (which constitutes
part of a test sequence), but this sequence cannot be
produced at the outputs of A.

(¢) Same as above, except that the faulty state that is
produced is an invalid state.

Redundancies 2(a) and 2(b) are associated with single-vector
don't care outputs of A. Of course, one may have multiple
occurrences of faulty output vectors producing the same re-
sponses for a fault F of type 2(a) or 2(b). Redundancy 2(c)
is associated with don’t care output sequences (multiple vec-
tors) of A. Redundancy 3(a) is associated the simple form
of input don’t care described in Section 3.1, where transition
edges in B need not be specified. Redundancies 3(b) and 3(c)
are associated with don’t care input sequences to B.

5.2 A Synthesis Procedure for Irredundant
Cascaded Machines

The procedure presented below represents a one-pass opti-
mization for a cascade and eliminates a large number of re-
dundancies in a cascade.

optimize-cascade(4. B):

output-expansion-1 (A, B);
irredundant-1(4) :
exploit-input-dc (B, DC4) ;
irredundant-1(B) :

Don't care outputs of A and don’t care inputs to B are ex-
ploited. The procedure irredundant-1() uses the techniques
described in the previous section to make a single machine
irredundant in isolation.

Theorem 5.1 The procedure optimize-cascade() produces
a cascade A — B that 1s irredundant for all type 1, type
2fa). type 3(a}. typs 3(b) and type 4§ faults.

Proof: Tyvpe 1 and type 4 faults cannot exist, since A and B
are irredundant in isolation.

After the procedure exploit-input-de() has been used,
each remaining (specified) edge in the machine B. can be jus-
tified. by some input sequence to A. After B has been made
prime and irredundant. we are guaranteed that at least one of
the originally specified edges is a test vector in the combina-
tional sense for any fault F € B. That is, we have a vector
that excites and propagates F to the primary outputs of B or
the next state lines. This vector can be reached controlling A
alone. Therefore. F cannot be a redundancy of type 3(a).

Next. consider redundancies of type 3(b). After the proce-
dure exploit-input-dc() has been used on B with a complete
don't care input sequence set. each pair of valid states remain-
ing in B possess a distinguishing sequence that is not in the
don’t care input sequence set. This means that each pair of
valid states can be distinguished via an input sequence to A.
Therefore. if F € B produces a faulty fault-free state pair such
that the faulty state is a valid state, then we have a distin-
guishing (test) sequence for F and F cannot be a redundancy
of type 3(b). However. the same cannot be said of faulty states
that are invalid and F may be a redundancy of type 3(c).

Redundancies of type 2(a) cannot exist because output ex-
pansion has been performed on A. using output-expansion-
11). A fault F € A can be initially propagated to the outputs

of A or the next state lines. If all test vectors for F props-
ate F' to the output lines alone and produce valid/specified
sulty outputs (if even one vector produces an invalid out-
put, F cannot be redundancy of type 2(a)), then because
we have exploited the output don’t cares for each transition
edge in A, we are guaranteed that at least one of the vectors
(etf;es) corrupted by F will elicit a different response for some
state that B can be in. (By different response we mean that
B goes to a different state or produces a different ontgnt).
On the other hand, if F is pro to the next state li
alone, then a corrupted vector will exist such that it produces
a faulty state that can be distinguished from the true state
snder the ouiput don’t care set. This means we have a dis-
tinguishing input vector sequence (to A) such that the final
ty output necessarily elicits a different response from B or
is an invalid/unspecified output. If F is propagated to both
the outputs and the next state lines then for some test vector
either the faulty output will directly elicit a different response
from B or the faulty fault-free state pair will possess a distin-
ishing sequence that eventually elicits a different response
g:)m B. Thus, F is testable or 18 not a redundancy of type
2(a). Q.E.D.

Eliminating type 1 SRFs in a single machine required it-
erative optimization due to the existence of invalid states.
In a cascade, we have a similar situation where eliminating
type 2(b) and 3(¢) redundancies (which might result in B
moving to an invalid state) requires a two-pass optimization.
This is because expanding the outputs of A to include in-
valid/unspecified outputs may introduce additional don’t care
input sequences to B.

irredundant-cascade(A, B):

for(iter = 1; iter < 2; iter = iter +1) {
if (iter = 1) output-expansion-1(4, B);
else output-expansion-2 (4, B) ;
irredundant-1(4) ;
exploit-input-dc (B, DC4) ;
irredundant-2(B, DC*) ;

The procedure output-expansion-2() is an enhanced ver-
sion of output-expansion-1(). There are two enhancements
corresponding to the don’t cares for type 2(b) and type 2(c)
redundant faults.

1. Given an optimized B, for each valid state, all the invalid
states that are equivalent to this state are found. We
might have a situation where for a particular transition
edge in A, an output different from the edge’s output
places B in an invalid state that is equivalent to the true
valid state. This output represents a don’t care for the
transition edge and is detected in output-expansion-2()
(but not in output-expansion-li()). We also have the
simpler situation of A producing a faulty output that was
originally unspecified for the state(s) B is in, eliciting the
same response from B. The output of the transitiop edge
can be expanded to this unspecified combination.

2. Don’t care output sequences are detected for A. The de-
tection of these sequences is performed by checking if in-
valid states in B, that are not equivalent to valid states
and reached by unspecified outputs from A, produce the
same response in B due to the corruption of other transi-
tion edges in A. The corrupted outputs represent a don't
care output sequence for edges in A. A 2-vector don't
care sequence is shown below.

(ofer), ofe2)) = (ex—>op, e2=>0p) \/

(e1—>opF, e~ > opF) (1)

Current fugic minimizers are restricted in their capability to
exploit don’t cares. Don’t care output sequences of the form
of Eq." 1 cannot be optimally exploited, other than by exhaus-
tive search. Fortunately, these don’t cares are not required in
practice — we have not encountered a single occurrence of a
type 2(c) redundancy in a cascade, even if only single-vector
don’t care outputs have been used.

The f rocedure irredundant-2() is also an enhancement on
procedure irredundant-1().
Irredundant-2() uses eliminate-typel /2-SRF:(L with an
additional don’t care set at Step A. At Step A, we have

A : FAPC | fanin(q) = (¢, v1, - Ym, vy, - ivs, niy, .. NY)

where v;, ..v, and ivy, .. ,fv, are valid and invalid states
respectively, that are equivalent to ¢ when B is viewed in
isolation, i.e. deemed completely controllable. niy, ..ni; are
states not equivalent to ¢ when B is viewed in isolation, but
equivalent to ¢ under the don’t care set DC4.

Theorem 5.2 The procedure irredundant-cascade() re-
sults tn an wrredundant cascade.

Proof: The procedure irredundant-cascade() is an en-
hanced version of the procedure optimize-cascade() and the
arguments that type 1, tvpe 2(a), type 3(a). type 3(b) and
type 4 faults are testable hold here as well. We focus on pos-
sible redundancies of types 2(b), 2(c) and 3(c).

The procedvre output-expansion-2() uses the additional
don't care outputs for 4 corresponding to the invalid states
in B that are equivalent to valid states and which are reached
by outputs other than the transition edge outputs of A. Using
these don’t cares ensures that type 2(%)) redundancies don't
exist. The argument is similar to the argument of Theorem 5.1
for the type 2(a) redundancy. A fault F € A will immediately
or eventually produce an invalid/unspecified output such that
the invalid output elicits a different response from B. If B
is moved to a faulty invalid state we are guaranteed that the
invalid state is not equivalent to the true state. Thus. F is
testable or is not a redundancy of type 2(b).

Redundancies of type 2(c) are associated with don’t care
output sequences for A. That is, it does not matter if A asserts
one particular sequence or another due to its constrained ob-
servability. If the don’t care sequences corresponding to Eq. 1
are exploited in the output expansion procedure, we are guar-
anteed that the corrupted sequence does not elicit the same
response as the true one from B.

Finally. we consider redundancies of type 3{c). The ad-
ditional don't care set at Step A in eliminate-typel/2-
SRFs() will guarantee, after B has been made prime and
irredundant. that any faulty faulty-free state pair that is pro-
duced due to a fault F, regardless of whether the faulty state
is valid or invalid. will possess a distinguishing sequence not
in DCA. This means that the pair can be distinguished from
the inputs of A and F cannot be a redundancy of type 3(c).
Q.E.D.

6 Fully Testable Interacting Finite
State Machines

Interacting finite state machines are common in industrial chip
designs. In Figure 6, an example sequential circuit composed
of three interacting finite state machines was shown. In this
section, we describe sterative optimization strategies for the
synthesis of irredundant interacting finite state machines.
The don’t care sets associated with a set of interacting
FSMs are essentially the same as those in a cascade. At
any given set of intermediate lines or latches that are not ob-
servable/controllable we have don’t care input and output se-
quences. We can view an arbitrary set of interacting machines
as several occurrences of individual cascades and use the don'’t

Pl L

N

PO&—— ¢

Figure 11: A Cascade Chain

care sets required for synthesizing irredundant cascades itera-
tively to eliminate all redundancies in the circuit.

We first focus on the cascade chain of Figure 11. There are
two individual cascades corresponding to A — B and B —
C. It is easy to see that if one optimizes A — B first and
then B — C, then we obtain the entire set of don’t care input
sequences to C, but not vice versa. This is because optimizing
B with its don’t care input sequences may produce additional
don’t care input sequences for C. Thus, an appropriate order
of optimization of individual cascades is required. However,
optimizing A — B before B — C may result in missing
some don’t care outputs for output expansion, as illustrated in
Figure 12. We have fragments of the State Transition Graphs
corresponding to A, B and C in Figure 12. We would raise
the outputs of the edge in A only it we optimized B —
before A — B.

We have thus a conflict between the order of optimization o
the individual cascades. if we wish to make use of all the don’t
care sets. This conflict is resoived in the cascade chain case
quite simply, by an optimization A — B, B — Cand A —
B. The case of Figure 6, a more general case where global
feedback exists, is more complicated and requires iteration to
convergence of the three individual cascades, A — B, B —
C, C — A. lteration to convergence is required because the
global feedback may result in, say additional don'’t care inputs
to B after the do:i't care inputs to A have been exploited,
which in turn are dependent on the output don’t cares of C
and so on.

Given an arbitrary interconnection of FSMs, the elimination
of all redundancies entails the optimization of every path from
the primary inputs to the primary outputs using the input
don’t .are sets. Similarly, every reverse path from the primary
outputs to the primary inputs has to be optimized for output
don’t cares. Iterative optimization to convergence is required
in the case of feedback paths. If this is done and the machines
are all irredundant in isolation, the interconnection will be
irredundant. Any fault, F, in any machine M, will possess
a test sequence at M’s inputs whose effects can be observed
at M’s outputs. Exploiting don’t care input sequences from
the primary inputs outward to the primary outputs ensures
that this test sequence can be produced at the inputs of M.
Exploiting the don’t care outputs from the primary outputs
inward to the grimary inputs ensures that the effect of the test
sequence will be propagated to the primary outputs.

7 Results

In this section, we present some prelg'minary results obtaine’
using the synthesis procedures described in Section 5 and 6.

o exo T o») 37

A B C
|1/11 j1/k1 k1/01 o1
Ao j1/(k1, k2
i{/G1. j2) 1K1, k2)
j2/(k1, k2)
Figure 12: Order of Optimization for Don’t Care Qutputs
X I pt|po]| ma il | la states #Fot
ML TMZ | M3
eX. . Y TI114 25] 20 48 -] 704
ex. ¢ 2y ¥[16 101 16 - | 33k
EXo 1o 2027 ITITT 16 10 - 18
texs , > TTo] SVUISTR28T 207 3% 1971 926
21 oI 20 ¢ 16] 48 1 772

Table 1: Statistics of Examples

Intensive optimization is necessary to obtain fully testable de-
signs. If this optimization can be carried out, then the syn-
thesized machine(s) will occupy minimal area. There is no
area/performance overhead associated with this procedure.
However. the CPU time requirements have to be evaluated.

We chose some examples in the MCNC 1987 Logic Syn-
thesis Workshop as test cases, whose statistics are given in
Table 1. These machines were interconnected in various ways.
In Table 1, the number of primary inputs {pi) and primary
outputs (po). the number of separate machines (ma) and the
number of states in each machine in the circuit (#states) are
indicated for each example. The number of intermediate, non-
observable/non-controllable lines (il) and the total number of
literals (#1it) after state assignment using MUSTANG (6] and
multi-level combinational optimization using MIS (3] are also
given. The total number of latches (la) corresponds to a min-
imum bit encoding for each machine and the pipeline latches
11 the intermediate lines.

The program STALLION [9_1_ was used initially to generate
tests for the original circuits. The resulits are given under the
column ORIGINAL. The time in CPU minutes required for
test generation (TPG time). the fault coverage obtained by
STALLION (fcov). and the original literal count for each cir-
cuit (lit) are indicated. The circuits were optimized using the
various don't cares described in the previous sections. The
CPU time required for logic optimization (logic time), test
generation (TPG time), fault coverage obtained by STAL-
LION (fcov) and the final literal counts (lit) are indicated
under the column OPTIMIZE for each circuit.

All the circuits have been reduced in complexity and made

Ex ORIGINAL OPTIMIZE
—TPG | fcov | It | logic | IPG | fcov | bt
time time | time

ey | 45m | DI85 | 338 | 1dm | 4.6m | 100 | 24]

ex3 | 48m [95.7 | TTm | 4.7m | 100 | IS1

exd | 21.2m | 9. 45m | 18.3m | 100 | 78]

exb | 25.1m | 92.5 | 772 m | 22.4m | 10

Table 2: Results using Don’t Care Exploitation Algorithms

irredundant. STALLION either aborted or identified the un-
detected faults in the original circuits to be redundant. While
the CPU times required for logic optimization are typically
larger than the test generation times, the alternative of ex-
plicitly identifying redundancies in the original circuits via
test generation would expend considerably more CPU time.
Redundant lines corresponding to redundant stuck-at faults
can only be removed one at a time. Futhermore, removing
a redundant line may introduce new redundancies and so all
faults have to be checked for redundancy on each removal
Thus, the implicit elimination of redundancies via the use of
don’t care sets represents a much more efficient approach to
the synthesis of irredundant interacting sequential machines.

8 Conclusions

In this paper, we explored the relationships between redundant
logic and don’t care conditions in sequential circuits. Redun-
dancies in non-scan sequential circuits may be testable from
a combinational viewpoint, but may produce a faulty State
Transition Graph (STG) that is equivalent to the STG of the
true machine.

We presented a classification of redundant fauits in sequen-
tial circuits composed of single or interacting finite state ma-
chines. Don’t care sets can be defined for each class of redun-
dancy and optimally exploiting these don’t care conditions
results in the implicit elimination of any such redundancies
in a given circuit. In cascaded and interconnected sequen-
tial circuits, sequential don’t cares are required to eliminate
redundancies.

We presented preliminary experimental results which indi-
cate that medium-sized irredundant sequential circuits can be
synthesized with no area overhead and within reasonable CPU
times by exploiting these don't cares.

9 Acknowledgements

The interesting discussions with Pranav Ashar, Robert Bray-
ton, Kurt Keutzer and Alberto Sangiovanni-Vincentelli on
sequential machine testability are acknowledged. This work
was supported in part by the the Defense Advanced Research
Projects Agency unde- contract N00014-87-K-0825.

References

(1] K. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby,
C. R. Morrison, R. L. Rudell, A. Sangiovanni-Vincentell,
and A. R. Wang. Multi-level logic minimization using
implicit don't cares. In IEEE Transactions on CAD,
pages 723-740, June 1988.

[2] D. Brand. Redundancy and don't cares in logic synthe-
sis. In JEEE Transactions ou Computers, pages 947-952,
October 1983.

Al
(3}

[4

(8]

(6]

o

1

R

R. Brayton, R. Rudell. A. Sangiovanni-Vincentellj, and A.
Wang. Mis: a multiple-level logic optimization system. In
[ELE Transactions on CAD, pages 1062-1081, November
1987

S. Devadas, H-K. T. Ma, and A. R. Newton. Easily
Testable PLA-ba' .u Finite State Machines. In Proc. of
19th Fault Tolerant Computing Symposium, June 1989.

S. Devadas, H-K. T. Ma, A. R. Newton, and A.
Sangiovanni-Vincentelli. Irredundant sequential ma-
chines via optimal logic synthesis. In Electronics Research
Laboratory Memorandum M88/5¢, University of Califor-
nia, Berkeley, August 1988.

S. Devadas, H-K. T. Ma, A. R. Newton, and A.
Sangiovanni-Vincentelli. Mustang: state assignment of
finite state machines targeting multi-level logic implemen-
tations. In IEEE Transactions on CAD, pages 1290-1300,
December 1988.

7, S. Devadas, H-K. T. Ma, A. R. Newton, and A.

Sangiovanni-Vincentelli. Synthesis and optimization pro-
cedures for fully and easily testable nequential machines.
In Proc. of International Test Conference, pages 621-630.
September 1988.

P. Goel. An implicit enumeration algorithm to generate
tests for combinational logic circuits. In IEEE Transac-
tions on Computers. pages 215-222, March 1981.

G H-K. T. Ma. S. Devadas. A. R. Newton, and A.

Sangiovanni-Vincentelli. Test generation for sequential
circuits. In JEEE Transactions on CAD, pages 1081-
1093. October 198%.

M C. Paul and S. H. Unger. Minimizing the number
of states 1 incompletely specified sequential circuits. In
IRE Transactions on Electronic Computers, pages 356-
357. September 1954

J. P. Roth. Diagnosis of automata failures: a calculus and
a method. In JBM journal of Research and Development,
pages 278-201. July 1966.

