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Abstract

0 Parallel computations often yield computation structures which ire trees; the shape of such
a tree evolves over time as the computation progresses. However, parallel computers are
usually designed as networks of processors with fixed connections; it is therefore important
to embed the dynamic structure of a computation efficiently in a fixed network. We
consider the problem of dynamically embedding an evolving binary tree with ,t most N
nodes in an N-node hypercube. We present a simple randomized algorithm which uses
only local control and guarantees constant dilation, while maintaining constant load with
high probability; this is the first load-balancing algorithm which achieves constant dilation.
We also prove that random solutions to this problem are highly desirable, by demonstrating
that any deterministic embedding algorithm which maintains constant load must have
- (JIos dilation.
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Abstract

Parallel computations often yield computation structures which are trees; the shape
of such a tree evolves over time as the computation progresses. However, parallel
computers are usually designed as networks of processors with fixed connections; it
is therefore important to embed the dynamic structure of a computation efficiently
in a fixed network. We consider the problem of dynamically embedding an evolving
binary tree with at most N nodes in an N-node hypercube. We present a -simple
randomized algorithm which uses only local control and guarantees constant dilation,
while maintaining constant load with high probability; this is the first load-balancing
algorithm which achieves constant dilation. We also prove that random solutions to
this problem are highly desirable, by demonstrating that any deterministic embedding
algorithm which maintains constant load must have fl(vjW) dilation.

1 Introduction

Solving large problems efficiently in parallel sometimes leads to a computation which has a
tree structure. Examples of this are divide-and-conquer and branch-and-bound computations
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[KZ]. In general. the resulting computation tree is dynamic in that the tree grows and shrinks
at its leaves in an unpredictable way.

However. large parallel computers are built with a fixed set of connections: the neighbors
of a processor do not change over time. Therefore we must map the nodes of a dynamic
tree to the processors of a fixed-connection network. In order to insure fast communication
between tree nodes, adjacent nodes in the tree should be mapped to processors which are
near each other: in order to insure that full advantage is taken of the available processing
power, the nodes of the tree should be spread out evenly in the network so that no single
processor has to simulate disproportionately many tree nodes. This leads us to the question
of how to efficiently embed dynamic trees in a fixed-connection network.

In this paper we consider the problem of embedding dynamically growing rooted binary
trees in a hypercube network. There are several measures of the efficiency of an embedding.
One is dilation, defined to be the maximum distance in the hypercube between two nodes
which are adjacent in the embedded tree. Low dilation m-tns that each tree node is ,loqe
to its parent, facilitating communication between them. Another important measure is the
load of an embedding, which is the maximum number of tree nodes mapped to a single

node of the hypercube. A good embedding will have a load which is low, implying an even
distribution of tree nodes and therefore efficient use of the available processors. Note that
this problem has been solved any fixed binary tree, as it is known that any N-node binary
tree can be embedded one-to-one in an N-node hypercube with constant dilation (BCLRJ;
our results show that these properties can be maintained as the tree evolves.

In this paper we present a simple randomized algorithm to embed a dynamically evolving
binary tree with at most N nodes in an N-node hypercube. The algorithm is distributed and
requires only local control; constant dilation is guaranteed, and with high probability, the
resulting embedding will also maintain constant load. This work is closely related to recent
work of Bhatt and Cai [BC]; in their paper they present a randomized algorithm for this

problem which guarantees O(log log N) dilation, and achieves constant load for O(N)-node
trees with high probability. Though at first glance the algorithm in this paper may seem
nearly identical to that of Bhatt and Cai, subtle differences in the use of randomness lead to
a provably stronger result. In addition, we prove that no deterministic embedding algorithm
which maintains constant load can achieve dilation better than fS( 4A V), even for trees
which only grow. This emphasi7 t,-- desirability of randomized solutions to this problem.

The rest of the paper is organiz, - s follows. Section 2 contains preliminaries and defini-
tions along with a description of the embedding algorithm. Section 3 contains the analysis
of our algorithm. Section 4 presents the negative result for deterministic algorithms.

2 Preliminaries

Let T be a rooted binary tree which is growing and shrinking over time. By this we mean
that in each time step some nodes of T decide to grow children and some leaves cease to
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exist. Initially, T consists of only the root. We assume that 7 never has more than N nodes
and that it grows and shrinks over a period of time whose length is polynomial in N.

Let H,, denote the n-dimensional hypercube with N = 2" nodes, represented by the set of
all strings in {0, 1}"'. The n2' -1 edges of H,, connect nodes with strings differing in precisely
one bit. The dimension of an edge is the bit position (0 to n - 1) in which the incident nodes
differ. If x E H,, then x' refers to the node adjacent to z and differing from it in the i"
dimension bit.

An embedding of T into H,, is a map T .-* H,, that maps nodes of T to nodes of
H,. For two hypercube nodes z and y, let d(z, y) be the Hamming distance from z to y;
i.e. the number of bit positions where x and y differ. The dilation of an embedding is
max{d(,(v), O(w))}, where the maximum ranges over all v and w which are neighbors in
the tree. The load of an embedding equals max{& -1 (x)Ix E H,,}, the maximum number of
nodes in T mapped to a single node of H,.

For any node z E H,, the star centered at z is the set of nodes consisting of x itself and all
neighbors of x. Each star contains n + 1 nodes. We present an algorithm which dynamically
embeds the tree T in H,, such that all stars have O(n) tree nodes mapped to them. We wifl
then show how to slightly alter this embedding (dynamically) so that the resulting load is
constant. Throughout, the dilation will be constant.

Fix an arbitrary constant b. (For ease of exposition, we assume that b divides n.) Call
the distance from a tree node v to the root the depth of v. The embedding algorithm maps
tree neighbors to hypercube nodes which are at distance at most b.

for each node v which grows a child w
Y .- OMv
let v be at depth i
forj - ib (mod n) to (i + 1)b- 1(mod n)

y- yJ with probability
W- y

Figure 1: The Embedding Algorithm

3 Anaiysis of the Algorithm

We first discuss the case in which T is only growing. We will show later that we can handle
a tree which shrinks as well.

Theorem. If a growing tree T with at most N nodes is dynamically embedded in the
hypercube H,, according to the rule given above with b > 8, then with high probability no
more than O(n) tree nodes are mapped into any star of H,,.
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Figure 2: An Extended Tree

Fix a node xo E H-. Call a node v E T a star node if 0(v) lies in the star centered at .
We will prove that with high probability there are only O(n) star nodes. If we let zo range
through the N nodes in H,, this proves the theorem as well.

Two tree nodes v and w are close if d(u, v), d(u, w) < 2 where u is the lowest common
ancestor of v and w. A set S of tree nodes is a close set if for any two nodes v, w E S there
is an ordered set < u, > of elements of S where v, w E {uj} and u, is close to u,,, for all i.
The highest node of a close set is that node in the set at the lowest depth in the tree. If there
are more than one at the lowest depth. the highest node is a fixed arbitrary one of these.

We form the extended tree T of a close set S as follows. First we include all the edges
which lie on the (unique) shortest path between any two close nodes in S. By the definition
of a close set, the edges between all pairs of close nodes form a tree. We refer to the (unique)
highest node of this tree as the root of the extended tree. Say that the path from the highest
node of S to the root of the extended tree has length 1. Then we include the first - - I
edges on the (unique) shortest path from the root of the extended tree to the root of T. If
we reach the root of T before traversing I - edges, we stop. These new edges, the tree
already defined, and all incident vertices form the extended tree of S. The extended tree of
S is a subtree of T and its leaves are all elements of S. The path in the extended tree which
contains ancestors of the highest node of S (but not the highest node itself) is the spine of
the extended tree. The highest node in the spine is the tip of the spine.

Let < Si > be the indexed family of maximal close sets of star nodes. By calling these
sets maximal we mean that the union of any two of them is not a close set. Let < T > be
the associated family of extended trees.

Lemma 3.1. No two trees T and T share a node.

Proof. Any node u in an extended tree has a close star node descendent. Thus if u were

4



in two trees, it would have a close star node descendent in each tree and these nodes would
I. therefore be close to each other. In that case, Si U Sj would be a close set, violating our

assumption. I

Lemma 3.2. At most one extended tree does not include the last L edges along the shortest
path from the root of T to the highest node in the associated close set.

Proof. Any extended tree which did not include those edges would include the root of T.
By lemma 3.1, there can be only one such tree. 3

Say that extended tree T has highest node vi, contains mi total star nodes and that
the path from vi to the root ri of T has length 1,. Because the root is the lowest common
ancestor of all the star nodes in the close set, either both of its children have star node
descendents or r, is a star node itself. If ri is not a star node then there is another star node
vi whose path to ri does not intersect the path from vi to r,. Furthermore, this path has
at least li - 1 nonstar internal nodes since otherwise v would be closer to r, than is vi. If
ri is a star node then ri is also the highest node and 1i = 0. In this case 1, - I = -I easily
bounds the number of nonstar nodes off the spine. Thus in the extended tree there must
be at least thj nodes on the spine, the m, star nodes, and the 4i - I nonstar nodes off the
spine accounted for above. All other nodes we denote as surplus; let s, be their count. In
the extended tree Ti we have a total of mi + 1, + s, - 1 nodes not on the spine.
Lemma 3.3. Over all ways to choose which nodes in T are star nodes, no more than

2 3m.+4J.+3.,- 7 different extended trees may be formed with highest node v,, mi total star

nodes, d(vi, ri) = 1i and mi + 1, + qi - 1 nodes off the spine.

Proof. The nodes on the spine are fixed by vi. All other nodes in the tree descend from
the nodes on the spine. We can grow any extended tree from this spine. Maintain a queue
of extended tree nodes. Initialize the queue with the nodes on the spine. At any step, if the
node at the head of the queue has children in T, decide which of them are to be included in
the extended tree. Add to the queue those children included in the extended tree. Once we
have processed m, + I + 3, - 2 nodes we may stop. The one remaining node in the queue
has no children in the extended tree.

Each of the first li - 1 nodes on the spine has at most one child not on the spine. For
each node we can choose whether or not her child belongs to the extended tree. There are
at most 21' -1 ways to do this. The 1!h node along the spine is the root of the extended tree.
Her other child must be in the tree. All other nodes on the spine also have no choice: their
other children surely do not belong to the tree. Any node not on the spine has at most two
children and thus at most four choices for including her children in the tree. Thus the total
number of ways to grow the remainder of the tree is no more than 4 m' +i ' +s.-2 .

Finally, we choose which of the nodes in the extended tree are star nodes. These cannot
lie on the spine. The node vi certainly is a star node. We must choose mi - 1 of the other
nodes to be star nodes. There are no more than 2 ' -+ ',+s - 2 ways to do this.

Many of these choices do not result in valid extended trees. First, vi might not be the
highest node of the extended tree formed. Second, we might not choose all the leaves as star
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nodes. However, we have overcounted at worst. Multiplying the three factors bounds the
number of ways to specify the shape of the extended tree and to choose the star nodes in it.
1 4
Lemma 3.4. Let T, be an extended tree with highest node vi, m, total star nodes, d(v,, r,) =
1, and m, +1, +s, -1 nodes off the spine. The probability that T, results during the embedding
of T is no more than a.--(2-b(b + 1))m,+,,+$.-2 if it does not contain the root and at most
(2-b(b + 1 ))m-+ '-+8- 2 ifit does.

Proof. No matter where the tip of the spine is embedded, the coordinates changed along the
path to vi must force 6(vi) to lie in the star. If the path is of length 2, then each coordinate

has exactly one chance to change. Thus vi is equally likely to be mapped anywhere in
H,. The probability vi is mapped into the star is precisely 2-.. Otherwise, we bound the
probability that vi is a star node by 1. Deciding how these coordinates change determines
the embedding of all nodes in the spine.

Consider a path of length p _< ' from a node u to the star node v along which no other
nodes are star nodes. Say that the embedding <p(u) has already been determined, but that
the coordinate changes in all edges along the path have yet to be decided. There are pb
coordinates considered along the path. If ¢(u) agrees with x0 in all the other coordir-tes,
we might choose exactly one of the pb path coordinates to differ from that of x0 or we might
choose them all to be the same. If we choose more than one to differ, then v cannot map
into the star, a contradiction. If 0(u) and x0 do not agree in the nonpath coordinates, then
there is at most one setting of the pb coordinates which would lead 0(v) to lie in the star. In
either event, the probability that the coordinates were chosen in a way consistent with the
tree structure (i.e. which nodes are star nodes) is at most E. ! < (2-b(b + 1))P.

Recall that we have determined the embeddings of the nodes on the spine. Arbitrarily
dissect the remaining edges into paths of length at most 2 which end at star nodes but

6
have no star nodes internal to them. We can do this because every node which is not a
leaf of the extended tree has a star node at most distance . below it. (A leaf which is

not a star node is not on a close path between star nodes and thus would not have been
included in the extended tree.) We can then analyze the coordinate changes which occur in
the subtree below any node in the spine. If we start with the node on the spine, then we can
consider the paths in turn so that the embedding of the first node in the path has already
been determined but nothing else along the path has been determined. Coordinate changes
along any path are independent of what has been determined before. One bound on the
probability that the coordinate changes in the paths actually result in the mapping of all
star nodes into the star is the product of the bounds on the probabilities for the individual
paths. The sum of the lengths of all the paths equals the number of edges not in the spine.
Thus we may use the upper bound found in the previous paragraph to bound the probability
that all coordinate changes produce the desired structure of the tree. This probability is no
more than (2-b(b + 1))m1+4+ - 2 . |

We may now bound the probability that certain structures involving star nodes arise
during the embedding.
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Lemma 3.5. Fix t, the number of extended trees formed by the close sets of star nodes and
" index the trees arbitrarily as < T, >. Choose a node vi to be the highest node of T, and mi

to be the number of star nodes in Ti. Let m = Z, mi. Further, choose 1, and s, for T,. Then
if we use the algorithm shown above to embed T in H,,, the probability that the resulting
extended trees have the parameters chosen is at most

(n+ l)t- (2 2b-7 (b + 1)-2)t(23-b(b + 1))" JJ(24 -6 (b + 1))" (23-1(b + 1)),
N I

Proof. Fix a particular family of extended trees satisfying the chosen parameters. As T
is embedded, we know by lemma 3.1 that the choices made on the edges of any tree are

independent of the choices for other trees. Thus to bound the probability that the family
of extended trees arises from the embedding, we need only multiply the probability bounds
for the individual trees. This product is at most (-±)t- f-i(2-(b+ 1)),+,+-2 by lemmas

3.2 and 3.4.

The number of different families of trees < T, > satisfying the chosen parameters is at
most fl, 2 3m.+4.+3s.-7 by lemma 3.3. The probability that the extended trees arising from
the embedding satisfy the chosen parameters does not exceed the product of the number of

different families and the bound on the probability that any given family arises. I

Lemma 3.6. If b > S. then the probability that an embedding of T results in a family of t
extended trees in which each T, contains m, star nodes and has highest node r, is at most

(n ) (22 -7(b + )-2)t(23-6(b +1))"22t

Proof. Let E<,,> indicate the sum over all possible integral values of 11,12. It and
similarly for <,,>. An upper bound on the desired probability comes from summing the

bounds in lemma 3.5.

((+~ (2 2b6 '(b + 1)-2)t(2361(b + 1))n fl(24-b(b + 1))1 (2 3-b( + I))')
>( n +"1 ) (22 _.(b -) 2 ) ,(23 _(b 1 )) ., r f(24 _(b + l)) (23 _(b + )),)

S ) (22b(b+ 1 2 )(2 3 -(b+ 1))m F E (24-1(b+ 1))(2 3 -(b + )

N \--.](23-b(b+1)1 E ( 1))"(2 ( )B

(2 2b-,(b + 1)- 2 ), (23-1(b + I))- 11 (24-(b + 1)) ((2 3- b(b + 1).

N

t-7

•N- 
(2 2 7( +l 1 - )t( 3- (b + I ) ,2



Lemma 3.7. [f 6 > S. then the probability that an embedding of T results in m star nodes
contained in a family of t extended trees is at most

( ) t - 1 A, ) "( -' (2 -(b - l) )t(2" - b- - 1)-2 ' !

Proof. The first factor represents the number of ways to choose the highest node in each
tree. Order does not matter when we choose the highest nodes, but we must then assign
an arbitrary order to distinguish between the different extended trees. The second factor
represents the number of ways to apportion the m star nodes among the extended trees so
that each tree receives at least one star node. The remaining terms come from lemma 3.6. 1

Lemma 3.8. Fix b > 8 and let c be a sufficiently large constant. The probability that a
dynamic embedding of T in H,, results in cn star nodes is at most

cn.V i6

Proof. Examine the bound found in lemma 3.7. The first two terms are easily bounded by
(TXvt and (') t , respectively. Combining like terms reduces the bound to

( ce2 22b-5 n(n + 1) ) ) 2
(b +I))t 2  n\7 .iI k -

Using elementary calculus. we find that for sufficiently large c. the first term is optimized

whent 2 = (6+1J+ . Thus, over all values of t, the largest the first term can be is (e4  )CY

We then add this bound over the cn possible values of t to finish the proof. I

Examine this last bound on the probability that there are cn star nodes. As we increase
c. the third term eventually dominates the other two terms. This allows us to force the
probability to be as small a power of N as we desire. This proves the theorem.

We know that, with high probability, no more than cn tree nodes are assigned to any
star in the hypercube. What remains is to distribute them throughout the star so that no
node has more than a constant number of tree nodes assigned to it. In the final version
of this paper we will show how to remove some nodes from each star so that the partial
stars remaining cover the nodes of the hypercube. Further, each node is covered by exactly
one partial star and each partial star has at least 1 nodes. The embedding is redistributed
(dynamically) as follows. The first 2c tree nodes assigned to a hypercube node x are stored
there. Any further nodes which the algorithm tries to store at x are sent to some other node
in x's partial star containing fewer than 2c tree nodes. Such a node always exists since there
are no more than en tree nodes in the partial star at any time. This adds at most two to
the dilation of the embedding.

Now suppose that a tree node which was redistributed in the star wants to grow a child in
the tree. Rather than growing a path in the hypercube from the node in which it is actually
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stored, the path is grown from the hypercube node which was originally supposed to contain
the tree node. This may add another two to the dilation, but it is important for the analysis
that the path continues to grow randomly from the end of the last random path.

The load-balacing adjustments at both ends of the path may add up to 4 to the dilation.
resulting ir a path length which is at most 12. Since each tree edge is mapped to a path of
length no greater than 12, the dilation of the embedding is constant.

Finally, consider a tree T which grows and shrinks. Any form taken by 7 has been
embedded according to the algorithm given above. Since there are only a polynomial number
of such trees, the theorem holds in this case as well.

4 A Lower Bound for Deterministic Algorithms

The following theorem shows that determinstic algorithms perform poorly on this problem.
We prove that, even if we restrict our attention to trees which only grow, any deterministic
embedding algorithm which maintains load c must have not only maximum but average

dilation ( A consequence of this is that any embedding algorithm which maintains
constant load must necessarily have dilation f(v i).

Theorem: Any deterministic algorithm for dynamically embedding trees in the hypercube

which achieves load c must have average edge length F(Io.

Proof: Let c be the load maintained by the embedding algorithm. Define the size of a node
* in the hypercube to be the number of l's in the node's string. Partition , he hypercube into

6c levels, each level corresponding to some range of node sizes and containing E nodes. Since

there are at most O( -A-7) nodes of any size, each level must contain at least f( ) sizes.
log N C

This means that any two nodes which are in non-adjacent levels are at distance f WV)
from each other.

Grow a path of nodes, starting at the root. Then some level must contain -L tree

nodes: choose such a level. We will continue growing the tree from the " nodes in the
chosen level. Grow paths from each of these tree nodes simultaneously, stopping each path's
growth when it reaches a hypercube node which is neither in the chosen level nor in a level
adjacent to it. The total number of nodes in the chosen level and adjacent levels is at most
Nc" It follows that the total length of the J paths is at most 1 - the number of tree nodes

which can be stored in just these levels. This verifies that the tree being considered has at
most N nodes.

Now we can calculate the average edge length. Since each of the j ' paths connects a
node in the chosen level to a node in some non-adjtcent level, the total edge length in these

paths is at least -- LQ f)= N1( ) Since the entire tree contains at most N nodes.

it follows that the average edge length of the embedding is P(-g).
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