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A “DYNAMIC” PROOF OF THE FROBENIUS-PERRON
THEOREM FOR METZLER MATRICES

Kenneth J. Arrow
Stanford University

Matrices with non-negative off-diagonal elements have many applications
in mathematical economics and other fields of investigation. Economists
have .alied them *Metzler matrices”, because of their study by L. Metsler
(1945). ®An important property, especially for the study of stability of
dynamic systems, is that the largest real part of the characteristic roots is
itself a characteristic root and has a semi-positive characteristic vector.

There is a less well-known property of linear dynamic systems governed
by Metzler matrices: if the forcing term is a non-negative vector and if
the system starts in the positive orthant, it will remain there forever. The
proposition seems to have been first proved by Samuel Karlin, though/never
published by him; his proof is referred to by Beckenbach and Bellman
(1961), p. 137.

Karlin’s result does not appear to be derivable from the standard Fro-
benius-Perron theorem (Theerem 4 below). Its proof is not very hard,

however. The question is then r:uggd, whether the Frobenius-Perron result Accedo T rar

is derivable simply from Kerbn’f theorem. This note shows that the an- - - J

swer is affirmative. The result may very possibly be useful for expository NTIS  CRa«!

purposes. T DTiC  TAU :)
I start by demonstrating Karlin’s theorem, for completeness. I then de- Unaenon ol -4

rive several familiar properties of Metzler matrices from which the Froben- Justihicatesr

ius-Perron theorem can be derived.

By gL
DEF. 1: A is a Metzler matrix if a;; > 0 for all 4 # 5. DisMibu:tion |
; : Avatet
There are several ways of proving Karlin’s theorem. In the following, I ‘
use the concept of the exponential of a matrix (for a more elementary but Dint A

lengthier proof, see Arrow (1960)}.
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DEF. 2!

expA =L A" /nl.

The infinite series converges absolutely for any matrix A.

If A and B are matrices that commute (i.e., AB = BA), then it is easy
to see that the binomial theorem is valid for (A + B)". If we substitute in
the infinite series defining exp (A + B) and rearrange terms, it is easy to
see that

(1) if A and B commute, then exp {A + B) = (exp A){exp B).

If A is non-negative, then of course A™ > 0 for all n. From Def. 2,
{2) exp A>2TifA>0.

Now suppose A is a Metzler matrix. By Def. 1, we can find a scalar,
s such that A — sI > 0. Clearly, s] commutes with any matrix and in
particular with A — sJ. Then,

exp A=-exp [s] + (A - 3])] =exp (sI)exp (A - sI).

But, from Def. 2, exp (sf) = ¢*1, since I™ = [ for all n.
(3) exp A = pexp (A — sI) for some scalar p > 0.
From (2), with A replaced by A — sI, and (3),
{4) if A is Metzler, exp A > pl for some p > 0.
Therefore,

If A is Metzler, (exp A)z 2 pz>» 0if 230, and (exp A}z 2 pz 20 if

z20.

(T use the notations z > 0, z > 0, z > 0, to mean, respectively, z; > 0
for allt,z > 0 and z; > O for some ¢, and z; > 0 for "i ')

LEMMA 1. If A is Metzler, (exp A)z > 03fzs  exp A)z >0 1f
z2>0.
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Let z(t) be the solution of the differential equation,
z=Az+,

with given initial condition z(0). Then z(t) can be written,

z(t) = (exp At)z(0) + /(:[exp {Au)b)du.

Suppose A Metzler, b > 0, and z(0) >> 0. From Def. 1, At is Metzler
for t > 0. Then, from Lemma 1,

THEOREM 1 (KARLIN). If A 18 Metzler and b > O then any solution of
the differential equation,
= Az+b,

for which z{0) > O has the property that z(t) >» 0 for all t > 0.

Now suppose that A is a stable Metzler matrix, so that the real parts of
all characteristic roots are negative. Take any vector y for which Ay < 0.
Take any solution to the differential equation,

z= A(z -y,
for which z(0) > 0. Since A is stable, lim, .., z(t) = y. Since —Ay > 0
and A is Metzler, Theorem 1 implies that z(t) > O for all ¢t > 0. Therefore,
y=0.
THEOREM 3.  If A {s a stable Metzler matriz and Ay < 0, then y > 0.

Suppose Ay < 0. Then clearly y = 0 is impossible.

COROLLARY 1. If A 18 a stable Metzler matriz and Ay < 0, theny > 0.

Now a sort of converse of Theorem 2 can be shown. Suppose A is a
Metszler matrix and Ay <€ 0 for some y > 0. Clearly, by perturbing y, it

can be assumed that,

(5) Ay <« 0,y>»0.
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Let the superscript T denote “transpose.” Let z(t) satisfy,
(6) &= ATz, z(0)>o0.
Then, by Theorem 1, z(t) > O for t > 0. Define,
(7)) &(t) = yTz(e).
Since y > 0 and z(t) > 0,
(8) £(t)>0fort>0.
From (5},
(9) Ay < my for some m < 0.
From (7) and (6),

E=yTi=yTATz = (4Y)Tz < myTz = m¢,
By integration and (8),
0 < £(t) < €(0)e™ forall t > 0.

Hence, £(t) must approach 0 as ¢ — oo. Since y » 0 and z(t) =» 0 for all
t > 0, this is possible only if z(t) approaches 0.

Thus, every solution of the differential equation,

t= ATz,

for which £(0) 3> 0, approaches 0. But then every solution approaches 0 so
that AT and therefore A is stable.

THEOREM 3.  If A 15 Metzler and Ay € 0 for some y > 0, then A 1s
stable.

We can now deduce the existence of a dominant root and semi-positive
dominant vector from Corollary 1 and Theorem 3.
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per. 3: o A) = mazimum of real parts of characteristic roots of A.

For any s > o{A), A — sl is stable. Let A, in particular, be Metzler.
Then A — sl is Metzler and stable. It is certainly non-singular. Choose a
fixed vector

{10) c<o0.

For each 3 > o(A), we can define y(s) as satisfying
(11) (A= sDys) = .

Then by Corollary 1,

(12)  y(s) > O for all s > o(A).

Let ¢ be the vector all of whose components are 1. Then, eTy(s) > 0.
Define

(13)  n(s) = [eTy(s)] ™", 2(s) = n(s) y(s),

so that

(14) z(s) belongs to the unit simplex, S, for all s > o(A).
From (11) and (13),

(15) (A - sI)z(s) = n(s)c for s > o(A).

From (14), the function, z(s) has a limit point, say z, as s approaches
o(A) + 0. Hence, z¢S, and, in particular,

(18) z>o0.

By definition, there exists a sequence {s,} such that,
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lim s, =0(4)+0,
n— oo
lim z(s,) = z.

n—+ o0

If we substitute s, for s in (15) and let n approach oo, then the left-hand
side converges, and therefore the right-hand side must aiso converge, so
that,

lim n(s.) =9 2>0.
n—+ 00
From (15), with s replaced by s,, and n approaching infinity,
(17) [A-o(A)I]z = ne.
Suppose n > 0. Then [A — o(A)I]z « 0. From (16) and Theorem 3,
0> o[A — o{A)I] = 0(A) — 0(A) =0,
a contradiction. Hence n = 0, so that, from (17),
Az = o{d)z.
THEOREM 4. If A is a Metzler matriz, there ezists a real number,
o and a real vector z > O such that, (a) Az = oz, and (b} for every
characteristic root, A, of A, R(A) < 0.
The usual criteria for stability and for existence of non-negative solutions

to the equation Az = b for Metzler matrices are all either all in the theorems
already stated or can easily be deduced from them.
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APPENDIX
As is well known, Theorem 4 can be strengthened in one way: conclusion
(b) can be replaced by,

(&) for every characteristic root, A, of A, with A # o, R(A) < 0.
In view of (b), this is equivalent to the statement,
(6") if o + 17 (7 real) is a characteristic root of A, then r =0,

[ now prove statement (4”) using Theorems 1 and 4. Without loss of
generality, it can be assumed that

(18) o(A) =o0.
Suppose (b") false for some A. Then, under (18},
(19) ir is a characteristic root of A for some 7 # 0.

If A is a matrix of order n, let S be any subset of the integers 1,...,n,
and S* its complement.

DEF. 4. A 1sdecomposable tf there ezists a non-empty set S with non-
empty complement such that Ags. = 0. Otherwise A is indecomposable.

It is easy to see that if (18) and (19) hold for some Metzler matrix,
they hold for some indecomposable Metzler matrix. By successive de-
compositions, we can find a partition of the integers 1,...,n, into sets
S(1)(1 = 1,...,p) such that,

AS(i)S(j) =0fori < 3.
As(i)s(s) is indecomposable for each 1.

Then any characteristic root of A is a characteristic root of Ag(i)s(.) for
some 1, and conversely. From (19), it is a characteristic root of Ag()s(s)
for some 5. By Def. 3, 0(As(i)s(s)) = 0. But, by Theorem 4, o(As(i)s(i))
is a root of Ag()s(s) and therefore is a root of A, so that,

o(As()s()) < o(4) =0,




8 KENNETH J. ARROW
and therefore o(Ag(i)s(;)) = 0. Hence, (18) and (19) hold for As(s)

which is indecomposable and Metzler, by definition, and we can say that
they hold for some matrix A which also satisfies,

{20) A indecomposable.
pefr.s.  For any vector z, Z(z) = {i|z; = 0}.

We abbreviate Z(z) as Z, when the context makes it clear.
The interesting implication of (20) for the present purpose is,

LEMMA 3. If A 1s indecomposable and Metzler, z > 0, and Z(z) 1s
non-empty, the (Az)z # 0.

proor: Since z > 0, Z° is non-empty. By Def. 5, 27 = 0,zz- > 0.
Hence,
(Az)z = Azzzz + Azz+22- = Azz°%22-,

Since A is Metzler, all elements of Azz. are non-negative. Since A is
indecomposable, at least one element of Azz- is non-zero and therefore
positive. Since zz- >» 0, it must be that (Az)z > C.

From (18) and Theorem 4, there exists z* > 0 such that Az* = 0.
If Z(z*) were non-empty, then certainly (Az*)z = 0, in contradiction to
Lemma 2. Hence, Z(z*) is empty.

(21) There exists z* 3 0 such that Az* = 0.

Let u+1v {u, v real) be a characteristic vector of A corresponding to the
root 17. Then it is easy to see that u is any vector satisfying.

(22) A%u= —r%u,u#0.
Then the solution of the differential equation.
(23) = Az,

with initial condition z(0) = u is,




FROBENIUS-PERRON THEOREM FOR METZLER MATRICES 9
(24) z'(t) = ucosrt + (1/r)Ausinrt.

If « > 0, then, by Theorem 1, z’(t) > 0 for all t > 0, and in particular
for t = x/r. But z'(x/r) = —u, so that u = 0, a contradiction. Hence,
it is impossible that « > 0. Since ~u also satisfies (22), it cannot be that
—u 2> 0.

(25) If u satisfies (22), then u,; > O for some 1, u; < 0 some j.
For any z* satisfying (21), the solution to (23) with z(0) = z* + u is,
(26) =z(t) = z* + z'(¢).

From (21) and (25), z* can be chosen so that z* +u > 0, with {(z* +u); =0
for at least one 1, so that Z(z* + u) is non-empty. Since u; > 0 for some
t, by (25), (z* + u); > 0 and therefore z* + u > 0. Then z(t) > 0 for all
t > 0; but since z'(t) is periodic, in fact, z(t) > 0 for all t. If teZ(z* + u),
then z,(0) = 0, z;(t) > O for all ¢; therefore, 1,(0) = O for all 1¢Z. From
the differential equation (23}, [42(0)]z = 0, in contradiction to Lemma 2.
Hence, the existence of a purely imaginary characteristic root leads to a
contradiction.

tHEOREM «'.  If A ts Metzler, then there ezists a real number o and
a real vector z > 0 such that, (a) Az = oz, and (b) R(A) < o 3f X 15 any
characteristic root of A with A # o,

REFERENCES
Arrow, K.J. (1960), Price-Quantity Adjustments in multiple markets with
rising demands, Mathematical Methods in the Social Sciences, 1959,
(K.J.Arrow, S. Karlin, and P. Suppes, eds.}, Stanford University Press,
Stanford, 3-15.

Beckenbach, E.F. and R. Bellman (1961), Inequalsties, Springer, Berlin.

Metzler, L. (1945}, Stability of multiple markets: the Hicks conditions.
Econometrica 18, 277-292.




