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A "DYNAMIC" PROOF OF THE FROBENIUS-PERRON
THEOREM FOR METZLER MATRICES

Kenneth J. Arrow
Stanford University

Matrices with non-negative off-diagonal elements have many applications

in mathematical economics and other fields of investigation. Economists
have .alied them 'Metzler matrices 'because of their study by L. Metsler
(1945). .An important property, especially for the study of stability of
dynamic systems, is that the largest real part of the characteristic roots is
itself a characteristic root and has a semi-positive characteristic vector.

There is a less well-known property of linear dynamic systems governed
by Metzler matrices: if the forcing term is a non-negative vector and if

the system starts in the positive orthant, it will remain there forever The

proposition seems to have been first proved by Samuel Karlin, th gi ever
published by him; his proof is referred to by Beckenbach and Bellman

(1961), p. 137.
Karlin's result does not appear to be derivable from the standard Fro-

benius-Perron theorem (Theorem 4 below). Its proof is not very hard,

however. The question is then raisd, whether the Frobenius-Perron result
is derivable sim ply from , 'theorem . This note shows that the an- . .. ... .. t

swer is affirmative. The result may very possibly be useful for expository NTiS CI
purposes. DTIC T ,U

I start by demonstrating Karlin's theorem, for completeness. I then de- Urar'T,,fL ,. J J
rive several familiar properties of Metzler matrices from which the F~roben- JsiI , ....... .......

ius-Perron theorem can be derived. y

TEF, : A is a Metzler matrix if aii _ 0 for all i 6 j. bl.;tion

There are several ways of proving Karlin's theorem. In the following, I
use the concept of the exponential of a matrix (for a more elementary but

lengthier proof, see Arrow (1960)).

.I



2 KENNETH J. ARROW

DEF. 2:

exp A = EoAn/n!.

The infinite series converges absolutely for any matrix A.
If A and B are matrices that commute (i.e., AB = BA), then it is easy

to see that the binomial theorem is valid for (A + B)m . If we substitute in
the infinite series defining exp (A + B) and rearrange terms, it is easy to
see that

(1) if A and B commute, then exp (A + B) = (exp A)(exp B).

If A is non-negative, then of course An >_ 0 for all n. From Def. 2,

(2) exp A> IifA>0.

Now suppose A is a Metzler matrix. By Def. 1, we can find a scalar,
s such that A - sI > 0. Clearly, aI commutes with any matrix and in
particular with A - si. Then,

exp A = exp [sI + (A - sl)] = exp (,I) exp (A - sl).

But, from Def. 2, exp (sl) = e'I, since In = I for all n.

(3) exp A = pexp (A - sI) for some scalar p > 0.

From (2), with A replaced by A - sI, and (3),

(4) if A is Metzler, exp A _ pI for some p > 0.

Therefore,
If A is Metzler, (exp A)x > pz > 0 if z > , and (exp A)x > pz > 0 if

z > 0.

(I use the notations x > 0, x > 0, x > 0, to mean, respectively, zi :_ 0
for alli, x :_ 0 and z > 0 for some i, and z > 0 for 'i"

LEMMA I. If A is Metzler, (exp A)z 2. 0 if x x exp A): >_ 0 if
X > 0.
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Let z(t) be the solution of the differential equation,

i= Az + b,

with given initial condition z(O). Then z(t) can be written,

t
z(t) = (exp At)x(O) + [exp (Au)bldu.

Suppose A Metzler, b > 0, and z(O) >> 0. From Def. 1, At is Metzler
for t > 0. Then, from Lemma 1,

THEOREM I (KARLIN). If A is Metzler and b >_ 0 then any solution of
the differential equation,

i- Az+b,

for which z(O) > 0 has the property that z(t) > 0 for all t > 0.

Now suppose that A is a stable Metzler matrix, so that the real parts of
all characteristic roots are negative. Take any vector y for which Ay _< 0.
Take any solution to the differential equation,

= A(z - y),

for which x(O) *.0 0. Since A is stable, lim5 ..- z(t) = y. Since -Ay 2! 0
and A is Metzler, Theorem I implies that z(t) > 0 for all t > 0. Therefore,

y > 0.

THEOREM 2. If A is a stable Metzler matrix and Ay/ _ 0, then y > 0.

Suppose Ay < 0. Then clearly y = 0 is impossible.

COROLLARY 1. If A is a stable Metzler matrix and Ay < 0, then y > 0.

Now a sort of converse of Theorem 2 can be shown. Suppose A is a
Metzler matrix and Ay C 0 for some y > 0. Clearly, by perturbing y, it
can be assumed that,

(5) Ay<O,y>O.
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Let the superscript T denote "transpose.' Let x(t) satisfy,

(6) = A' x, x(0) >O.

Then, by Theorem 1, z(t) 0 for t > 0. Define,

(7) (t) = yl'x(t).

Since y >> 0 and z(t) >> 0,

(8) E(t) >O0for t >0.

From (5),

(9) Ay<my for some m <0.

From (7) and (6),

= ~ = yTATx = (Ay)TZ < m r

By integration and (8),

0 < (t) :5 (0)emt for all t > 0.

Hence, C(t) must approach 0 as t - oo. Since y X 0 and x(t) X 0 for all
t > 0, this is possible only if z(t) approaches 0.

Thus, every solution of the differential equation,

i = ATx,

for which x(0) > 0, approaches 0. But then every solution approaches 0 so
that A' and therefore A is stable.

THEOREM a. If A is Metzler and Ay, -C 0 for some y > 0, then A is

.stable.

We can now deduce the existence of a dominant root and semi-positive
dominant vector from Corollary 1 and Theorem 3.
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DEP. 3: a(A) = maximum of real parts of characteristic roots of A.

For any a > ci(A), A - 4I is stable. Let A, in particular, be Metzler.
Then A - 4I is Metzler and stable. It is certainly non-singular. Choose a
fixed vector

(10) c <0.

For each a > a(A), we can define y(s) as satisfying

(11) (A -aI)yda) c.

Then by Corollary 1

(12) y(s) > 0 for all a > o(A).

Let c be the vector all of whose components are 1. Then, ceT Y s) > 0.

Define

(13) 17(s) = eT Y()l', x(s) = 17 (s) Y(s),

so that

(14) x(s) belongs to the unit simplex, S, for all a > o(A).

From (11) and (13),

(15) (A - sI)x(s) = t?(s)c for a > o(A).

From (14), the function, x(s) has a limit point, say x, as s approaches
a(A) + 0. Hence, xeS, and, in particular,

(16) x >0.

By definition, there exists a sequence (a.) such that,



6 KENNETH 3. ARROW

lim s,, a (A) + 0,
n c

urn x(a") = X.
n -00

If we substitute 3n~ for s in (15) and let n approach oo, then the left-hand
side converges, and therefore the right-hand side must also converge, so
that,

jim 17(3n) =' 17 0.
n-o 0

From (15), with a replaced by a,1 and n approaching infinity,

(17) (A - cr(A)Ijx = tc.

Suppose q~ > 0. Then [A - ar(A)Ijx <Z 0. From (16) and Theorem 3,

0 > ojIA - cr(A)I] = a(A) - o'(A) = 0,

a contradiction. Hence P? = 0, so that, from (17),

Ax = o'(A)x.

THOE 4. If A is a Metzler matrix, there exists a real number,
a and a real vector x > 0 such that, (a) Ax = ax, and (6) for every
characteristic root, A, of A, R(A) < a.

The usual criteria for stability and for existence of non-negative solutions
to the equation Ax = b for Metzler matrices are all either all in the theorems
already stated or can easily be deduced from them.
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APPENDIX
As is well known, Theorem 4 can be strengthened in one way: conclusion

(b) can be replaced by,

(b') for every characteristic root, A, of A, with A 3 a, R(A) < a.

In view of (b), this is equivalent to the statement,

(b") if a + ir (r real) is a characteristic root of A, then r = 0.

I now prove statement (6") using Theorems 1 and 4. Without loss of
generality, it can be assumed that

(18) o(A) = 0.

Suppose (b") false for some A. Then, under (18),

(19) ir is a characteristic root of A for some r A 0.

If A is a matrix of order n, let S be any subset of the integers 1, ..., n,
and S" its complement.

DE. 4. A is decomposable if there exists a non-empty set S with non-
empty complement such that Ass. = 0. Otherwise A is indecomposable.

It is easy to see that if (18) and (19) hold for some Metzler matrix,
they hold for some indecomposable Metzler matrix. By successive de-
compositions, we can find a partition of the integers 1,...,n, into sets
S(i)(1 = 1, ...,p) such that,

As(qs(i) = 0 for i < j.

As(,)SIj is indecomposable for each i.

Then any characteristic root of A is a characteristic root of As(j)s(j) for
some i, and conversely. From (19), ir is a characteristic root of As(j)s(,)
for some i. By Def. 3, a(As(j)s()) >_ 0. But, by Theorem 4, a(As(i)s(i))
is a root of As(,)s(,) and therefore is a root of A, so that,

a(As(i)s(i)) !5 a(A) = 0,
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and therefore G(As(j)s(,)) = 0. Hence, (18) and (19) hold for As(js(j,
which is indecomposable and Metzler, by definition, and we can say that
they hold for some matrAx A which also satisfies,

(20) A indecomposable.

DEP. S. For any vector z, Z(z) = {ij , =0}. j
We abbreviate Z(z) as Z, when the context makes it clear.

The interesting implication of (20) for the present purpose is,

LEMMA 2. If A is indecomposable and Metzler, z > 0, and Z(z) is
non-empty, the (Ax~z y 0.

PROOF: Since x > 0, Z* is non-empty. By Def. 5, zz = 0, xz. . 0.
Hence,

(Ax)z = Azzxz + Azz.zz. = Azz. zz,

Since A is Metzler, all elements of Azz. are non-negative. Since A is
indecomposable, at least one element of AzZ. is non-zero and therefore

positive. Since zz. o 0, it must be that (Ax)z > 0.

From (18) and Theorem 4, there exists x* > 0 such that Ax* = 0.
If Z(xz) were non-empty, then certainly (Az*)z = 0, in contradiction to

Lemma 2. Hence, Z(xz) is empty.

(21) There exists z" 3 0 such that Az" = 0.

Let u + iv (u, v real) be a characteristic vector of A corresponding to the
root it. Then it is easy to see that u is any vector satisfying.

(22) A2 u- -r 2 u, u A 0.

Then the solution of the differential equation.

(23) : = Ax,

with initial condition z(o) = u is,
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(24) x'(t) = ucosrt + (1/r)Au sin rt.

If u > 0, then, by Theorem 1, x'(t) _ 0 for all t > 0, and in particular
for t = 7r/r. But z'(?r/r) = -u, so that u = 0, a contradiction. Hence,

it is impossible that u > 0. Since -u also satisfies (22), it cannot be that

-u > 0.

(25) If u satisfies (22), then u, > 0 for some i, u3 < 0some j.

For any x* satisfying (21), the solution to (23) with x(O) = z ° + u is,

(26) z(t) = x + z'(t).

From (21) and (25), x" can be chosen so that x" +u > 0, with (z" +u), = 0

for at least one i, so that Z(x* + u) is non-empty. Since uj > 0 for some
i, by (25), (z" + u)i > 0 and therefore z* + u > 0. Then z(t) > 0 for all

t > 0; but since z'(t) is periodic, in fact, x(t) _ 0 for all t. If icZ(x* + u),
then xi(0) = 0, zi(t) >_ 0 for all t; therefore, ii(0) = 0 for all ifZ. Fom
the differential equation (23), jAz(0)lz = 0, in contradiction to Lemma 2.
Hence, the existence of a purely imaginary characteristic root leads to a

contradiction.

THEOREM 41. If A is Metzler, then there exists a real number a and
a real vector x > 0 such that, (a) Ax = ax, and (b) R(A) < a if A is any
characteristic root of A with A 6 a,
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