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Numerical Investigation of Orographically
Enhanced Instability .
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The NEPRF spectral baroclinic primitive equation with
six layers was numerically integrated over time to examine
the effects that vertical wind profiles have on the
development of lee cyclogenesis. In addition, the model was
run in both linear and nonlinear modes to isolate their
effects on the tests. The objective was to simulate a cold
front moving over a high mountain ridge, similar to the Alps
or Rockies, by implementing a wind reversal profile to
determine if this was conducive to lee cyclogenesis. It was
found that the wind reversal profile produced favorable
cyclonic growth, particularly when the model was in a linear
mode. A nonlinear wind reversal test also produced positive
results but only for a relatively shourt time; thereafter °
nonlinear interactions dampened cyclonic growth
considerably. In addition, two tests were run that allowed
the mountain to grow in a very short time to isolate
inertial gravity wave interactions. The gravity waves did
produce considerable oscillations in the two tests, but
after 15 hours or so these two tests showed similar cyclonic

growth to the previous tests.
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ABSTRACT

Gravity waves forced by nonhvdrostatic and nongeostrophic processes within a frontal zone are discussed.
In particular, stationary waves immediately above and below the surface front are considered.

The waves that appear above the front are horizontally stationary with respect to the front, but are vertically
propagating. The vertical wavelength here is given by 2xv/N, since the waves are nearly hydrostatic.

The honizontal wavelength of the waves above the front is determined by standing waves that set up below
the front. These waves corrugate the frontal surface, and these corrugations, in turn, determine the horizontal

scale of the waves above the front.

The waves under the front are standing and are trapped between the earth’s surface and the frontal zone
which. due to its conditions of flow reversal and small Ri, is assumed to be a reflector of gravity waves. The
horizontal scale of the standing waves is determined by their vertical wavelength and the sfope of the frontal
surface. These waves are shown to break. and additional stationary waves appear above each of the break-

ing zones.

We suggest that the waves described here might account for some of the banding seen in satellite images of

frontal zones.

1. Introduction

Perhaps one of the most striking features of satellite
.mages in frontal regions is the banded nature of the
Souds. Almost any picture of a frontal region reveals
ong thin streaks of clouds, more or less parallel to the
<ont itself and extending from hundreds to a thousand
«iometers or more. Figure 1 shows two such images
:+Jd emphasizes examples of different tvpes of banding
-=ar can often be seen associated with fronts.

There have been a number of suggestions to explain
1: least some of the banded features associated with
~onts, though not necessarily the banded features in
—= clouds themselves. Most of the explanations involve
~anded structure observed within the precipitating
~a:1s of the front. Houze and Hobbs; (1982) summarize

* The National Center for Atmospheric Research is sponsored by
o~ National Science Foundation.
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some of the details of these features. Perhaps the most
widely accepted explanation of bands is that the flow
within the frontal zone is unstable with respect to sym-
metric overturnings and that the waves so generated
organize the precipitation and clouds into paralle] lines.
Extensive discussions of the role of the symmetric in-
stability (or slantwise convection) in the rainbands of
frontal regions is available in papers by Bennetts and
Hoskins (1979) and Emanuel (1983a.b).

We have little difficulty in accepting these concepts
for those regions of the front where there is precipita-
tion. In those regions. the conditions necessary for the
onset of symmetric instability can be established by
the release of latent heat. Hoskins (1974) has shown
that negative regions of potential vorticity are necessary
for symmetric instability. Since potential vorticity is
usually positive in the atmosphere, diabatic or viscous
processes are necessary to set off symmetnic instability.
In frontal regions, the primary diabatic heat source is
due to latent heat release, and thus it appears that pre-
cipitation is necessary before this form of instability
can appear. Emanuel (1983b) has demonstrated that
it is possible that symmetric overturnings occur in some
fronts
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There are, however, considerable problems with as-
sociating symmetric instability with cloud features in
portions of the front where there is little precipitation.
For example, the portions of the cold front well south
of the surface low often have little precipitation, but
comprise a region where banded clouds are often seen.
Good examples of banded features well south of the
surface low along fronts off the coast of California are
shown in Fig. 1. In this region, ocean temperatures are
cool, thus the atmosphere is convectively stable, further
suggesting a lack of precipitation along this portion of
the front. Due to the lack of precipitation, symmetric
instability is an unlikely cause of the banding.

An alternative mechanism is gravity waves generated
during frontogenesis. Ley and Peltier (1978), using the
Hoskins and Bretherton (1972) model of frontogenesis,
demonstrated that the nongeostrophic and nonhy-
drostatic accelerations in the region of increasing tem-
perature gradient will generate gravity waves whose
amplitudes at large distance from the front are com-
parable to oscillations observed in the surface pressure
field ahead of fronts. They did not examine details of
the waves in the vicinity of the front, so little could be
said from their results concerning the banding of the
clouds in these regions.

Lindzen and Tung (1976) discussed the role of grav-
ity waves in organizing convection into bands especially
in the vicinity of fronts. Much of this discussion cen-
tered on the role of convection in first generating the
waves, and the waves, in turn, influencing the convec-
tion. However, some of the concepts they develop can
be used to examine the properties of the waves gen-
erated by other means in frontogenesis, and we will
use these in the subsequent discussion.

In this paper, we will examine the waves generated
by the front discussed in a companion paper (Gall et
al. 1987). In that paper, we described a numenical sim-
ulation of frortogenesis forced by stretching defor-
mation. In the results reported there, a nesting proce-
dure allowed very high honzontal and verucal reso-
lution in frontal regions. Primary interest in that paper
was the minimum scale of the simulated front. The
primary resuit was that the minimum scale of the front
was determined by the horizontal and vertical resolu-
tion of the model, even at the highest resolution. (A
horizontal grid spacing of 280 m and a vertical spacing
of 35 m).

2. The model

Details of the model are available in Gall et al.
(1987). Therefore, we will only outline its features. The
model is the nonhydrostatic model described by Clark
(1977). The model uses a terrain-following coordinate
system although, in the calculations reported here, the
terrain height everywhere is zero. The model allows up
to three levels of nesting, details of which are given in
Clark and Farley (1984). We used this nesting to
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achieve very high horizontal and vertical resolution in
the vicinity of the surface front. Resolutions used in
the experiments and the location of the inner nested
models are available in Gall et al. and Table 1.

Initial conditions were those used by Williams (1972)
and included a constant vertical static stability and a
horizontal temperature distribution given by

0y, z,0) = Z—oz’ (z — H/2) — a(2/x) arc tan(sinhay)

n
where
a = frH '(gf,'38,/9z)" "
f=10"*s"", %0—: =4K km™!
H =9 km, g0 = 0.033 m s™¥/k.

In these simulations, any variations of perturbation
quantities (or time-dependent quantities) in x (perpen-
dicular to the temperature gradient) are neglected. The
initial component of the wind parallel to x is computed
from the geostrophic relation.

An initial vertical wind component and a wind
component parallel to the horizontal temperature gra-
dient are computed from the quasi-geostrophic circu-
lation equation

8 98,3
0,12 3z 8)?

where  is the streamfunction for the ageostrophic flow
perpendicular to the front. This latter condition pre-

oy

6-2

+

TaBLE |. The various models used in the experiments. The Dy
and D: are the honzontal and vertical resolution, respectively. in
km. Initial conditions denote the experiment from which the initial
conditions are taken at the time indicated by the start time. Stant
time 15 in minutes from the introduction into expenment | of the
initial conditions specified in the text.

Iniual Stant
Expenment Dy D: condition time
Single models
I 20 .32 —_ 0
2 10 .32 1 1450
3 5 32 2 2050
4 25 32 3 2550
S 5 16 3 2050
Doubly nested
6 outer 25 2 3 2250
inner .83 gt 3 2250
Triply nested
7 outer 25 .32 6 2450
middle 83 Ny 6 2450
inner .28 .04 6 2450
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FiG. 1. Satellite images from GOES illustrating examples of cloud banding along fronts. Upper
figure is an infrared image at 2130 UTC 22 January 1985. Lower figure is a visible image taken
at 2100 UTC 28 May 1985.
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FIG. 2. Vertical velocity at T = 2240 min from the beginning of
the expenment. The expenment that produced this figure had a hor-
izontal resolution of 2.5 km and a vertical resolutinn of 320 m. This
inforration 1sindicated within the parentheses w'.ere (Dy, Dz) is the
convention ) denotes the contour interval in cm s™'. The shaded
region delineates the region of large temperature gradient that is the
frontal zone

vents an initial development of large-scale gravity
waves. This is important for the results to be reported
here, since we are concerned with the gravity-wave
production by the front itself and not the initial con-
ditions. Using Eq. (2), we found virtually no gravity-
wave production early in the experiment, as opposed
1o tuns where the across-front and vertical wind com-
ponents were initially set to zero.

In addition to ime-dependent wind components, a
time-independent flow given by

Yo = —Dxy (3)
is included. where we take D = 107% s™". It is this de-
formational flow that forces the front. Thus, we are
considening the type of front forced by stretching de-
formation.

All runs were inviscid: thus there were no effects of
surface stress. All simulations were dryv and adiabatic.
Table | summanzes the experiments that were per-
formed and indicates resolution used and models used
to initialize the various higher resolution experiments.
The locations of the inner models used in the nested
experiments are shown 1n Fig. 2 of Gall et al. In the
discussion that follows, we will report results from
whichever experiment shows a particular point most
clearly. In all cases, the results of the various experi-
ments were very similar, excep? 'tat the higher reso-
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lution experiments showed more detail in the frontal
zone.

Numerical procedures were described in detail in
Clark (1977). They were mostly standard centered dif-
ferences where momentum, mass and energy integrals
are conserved. The thermodynamic equation, however,
was approximated using the second-order-in-time-and-
space scheme of Smolarkiewicz (1983, 1984).

3. Waves in the frontal region

Figure 3 shows the vertical motion computed in our
simulations at a time approximately 4 h before we es-
timate that the frontogenesis would first form a dis-
continuity at the surface in a semigeostrophic model
(see Gall et al.). This particular figure shows only a
portion of the total domain considered in the simula-
tion that had a vertical resolution of 320 m and a hor-
izontal resolution of 2.5 km. The totai domain ex-
tended from y = —1800 km to y = 1800 km. In this
figure, the surface front is located near v = —450 km,
while the front on the upper surface is near 3 = 500
km. The overall pattern of descent on the nght of the
figure and ascent on the left is the familiar patiern ob-
served for this form of frontogenesis (by stretching de-
formation).

Superimposed on the large-scale motion is consid-
erable wave activity. From this point on, we will just
discuss those features associated with the surface front
since, in these simulations, the upper and lower fronts
are very nearly identical. Over the surface front, there
are a series of waves that are strongest just above the
front and have phase lines that ult, with height, into
the across-front flow above the front. Recall in these
simulations that there is a flow given by Eq. (3) from
left to nght up to ) = 0 on the lefi-hand side of the
figure and from right to left up to y = 0 on the right-
hand side of the figure. The sum of the flow given by
Eq. (3) and the secondary circulations forced by the
front is shown in Fig. 4. We will show later that these
waves are stationary with respect to the front and share
properties with the waves that form < ‘et mountains.

Under the front, there are waves tI* . are just barely
visible in the figure, which are apparently standing
waves. They form between the frontal surface and the
lower boundary. We w'll show better pictures of these
waves later.

Finally, there is considerable wave activity to the
warm side of the surface front and to the cold side of
the upper front. These waves are most clearly visible
to the right of the upper front. In the space between
the wwo fronts (from ' = —200 10 y = 200 km), there
1s very little wave activity.

In this paper, we will discuss only those waves di-
rectly above and below the surface front. These two
classes of waves appear to be interdependent, thus it s
natural to discuss them together. On the other hand,
the dynamics of the waves ahead of the surface front
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appear to be quite different and mostly independent
of the presence of the waves rear the front. In the in-
terest of brevity, we will reserve a discussion of the
waves ahead of the front te another paper.'

In the discussion that .otlows, we will be drawn to
the conclusion that the waves shown in Fig. 2 are grav-
ity waves generated by imbalances in the frontal zone.
One criticism of this notion is that, as the frontogenesis
proceeds, very large shears will develop, and this in
turn will lead to the development of Kelvin-Helmholtz
waves, which may account in some way for all the
waves shown in Fig. 2. Indeed, for the shear of the
along-front wind, Richardson numbers less than 0.25
are eventually produced in a narrow region along the
frontal zone extending from the surface up to about
one kilometer. The phase lines of waves generated by
the along-front shear would be perpendicular to this
shear, however. and the two-dimensional constraint of
these experiments precludes the development of these
waves. The across-front shear can lead to shear gen-
erated waves in this experir. :nt: however, this shear is
an order of magnitude less than the along-front shear
and only in a very small region at the surface does the
Richardson number for this shear becomes less than
0.23. Since Kelvin-Helmholtz waves are confined to
the region of Richardson less than 0.25, this type of
instability cannot account for the waves observed in
these experniments, Furthermore, for the reasons cited
in the Introduction since the flow is adiabatic and in-
viscid. neither can symmetric instability account for
the waves.

" Dunng the review process. one of the reviewers reported that. 1n
trontogenesis expeniments he had run that were simlar o those re-
purted here. extensive and apparently Spunous wave generation oc-
curred whenever the rauo of 2 1o Dy an his model was not equal
to the frontal slope The reason. 1t was argued was because the thermal
wind hulance could not be muintained when the frontal scale became
equal 10 the gnd spacing in one dimension and not the other and
hence coprous production of gravity waves would result. Indecq. re-
sults shown 1o us By thal reviewer indicated that wave production
was higher when Dz/Di did not equal the frontal slope. although
there suli was s;gmihcant wave producuon when the two were equal
At the rather low honzontal resolution used by the reviewer the high
wave production when D=/ did not equal the frontal s'+:re led 10
very noisy looking nelds.

In the results reponted here. Dz/Dyvis not equal 1o e frontal slope
In tact. 1t 1s less by at least a factor of two tor the lowest honizontal
resolution and 1s even smalicr for higher honzonal resolution Thus
the resviewer felt that. in order to demonstrate that our results are
not due to a spunous productnn of wasves resulung from the trun-
cation, we should perform at least one expenment where Dz equals
the frontsl slope These expenments are difhicult and costly because
of the large number of gnd points that are required when the hori-
zontal spacing 1s srall Nevertheless. we were abie 10 try one exper-
iment with a8 honzontal gnd spacing of 10 } m and a vertie.i spacing
of 78 km that prosides a ratio exacthy equal 10 the frontal stope 1n
thas expenment While the mntensity of the waves generated bs the
tiontan this new experiment was less than reported here. the waves
were otherwise guantitatively the same  The waves reported here
were all present and had the same vertical and honzontal scales
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4. Stationary waves over the front

Figure 3 shows vertical velocity in a small region in
the immediate vicinity of the surface front. In this fig-
ure, the surface position of the front is located near y
= —450 km, and the upper edge of the region of high
temperature gradient (indicated by the shaded region)
is located just below the nodes of regularly spaced
maxima that slant upward and to the left in the figure.
Each of the three panels in Fig. 3 are at different times
and so illustrate how the waves develop with time. Note
that the waves above the front appear first near the
point where the front intersects the surface and. with
time, they extend upward away from the frontal surface
and backward along it. The regular pattern associated
with these waves ends abruptly over the nose of the
front. as one moves toward the warm air at any level.
Examination reveals that the phase lines of the waves
tilt toward the left with height.

All of the features just mentioned are consistent with
horizontally stationary, hydrostatic gravity waves
propagating energy away from their source. which lies
on the interface of the frontal zone. The horizontal
wavelength of these nontrapped waves is about 50 km,
suggesting negiigible nonhydrostatic effects. For waves
stationary with respect to the front, hvdrostatic waves
will appear only above the source, which would account
for the sharp edge to the wave activity over the surface
intersection of the front. If the front is the source. the
waves must have propagated with a vertical component
of group velocity upward away from the front for waves
to appear above the front: and i1 s well-known that
gravily waves stationary with respect to the flow and
having a source at or near the ground will have phase
lines tilting into the flow with height.

Figure 4 shows the total across-front velocity near
the front. The frontal surface lies along the line of zero
velocity, Above the front. flow is direcied from warm
to cold air. while the reverse ¢:curs below the front.
Since the flow 1s nonzero above the front. stationan
waves are possible, and their phase lines must ult to-
ward the left in our figure. since the phase velociny
must be into the flow or toward the warm air.

For hydrostatic stationary waves, the vertical wave-
length is given by

L.= . (4

where v is the total across-front velocity and N is the
Brunt-Viisiild frequency. Figure 5 shows /.. computed
from Eq. (4) for the region shown Note that in the
frontal zone where v 1s zero, L, is as well. Above the
front, L. increases with height simply because v in-
creases: in this region, N is very nearly constant. The
vertical wavelength of the stationarny waves 15 about 2
km at an altitude of 3 km, which agrees well with the
vertical wavelength of the wavesin Fig. 3. Furthermore.
this wavelength increases with height. A cereful ex-




2209 JOURNAL OF THE ATMOSPHERIC SCIENCES VoL 45, No. 15
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FIG. 3. Asin Fig. 2 except at various times in a smaller region.

amination of the waves in Fig. 3 shows that the phase
lines curve upward.

It 15 well known that, when there are small-scale,
nongeostrophic or nonhydrostatic imbalances, gravity
waves will be generated. Such imbalances are expected
within frontal surfaces (see Ley and Peltier 1978), since
the processes that are forcing the temperature gradient
to grow ever stronger during the frontogenesis maintain
mass and momentum fields slightly out of balance with
one another. It is these imbalances that also force the
secondary circulz:ions acsociated with fronts. Figure 6
shows the cevelopment of the nongeostrophic and
nonhydrostatic acceleratinns in the frontal zone in our
sirnulations. Note that e twie accelerations, which
are about of the sarm > :mitude, are confined to the

frontal zone, are strongest just behind the position of
the leading edge of strong temperature gradient at the
surface (near y = —450 km), and diminish upward
along the front. 7 ._se accelerations increase with time
at all levels, whi. .« makes the pattern in Fig. 6 appear
to develop upward along the frontal surface. This latier
point is visible only for the nonhydrostatic accelera-
tions. The waves discussed above are nongeostrophic,
thus they dominate the nongeostrophic acceleration
fields at the later time. The waves are hydrostatic;
therefore, they do not appear in the fields of nonhy-
drostatic accelerations.

Since these accelerations are confined to the frontal
region, there is a clear source for gravity waves confined
to that region. This forcing increases with time and is
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T=2240

25 (r0.83,0.11)

20

Z(km)
10

051

380 340
Y(km)

0 . L
-500 -460  -420 -300

FiG. 4. Total honzontal across-front wind, v (m s™'), parallel 1o
the cross section. This velocity includes both the flow due to the
large-scale deformation [Eq. (3)] and that due 1o the circulation in-
duced by the frontogenesis. Dotted lines are negative. The zero line
passes approximately halfway between the dashed and solid lines.
Fronial surface is along the zero line. The A denotes the contour
interval m s™', and the parentheses show resolution of the model as
n Fig. 2.

strongest at the point where the front intersects the
surface. Thus the stationary waves forced by these ac-
celerations will appear first near the point of the surface
intersection of the front and later further back along
the frontal surface as the accelerations there increase.
The apparent upward development of the waves visible
in Fig. 3 simply marks the upward progression of the
group after its initial forcing within the front.

Figure 7 shows correlations v'w’, u'w’and 7'w"in a
small region just above the surface front. Here the
prime denotes a deviation of the quantity from the
linear trend at a given level between the boundaries of
the domain shown in Fig. 7. By defining the prime in
this way, vanations due mostly to the waves can be
isolated, and any vanations due 1o the front itself are
mostly excluded.

If the waves considered here are indeed gravity
waves, then t' and w' must be negatively correlated,
since the phase lines for stationary waves in a flow that
enters from the left of the figure must tend to the left
with height. In other words, the waves carry negative
across-front momentum away from the frontal zone.
On the other hand. gr-antities such as potential tem-
perature and along-front velocity should be uncorre-
lated with w' 1n a gravity wave which is independent
of the along-front direction, as here. Figure 7 clearly
shows the correlations we expect to find in gravity
waves that would be stationary above the front.
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Thus, to summarize, the waves above the surface
front (and below the front on the upper surface) are
stationary, hydrostatic gravity waves forced by non-
geostrophic and nonhydrostatic accelerations in the
frontal zone. Since these waves are hydrostatic, they
appear only above the front, and their vertical wave-
length is given by L, = 27v/N. These waves are simply
the equivalent of the wave that appears over a moun-
tain when the mountain scale is large enough for the
waves to be hydrostatic. Here, however, the forcing is
much more monochromatic than for mountains.

In this discussion, we have not mentioned so far any
process that may determine the horizontal wavelength
of the waves above the front. Figure 3 shows a unique
horizontal wavelength for these waves; thus the scale-
selection mechanism that determines this wavelength
must be very selective. We can find no natural mech-
anism in the flow above the front or in the frontal zone
itself that can be so selective, so we must turn to pro-
cesses occuring below the frontal surface for such a
mechanism.

5. Standing waves under the front

Figure 8 shows a smaller region of the zone near the
surface intersection of the front from the inner model
of the experiment with two levels of nesting. In these
figures, the horizontal resolution is 830 m and the ver-
tical resolution is 110 m. The figure showing potential
temperature will help in defining just where the frontal
zone is located.

In these figures, the waves above the front are visibie.
With the increased vertical resolution on the intro-

(0.83, 0.11)
I Ji

ji

23
17
Z (k)

1.2
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-260

FIG. 5. Verucal wavelength (km) of the stauonary wave Frontal
surface lies in the region of values less than U.25 Otherwise same as
Fig. 2.
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duction of the inner model. there is a readjustment of
the intensity of the front at the surface and at its nose.
This readjustment results in the generation of a strong
wave with fairly small horizontal scale at the nose that
is clearly visible in the lower right-hand panel of Fig.
8. We regard this wave as an artifact of the numerical
procedure, i.e., spawning a higher resolution model re-
sults in initialization effects.

Just below and to the cold-air side of the frontal
surface, a circulation or wave feature that increases
with time is apparent. The upper lefi-hand panel shows
the ageostrophic across-front flow and can be used,
along with the vertical velocity in the panel below, to

delineate the circulation feature. In addition, the dashed
line in the upper-left figure connects minima and max-
ima in the waves in the geostrophic across-front flow
and illustrates an apparent connection between the
waves above the front and the circulations or waves
developing below the front. In particular, the horizontal
scale of the wave below the front appears very similar
to that in the waves above the front. The waves below
the front are also clearly visible in Fig. 3. Note that the
phase lines of these waves are either venical or hori-
zontal, and in Fig. 3 successive waves to the right of
the surface intersection of the front contain an addi-
tional half wavelength in the vertical.
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We hypothesize that the increasing circulation fea-
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of those waves is given by Eq. (4) and is shown in Fig.
tures below the front are standing waves forced by the

ageostrophic motions in the frontal zone and contained
between the lower boundary, which is a reflection sur-
face, and the frontal surface, which should act as a
critical level, since there is a flow reversal across the
frontal surface. Note that stationary waves below the
front are possible, since the total flow in that region is
from the cold air toward the frontal surface (Fig. 4).
Thus a class of waves with phase propagation toward
the cold air can be stationary. The vertical wavelength

5. Note that this wavelength does vary with height 1n
the region, but is nearly independent of y. Furthermore,
the wavelength of the stationary wave is zero near the
center of the frontal zone (since the across-front velocity
is zero there). Thus the refractive index of the waves,
which is proportional to the inverse of this wavelength,
is infinite, suggesting that the frontal surface is indeed
a reflector for the stationary waves. In fact. it has been
shown in Lindzen and Tung (1976) that, for waves
whose Doppler-shifted phase velocity is zero, the re-
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flectivity of a stable layer is one. Furthermore, the space
between the two reflecting surfaces is small; thus, the
group velocity of the stationary waves (about 10 cm
s~ ') in this region is sufficient to allow several reflections
in the course of a few hours. Thus the presence of sta-
tionary standing waves is possible.

Clark and Peltier (1984) have shown how waves
forced upon a critical level can, under certain condi-
tions, result in considerable wave motion amplification.
In their calculations, the resonating cavity had one open
node and one closed node, resulting in maximum am-

-540
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./.
v/
-/
m‘swe,( h
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//Bﬁ ‘
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FiG. 9. Schematic showing the locations of the standing
waves under the front.
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plitude at JL,, 1iL,, etc. In our case, we have two
closed nodes and should expect amplification at L,/2,
L,, etc., in a similar fashion.

A standing wave will form wherever the distance
between the frontal surface and the ground is an integer
multiple of L,/2. Of course, L, is the vertical wave-
length of the stationary wave as shown in Fig. 5. Since
the front is sloped, and since L, is roughly constant
with y, these waves should be nearly equally spaced a
distance L,. This is illustrated schematically in Fig. 9.
For L, = 0.75 km (an average value under the front
in Fig. 5), L, will be about 50 km for the frontal slope
of 1/140 in these experiments. This is just about the
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separation between the nose of the front and the center
of the circulation shown in the lower-left panel of Fig.
8. Also, it is just about the separation between the other
adjacent waves under the front shown in Fig. 3.

As before, we can demonstrate that the waves under
the front are consistent with standing gravity waves by
examining the various fluxes. Figure 10 shows v'w',
u'w’ and T'w' computed in the same way that these
quantities were computed in Fig. 7. For a standing
wave, there can be no net vertical flux of momentum
by v'w'. In Fig. 10, this is clearly the case below 0.5
km, the height to which the waves illustrated in Fig. 8
appear to extend. Note that there are approximately
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F1G. 10. As in Fig. 7, but for the stationary waves under the front. Schematic illustrates the fluxes
expecied in the various quadrants of the standing wave.
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FIG. 11. Schematic showing the effect of the standing waves
on the fronial surface.

equal regions of positive and negative values; thus the
horizontal integrals of these quantities are zero, and so
there are no mean fluxes of across-front momentum
produced by the wave. This is also true of heat and
along-front momentum, as it should be in these stand-
ing gravity waves,

The schematic in the lower-left corner of Fig. 10 is
intended to show that the patterns of the three fluxes
shown are consistent with the standing wave. The dash-
dot line is the perturbation streamfunction for a stand-
ing wave (the phase lines are vertical), and the thin
solid lines are total streamfunction (or isentropes for
adiabatic flow). The perturbation quantities in each
quadrant are shown along with the implied fluxes.
Compare thi .iagram with the computed fluxes.

The motio s produced by the standing waves change
the slope of the frontal surface somewhat. Without
these waves, the isentropes would slant uniformly up-
ward to the right, as shown in the upper panel of Fig.
11. The motions produced in the standing wave, how-
ever, imply a perturbation circulation shown sche-
matically by the arrows. These motions will tend to
steepen the isentropes over the area of descent, due to
the convergence above the downdraft, and decrease
their slope over the region of ascent, where there is
divergence. This is illustrated in the lower part of Fig.
11. Thus the frontal slope will become corrugated by
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this process on a scale equivalent to that of the standing
waves: about 50 km in our simulations. Note the evi-
dence of these corrugations in the potential tempera-
ture, shown in Fig. 8, upper-right panel. This now pro-
duces a new horizontal scale to the motions in the
frontal surface, in particular those responsible for the
generation of the gravity waves, including those above
the front. Thus we believe it is this scale that is produced
by the standing waves which determines the horizontal
scale of the waves above the front.

Although we have explained many of the fcatures
of the waves in our simulations, there is still more that
needs to be examined. The effect of the standing waves
on the distribution of potential temperature is actually
forcing small-scale frontogenesis at the base of the
frontal surface, as illustrated in our schematic (Fig. 11,
lower panel). Note that a similar process does not hap-
pen at the ground under the updraft because the large-
scale frontogenesis process has swept the temperature
gradient away from the area where the standing wave
develops. The steepening of the isentropes above the
downdraft implies a narrowing and corresponding in-
crease in the strength of the downdrafts, while the up-
draft widens and diminishes in intensity, since the is-
entropes steepen in the downdraft and flatten out over
the updraft. We might regard this process as simply
wave breaking.

Figure 12 shows the same region as in Fig. 8 but at
later times. Note the continual increase in the down-
draft and its narrowing. In these figures, the updraft
actually appears to be absent, with the contour interval
used, although it is still there. In addition, the steepness
of the isentropes over the downdraft is even clearer.
By the last panel of Fig. 12, a second standing wave
nearer the nose of the front is beginning to appear.
This wave began to form after the higher resolution of
the inner nested model was introduced and is consistent
with the smali values of L. at the *nose” of the front.
It is probable that, had the resolution been sufficient,
this wave would have begun to develop earlier.

At T = 2441, the nonhydrostatic, nongeostrophic
motions in the standing wave have begun to produce
their own wave fields above the strong downdraft.
Again these are simply stationary waves forming above
the source, but now the horizontal scale is determined
by the scale of downdraft of the breaking wave. In this
case, the horizontal scale is about 5 km.

The experiments were continued, but at higher res-
olution, with a third model nested inside the second.
These results are illustrated in Fig. 13. The resolutions
now are 35 m in the vertical and 280 m in the honi-
zontal. Note that waves developing above the breaking
wave continue and that the standing wave near y
= —400 is also beginning to break and set up waves
above it. Note also that the wave right at the nose,
which we discussed earlier, has begun to decrease. It is
this decrease, as well as the sudden onset at the time
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FIG. 12. Asin Fig. 8, but for later times—and the upper right-hand panel shows 6.

of increased resolution, that suggests to us that this
wave was mostly a result of increasing the resolution.
As the breaking of the standing waves continues in
the high-resolution model, there is a strong production
of rather small-scale waves that eventually appear
throughout the zone underneath the front and, in fact,
above the front as well. These waves are illustrated in
Fig. 14. The band of no apparent wave activity in the
vertical motion plot is simply due to the high static
stability in the frontal zone, which suppresses the ver-
tical motion. The waves themselves extend completely
through this region, as is evident in the potential tem-
perature field shown below (i.e., the stable region acts
like a2 node for the dominant forced normal modes).

6. Conclusions

We have discussed the waves generated by a col-
lapsing front in a2 numerical simulation. Some aspects
of this particular simulation were addressed in a com-
panion paper (Gall et al. 1987). In this paper, we have
noted that there appear to be at least three classes of
waves visible in the simulation.

With respect 1o the surface front, these included sta-
tionary waves over the front, standing waves under-
neath the frontal surface, and waves ahead of the front
in the warm air that may or may not be moving. In
this paper, the waves appearing both directly above
and below the front are discussed.
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Those appearing above the front are equivalent dy-
namically to the stationary wave that appears over
mountains that are large enough for the flow in the
waves 10 be hydrostatic. The waves are generated by
nonhydrostatic and nongeostrophic accelerations in the
frgntal zone. Their vertical wavelength is consistent
with horizomally stationary hydrostatic waves in this
region. The horizontal scale of these waves appears to
be selected by waves forming underneath the front.
Thg waves above the front remain vertically propa-
gating throughout the experiment, although the de-
velopment of standing waves in this region would most
likely occur after sufficient time for the group to prop-

agate the depth of the domain several times. For waves
with a vertical wavelength of 2 km (vertical phase speed
~ 0.1 m s™"), this would take a couple of days.

The stationary waves under the front form standing
waves in a couple of hours, since the separation between
the frontal surface (which we postulate is a reflecting
surface as well as the source of the waves) and the
ground is less than 1 km. Since these waves are standing
waves, they can occur only where the depth of the front
is an integer multiple of L,/2. This and the slope of
the frontal surface specify the horizontal wavelength
of the waves in this region. We further suggest that the
standing waves, by forcing undulations in the frontal
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Otherwise as in Fig. 2.

surface, provide the horizontal scale for the waves
above the front.

The standing waves under the front are shown to
undergo a breaking process and, in doing so, to send
up a new set of horizontally stationary waves above
the region where the waves are breaking. In addition,
as the wave-breaking process continues, strong, short-
wavelength, traveling gravity waves are produced in
the frontal region.

One could argue that the large along-front shears
that develop in the frontal zone may, in soms way,
prevent the development of the waves described here
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if the flow were permitted to be three-dimensional. We
submit that, on the contrary, this instability may in fact
increase the generation of gravity waves. Since shear
waves will appear only where the Richardson number
is small, these waves when they appear will be only in
a narrow region along the frontal zone, not over a very
deep region, such as the waves shown in Fig. 2. Fur-
thermore, as the unstable shear waves develop, they
will help to destroy geostrophic or hydrostatic balances
in the frontal zone, and this in turn should increase
gravity wave production.

We suggest that the stationary waves above the front,
as well as the standing waves and the waves produc 1
by the breaking of these standing waves below the froat,
may account for at least some of the banding noted in
satellite pictures of fronts. The waves described here
are forced to be two-dimensional, but since the pro-
cesses we described are in reality essentially two-di-
mensional, then long linear lines of gravity waves are
suggested. Gravity waves should always be produced
during frontogenesis, and in many cases the stationary
and standing waves we described here should be pres-
ent. Furthermore, those waves will be produced re-
gardless of whether or not precipitation is occurring.
Thus waves such as those described here could account
for banding in those portions of the front where there
is little precipitation. Those waves should also be pro-
duced in those portions of the front where precipitation
is occurring, and one could speculate on the role of
these waves in effecting precipitation patterns.

Finally, early in the paper we mentioned an addi-
tional set of waves that appear in the warm air ahead
of the surface front. These waves will be the topic of
another paper. Here we just note that they too might
contribute to banding in the clouds ahead of the front.
Taken together, these sets of waves could produce a
complex zone of banded clouds ahead of and in the
immediate vicinity of the front.
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ABSTRACT

drostatic model at very high resolution is presented. These simulations are compared to those reported by
Williams who used hydrostatic models at lower resolution. The main purpose was 10 determine whether this
front would collapse (in the absence of friction) to a scale similar to that reported by Shapiro et al. (most of the
temperature gradient contained in 200 m). The question is whether there is a naturai physical process in the
frontal dynamics which limits the frontal collapse in the absence of diffusion processes.

For this front we could not find a natural limiting process, although the mechanism discussed by Orlanski
et al. appears to be operating. The minimum scale 1s determined by the vertical resolution. At the vertical and
honzontal resolutions we tried, the vertical resolution determined the scale because the slope of the front is so

shallow.

Some of the structure found by Culien and Purser by extending the semigeostrophic models beyond the iniual
development of a discontinuity is apparent in our solutions

1. Introduction

There is a rapidly accumulating body of evidence
which suggests that the horizontal scale of many fronts
can be very narrow. For exampie, Shapiro et al. (19835)
have recently reported on the passage of a front over
the instrumented tower near Boulder. Colorado. where
most of the temperature gradient passed the tower in
about ten seconds. Using the motion of the front across
the surface network surrounding the tower. an upper
bound on the honizontal scale of the front can be in-
ferred to be about 200 m. Studies by Carbone (1982)
using Doppler radar data further support the notion
that the horizontal scale of many fronts can be very
narrow. Carbone’s case. however. included conden-
sation. while the cases treated by Shapiro were dry.
One need not resort to very sophisticated techniques
10 demonstrate that fromal scales are often quite nar-
row (Shapiro et al., 1985). Weather forecasters for vears
have noted that even very simple thermographs show
temperature falls of 10°C or more in. say. ten-minute
periods dunng strong cold-front passages. Assuming

* The Nauonal Center for Atmosphenc Research is sponsored by
the Natuional Science Foundation
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that the front is traveling at 20 m s™' (probably a high
estimate), then most of the temperature gradient is
confined 10 a zone that is ar mosr 15 km wide. While
this is considerably larger than the scale reported by
Shapiro et al., it is still much narrower than resolvable
in standard observing networks.

If we are willing to accept that frontal scales can he
this size. or smalier. then there are a number of out-
standing theoretical problems. It is true that even the
simplest theoretical models. such as those derived from
the semigeostrophic equations (Hoskins, 1971; Hoskins
and Bretherton, 1972). can predict that infinite hori-
zontal temperature gradients will develop in finite time
at the eanth’s surface (and other boundaries. such as
an upper boundary if it exists in the model). However.
one can easily argue that diffusion processes such as
those always operating in the atmosphere. or those
produced by any shear instability that must certainiy
develop as the gradients within the front become large.
will eventuaily prevent the collapse of the front into a
discontinuity. Wilhams (1974) has shown that. in a
numerical model with constant diffusion coefficients.
the frontogenesis process will stop at relauvely large
(as compared to the results of Shapiro et al.) horizonial
scale. The horizontal diffusion coefhcients used 1n that
model were rather arbitrary. although they are thought
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to be reasonable. The vertical coefficients, on the other
hand, were reasonable for the planetary boundary layer.
This being so, then either the diffusion processes in the
front observed by Shapiro et al. are quite weak or very
strong frontogenetical forcing not present in the semi-
geostrophic equations must switch on as the scale of
the front decreases.

Recently Orlanski et al. (1985) have argued that as
the frontal scale becomes very narrow, more funda-
mental mechanisms within the front, other than fric-
tion, may begin to operate to limit further collapse of
the front. They argue that when the gradients in the
front become very large, nongeostrophic accelerations
may lead to a reduction of the generation of vorticity
at the front. Since a continued increase in vorticity is
necessary for the front to go to a discontinuity, this
will effectively limit the strength of the front. It is not
clear what minimum scale is implied by their argu-
ments, although some of their numerical results suggest
that the minimum scale could still be fairly broad.

The above arguments do not exhaust the list of pos-
sible mechanisms that may limit the minimum scale
of a front. When the frontal gradients become quite
large, other relauively small-scale flows may develop
that are not accounted for in the quasi- or semigeo-
strophic theones. In some fronts, especially those pro-
ducing considerable precipitation, a symmetnc insta-
bility may develop (see Bennets and Hoskins, 1979,
Emanuel, 1983a.b). and fluxes of momentum and heat
produced by these waves could affect frontal devel-
opment. The same could be said of gravity waves gen-
erated dunng frontal collapse (L.ev and Peltier, 1978).

The purpose of the work reported here is 1o explore,
for one type of front, the mechanisms. if any. that will
himit the final strength of the front in the absence of
diffusion. We will also look for mechanisms that may
develop to enhance the frontogenesis. In particular, we
will be considenng the front forced by pure stretching
deformation. considered by Wilhams (1972, 1974) and
Hoskins and Brethertorn (1972). This type of front is
probably most similar to the one studied by Shapiro
et al. (1983 note the temperature gradient along their
front was near zero) and s probably the simplest front.
In this study. the forcing (the deformation field) is in-
variant with ime. If the deformation were 1o vary with
ume. it could. of course. provide a means for limiting
the scale of the front.

Since we are int. rested in studving the front when
the scale becomes very small, the possibility of non-
hydrostauc effects becoming tmponant exists. Thus,
we will study the frontogenesis using a nonhydrostatic
numencal model. We will be using the model descrnibed
by Clark (1977). That model has the ability to handle
up to three levels of nesting: thus, it can model the
large-scale flows forcing the overall frontogenesis as well
as small-scale flows in the immediate vicimty of the
front. Using three levels of nesung. we are able to
achieve a high-resolution stmulation near the front with
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a vertical resolution of 35 meters and a horizontal res-
olution of 280 meters.

Recent work by Cullen and Purser (1984) suggests
that if we relax the conservation requirements in a very
limited region near the front, the semigeostrophic con-
servation laws (momentum and potential temperature)
can be applied beyond the initial development of a
discontinuity at the surface. This formulation allows
the discontinuity to extend into fluid away from the
boundary. The distance which the discontinuity ex-
tends into the flow can be calculated. Thus, we will use
results from our model to determine whether these
predictions are reasonable.

Finally, some studies have suggested that the minus
three power law that describes the spectral distributions
of kinetic energy at wavenumbers above the cyclone
scale is a result of the existeiice of fronts. For example,
Andrews and Hoskins (1978) showed that the semi-
geostrophic solutions would imply a —%; spectrum just
at the time infinite vorticity first develops. By following
the development of baroclinic waves in a GCM, Gall
et al. (1979) found a tendency for the —3 spectrum to
be a function of the extent to which the baroclinic waves
developed. If the development of the waves stopped
before the surface fronts reached the maximum inten-
sity permitted by resolution in the model, then the
spectrum of kinetic energy was much steeper than —3.
This is as 1t should be if the energy spectrum is deter-
mined by fronts.

Williams (1967). in a numenical study of frontogen-
esis forced by shearing deformation. found that the
spectrum may become even more shallow than the
—¥%; slope predicted by Andrews and Hoskins. An-
drews and Hoskin’s result applies only at the moment
the vorticity goes to infinity at a point on the surface.
If the frontogenesis could proceed bevond this point.
perhaps in the manner described by Cullen and Purser.
the spectrum could be more shallow. For example. if
the distribution of variables near the front approaches
a sawtooth distnbution. the slope of the spectrum
would be —2.

In addition to explonng the mechanisms that deter-
mine the minimum scale of the front. we will also
comment on the development of the kinetic energy
spectrum produced by the frontogenesis 1n a modcl
where veny fine resolution is used to define the front,

[ )

. The model

Equations

Q

The model used in these expenments s descnibed
in detail in other publications (Clark. 1977 Clark and
Farley. 19843 We will only bnefly outhne the model
here.

The modehis nonhydrostate and anelasue: the basic
equations are
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where p, is the background density that is a function
of =; i, v and w are components of the velocity vector
in the usual notation; and P’ and p’ are deviations from
their background values. Our simulations will neglect
diffusion, and the terms usually included in (1)-(4) to
account for its effects are zero. In our simulations, we
will assume two-dimensional flow. Vanation of per-
turbation quantities along the front (in the x-direction)
is neglected.

Because the model is nonhydrostatic, pressure is
solved by combining (1)-(3) into a divergence equation
and setting

p (6)

n accord with (5). An etliptic equation results, which
can then be solved for P

E(al)o“ + 81’101‘ n a/?o“') =0
ox ay a:

b Finite diflerence approximations

The difference approximations to (1)-(6) are dis-
cussed extensively in Clark (1977). All spatial differ-
ences in the momentum and pressure equations are
centered. as are the time differences for most of the
calculations. Penodically the calculations are restarted
using a Euler backward step 1o prevent time splitting.

The thermodynamic equation is approximated by a
scheme discussed at length in Smolarkiewicz (1983,
1984). In essence. this scheme uses an upstream spatial
difference and a forward difference in time. followed
by at least one additional step to correct the strong
diffusion charactenistic of the upstream difference
scheme. A single correction step was employed in the
present calculanon, Smolarkiewicz has shown that this
ditlerence scheme is second order in time and space.
The scheme has many advantages in regions where
there arc very large gradients. as will occur in the frontal
problems presented here. It also has the advantage. un-
hke centered difference schemes. that positive definite
helds will stay positive definite.

The numencal mode! has the option of including
some smoothing within a few gnd intervals of the hor-
1zontal boundanes to reduce reflections. This option
1s used in our simulations. Since our frontal models
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are more or less symmetric about the half level [they
will not be truly symmetric, as in the simulations by
Williams (1972), because of the anelastic approxima-
tion], we expect fronts on both the upper and lower
boundaries. Although there is no analogue for a rigid
boundary at 9 km in the atmosphere, one is used here
and must be considered part of the problem under
consideration. Hence any reflections of wave energy
off the upper and lower boundaries must also be con-
sidered part of the problem. We do not attempt to re-
duce the amplitude of the wave energy as it approaches
the upper boundary, using the filters available in the
model, as described by Clark (1977). Except for some
implicit smoothing inherent in the difference schemes
and the smoothing near the horizontal boundaries, the
model runs here are truly inviscid.

c. Nesting

In order to achieve as high a resolution as possible,
a nesting procedure is used that allows higher resolution
models inside coarse models. This nesting procedure
is described by Clark and Farley (1984). It is two-way,
in that the coarse mesh supplies boundary conditions
1o the fine mesh, and the fine-mesh solutions are then
used to update the coarse mesh.

The position of an inner nested model is arbitrary;
the boundanes of the inner model need not coincide
with any boundary of the outer model (including upper
and lower boundaries). Inner models must, though. be
totally contained within the outer model with which
they interact. The ratios of the coarse- to fine-grid in-
tervals must be integers. and the time step must be the
same for all nested models.

d. [Initial conditions

The primary motivation for this research is to ex-
amine whether scales similar to those observed by
Shapiro et al. (1985) can develop in a very simple fron-
tal model. We assume that there 1s very iittle temper-
ature gradient along the front. so that the forcing of
the front must be primarily by stretching deformation
rather than by shearing deformation (Hoskins and
Bretherton, 1972: Williams, 1967). We will use the very
simple model of a front where the stretching defor-
mation 1s constant, there is no variaion along the front.
the s1atic stability is initially constant over the domain.
and the horizontal temperature gradient is initially
vertically constant. This type of frontogenesis has been
considered by a number of authors (e.g.. Williams.
1972: Williams and Plotkin, 1968: Hoskins and Breth-
erton, 1972). For our simulations, we v.ill use the same
initial conditions as Williams (1972):

88, .
6(r.2.0)= g_- (z—11/2)y—a(2/m)arctantsinhay)  (8)
where

a= frH \gh, tofaz)7
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and where we use

f=10"*s"
H=9km
96,/0z=4K km™".

The component of the flow parallel to the front, wu(y,
2, 0), is computed from a finite difference version of
the thermal wind equation using the same differencing
as used in the model itself and with

2 H
u(3,0,0)=—— gaa —sech(ay)
T V4

)
where gf,™' = 0.0327 m 572 (K)~' is used. These con-
ditions will provide an initial state similar, but not
identical, to those presented by Williams. The vertically
varable density of the base state (py) allowed in the
anelastic model means the flow in our model will not
be symmetnc about the half level, as in Williams’
model. .

In addition to the above flow, the streamfunction of
the deformation flow given by

Yg=—Dxyp (10)

1s included and assumed constant in time. It is, of
course, this flow that forces the frontogenesis. The de-
formation flow i1s added 1o the model equations simply
by adding terms to the governing equations involving
the deformation velocities as defined by (10). These
terms are, of course, independent of time. As in Wil-
liams (1972), we choose D = 107" 571,

Finally in order to prevent production of large am-
plitude gravity waves early in the experiment, the initial
ageostrophic flow in the vertical plane parallel to the
temperature gradient is computed from

8,/ 9z v a2

p, 0z OC
where { is the streamfunction of the ageostrophic flow.,
The development of this quasi-geostrophic circulation
equation is similar to that found in Willtams (1972),
but here the effects of po(z) are included. The initial v
and w fields are calculated from

A

r=—

az’

_®

. 12
av ()

W=

after (11)1s solved for . Boundary conditions for (11)
are y = 0 on all boundanes.

¢. The experiments

In all the calculations reported here. the horizontal
domain of the outer model is 3600 km. The calcula-
tions are accomphshed t.y first integrating the equations
on a grid with a horizomal resolution of 20 km and a
vertical resolution of 320 m. This model, which runs
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very fast, is integrated beyond the point where tem-
perature gradient at the surface would first become in-
finite with the semigeostrophic equations. We will show
later how this time is determined. Afier this initial in-
tegration, a second model, with a horizontal resolution
of 10 km, was initialized at 1340 min using the flow
from the 20 km model. This is followed by other model
runs at higher resolution using the flow from models
with lower resolution as initial conditions. Finally, two
nesting experiments were performed. One used two
domains, where the lower boundary of the nested do-
main lay on the surface in the region of the front. The
other used three domains in a similar fashion, simply
adding a third domain inside the previous second do-
main.

Figure 1 is a schematic that illustrates when various
models were run and for how long. The solid bars show
when the models are integrated relative to the time of
the initial conditions specified by (8), (9), (10) and (12).
Arrows show from which model the iniual conditions
of the higher resolution models are derived. At the right,
Ay and A:z indicate, respectively, the horizontal and
vertical resolutions of the model in kilometers.

The experiments shown in the top of the figure are
single models that do not employ nesting. The lower
bars show an experiment using two models nested one
inside the other and one with three. Figure 2 illustrates
where the nested models are located within the outer
domains by showing actual results from the model with
three levels of nesting. The results from the innermost
model are shown in Fig. 5. In the case of the two-
nested models, the inner model is the same as the first
inner mode! in the experiment with three-nested mod-
els. In all experiments, the domain of the outer model
is the same.

by 4:
R 2003z
10 ¢32
Single mode! 5032
- 2503z
‘ - 5016
i
-
Double nesting 0283 5?{.
2503
Triple nesting 083 C
028 004
. i n .
0 106G 2065 T L4
Time {min)

F1G. ). Schematic indicating times when modcls of vanous rese-
lutions were run. At 7' = 0. the flow 15 given by the initia) condittons
described in the text. Resolution used 1n a particular model 15 indicated
on the right. and the model used as a source for the intal conditions
of higher resoluton modcls 15 given by the arrows Single models
had no interior nested models. white double and 1aple nestung had
one and two intertor models. respectively. The arrow at 2300 nun
indicates the time we expect @ discontinuity would nrst form at the
surface in a semigeostrophic model.
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FiG. 2. Cross sections of potential temperature. T is the time (min) of the cross
sections measured from the beginning of the experiments as in Fig. 1, A is the contour
interval in °K, and the number in parentheses gives the resolution of the model in km
(Ay, Az). These results are from the triply nested model where the tick marks indicate
the location of the next inner model. Results from the innermost model are given in

the lower nghi-hand panel of Fig. 5.

In this frontogenesis experiment, similar fronts form
on both upper and lower boundaries. In the discussion
that follows, we will concentrate on the front near the
lower surface; thus the nested models are applied to
that front only.

3. Results
a. Collapse of the front

For the stretching deformation forcing of frontogen-
esis, such as is considered here, the frontal evolution
down 10 a scale of about 50 km is now well known.
For example, numerical solutions to the problem con-
sidered here are described by Williams (1972). Analytic
solutions for the semigeostrophic case are presented by
Hoskins (1971). The stretching deformation flow forces
a direct circulation in the plane parallel to the tem-
perature gradient, and this circulation, in turn, forces
the maximum temperature gradient to form on both
upper and lower boundaries. At the lower surface. it
forms on the warm-air side of the axis of dilation of
the deformation flow; and on the upper boundary, it
forms on the cold-air side. This vertical tilt in the frontal
zone depends on the strength of the temperature gra-
dient. The surface front forms at the point where the
sum of the deformation velocity and the horizontal
component of the direct circulation is zero.

Hoskins and Bretherton (1972) have shown that for
the semigeostrophic approximation 1o the governing
equations. the temperature gradient becomes infinite
in a fint~ period of time at the boundaries. For the
front considered here. these infinite gradients would
first appear about 1.75 days after the initial conditions.

Orlanski et al. (1985), however. argue that if the
semigeostrophic approximation is not made, there are
dynamical processes (other than diffusion) that will
himit the ultimate strength of the front, and infinite

temperature gradients will not be reached. They argue
that the large convergence that is occurring in the fron-
tal zone, thereby producing the large vorticity in this
region, would in unbounded growth lead to an imbal-
ance between {fand V2P in the divergence equation.
However, it is not clear which way this imbalance
would go. During frontogenesis, the imbalance between
the fields of mass and momentum can increase due 1o
the acceleration of the velocity component across the
front. The horizontal gradient, Gy, of this imbalance

0
-2

if it is nonzero, can lead to a reduction in convergence
in the frontal zone and concurrent reduction 1n the
stretching production of vorticity. In any event. a non-
zero value implies a tendency of divergence. In the
semigeostrophic equations, ¢/ and Y2P alwavs balance
one another, and it can be shown that unbounded
growth of the vorticity in frontal regions is inevitable
with proper forcing. Thus the presence of a geostrophic
imbalance in the frontal regions could act as a process
which limits the frontogenesis. contrary to the predic-
tions of semigeostrophic theory. This is an impornant
point for, as Orlanski et al. (1985) point out. some
fronts do exist for some time. They must be in a state
of quasi-balance, and it seems nnlikely that diffusion
can be responsible if the fronts are fairly broad. since
then diffusive processes might be relatively weak as
compared 10 processes that are forcing the front. On
the other hand. the results of Shapiro et al. (19835) imply
that some fronts can be extremely sharp, which inu-
mates that the limiting processes suggested by Orlanshs
et al. are not operating.

Our solutions can demonstrate whether the - are
natural processes that limit the frontogenesis foi the

Gy

1 6P’) (13)
po 9y ’
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type of front we are considering. Figure 3 shows the
separation of two isentropes at the lower surface as a
function of time for various experiments with different
horizontal and vertical resolutions. These isentropes
are separated by 19 K and include most of the tem-
perature gradient across the front. For low horizontal
and vertical resolution (Ay = 2.5 km and Az = 320
m), the spacing decreases almost linearly until about
2300 min from the start of the experiment, after which
time the rate of reduction of the separation diminishes
and eventually goes to zero. In each of the experiments
with a vertical resolution of 320 m, the final separation
afier long time periods is still 30 km, illustrating that

for this vertical resolution, the final strength of the front.

is independent of the horizontal resolution, at least for
those resolutions considered.

Increasing the vertical resolution by a factor of 2,
however, results in a final separation of about 15 km;
decreasing Az by a factor of 3 from 320 m leads 10 a
10-km separation, and decreasing Az again by a factor
of 3 results in a final separation of about 3 km. Thus,
while for a given vertical resolution the final strength
of the front appears independent of the horizontal res-
olution, perhaps suggesting there is a mechanism hm-
iting the frontogenesis, the results with higher vertical
resolution suggest otherwise.

The reason why the vertical resolution affects the
extent of the frontogenesis in these experiments rather
than the horizontal resolution is because the frontal
slope of 1/140 is almost horizontal, as are most at-
mosphenic fronts. Thus, as the front collapses, it begins
to “feel” the minimum vertical resolution while it is
still well resolved in the honizontal. Once there is in-
sufficient vertical resolution to resolve the front, the
frontogenesis ceases. Figure 4 verifies that it is the ver-
tical resolution that is determining the final scale of
the front. since the minimum spacing between the is-
entropes is a linear function of the vertical gnd spacing.
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FiG. 3. Horizonta! separation of two isentropes bounding most of
the temperature gradient in the frontal region at the surface in the
vanous models as a function of ume. These i1sentropes differed by
19 K. Numbers in parentheses give the resolution in km (3y, Az),
For 4 models, the resolution of the innermost model 1s indicated.
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FI1G. 4. Minimum frontal width from Fig. 3 as a function
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Therefore, for the experiments illustrated here, we
could find no natural limiting process for the fronto-
genesis, at least down to a point where most of the
temperature gradient was contained in a zone only 3
km wide. We should emphasize here that this result
neglects diffusion processes or surface drag and any
instability that could result from vanations along the
front.

It is quite possible that the lack of surface stress is
the physical reason the very sharp gradients observed
by Shapiro et al. did not develop in our experiments.
The front in these simulations lines up along the line
where the total across-front velocity goes to zero. With
zero surface stress. this line is very nearly honzontal.
With the introduction of surface stress, where the
across-front velocity is reduced to zero at the surface.
the line of zero total across-front velocity would become
very steep near the ground. This being the case, the
frontal surface might become steep as well, and since
the isentropes that make up the frontal surface tend to
parallel it, at least for some distance, the isentropes
near the ground may also become nearly vertical. The
resulting. 1vective overturning could then lead to the
destructic  of geostrophic balance within the fromal
region, leading, in turn, to the development of a gravity
current. This is only speculation and needs to be ver-
ified by future experiments that include surface stress.

Figure 3 can be used to identify when infinite tem-
perature gradients across the front would first develop
if the frontogenesis were to proceed as in the semi-
geostrophic models. In the semigeostrophic models, the
frontai scale decreases linearly with time. and we note
long periods in Fig. 3 with a linear decrease in scale.
Extrapolating these linear trends to zero scale gives an
estimate when the semigeostrophic equations would
give infinite temperature gradients at the surface. From
Fig. 3. this time is approximately 2500 min from the
start of the experiment.
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b. Frontal structure

Figure 5 illustrates the effect of increasing horizontal
and vertical resolution on the structure of the front
near the surface. In all cases, the maximum tempera-
ture gradient is greatest nearest the surface and de-
creases upward along isentropes that extend from the
surface position of the front. Of course, in the middle
of the domain (near 4.5 km) virtually no frontogenesis
has occurred. These points are explained by classical
frontogenesis theory (Hoskins and Brethenon, 1972).
With increasing vertical resolution, there is a tendency
for a ribbon of very high temperature gradient to extend
upward from the surface and along the slope of the
front. This feature is most obvious in the run with a
vertical resolution of 35 m (lower right-hand panel).
Note that while the horizontal temperature gradient is
largest at the surface, it is not diminished by much
until above about 400 m. Cullen and Purser (1984),
by extending the semigeostrophic models beyond the
point where a discontinuity first develops at the surface,
suggested that the discontinuity mayv extend away from
the surface toward the center of the fluid after the time
of the initial discontinuity. This type of behavior is
suggested by Fig. 5. The reader is encouraged to com-
pare the high-resolution result shown in Fig. 5 with
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Fig. 12 of Cullen and Purser (1984). In their figure, the
heavy solid line denotes the line of (in their case) infinite
temperature gradient. Above this line, the isentropes
spread out, much as in our simulation.

We can obtain an estimate of just how far the dis-
continuity can extend into the fluid. Let the minimum
value on a horizontal plane of

Af
d=

be a measure of the width of the front. If this is trans-
formed to geostrophic momentum coordinates (Elias-
sen, 1962; Hoskins and Bretherton, 1972) with

Y=y—ulf,
then semigeostrophic theory gives

1 +f“'6uy/6}']

(14)

(15)

16
[98/9y| (16)

d- A()[
where A#f is the overall potential temperature change
across the front. In geostrophic momentum coordi-
nates, the frontal evolution is governed by the quasi-
geostrophic equations.
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FIG. 5 Asin Fig. 2 except for cross sections of potential temperature
from the inner model of models of various resolution.
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Our simulations were set up to be as close to those
reported by Williams as possible. Analytical solutions
to the quasi-geostrophic approximation to those sim-
ulations are given in Williams and Plotkin (1968) and
can be used to estimate 4 from (16) for our problem.
Inserting the solutions for # and « at infinite time from
Williams and Plotkin into (16) gives

__gHA§ sinh(xY/Lg) sinm¢_ |
6o/ 2Lg? sinh?(x Y/Lg) cosmé
2 cosh(rY/Lg) cosmé
Lg cosh(2nY/Lg)+ cos2né

]

amn

min

where ¢ = (z — H;2)/H, and H is the depth of our
domain, 9 km. It is well known that 4 in (16) goes to
zero at the surface in a finite period of time, and gen-
erally this point is accepted to be the time when semi-
geostrophic theory ceases to be valid. Indeed, this is
the point when infinite vorticity would first develop at
the surface. If, however, we accept Cullen and Purser
and allow the semigeostrophic solutions to extend be-
yond the point where d first goes to zero, then negative
values of d will occur wherever du,/dY exceeds f. Hence,
a region of negative d [given by (16)] will be present
at the boundary, reaching a minimum at the position
of the front on the boundary. These negative values
will extend upward to some height, above which 4 will
be positive. If we take the horizontal plane where &
just goes to zero, but is not negative, to give the highest
level where a discontinuity would exist, then we can
use (17) to give the height to which the strong front
will extend after infinite time. Inserting the values used
in our experiment: g/8, = 0.033, H = 9000 m, Lg
= 10°m, f = 107" 57", then this level would be at |
km above the surface.

In Fig. 5. in the model with the highest vertical and
honizontal resolution, the band of maximum temper-
ature gradient extends up to about 400 m. However,
because of the cost of this experiment, integr :1on was
terminated after only an hour beyond our rojected
time of a discontinuity first forming at the surface. Since
the above estimate of the maximum penetration of the
large temperature gradient into the fluid is for very
large time, the height of 400 m is not surprising. The
upper right-hand panel shows the simulation with a
vertical grid spacing of 160 m at a much later ime
(five hours after the discontinuits first forms at the sur-
face). and it is clear that the ribbon of high temperature
gradient extends further into the fuid (perhaps up to
800 m). We ran other simulations further in time. but
with a vertical resolution of 320 m. This resolution is
not sufficient to resolve structure less than | km deep;
therefore, no hint of a band of high-temperature gra-
dient extending upward from the surface is evident.

Equation (17) can also be used to predict the surface
location of the front using semigeostrophic theory. This
is simply given by the minimum of & which in physical
space, y, occurs at —523 km. Since the anelastic equa-
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tions are used in our simulations, the exact symmetry
about the plane z = H/2 present in the Boussinesq
equations for this problem is lost, resulting in a stronger
upper boundary front as measured, say, by the strength
of the along-front wind. This upper front is also farther
from the axis of dilation than the front at the surface.
Nevertheless, the asymmetry is not great; therefore, we
do expect a reasonable comparison with semigeo-
strophic theory. The upper front in our experiments is
located at y = 550 km, while the lower front is near y
= —450 km. The results from our simulation bracket
the semigeostrophic solution.

The considerable roughness of the temperature field,
evident in Fig. 5, is a result of the production of gravity
waves during the frontogenesis. These waves will also
be quite evident in other figures to be described later.
The details of the structure and generation of these
waves will be the subject of a companion paper.

¢. Vorticity in the frontal zone

Orlanski et al. (1985) argued that a natural process
that limits frontogenesis occurs when ageostrophic ac-
celerations within the frontal zone reduce the conver-
gence necessary to maintain the unbounded growth of
vertical vorticity. Without this growth, the frontogen-
esis would necessarily cease. Figure 6 shows the accel-
erations of the across-front ageostrophic velocity near
the front, with the surface position of the front indicated
by the arrow. Positive values indicate accelerations to-
ward positive v, thus these accelerations are clearly act-
ing to reduce the convergence within the front.

Figure 7 shows the effect of these accelerations. The
upper two panels show the along-front wind, the hor-
izontal gradient of which is proportional 1o the vertical
component of vorticity, while the lower panels show
the front normal component. the horizontal gradient
of which is proportional to divergence. The heavy dark
lines are for reference, and are the same for each re-
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FIG. 6. Cross section of the ageostrophic acceleration Contour
interval (A)1s m s™4, and the arrow locates the surface positian of
the nose of the front. Dotted contours are negative.
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panels for the respective times.

spective time. They roughly indicate the region of
maximum shear in the along-front wind component
and the lower edge of the strong shear. Note that, at
the earlier time, the region of maximum vorticity and
convergence more or less coincide, while at the later
time (which is still at least an hour from the time we
project maximum surface frontogenesis to occur). the
region of maximum convergence has moved to the
lower edge of the zone of strong along-front wind shear.
This 1s pretty much as predicted by Orlanski et al.
However. this has little effect on the rate of frontogen-
esis. Figure 8 shows the vertical component of vorticity
at several times spanning the interval shown in Fig. 7.
By following certain contours (note that the contour
interval doubles between the upper and lower panels),
the reader should verify a steady increase in vorticity
along the center line of the front. especially near the
surface. The most rapid increase in vorticity occurs at
the surface, as we would expect.

Figure 9 shows the vanations of thc maximum vor-
ticity at the surface at various horizontal and vertical
resolutions. The surface vorticity increases until about

T = 2500 min for all but the model with the highest
resolutions. At later times, there is evidence for a slow
but steady increase. At the maximum resolution, at
the time of maximum surface frontogenesis, there is a
very rapid growlh in vertical vorticity to levels much
higher than at any lower resolution. Beyond this time.
the development of wave activity associated with the
frontogenesis makes it difficult to determine that part
of the pattern that is associated -vith the front itself.
Even though the natural process discussed by Or-
lanski does appear to be operating, namely, that near
the time when the front is tending 1oward a disconti-
nuity, the region of strongest convergence no longer
coincides with the strongest vertical vorticity, the build-
up in vorticity proceeds. and it is the vertical resolution
that limits the frontogenesis. The apparent discrepancy
between the location of the source of the vorticity (in
the convergence zone) and the location of the maxi-
mum vorticity can be explained by noting that maxi-
mum vorticity will concentrate along the line where
the total velocity perpendicular to the front is zero.
The source need not exactly coincide with this line.
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d. The energy spectra

There has been some speculation over the years that
the famous —3 power law found in atmospheric spectra
of kinetic energy (and in general circulation models)
for zonal wavenumbers (on the globe) greater than
about 10 or so may be due to fronts. There are, of
course. other explanatic .. (e.g., Charney. 1971); how-
ever. frontogenesis 1s .in obvious cascade process
whereby energy is introduced into shorter scales by the
larger scales. Andrews and Hoskins (1972) have, in fact,
shown that ar the time when the discontinuity first
forms at the surface. the kinetic energy spectrum is
-8 which is, of course. quite close to —3. Williams
(1967), on the other hand, points out that, as the front-
ogenesis continues, as it would if the scenario proposed
by Cullen and Purser (1984) were valid and the front-
ogenesis actually proceeds beyond the point of a dis-
continuity at the surface, then the distribution of ve-
locity near the surface will approach a sawtooth dis-
tnbution which has a —2 spectrum.

Near the center of the domain, no frontogenesis takes
place: thus. in that region. the final spectrum will equal
the original spectrum which for the problem here is

Vo
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F1G. 8. Cross sections of the vertical component of relative vorticity.
Contour interval (A)1s X107* s™!; otherwise as in Fig. 2.

very steep (slope <—10). If we examine the spectrum
at various levels from the surface up to the midlevel,
we might expect spectra with slopes from —2 down 1o
a very steep value as we go upward. The average over
the entire domain will lie somewhere between these
extremes.

The experiments we are considering here allow us
to demonstrate whether or not the spectra at the surface
go beyond —%; and approach —2 and what the vertical
average will be for our experiment. Figure 10 shows
the spectra computed over the width of the domain at
a level of 0.2 km and for various times expressed in
hours before our extrapolated onset of a discontinuity
at the surface. This figure is similar to the one shown
by Andrews and Hoskins (1978} for a semigeostrophic
front and shows a long region of nearly constant slope
up 1o a wavenumber of 20 in our domain, which cor-
responds 1o a horizontal scale of 180 km. Between
wavenumbers 20 and 50 the slope is somewhat steeper,
and, at even higher wavenumbers, peaks associated
with waves forced by the front are evident.

The time variations of the slope of these spectra at
low wavenumbers is shown in Fig. 11 for near the sur-
face (0.2 km), at an intermediate level (1.8 km), and
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FIG. 9. Maximum vertical component of relative vorticity at the
surface. The vertical lines on the solid curve show when the resolution
of the model was changed. Resolution is indicated in km in paren-
theses, as in Fig. 2.

the vertical average. As expected, the spectrum near
the surface has the shallowest slope and is close to —2,
although it clearly does not reach this value. The var-
ious symbols in the figure illustrate the slope computed
for models with vanious resolutions. This information
is included to show that, for the low wavenumbers,
these results are independent of the resolution we used.

At midlevels, the slope approaches a limit siope more
negative than —3. The vertically averaged spectra have
a slope that is clearly greater than —3 and, in fact, is
rather close to —2. Note, however, that at 2500 min
(our time where the surface discontinuity first forms),
the slope of the average is —¥;, although this is prob-
ably a coincidence. The surface spectrum at this time
is already greater than ~¥%;.

These results are not intended to prove that fronts
are responsible for the —3 spectrum. Rather they are
intended to show the spectrum that might be expected
with the type of front we are studying here.

4. Conclusions

Even using models with a vertical resolution of 35
m and a horizontal resolution of 280 m, the minimum
scale achieved in a nonhydrostatic model for the
stretching deformation forced front studied by Williams
(1972) and others, never becomes less than several ki-
lometers. Here we measure the frontal scale as the dis-
tance over which most of the horizontal temperature
gradient is concentrated. The minimum scale reached
in our experiments is at least an order of magnitude
larger than the horizontal scale reported by Shapiro et
al. (1985).

The scale of the front in this experiment is limited
by the vertical resolution which is felt before the hor-
1izontal resolution. since the front is so nearly horizontal
{(slope 1/140)). We could find no natural mechanisms
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in our nonhydrostatic two-dimensional model that
eventually limit the front, such as the dynamical
method suggested by Orlanski et al. (1985). The mech-
anism proposed by Orlanski et al. appears to be op-
erating in our experiments, although it is too weak to
stop the frontogenesis, at least down to the finest res-
olution we used.

In all our solutions, we could find no extraordinary
frontogenetical processes that develop as the frontal
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FIG. 11. Slope of the kinetic energy spectra between wavenumbers 3 and 10.

scale becomes very narrow, at least up to the point
where the resolution stopped the frontogenesis. For the
most part, semigeostrophic theory appears 1o apply in
gross throughout our simulations. Thus it appears to
us that the only mechanism that would limit this par-
ticular type of front would be diffusion or a termination
of the forcing.

The proposal of Cullen and Purser (1984) that the
semigeostrophic equations can be used to describe the
fronterenesis bevond the point where a discontinuity
first ¢ zlops appears to give reasonable predictions of
front. structure. In particular, a ribbon of high-tem-
perature gradient extending away from the surface ap-
pears in our solutions. Furthermore, the top of this
ribbon remains. in our expertments, below the predic-
tions of the maximum extent to which this nbbon is
expected to extend as time tends to infinity.

Finally, we examined the energy spectra produced
by the frontogenesis. Near the surface, this spectrum
approaches a -2 slope, although it never reaches —2.
Away from the surface, the slope of the spectrum is
considerably greater than at the surface. The slope of
the vertically integrated energy spectrum is more neg-
ative than the slope of the spectrum at the surface, as
expected, but is still considerably greater than the

—%, spectrum predicted by Andrews and Hoskins
(1978) for the surface.

Considerable wave activity, apparently forced by the
front, can be seen in many of the figures presented
here. These waves, which are gravity waves. will be
discussed at length in companion papers.
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ABSTRACT

The growth of synoptic scale cyclones imbedded in a baroclinically unstable zonal flow over a long straight
mountain range is investigated. Two different analytical models of the’'phenomenon are used.

The first model uses the linearized quasi-geostrophic equations. It allows a simple superposition of a steady
state mountain forced solution and a transient Eady wave. There is no dynamic interaction between the two
solutions. but the time evoiution of the combined solution reproduces many charactenistics of a disturbance

passing over the Rocky Mountains.

The semigeostrophic equations are used in the second model. These equations allow a linear solution in
transform space. but the transformation of the solution to physical space is nonlinear. This allows an interaction
between the mountain forced and transient solutions. The minimum pressure developed by the semigeostrophic
svstern is the same as that of the quasi-geostrophic system. However. the shape of the wave is distorted. This
etfect is caused by the divergent pant of the mean flow over the mountain ridge.

1. Introduction

Observational studies (Petterssen. 1936: and more
recently Reitan. 1974: Chung et al.. 1976: Ziska and
Smith, 1980) have shown that the lee sides of the major
midlatitude topographic masses are preferred regions
of cyclogenesis. In particalar. the region to the south
of the Alps has the highest frequency of new cvclone
formation on earth. The study of lee cvciogenesis was
one of the primary scientific objectives of the Alpine
Experiment (ALPEX). carned out in this region in
1982. Lee cyclogenesis also occurs on the east side of
the Rocky Mountains in the United States and Canada.
Various numerical studies such as those by Egger
(1974), Manabe and Terpstra (1974). Bleck (1977). Ti-
baldi et al. (1980). Mesinger and Strickler (1982) and
Tosi et al. (1983) have concluded that inclusion of to-
pography in numerical models is necessarv to predict
cvclogenesis in the “preferred™ regions. However. the
physical mechanisms that control lee cyclogenesis are
not fullv understood.

In this paper and the following one (which will be
referred to as Part II). lee cyclogenesis will be investi-
gated for a iong mernidional barrier perpendicular to
the basic current. This arrangement will approximately
represent conditions for Rocky Mountain lee cyvclo-
genesis. It should be pointed out that the conditions
for cyclogenesis in the lee of the Alps are quite different
because the basic flow is roughly parallel to the moun-
tain range. For the Rockies. the presence of a strong

® Present affiliauon: Headguarnters. Air Weather Service, DNX.
Scott Air Force Base. lllinoss.

jet stream during lee cyvclogenesis has been thoroughly
documented by Newton (1956). Klein (1957). Hovanec
and Horn (1975) and Whittaker and Horn (1981). In
the typical case a disturbance crosses the mountain
range and grows rapidly over the lee slope.

Because of the association with a strong baroclinic
current and the cvclone structure. it 1s generally agreed
(e.g.. see Pierrehumbert, 1985: Speranza et al., 1985)
that lee cvclogenesis is the result of baroclinic energy
conversion. The flow of a baroclinic current over a
long ridge can give rise to a vertically sheared com-
ponent along the ridge which would increase the mag-
nitude of the horizontal temperature gradient in that
region. This increased baroclinicity would favor baro-
clinic instability on the lee side of the range. A difficulty
with this mechanism is that the disturbance may not
remain in the zone of enhanced baroclinicity long
enough to adjust its structure so that it will experience
increased growth (Peng and Williams. 1986). Another
possibility is that the high winds over the mountain
area will cause an increased vertical tilt of the distur-
bance and therefore increased energy conversion.
Speranza et al. (1985) examined the interaction of
baroclinic waves with topography for a situation like
the Alps where the mean flow is along the mountain
range. They found no change in growth rate. but the
solution structure was considerably modified. If the
basic westerly flow were normal to the mountain range
a cvclone would be deflected to the north until 1t
reached the top of the ridge. This effect occurs because
particles to the north of the low have relative motion
down the slope which gives vertical stretching and a
vorticity increase. and the opposite occurs for particles
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to the south of the low. On the east side of the ridge,
the process would reverse and the low would move to
the south. This suggests that interaction between the
cyclone and the topography will not produce lee cy-
clogenesis.

Farrell (1982, 1984) used the linearized quasi-geo-
strophic equations to demonstrate that continuous-
mode solutions can, with proper initial conditions. ex-
hibit large initial growth rates followed by the excitation
of normal-mode solutions. He proposed that the con-
tinuous modes could be important in lee cyclogenesis.
The difficulty with this effect is to find a tilting initial
state which 1s relevant to flow over topography.

Smith (1984) has proposed a baroclinic lee wave
mechanism for lee cvclogenesis in the Alps. This
mechanism depends on a mean flow in which the ver-
tical wind shear is opposite to the surface component
across the mountain range. This fits the general con-
ditions for lee cvclogenesis in the Alps that evolves into
a major disturbance north of the Alps with southerly
flow aloft and northwesterlies at the surface. This does
not appear to apply to the Rockies because the vertical
shear s usually in the same general direction as the
surface wind. However. in his latest paper Smith (1986)
shows that the effect could occur with the Rockies if
the height vanamnon along the crest is considered. In
our studies this effect will be excluded since we will
treat a mountain range with a uniform crest height
except at the ends.

Another possibility is that cvclogenesis is actually
the result of superposition. A steady flow over a syn-
optic-scale mountain forces a stationary high pressure
ridge over the mountain and a pressure trough on the
leeward side (e.g.. see Smith. 1979). A growing svnoptic
disturbance of approximatelv the same scale as the
mountains would be cancelled by superposition with
the high pressure ridge as it moves over the topography.
On the lee side. large growth rates would be observed
as the cyclonic disturbance continues to grow and be-
comes superposed with the leeside trough. With a suf-
ficiently high mountain. such leeside growth would ap-
pear as rapid deepening. In addition. the leeside su-
perposition would induce a closed circulation at an
earlier stage of the amplification process than would
occur if the disturbance were over the mountain or flat
terrain. As a result. the initial appearance of the closed
surface pressure contour (which is defined as cyclogen-
esis in most climatological studies) would be increased
by the presence of the mountain. This could explain
the higher frequencies of cyclogenesis on the lee side
of mountain ranges. since growing waves placed ran-
domly would be more likely to have the first closed
contour over the lee slope than elsewhere.

In section 2 we illustrate the superposition effect with
an unstable Eady (1949) wave and the solution forced
by an infinitely long mountain range. The quasi-geo-
strophic equations are used and when the motions are
independent of 1 the equations become linear. Thus,
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the mountain-forced soluﬁon and the unstable Eady

solution are mathematically independent. The example °

chosen shows that the superposition of the two simple
solutions can give a reasonable representation of lee
cvclogenesis. These results are generalized in section 3
by using the semigeostrophic equations for the same
physical situation, and by following the development
of Bannon (1984). These solutions include the inter-
action between the mountain forced solution and the
Eady solution through the Hoskins and Bretherton
(1972) transformation. The effects of the mean wind
changes over the mountain are included. The results
are presented in section 4. They show that the mini-
mum pressure in the wave moving over the mountain
is not affected by the interaction with the mountain
solution. However, the wave does speed up as it moves
over the mountain, but it slows later. The vorticity in
the wave decreases as it moves up the slope and in-
creases as it moves down the slope.

2. Quasi-geostrophic motions independent of y

In this section lee cyclogenesis will be investigated
with the quasi-geostrophic equations for an infinitely
long mountain range. The geostrophic current normal
to the mountain range. which is independent of time.
1s given by ’

U=U+N, {2.1)

where U, and A are constants and = = —In(p/py). The
quasi-geostrophic potential vorticity equation with the
Boussinesq approximation is written

8 .dYée floe
—_ —_——_—e | = Il
[81 "t 6x][8x2+ r 6::] 0. =)

This equation employs the following additional con-
ditions which were also used by Eady (1949):

1) offéy=0,
2) 8e/dy=0,
3) static stability = I = constant.

Here o is the geopotential with the portions related to
(2.1) and T’ removed. The first law of thermodyvnamics
is

0 d\do dl do .
—+ U —|—=-——+T:=0. 2.
(at ax) dz 9z 9x F==0 (=.3)
where = is the vertical motion.
The motion is bounded by a rigid lid at = = | which

represents the effect of the tropopause. Therefore the
upper boundary condition is

=0 at z=1. (2.3)

The lower boundary condition is given by
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where A(x) is the height of the topography and H is the
scale height of the atmosphere. The boundary condition
(2.5) has been lineanized by applying it at = = 0 rather
thanat - = A.

Equation (2.2) and the boundary conditions (2.4)
and (2.5) are linear when emploved in (2.3) so that the
varnous fields can be written in Fourier components as
follows: R .

d=0e™, F=we h=he', (2.6)

This Founer decomposition imposes periodic bound-
ary condiuons in x. The governing equation (2.2) now
becomes .
o KkT.
——-—0¢=0. 2.7
- f

and the boundary conditions are

3 d¢ .
{_—+ik(L}+>\)]_—o—ik>\o=O at z=1. (2.8)
ot az

/ \ ¢ - —ikUAT
k—*ikL}),—o—[kM>=l—L'1— at =

o
at a: H 0. (29
The general solution to (2.7} subject to (2.8) and

{2.9) 1s the sum of a transient solution ¢y, which sat-

isfies the homogeneous version of (2.9). and the steady

state mountain forced solution. oi,. The transient so-
luttons include the pair of discrete modes which were
found by Eadv (1949) and the continuous spectrum
modes which were derived by Pedlosky (1964) (see also

Farrel (1982, 1984)). The mountain forced solution is

given by

. T, fh [ . (kr“:\
Oy = = a sinh )

_H(kr"a(,',—)\_ﬁ) f

T2
—:--ycosh(kr ')} (2.10)

A
where
kI‘"':(L}
r= — =1
AR )
ATH?
=1- h .
! rtan ( 7 )
AT
~,=r—tanh< )
s

The ageostrophic zonal wind can be computed from
@ by using the quasi-geostrophic vorticity equation

é °] ou
— = (U= A)—|t=—f— 211
[a, (« A)ax]s 2 e

where ¢ is the geostrophic vorticity. 1/£(8°®4/0x7).
As an example, let the mountain profile be descnbed
by

2rnx
.

h(x)=:.(Ao+ S 4, cos (2.12)

n
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where
_1 _ sin(nx/2)
Ao=2, A nx(l - n*/4)

Here -, is the mountain height, and L is the width of
the domain. This is the same east-west profile which
is used in the numerical integrations that will be pre-
sented in Part II. Figure 1 shows this mountain profile
as well as the sea level pressure and velocity pertur-
bations associated with the steady mountain solution
o [Eq. (2.10)]. Note that (2.10) is not applied for n
= 0 in the representation (2.12) because this case
merely adds a constant t0 ¢,,. The mountain forced
solution consists of a ndge centered over the mountain
peak and broad troughs over the flat terrain away from
the mountain. Air parcels are deflected towards the
north on the upstream side of the mountain, and to-
wards the south on the downstream side. As a parcel
moves up (down) the mountain slope. its absolute vor-
ticity must decrease (increase) in order to conserve po-
tential vorucity, requiring a divergent (convergent)
secondary circulation. This is reflected in the ageo-
strophic zonal wind which increases on the upslope
and decreases on the downslope. The result is a slight
retardation of the mean zonal wind at the bases of the
mountain and a stronger enhancement of the zonal
wind over the mountain peak. The surface potential
temperature is just proportional to the terrain height.

(2.13)
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FiG. 1. Mountain forced solution using the Eadv modei wath
=10ms . A =20 ms™'. (a) Mountan cross secuon. (bi Surface
pressure perturbation. (¢) mendional wind. (d) ageostrophic zonal
wind.
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Note that ¢, is symmetric and v, is antisymmetric
about the mountain crest (see Fig. 1), as a result of the
penodic boundary conditions. If the condition v — 0
as x - —oo were used, these symmetry properties
would disappear and the flow would have a net deflec-
tion on crossing the ridge (e.g., see Merkine, 1975; Blu-
men and Gross, 1986). This deflection does not occur
if the mountain is two-dimensional (Merkine and Ka-
lanay-Rivas, 1976) or if the upper boundary is removed
(Smith, 1979). The symmetry properties of the tem-
perature and the ageostrophic zonal wind are unaf-
fected by the upstream conditions on v (Blumen and
Gross, 1986). This suggests that the use of periodic
boundary conditions should not have an important
effect on the realism of the mountain solutions. Also
the periodic boundary conditions are appropriate for
comparisons with the numerical solutions which will
be given in Part I1.

The sotution shown in Fig. | is for the case with
S=10""s"" Tis 10° m" s, L = 3537 km (zonal
wavenumber 8 at 45° latitude). z, = 3000 m. H = 8000
m. ;= 10ms"and A = 20 m s™'. As can be seen
from (2.10). the magnitude of the mountain forced so-
lunion increases linearly with -,/H. Its dependence on
U, and X is less straightforward. The values of the pres-
sure and ageostrophic wind perturbations. evaluated
at the mountain peak are shown in Fig. 2 as functions
of L’y and A. In general. the magnitude of the solution
increases for large surface winds and small vertical
shear. For A > U, the pressure perturbation is some-
what more sensitive to L'; than to A. while the opposite
Is true for A < L. The zonal wind perturbation. on
the other hand. depends most strongly on U through-
out the parameter range.

In order to represent a developing wave passing over
topography. one of the unstable transient discrete mode
solutions to (2.3), ¢r. is combined with ¢,,. The dis-
crete mode solutions are given by ¢ = A" where
A is an arbitrary complex constant specifving the initial
amplitude and phase of the transient wave and the
phase speed is given by

) fl f krl/‘.! f ir2
e S VAP § L ~ .
et 22 o)
(2.14)

The phase speed is complex (and the wave unstable)

for
2.4

k< FI . (2.15)

The ume evolution of an unstable transient wave

and 1ts superposition with the mountain forced solution

are shown in Fig. 3. The solid lines show the transient

{thin) and combined (heavy) pressure perturbations at

everal different times. The positions of the transient

and combined troughs are indicated by the thin and

heavy dashed lines. recpectively. At = 0, the transient
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FiG. 2. Magnitude of mountain forced Eadv solution at = = -
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pressure perturbation (mb). (b) ageostrophic zonal wind (m s™').

wave is positioned with 1ts trough about halfway up
the windward slope of the mountain. At this location
it is partially cancelled by the mountain forced ndge.
so that the minimum pressure of the combined solution
is located about 400 km to the west. at the base of the
mountain. The cancellation between p,,and pris such
that the combined mountain pressure distribution
downstream of the mountain peak is aimost uniform.
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F1G. 3. Compiete solution using the Eady model with L', = 10 m
sT.A =20 ms™ and a wavenumber 8 disturbance. Solid lines are
surface pressure perturbations: dashed lines show the position of the
trough. Thin lines represent the transient solution: heavy lines rep-
resent the superposinon of the forced and transient solutions.

As the transient trough moves up the mountain slope.
1ts amplitude grows exponentially with a growth rate
of 0.3247". This growth is masked. however. by the
mountain forced ridge. so that the trough in the com-
bined solution weakens and falls further behind the
transient trough. By 7 = 9 h. the combined trough is
bareiv recognizable. and is located about 800 km to
the west of the wransient trough. At the same time. the
influence of the growing wave is felt in the lee of the
mountain. combining with the mountain forced so-
lution to produce a weak trough at about 1 = 3 h. This
trough deepens as it remains nearly stationary at the
foot of the mountain and then begins to propagate
eastward as the transient trough approaches. Bvz =9
h thus 1s the principal trough. From 9 to 21 h this trough
continues to deepen rapidly as it moves eastward. ap-
proaching the phase speed of the transient wave. When
the combtned solution is viewed in isolation. it appears
as if a well-developed cvclonic disturbance slows down
and dissipates as it approaches the mountain. Another
disturbance forms in the lee of the mountain and am-
plifies rapidly as it moves slowly away from the moun-
tam.

This behavior is very similar to observations pre-
ceding and dunng Rocky Mountain lee cvclogenesis.
In a tvpical case (Palmen and Newton. 1969). a well-
developed Pacific cyclone slows and weakens as it ap-
proaches the west coast of North America. As in the
example above. an initially strong high pressure ridge
centered over the Rockies appears to weaken consid-
erablyv during the next 12-18 h. However. cyvclogenesis
follows alcng the lee slopes as rapid deepening and
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slow eastward movement are observed during the first
6-12 hours after formation. As the cyclone moves away
from the lee slope, the intensification is less rapid and
the eastward phase speed increases. In the words of
Palmen and Newton, the disturbance *“behaves in a
manner similar to a cyclone over flat terrain™. ’

A plot (Fig. 4) of minimum seza level pressure per-
turbation and its location versus time for the combined
and free solutions, shows the major stages of this se-
quence quite well. From ¢t = 0 to ¢t = 6 h, the wave in
the combined solution appears to weaken rapidly, sug-
gesting a weakening surface cyclonic disturbance. No-
tice that during this period, the free solution continues
to grow. After ¢ = 6 h, the pressure in the combined
solution falls at a much faster rate than that of the free
solution, suggesting rapid intensification. While the
transient wave moves with constant phase speed at all
umes. the trough of the combined solution moves more
slowly as it approaches the mountain and again as it
reforms in the lee of the mountain. Its speed increases
as it moves away from the mountain. approaching the
speed of the transient wave byt = 21 h.

The evolution of the system for the case of a stable
transient wave is shown in Fig. 5. For this case the
transient wave (thin lines) moves across the mountain
with constant amplitude (solid line) and phase speed
{dashed line). The behavior of the combined solution
(heavy lines) is more similar 1o the unstable case. The
combined trough fills as it approaches the mountain
(0-6 h) and then deepens rapidly as it moves down the
lee slope of the mountain (6-15 h). Bv hour 15 the
trough 1s over relatively flat terraiu and its amplitude
deepens at a much slower rate. Unlike the unstable
wave of the previous example. this disturbance moves
up the mountain slope at a somewhat faster speed than

Position (1)

Mindrurn Pressure (o)

an 30 60 90 L o 1BL 20

Time s

FIG. 4. Minimum pressure (solid lines) and trough locauon (dashed

lines: of transient (thin lines) and combined (heavy lines) Eady so-
luton vs ime for L', = 10 ms™', A = 20 m s™', wavenumber 8.
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FIG. 5. As in Fig. 4 except for wavenumber 16,

that of the transient wave alone, but (as in the previous
case) during the period of rapid development it moves
down the mountain more slowly than the trarsient
wave.

3. Semigeostrophic theory

In the previous section it was shown that the super-
position of a growing baroclinic wave and a topo-
graphically forced high pressure area strongly resembled
observed lee cyclogenesis. However, since the quasi-
geostrophic equations are linear due to the lack of me-
nidional variation. there is no dynamic interaction be-
tween the mountain forced flow and the wave. In order
to consider the possibility that lee cvclogenesis is en-
hanced by such interactions, it is necessary to employ
more general equations Or to treat disturbances with
meridional structure. The semigeostrophic equations
described by Hoskins (1975) include the ageostrophic
advections which are excluded in the quasi-geostrophic
equations. That those advections may be important
can be seen from Fig. 2a, which shows that the mag-
nitude of the ageostrophic zonal wind over the moun-
tain top is roughly half that of the geostrophic com-
ponent. These ageostrophic advections are removed
by a coordinate transformation which leads to the
quasi-geostrophic equations. However, the transfor-
mation back to physical space is nonlinear, so that the
semigeostrophic equations will include dynamic inter-
action between the wave and the topographically forced
flow. The general development is similar to that of
Bannon (1984), who used the semigeostrophic equation
to study the interaction between 2 front and an infi-
nitely long mountain range. In his study, there was no
vertical shear in the basic current and the frontogenesis
was driven by horizontal deformation. Bannon also
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used an unbounded atmosphere, while in this study, a
lid is placed at the nondimensional height z = 1.

For a Boussinesq fluid, the potential vorticity equa-
tion can be written in Cartesian coordinates as follows:

daQ
dt_o (3.1
where
dudé oJval v ou\ab
—————— +Hf+—=——|= .
Q= 9z dy dzdx (f ox ay)az’ 3.2)

when the hydrostatic approximation is used.

The semigeostrophic approximation is made by re-
placing (u, v) by (i, vy in (3.2).

As in the previous section, let u, = U = U, + Az
where U;and A are constants. Equation (3.1) may then
be rewritten as

dq
—=0 .
0 (3.3)
where
dv, 36 ar,\ o6
==t +=E|—. .
g dz dx (f &x)é: (3.4)

Here. the first term on the right-hand side of (3.2) does
not appear because it is constant. If the geostrophic
angular momentum, M = v, + fx, is introduced. the
potential vorticity equation becomes

OM 36 M a8  o(M.6)

T T ax  ax 9z a0y

The Hoskins geostrophic coordinate svstem is intro-
duced with

(3.5)

v
X=x+-%, Z=:z T=1 (3.6)
f
The associated transformation formulas are
d nd o -
ax  foX 3.7
d g 198 3 ]
—=—=—- — — .8
z f, f 8- “x 8z 3-8
where
dar, 10t
_+._5’__ it § .
M) e

and 6, is a constant.
If ®, the geopotential in transform space. is defined

as
2

r
P=¢+-%
¢ 2
where & is the geopotential in physical space, it follows
that

(3.10)

ad ad
foe=—=, and g%

. By
X’ 6, a2 (3.11)
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A solution to (3.3) is ¢ = go = constant. If the initial
transient part of v is sufficiently small, then by (3.4)

36 96

9o f‘; fI (3.12)

where 86/3: is a constant static stability. The potential
vorticity equation may be transformed into the geo-
strophic coordinate svstem as follows:

_HM.0)_ AM.0) HX.Z) _n a(M.6)

T Hxo) aXx.2) axo) fexz)y O
and since M = fX.
Z (3.14)
9=n5>. 3

Equating the two expressions for the potential vorticity
(3.12) and (3.14). and using (3.9) we obtain

8 ./ 16,108
—== 1 - . A3
s (’/( faxﬂaz (3.13)
This can be rewritten using (3.11) as
£y

—-1

ax: - \gdh/dz6z°

Now. it is convenient to remove the basic stratification
by writing

=0. (3.16

PN.Z D=2 -d(\.Z. T (3.17
where

Q0
LSl
N

8Z 6,

Substituting this into (3.16) results in the following
& f'8y P
e = =) (3.18)
aX* g96/9z9Z°

which states that the disturbance potenual vorucity is
zero. This corresponds 10 the quasi-geostrophic vortic-
1ty equation {2.2) in phyvsical space. The time evolution
comes from the first law of thermodvnamics applied
to the boundanes at Z = | and Z = Z.. The semigeo-
strophic first law of thermodvnamics (Hoskins and
Bretherton. 1972) can be written for this case

af a0 16 . 36

— (U~ ANZy———A+Z—=0. (3.19)

aT Vox T oH 8z >
with the use of 88/0y = ~(f8,/eH)U /0Z = —[6,
Y ANgH.
At the upper boundary.
Z=0 a Z=1 (3.20)

Following Bannon (1984). the lower boundary con-
dition is parually linearized by applying itat Z = 0
rather than Z.. and by replacing 6A/0Z by the constant
86/3Z. Gross (1986) has evaluated this error for steady
shear flow over a finite amplitude mountain. He found
that the error increases with mountain height and shear,
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but that it is still small. The error for time dependent
motions was not evaluated. The forced vertical motion
is given by

,_L1(dh . oh _ ,
Z= (0T+L ) at Z=0. (3.21)
The time dependence, 64/37, is retained because, due
to the time dependent coordinate transformation (3.6),
the mountain height is not constant with respect to
time in the transform space. However, it will be shown
that the explicit time dependence is negligible. Notice
that the boundary condition contains the ageostrophic
advection through the coordinate transformation.

If the wave expressions (2.6) are introduced into
(3.18) it takes the same form as (2.7). The boundary
conditions (3.20) and (3.21), when inserted into (3.19),
become

3 od .
—+ k(U + NS — kA = = 22
[aT k(L )Jaz ikx¢=0 at Z=1 (3.2D

3 8 . d N

—+ (kAP = —[ —+ ikL =0.

[GT I/\LS}QZ [ (67‘ IAL,)/z at Z=0
(3.23)

The time derivative on the right hand side of (3.23)
can be evaluated using the transformation formulas to
give

6h _ik 9ty

67‘ foz

The acceleration of the geostrophic wind may be ap-
proximated by Rpft,. so that the ratio of the two in-
homogeneous terms of (3.23) is given by Rot,/L’,. For
the case under consideration (' ~ 10 ms™'. f~ 107*
s.L ~ 107 m) Ry ~ 0.1 and the explicit time depen-
dence in (3.23) is negligible so long as v, < L’,. (Note
that this result depends on the horizontal scale of the
mountain. L. For a smaller scale mountain R, becomes
larger and the time dependent terms become impor-
tant.) With this approximation. the boundary condi-
tions become equivaient to (2.8) and (2.9) except that
# is time dependent. Thus the equations in transform
space are the quasi-geostrophic equations which were
developed in section 2.

The transient and mountain forced solutions. ®r
and ¢, are computed in transform space as in section
2. The only difference is that. due to the time depen-
dence of the boundary condition. $., is time dependent
and must be computed iteratively. The ageostrophic
zonal wind component is computed in transform space
following Hoskins and Draghici (1977)

Z P
f X6z’

where * satisfies the vorticity equation corresponding
to (2.11) 1n transform space. The solution is trans-
formed 10 physical space through the inverse coordinate
transformation

- g%

(3.24)
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x=X- }_[VM(X, Z,+VrX,Z,T)) (3.25)

where V), and V; are the meridional velocity com-
ponents computed from ®,, and &, respectively. The
details of the interactive solution are given in the Ap-
pendix. -

4. Semigeostrophic results

The analvsis of the semigeostrophic solution is
somewhat more complicated than that of the Eady so-
lution. This is due to the time dependence of the lower
boundary in semigeostrophic (SG) space. This aifects
the mountain forced transform geopotential &,,(X) di-
rectly, causing both ®,, and its associated meridional
velocity V,(X) 1o be time dependent. Thus, both Iy,
and !’y are time dependent in the expressions for the
geopotential (3.10) and the ageostrophic wind (3.24),
and in the transformations to physical space (3.25).

In order 10 simplify this situation somewhat. we look
first at the isolated mountain solution with no transient
disturbance. This eliminates the time dependence and
allows the computation of a steady state mountain
forced solution. In SG space, this solution is the same
as the Eady solution, but for a modified mountain pro-
file. Since V'ys vanishes at the mountain top. the mag-
nitudes of the pressure and ageostrophic wind pertur-
bations are unchanged by the transformation to phys-
1cal space. The transformation does affect the shape of
the perturbation. however.

The difference between the semigeostrophic solution
and the Eadv solution is indicated by Fig. 6. which
shows the difference in magnitude between the two
solutions for py, (surface pressure from mountain so-
lution) and uy, for different values of the geostrophic
wind parameters. U, and \. As noted previously. these
differences are due solely to the change in the effective
lower boundary. The general behavior of the semi-
geostrophic solution is similar to that of the Eady so-
lution (compare to Fig. 2). but their magnitudes are
slightly different. Except for very small values of the
surface wind combined with very large values of the
vertical shear (for which the mountain forced solution
is weak in any case) the high pressure ndge generated
by the semigeostrophic solution is somewhat weaker
than that of the Eady solution. For the case considered
insection2 (L, = 10ms™'. A = 20 m s™") this difference
is about 0.5 mb. The relative weakness increases (both
in an absolute sense and relative to the magnitude of
the ridge) for large surface wind and weak vertical shear.
The magnitude of the ageosircpnic zonal wind com-
puted from the semigeostrophic solution is approxi-
mately double that of the Eady solution for all values
of the parameters. This enhancement of the ageo-
strophic flow over the mountain crest was also found
by Merkine (1975) for a barotropic mean flow.

Figure 7 illustrates the difference between the
mouniain forced Eady solution (same as Fig. 1) and
the semigeostrophic (SG) solution with no transient
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i 4. 6. As in Fig. 2 except showing the difference
-etween the semigeostropme and Eady solunons.

wave forthecase L', = 10ms 'and A =20 ms™'. In
Fig. 7 the thin line represents the Eadyv solution while
the heavy line is the SG solution. The height of the
mountain surface is identical for the two solutions when
viewed in physical space. Figure 7a shows both A(x)
(thin line) and A(X) (heavy line) to illustrate the mod-
ification of the lower boundary required by the semi-
geostrophic coordinate transformation. This figure
shows that for the mountain profile of (2.12) the semi-
geostrophic solution viewed in SG-space must be the
same as the Eady solution corresponding to a mountain
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RG. 7. Comparison of mountain forced Eady solution (thin lines)
with semigeostrophic solution in the absence of a transient wave
(heavy lines). (a) Mountain cross section (in transform space for
semigeostrophic). (b) Ageostrophic zonal wind (both in physical
space).

of the same height. but somewhat steeper profile. The
SG solutions for the surface pressure and mendional
wind (not shown) are almost identical to those of the
Eadyv model (Fig. 1) except for a slight reduction in
magnitude for the SG solution, as expected from Fig.
6. Not surprisingly, the ageostrophic zonal wind per-
turbauon (Fig. 7b) shows the greatest difference be-
tween the two solutions. The acceleration of the zonal
wind over the mountain top for the SG solution 1s
about twice as strong as that for the Eady solution.
whereas the deceleration up and downstream of the
mountain is slightly weaker.

In order to understar.d the way in which the SG
transformation affects the structure of a wave. it is
helpful 1o consider the case of a transient wave with
very small amplitude compared to the mountain forced
solution. For this case. the mernidional velocity required
for the transformations (3.10), (3.24) and (3.25) is just
the (time independent) mountain forced velocity. The
effect of the mountain on the phase of the transient
disturbance may be seen by substituting 17, for ' in
(3.25) and differentiating with respect to X.

bx_ 13y
X fax

This result indicates that the horizontal dimension of
the solution will be stretched in physical space (com-
pared to SG space) when d77,/dX < 0 and compressed
When ax'u/ak' > 0

In physical terms, the stretching of the horizontal
dimension corresponds to a phase acceleration of the
solution. and the compression represents a decelera-
tion. These effects are caused by the inclusion of ad-
vection by the ageostrophic wind in the SG equations.
Inspection of Figs. 1c and 7d verifies that the physical
solution is stretched where Uy, is westerly (primarily
over the mountain top) and compressed where Uy, is
easterly.

This phase acceleration may be seen in Fig. 8. which
compares the transient Eady and transient SG solutions
in physical space. The initial conditions are such that
the two troughs are colocated upstream of the moun-

(3.26)
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tain at the point where dV,,/dX = 0. As the SG trough
(heavy line) moves through the region of westerly
ageostrophic zonal wind (¢ = 0-9 h) it is accelerated
with respect to the Eady trough (thin line). From ¢ = 9-
18 h the SG trough is in the region of easterly ageo-
strophic zonal wind and moves more slowly than does
the Eady trough. The distortion of the wave shows a
broadening of the trough as the wave moves up the
slope and a sharpening as it moves down the leeside.
This corresponds to a relative decrease of vorticity on
the upwind side where there is divergence and a vor-
ticity increase on the leeside where there is convergence.

The case which is physically relevant to lee cyclo-
genesis is that including a transient disturbance with
magnitude on the order of the mountain forced solu-
tion. This is conceptually similar to the small amplitude
example shown in Fig. 8. However, in this case ¥r
cannot be neglected in the transformation equations,
thereby coupling the mountain forced and transient
solutions, even in SG space.

The evolution of a growing SG wave and its rela-
tionship to the corresponding Eady wave are shown in
Fig. 9. The thin lines in this figure represent the com-
plete Eady solution, identical to Fig. 3. The neavy lines
show the developing SG wave. The two solutions are
quite similar. although close inspection reveals several
differences. The structure of the two waves is somewhat
different. with the SG wave having a broader upstream
ridge and narrower lee trough than the Eady wave.
Also. the lee trough develops somewhat more rapidly
in the SG case as it moves down the mountain slope
(t ~ 6-15h). Downstream of the mountain the growth
of the SG wave is inhibited so that by ¢ = 21 h the two
waves have virtually identical magnitude.

28

8 8.8 8o
t ]
1 1
-~
1]
w

dSN3dX3 LNIWNHIAOD LY Q30NA0OUJITY

C - \ — / - t = 6
.. \/ -
. NN Ny
"~ —w _ \ ,‘I‘/
= O TN = ¢ t=12
50 - \_/ i
0T N S ot=15
-50 - \.‘_/ -
58 /\ N - t=18
-6 - \/ -
w i A L.' “l - t = 21
_‘0 = =~ ~
-100
-20 -10 0C 10 20
: X tm) 1

F1G. 8. Companson of small amplitude transient solutions of Eady
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L AR e

15 JANUARY 1987

t=0

t= 3

t=6

t=9

z t=12
t=15

t=18

2C
X tm) 10
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To aid in the interpretation of these differences. the
magnitude and sign of the ageostrophic zonal wind is
also shown in Fig. 9. Regions in which U, exceeds 2
m s™' {20% of L) are indicated by stippling. Regions
in which T’ 1s less than —2 m s™' are indicated by
haiching. For 1 < 15 h the wave trough 1s in the region
of weak ageostrophic wind. This explains why the phase
speeds of the two waves are virtually identical. For 1
> 15 h. enhanced advection by the ageostrophic wind
causes the SG wave 10 move ahead of the Eady wave.
The distoriion of the wave structure can also be un-
derstood in terms of the ageostrophic wind. In a broad
region more than about 500 km upstream of the
mountain peak advection is partially suppressed. while
within 300 km on each side of the peak advection i1s
enhanced. The result is the broadening of 2 upstream
fidge and narrowing of the lee trough.

5. Summary and conclusions

In section 2 the quasi-geostrophic equations are used
1o study a baroclinic wave that crosses an infinitelv
long mountain range which is perpendicular to the
baroclinic basic current. The lower boundary condition
1s linearized so that the solution can be separated into
3 ume dependent Eady (1949) wave solution and a
Steady state mountain solution. The latter gives a high
Pressure area over the mountain ridge: the pressure
dllﬁ"erence between the ridge and the valley increases
With the mean surface wind and decreases with the
vertical wind shear. The solution of a baroclinic wave
Crossing the mountain is simulated by superposing the
&rowing Eady solution upon the steady mountain so-
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lution. The developing wave is partially cancelled as it
moves up the mountain by the orographically forced
high pressure ridge. As the wave moves down the lee
slope it intensifies as it moves into the stationary lee
trough. A similar result is found with a neutral wave
solution. This simpie example clearly resembles lee cy-
clogenesis although there is no dynamic interaction
between the wave and the mountain.

The same physical problem is treated in section 3
with the semigeostrophic equations following Bannon
(1984). When the Hoskins and Bretherton (1972)
transformation is used the quasi-geostrophic equations
are obtained in transform space. These equations are
linear in transform space. but the transformation back
to phvsical space is nonlinear. Because of the nonlinear
transformation. an iterative procedure is developed to
solve the equations. The results, which are given in
section 4. show that although the moving wave 1s af-
fected by the topography, its minimum pressure is not
changed when compared with the quasi-geostrophic
solution. However, the shape of the wave is distorted.
and the wave moves more rapidly over the top of the
mountain and it slows as it moves into the lee. The
distortion of the disturbance corresponds 1o a relative
vorticity decrease as the disturbance moves up the slope
and an increase as it moves down. These effects are
caused by the divergent part of the mean flow over the
mountain ridge. After the disturbance moves awayv
from the mountain there is no net orographic effect.

This simple study shows that the superposition of
moving barociinic waves upon a mountain forced high
pressure area can lead to rapid growth of cvclones on
the lee side of the mountain range. Clearly. the lee side
superposition would induce a closed circulation at an
earlier stage of the amplification process than would
occur if the disturbance were over the mountain or flat
terrain. As a result. the initial appearance of the closed
surface pressure contour (which is defined as cyclogen-
esis 1n most climatological studies) would be increased
by the presence of the mountain. The semigeostrophic
solutions show that the cyclones are distorted by the
divergent mean flow over the mountain range, but there
is no significant effect on the wave growth. In Part Ii
these results will be extended 1o more realistic solutions
from a primiuive equation numerical model. Both the
basic state and the disturbance will be y~dependent and
the mountain range will have a finite length. These
numencal solutions will allow for both superposition
effects and the possibility of enhanced baroclinic in-
stability due 10 the interaction of the disturbance with
the topography and the mountain forced mean flow.
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APPENDIX

Interactive Solution

The general solution to the semigeostrophic system
of equations (3.18)-(3.21) may be written as the sum
of a transient and mountain forced solution

YX,Z =X, Z, )+ PM(X.Z,T).

dr = A4e™*D {5 the solution to the homogeneous
form of the equations, where A is determined by the
initial conditions and c is given by (2.14).

The mountain forced solution ma\ be written as a
sum of Fourier components $a = S ®p,0™* where
each coefhicient satsfies an equation ana]ogous to0 2.10,

$o o LUSRAT) sinn (<0
M T HGT ol M) I

12
ka Z)] (A1)

/

+ cosh(

Here the h,(7T) describe the mountain surface in SG
space.

WX.T)= S h(T)e"™ .
If the mountain surface in physical space is given by
nx) = 2 7.8,

then (using 3.25) the h, are given by

T o T) explinkX) = T 5, explink(X = VIf)]  (A2)
where
I'= }%@,« &)= —;'(Ae““ D4 S $y,0m,

(A3)

Equations (A1)(A3) are solved 1terame1\ using an
initial estimate % = 0. h,” = #%,. The ith solution,
$,,.". is found from (Al) using h,,“’. and V" from
‘A3). Then the A, are computed from (A2) using a
fast Fourier transform. For the mountain profile used
in this study. the solution converges to within 1% of
the mountain height in 4-8 iterations.
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Abstract

The effect of topography on the evolution of a disturbance in a baroclinically unstable
mean flow is studied using a three-dimensional primitive equation model. A procedure is
developed to compare control integrations with no topography with integrations which
contain topography. It is found that lee cyclogenesis is caused primarily by the
superposition of a growing baroclinic wave with a steady, orographically forced wave of the
same scale. Some additional lee growth is found that may be orographically enhanced, or it
may be related to certain small problems in the experimental setup. As the disturbances
move over the ridge they are deflected to the north on the upwind side before returning to
their original latitudes on the lee side. The numerical results in this paper are in general
agreement with our analytic study (Hayes, Williams, and Rennick, 1987).




1. Introduction

In our previous paper (Hayes, et al., 1987), referred to as Part I, we studied a
baroclinic wave that crossed an infinitely long mountain range perpendicular to the
baroclinic basic current. Two analytic models were used for the study. The first model
employed the quasi-geostrophic equations with a linearized lower boundary condition. A
transient Eady (1949) wave was superposed on the steady state mountain forced solution.
There was no dynamic interaction between the two solutions (since the governing
equations were linear), but the time evolution of the combined solution reproduced many
characteristics of a disturbance passing over the Rocky Mountains. As the growing Eady
wave moved up the mountain it was partially cancelled by the orographically forced high
pressure area, and as it moved down the lee slope it intensified when it moved into the
stationary lee trough. The second model used the semi-geostrophic equations following
Bannon (1984) to study the same physical problem. When the Hoskins and Bretherton
(1972) transformation was used the quasi-geostrophic equations were obtained in
transform space, but the transform back to physical space was nonlinear. The results
showed that, although the moving wave was affected by the topography, the minimum
pressure was not changed when compared with the quasi-geostrophic solution. However,
the shape of the wave was distorted, and the wave moved more rapidly over the top of the
mountain slowing as it moved into the lee. The distortion of the disturbance corresponded
to a relative vorticity decrease as the disturbance moved up the slope and an increase as it
moved down. These effects were caused by the divergent part of the mean flow over the
mountain ridge. After the disturbance moved away from the mountains tnere was no net
orographic effect.

The objective of the current study is to generalize the conclusions from Part I by
using more accurate equations and more realistic mean flows and topography. The
primitive equations in sigma coordinates (Phillips, 1957) are employed on a sector of the
globe with a wall at the Equator. The mean flow is a mid-latitude jet with vertical and
horizontal shear. The mountain range has the same cross-section as the range in Part I, but
it is of finite latitudinal extent. Numerical solutions are obtained with and without
topography, and a technique is developed to compare them. The initial disturbance
amplitude is varied so that linear and nonlinear effects can be evaluated and compared
with results from Part L.

In Part I four possible mechanisms for lee cyclogenesis were discussed. The
enhanced baroclinic instability mechanism (1) involved the destabilization of the mean
flow by the topography. The continuous mode mechanism (2), which was proposed by
Farrell (1982, 1984), requires an initial disturbance that will grow rapidly for a short time
through the continuous modes. The superposition mechanism (3) invol. es the combination
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of a moving disturbance and a topographically forced high pressure area. The lee wave
mechanism (4), that was formulated by Smith (1984, 1986) requires a vertical wind shear
that is opposite to the surface wind across the topography. In Part I mechanisms (1) and
(3) were considered. The semi-geostrophic solutions included the effects of the
topographically modified mean flow, but there was no net effect on the lee cyclogenesis.
However, it was shown that the superposition effect [mechanism (3)] could explain some
features of Rocky Mountain lee cyclogenesis. The baroclinic lee-wave mechanism (4) will
not be considered in this study because our mountain ridge does not have significant north-
south variation in the ridge height (see Smith, 1986). The numerical experiments we
present will be designed to compare the enhanced instability mechanism (1) with the
superposition mechanism (3). Hayes (1985) investigated the continuous spectrum
baroclinic instability [mechanism (2)] with an initial state which had the vertical structure
of the mountain forced wave. A linearized spectral model was integrated with this initial
state, and no growth was found until much later when the discrete mode growth became
important. A similar experiment with a nonlinear finite difference model led to the same
conclusion. However, an initial disturbance with backward tilt with height would grow
rapidly, at least initially.

The numerical solutions with topography will be compared with control solutions
that use a flat lower boundary. Our main objective is to evaluate the relative importance of
superposition and enhanced instability on disturbance growth. However, we are also
interested in topographic modifications in the movement of the disturbance cyclone. Based
on the semigeostrophic sclutions in Part I, we expect that the cyclone will move more
rapidly over the mountain ridge than the control cyclone. We also expect other effects that
were not in Part I because the cyclones in the present study have a finite latitudinal extent.
If a basic westerly flow is normal to a north-south mountain range, a cyclone would be
deflected to the north until it reached the top of the ridge. This effect occurs because
particles to the north of the low have relative motion down the slope which gives vertical
stretching and a vorticity increase. The opposite occurs for particles to the south of the
low. On the east side of the ridge, the process would reverse and the low would move to
the south. Buzzi et al (1987) have isolated this mechanism with a linear analysis of
unstable baroclinic waves passing over a mountain range which is perpendicular to the
basic baroclinic flow. This mechanism was also analyzed by Speranza et al, (1985) for a
cyclone moving along an east-west ridge.

The numerical model that will be used in this study is described in Section 2. The
initial conditions and topography are specified in Section 3. The experimental procedure
and the numerical solutions are presented in Section 4, and detailed comparisons among
the solutions are given in Section 5. The summary and conclusions are in Section 6.




2, The Numerical Model

This section describes the numerical model that will be used for the numerical
simulations. This study employs a version of the UCLA general circulation model designed
specifically to provide an accurate representation of air flow over topography. The basic
horizontal differencing scheme was developed by Arakawa and Lamb (1981) to conserve
the domain-averaged square of the potential vorticity, and it approximately conserves the
potential vorticity of individual parcels. Arakawa and Lamb (1981) have shown that, for a
given coarse grid, simulations of the airflow over steep topography are significantly
improved when this scheme is used. In our study, airflow over a long, narrow mountain is
treated, and it is believed that the UCLA model will provide a good simulation of the flow

The model consists of the primitive equations for an inviscid, adiabatic, and
hydrostatic atmosphere; moisture and its effects are not included. The prognostic variables
are the horizontal components (u, v) of the wind velocity, potential temperature (8), and
pressure (x = pg - p;). The model's vertical coordinate is o, which is defined as

P-Pp
- 2.1
- (2.1)

where pg is surface pressure and p, is the pressure at the top of the model atmosphere.
Although p, = 200 mb in this study, it is not expected that this will cause a problem since
Charney and Drazin (1961) have shown that the wave-lengths shorter than the planetary
scale are trapped in the vertical. The domain is a 45° sector of the Northern Hemisphere
with a wall at the equator and a cyclic continuity at the east and west boundaries. The
variables are staggered horizontally according to Arakawa's Scheme C with a grid spacing
of approximately 2.8° longitude by 2.75° latitude. The variables are staggered vertically
in six layers spaced equally ino. Spatial derivatives are approximated using a fourth-order
finite difference scheme. The vertical differencing scheme, developed by Arakawa and
Suarez (1983), has excellent integral properties and it eliminates the systematic error in the
hydrostatic equation that was present in previous models.

The model integration proceeds in a series of one Euler-backward time step
followed by five centered time steps. Convergence of the meridians toward the poles
would normally require the use of an extremely short time step to maintain computational
stability. To avoid this requirement, the technique of smoothing zonal derivatives
(Arakawa and Lamb, 1977) is used with a six minute time step.




3. Initial Conditions and Topography

In this section analytic expressions for the mean flow and the topography are
specified. The basic current is selected to be baroclinically unstable as was the case in Part
I, but horizontal shear is also included so that the wind profiles can better represent
atmospheric conditions. The baroclinic portion of the mean zonal wind is given by

up(4,p(0,4)] = Up sech? [7(4-¢ )1(1n(po/P)/1n(po/py) . (3.1)

where U, = 40 ms™, ¢, = 45° N, p, = 1013.25 mb, Pt = 200 mb, and
7 is the halfwidth of the jet. The maximum wind at each level occurs at 45° N, and the wind
speed varies linearly with the logarithm of pressure. This expression approximates profiles
given by Palmen and Newton (1969) from case studies of lee cyclogenesis. By setting the
halfwidth of the jet, v, equal to 8° latitude, a horizontal profile that agrees quite well with
the observed wind prior to cyclogenesis is obtained. However, this profile meets the
necessary condition for barotropic instability in regions to the north and south of the jet
stream. Consequently, a profile in which v = 16°, that does not meet this criterion, is
included in this study to isolate the baroclinic effects. A meridional cross-section of the
initial mean state velocity field is shown in Fig. 1.

A mean surface current, necessary for strong topographic effects, is included with
the same latitudinal structure as the baroclinic part:

T (¢) = U, sech? [1(¢ - ¢,)] (3:2)
where 7 and ¢ , are defined above and Ug = 5 ms™. The upper-level wind given by (3.1) is
modified by adding the surface current and applying the gradient correction to account for
the earth's sphericity:

al¢,p(o,¢)] =0 acos¢{[1+2(ﬁT + T.)/0 acos<;5]1/2 - 1) 3.3)

where a is the radius of the earth, q is the earth's rotation rate, and u, and ug are given by
(3.1) and (3.2) respectively. This equation is obtained by neglecting the acceleration in the
latitudinal equation of motion and by setting the geostrophic wind equal to u;. + u,.

Upper-level temperature is specified by integrating the geostrophic thermal wind
equation which gives:

T(¢,p) = T((¢,.P) + (a/R)I £(8ur/3lnp) d¢ (3.4)

0

where T($ ,,p) is the temperature at 45° N and u_ is given by (3.1). The integral in (3.4) is
evaluated using Simpson's rule. All of these expressions are in pressure coordinates, and
they must be transferred too coordinates with (2.1).
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Mean surface pressure is initialized from the mean surface wind using the
geostrophic wind equation:

P_($) = exp(ln B, (4,) - (a/R) ,[ £U_(4)/T ($)dé), (3.5)

where pg(¢, = 45°N) = 1013.25 mb, us(¢) is given by (3.2), and Tq(¢) represents the mean
surface temperature. The integral in (3.5) is also evaluated using Simpson's rule. Since pg
is not known, T¢(¢) cannot be found from (3.4). Therefore py(¢) is computed iteratively as
follows: an initial guess is made for Tg; pg(¢) is computed using (3.5); T is then obtained
from (3.4) and a new pg(¢) is derived from (3.5); this latter step is repeated until the
adjustment of T is less than 0.01°K. The solution converges in approximately 10
iterations.

The initial barotropic disturbance consists of a weak wave that varies sinusoidally
with longitude. The maximum amplitude of the disturbance occurs at 45°N. Fields are
balanced geostrophically with a constant f and are given by

' = f,A sin(n)) sin? (24), (3.6a)
p' = p, &'/RT,, (3.6b)
u’' = -(1/f,a) 8%'/3¢, (3.6¢)
v' = 1/(f,a cos ¢) 3%'/3x, (3.6d)
T' =0, (3.6¢)

where T, = 273°K and p, = 1013.25 mb. Test integrations in which the initial wave
number of the disturbance is varied show that the wave number 8 perturbation is most

unstable, and therefore, it is the only one used in this study

The surface topography is designed to resemble the Rocky Mountains as a long,

meridional barrier to westerly flow. It is given by

(3.82)

z (8, ) = { z4 (4) cos |:( - Pxe] < am
0

4w 2 , | A-xg| > 4ax

where ax is the longitudinal grid spacing and x,,

is the longitude at which the mountain is

centered; zs(¢) is given by

Zs > ¢ > b
[M‘J ™|
20 (8) = 1 zg cos? 38¢) 2 I ., byt 308 > ¢ > 8,
z cos? [tf&]’:.l’ ¢, - 304 < ¢ < ¢
326) 2 |

L O, elsewhere

(3.8b)
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where zg is the mountain height, A¢ is the latitudinal grid spacing, ¢ is 61.75° N and ¢ is
31.25°N. The resulting mountain (Fig. 2) is 22.5° wide and extends from approximately
23°Nto 70° N.

In some of the experiments, the terrain is initialized in the model by raising the
mountain from zero to the values in (3.8) during the first 12 hours of the integrations. This
technique is designed to minimize the generation of inertia-gravity waves during the initial
part of the integration while the mean flow, which is analytically balanced without
topography, adjusts to the presence of the mountain. Topography is incremented at each
time step according to:

z (A, $) sin? (Lt) , t < 12 hours
In 24

zm (A)¢rt) = ~ (3.9)
zp (A, 4) , t > 12hours

a

where z, is given by (3.8).

4. Basic Numerical Experiments

The main objective of this paper is to determine the extent to which lee cyclogenesis
can e explained by superposition, rather than enhanced baroclinic instability induced by
flow over a mountain. In order to isolate the effects of the mountain, experiments were
carried out with and without topography. In addition, the following conditions were also
varied:

1. width of the mean flow jet

2. initial disturbance amplitude

3. mountain height

4. length of mountain range.

The experimental procedure and a summary of the results are given in this section. A
detailed comparison among the solutions is carried out in Section 5.

The numerical experiments were performed using the version of the UCLA model
described in Section 2. Each experiment consisted of two integrations: a Cont:-l run, and
an Interactive run. In the Control run, an initially weak disturbance was allowed to evolve
into a mature cyclone over flat terrain. The time dependent solution for this run may be
represented as

vel(t) = ¥+’ (¢) (4.1)
where y . represents the zonally symmetric, time independent westerly current described by
(3.1) - (3.5), and ¥’ (0) is the weak barotropic disturbance given by (3.7). ¥'o(t) is the
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instantaneous deviation of the total solution from the analytically balanced state. It is
obtained at any time by subtracting the balanced state () from the total solution.
Because the UCLA model is fully nonlinear, there are no implied constraints on the
magnitude or mean value of '(t).

The interactive integration was performed in the presence of a mountain. The
initial conditions for this run consisted of a baroclinic disturbance superimposed on a
zonally asymmetric mean state in approximate balance with the orographic forcing. This
mountain was raised to its full height during the first 12 hours of the integration according
to (3.9). This procedure introduced inertia-gravity waves that were filtered out by
averaging the solution from t = 18 to t = 30 h. Meridional cross sections of the resulting
zonal wind field over the flat part of the terrain and over the mountain ridge are shown in
Fig. 3. The zonal wind profile is quite similar to that shown in Fig. 1 for the flat terrain
case. The main differences are the presence of low level easterlies in the subtropics and
enhanced low level westerlies in the mountain latitudes. Both of these effects are stronger
over the mountain ridge than away from the mountain.

The steadiness of this solution was tested by using it to initialize the model and
integrating it for 24 hours. The resulting sea level pressure fields are shown in Fig. 4. The
anticyclone was maintained over the mountain ridge throughout the integration. Also
present, however, was a growing low pressure system that moves slowly down the lee slope
of the mountain. Thus the mountain balanced solution cannot be considered to be strictly
time independent but must be represented as ,,(t). Therefore, the Interactive solution
may be written as

Y (t) = h,(t) + ' (t) (4.2)

The model was integrated for 24 hours, beginning at t = t,. y,,(t,) was given by the
initial mountain balanced state; '|(t, ) was given by ¥'.(t, ), except that the phase of '(t,)
was adjusted so that the sea level pressure trough was just upstream of the mountain ridge.
¥',(t) was constructed from the total solution by subtraction.

Results of Control Run A (16° jet) are shown in Fig. S. An initially weak
distt oance grows into a closed circulation after about 60 h (not shown) and a mature
cyclone is observed at 96 h. The growth and motion of the disturbance are indicated in Fig.
6, which shows the magnitude and longitude of the surface low deviation disturbance vs
time. The center of the low pressure system was defined to be the location of the
maximum geostrophic vorticity along the trough line. The disturbance moved eastward at a
constant speed of about 18° /day. Its magnitude increased roughly exponentially as
predicted by linear theory with a doubling time of about 14 hours.
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The results of Control Run B ( the 8 jet) were similar, but the growth and speed in
this case were slightly slower, with a disturbance doubling time of 24 h and phase speed of
14° /day (Fig. 7). Even though both jets had the same maximum speed, the broader 16°
jet had more available potential energy (because of the larger temperature variance).
Also, the stronger barotropic effects in the 8° jet may reduce the baroclinic growth rate, as
has been shown by Grotjahn (1979).

Several experiments were performed to investigate the effects of mountains on the
growth of the disturbances observed in the two Control runs. In Experiment I, the effect of
the 1.5 km mountain on disturbance growth in the presence of the 16° jet was considered.
Four integrations were carried out, in which the initial disturbance fields were taken from
the Control run at t; = 24, 36, 48, and 60 h, respectively. Thus the interaction of the
mountain with both small and finite amplitude disturbances was examined.

The overall growth of the surface low pressure system with and without mountains is
shown in Fig. 8. The sea level pressure of the disturbance for the Control run and for the
Interaction runs with t, = 24 h and t, = 60 h are compared. Also shown are the
longitudes of the low pressure centers. The initial magnitudes of the two systems do not
match exactly because only the deviation fields were the same. They were superimposed
on different background states (i.e., ¥ = ¥). The initial location of the disturbance was
always adjusted to be 15° west of the ridge. Evidence of lee cyclogenesis is clearly seen in
this figure. Particularly for the small amplitude case, the disturbance filled as it
approached the mountain ridge. In both cases, the central pressure of the disturbance fell
rapidly upon reaching the lee slope of the mountain. For example, at 33 h the Interactive
disturbance was located very near the ridge line. Its central pressure fell by 14 mb as it
moved down the lee slope during the next 12 h. Over the same time period, there was no
net change in disturbance central pressure in the Control run. Similar enhanced growth is
seen in the finite amplitude case. Furthermore, the rate of eastward movement of the low
pressure center was almost three times greater while it was within about 500 km of the
mountain ridge than when it was over flat terrain.

In Part T it was suggested that lee cyclogenesis such as that shown in Fig. 8 was
largely due to the superposition of a growing baroclinic wave on a mountain forced flow,
rather than enhanced instability of the flow in the presence of mountains. In order to test
this idea using the numerical model results, the development of the deviation pressure
fields (¥'c andy'|) are compared in Fig. 9. If the enhanced development seen in Fig. 8 were
due solely to the effects of superposition, these two systems would be identical. This is not
the case although the difference between the two systems is small. The growth rate for ¢,
was only slightly greater than that fory', as seen from the slopes of the solid lines. Of the
14 mb difference in the growth in the small amplitude disturbance between 33 and 45 h,
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only 1.8 mb was due to enhanced growth of the deviaticn field. The remaining 91% of the
apparent enhanced growth was due to superposition. The average disturbance phase speed
over 24 h was slightly greater with mountains than without for the small amplitude case.
However, the phase speed for $'| was about 2.5 times greater than that for y'. as the
disturbance neared the ridge, and it remained nearly motionless for 6 to 10 h on the lee
slope before moving eastward again.

For the finite amplitude case, the effects of mountain interaction were more
evident. Over the full 24 h integration, enhanced growth of the deviation field accounted
for 40% of the total enhanced growth in the presence of the mountain. During the period
of most intense growth (72-84 h), the deviation growth accounted for 65% of the total. The
eastward movement of the disturbance was very similar to that of the small amplitude case.

These results suggest that the effect of the mountain on the stability of the mean
flow, while detectable, was not critical to the occurrence of lee cyclogenesis in this case.
Even for the finite amplitude case, lee cyclogenesis did not require the enhanced growth of
'y, compared to y'., although this was certainly a significant contribution to the overall
result. The growth of y',, with respect to ', and its enhanced phase speed while crossing
the mountain, are consistent with the semi-geostrophic theory presented in Part I. This
effect will be discussed in Section S.

In additional experiments, the height and meridional extent of the mountain range
were varied as was the initial amplitude of the disturbance for each jet profile. The results
are summarized in Table 1 ,which gives the average doubling time and eastward phase
speed fory'| (' for the Control runs) in each case. Also shown is the apparent enhanced
growth of y,, compared to¥'.. during the 12 h period immediately following passage of the
disturbance over the ridge, and the percentage of this growth which was actually due to
enhanced growth ofy',.

It is apparent that the central disturbance pressure fell significantly more rapidly
after crossing the ridge than during the corresponding time period of the Control run, for
all cases except Va. In most cases, this was achieved through a combination of slightly
enhanced instability and superposition. For the case of the broad jet (Experiments I and
IT) the average doubling time for ', was always less than that for y'.. The case for which
enhanced instability in the lee of the mountains was most significant was Experiment Id, a
finite amplitude initial perturbation in the presence of low mountains. This is not
surprising, since nonlinear effects may be expected to be larger for the finite amplitude
disturbance, while the mountain forced ridge, and therefore the importance of
superposition, is weaker for the lower mountain.

Experiments III and IV were the same as I and II, except that they used the narrow
jet (Control Run B). Each case had a longer doubling time than the corresponding cases of
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Experiments I and II. This was due to the smaller amount of available potential energy in
the jet. Otherwise the results of these experiments were consistent with those of the
broader jet, except for Experiment IIIa. This was the case of a small amplitude disturbance
moving over a low mountain. While the low pressure system developed more rapidly in
the presence of the mountain, this was due solely to the superposition effect. Interaction
between the mountain and the flow led to stabilization of the disturbance. This feature will
be discussed further in the following section.

The final pair of experiments, Va and Vb, tested the effect of mountain length on
the growth of a disturbance. In Experiment Va, the flat part of the mountain ridge
extended only 25° latitude, while in Vb its extent was 57°. These mountains are shown in
Fig. 42. Based on the results of Walker (1982), it may be anticipated that less
development will take place in the presence of a shorter mountain ridge. Indeed, the
doubling time for Va was longer than that for any other case using the broad jet, including
the Control run. On the other hand, the doubling time for Vb is comparable to that of the
other experiments. As in the other experiments, the difference between the control and
Interactive disturbances could be explained largely by superposition, with about a 20%
effect due to interaction.

5. Interactive Effects

The results presented in the previous section indicate that (for the parameter range
investigated) enhanced instability of the zonal flow due to interaction with the mountain
ridge is not required to produce lee cyclogenesis. Instead, the existence of lee cyclogenesis
can be predicted by the application of the simple superposition mechanism suggested in
Part L.

However, the same results indicate that, at least for some cases, interactive effects
significantly modify the features of the lee cyclone. In this section, the impact of the
interaction on the development of the cyclone is examined more closely. Particular
attention is paid to the track of the cyclone and to the formation of secondary low pressure
centers.

A detailed view of the deviation fieldy'. and y', for the Control and Interactive runs
of Experiment Ia is given by Fig. 11. The first nine panels show surface pressure deviations
for the Control and Interactive runs at three hour intervals. The final panel shows tracks of
the low pressure centers for the two runs.

This was the case of the small amplitude initial perturbation on the broad jet,
moving over the 1.5 km mountain. Of all the cases, this one is the most nearly linear, and
interactive effects were similar to those of superposition. That is, the center of the
disturbance was about 50% deeper for y', than for ', ; the eastward phase speed of the
disturbance slowed down as it approached the mountain and then moved rapidly to the lee
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side. Closer inspection shows some effects that are strictly due to interaction. While ¥’
remains more or less symmetric about a north-south line through the center of the low, ¥
develops distinct asymmetries. By hour 30 (6 hours into the integration), there was
evidence of a split in the center of the low with one part drifting northward along the
upwind slope of the ridge, while another formed in the lee of the ridge near the initial
latitude of the disturbance. The latter branch became the dominant low by hour 33. The
mechanism for this behavior was discussed in the introduction, and the tracks are similar to
those found by Buzzi et al. (1987) even though they used a linearized two layer model.
Also, the pressure gradient to the east of the disturbance center was significantly greater
than that to the west as the disturbance moved down the lee slope. The average phase
speed of y', was slightly greater than that of ¥’ as seen from the final positions of the two
disturbances.

According to Table 1, the largest interactive effects were seen in Experiment Id,
which was the same as Ia except that it had a larger amplitude initial disturbance. Details
of this experiment are shown in Fig. 12. Here, the track of the deviation low pressure
system is clearly modified in the Interaction case. The system moves northward about 5°
as it progresses slowly up the windward slope. This effect is more pronounced for this
disturbance than it was for the weaker disturbance in experiment Ia. At hour 69 (t, + 9)
the first indication of a lee trough and tightening of the pressure gradient to the east of the
low appeared. This lee trough continued to develop, and by hour 75 (t, + 15) a closed low,
with particularly sharp pressure gradients on its southeast flank had formed on the eastern
slope of the ridge. During the six hour period following passage over the ridge line (hours
72-78) the magnitude of the interactive disturbance doubled, from 8 to 16 mb. During the
same time period the magnitude of the control disturbance increased by only 40%, from 10
to 14 mb. These results indicate that while the total field exhibits enhanced growth
regardless of the amplitude of the initial disturbance, the growth is more significant and
only for large amplitude initial disturbances. This is similar to the result reported by
Trevisan (1976).

The effect of mountain height on the development of ', is shown in Fig. 13 which
compares Experiment Ila to the Control Run. Comparison with Fig. 11 shows very little
difference in overall growth of the disturbance. The magnitude of the low pressure center
in the high mountain case was just slightly lower than that for the low mountain case at
hour 48, and its position was about 2° to the east. Despite these overall similarities,
however, the details of the development show a number of significant differences. In the 3
km mountain case, there was evidence of lee trough formation after only three hours of
integration (t = 27). Three hours later, there were two closed pressures systems, one
almost stationary in the lee of the mountain, and the other moving northward and slowly
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eastward along the upwind mountain slope. At hour 36, a weak trough formed near the
ridge line at about 40 N. This feature remained approximately stationary throughout the
rest of the integration and became a closed low at hour 45. This secondary cyclone was not
seen at all in the Control run and was present as an extremely weak feature for the 1.5 km
mountain. It was also observed by Walker (1982) and will be discussed further in relation
to Experiment V.

The case of the small disturbance on a narrow jet passing over a low mountain was
unique in that while superposition of the disturbance and the mountain forced solution led
to apparent deepening in the lee of the mountain, interactive effects actually stabilized the
growing wave. This is shown in Fig. 14. From the time the wave passed over the mountain
ridge (t= 39) until the end of the integration at t = 48, the disturbance in the interactive run
deepened by 0.7 mb. Thus, for this case, the "lee cyclogenesis” indicated by Table 1 was
due entirely to superposition effects.

By reducing the latitudinal extent of the mountain ridge, the behavior of the
disturbance was changed considerably. This was the only case for which no enhanced
growth was observed. Examination of Fig. 15 shows that the lack of growth was due to a
combination of factors. The track of the main disturbance took it well to the north of the
ridge. Only the southern extension of the original trough actually passed over the ridge.
As the disturbance moved around the northern slope of the mountain, its center deepened
compared to that of the Control disturbance. By hour 54, a lee trough had formed. This
trough continued to develop, maintaining a magnitude equal to or greater than that of the
Control disturbance. However, it moved rather quickly toward the east, so that it did not
remain in phase with the mountain forced lee trough, and therefore did not produce the
overall growth seen in the other cases.

The final case to be considered is that of the long mountain ridge shown in Fig. 10.
This case was very similar to IIb, as may be seen by comparing Figs. 13 and 16. In both
cases y', moved northward as it approached the mountain, and a trough developed in the
lee of the ridge and grew to a slightly greater intensity than did the Control disturbance.
The principal difference was that the disturbance center was forced to move over the
northern part of the longer ridge, rather than around it.

6. Summary and Conclusions

In Part I we investigated lee cyclogenesis associated with a baroclinic current
flowing over an infinitely long mountain range. Quasi-geostrophic and semi-geostrophic
solutions were obtained that documented that lee cyclogenesis could occur as a result of
the superposition of a moving disturbance upon a steady state mountain forced solution.
However, none of the disturbances showed enhanced growth due to the interaction with
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the topography, although the semi-geostrophic solutions experienced distortion and phase
speed changes as they passed over the topography. In Part I the basic current and the
disturbances had no variation along the mountain ridge.

In this paper we have removed some of the restriction that were present in Part 1. A
primitive equation model was used in place of the quasi- and semi-geostrophic models, and
the basic flow and the disturbances were allowed to vary with latitude. In addition the
mountain range, which was oriented north-south, had a finite length. The small amplitude,
sinusoidal initial disturbance grew exponentially because the basic current was
baroclinically unstable. A control perturbation field was obtained by subtracting the initial
zonally averaged field from the control solution at various times. The interactive solutions
were initialized by adding a perturbation control solution to the mountain forced solution.

The mountain forced solution was obtained by first integrating the model from an

initial state that was independent of longitude as the mountain was raised from zero to its
full height in 12 hours. Then the integration was continued, and the average from t = 18
hours to t = 30 hours was taken to be the mountain mean state. When the model was
integrated from the mountain forced solution the field evolved slowly, which showed that
the mountain-forced solution was not a steady state. Various experiments were carried out
by changing the initial disturbance amplitude, the mountain height, the mountain length
and half-width of the basic state jet. All of the initial disturbances were shifted so that the
initial low center was 15° of longitude west of the ridge crest.
The relative importance of superposition and enhanced growth in lee cyclogenesis was
determined by subtracting the time dependent mountain solution from the interactive
solution and comparing the result with the perturbation control solution. The vast majority
of the experiments showed that most of the lee growth could be explained by superposition.
The main exception was a large amplitude initial state case in which superposition
explained only 35% of the lee growth. Most of the experiments showed enhanced growth
of 9-22%. However, two experiments had negative enhanced growth (that is, superposition
gave a larger change than was observed).

These results show that there may be a dynamic enhancement of lee cyclogenesis of
10 to 20% that comes forin the interaction between the cyclone, the topography and the
mountain forced mean flow. However, there were enough uncertainties in the numerical
experiments that we can not be sure that there was any dynamical enhancement in the
process. One problem was that the mountain forced solution did not give a steady state. In
fact a disturbance developed in the mountain only solution that could have spuriously
interacted with the lee cyclone. Also, when the cyclone was added to he mountain solution,
the resulting fields may not have been in balance, and this could have led to inertial-gravity
wave oscillations.
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Our results demonstrated that topography can affect the cyclone structure and its
path. As the cyclones moved up the slope they were deflected to the north, and as they
moved down the lee slope they moved back to their original latitude. This behavior was
modeled by Buzzi et al (1987) with a linearized, two-layer quasi-geostrophic model, and
the basic mechanism was originally discussed by Newton (1956). It may be that weak
Kelvin waves were excited by the interaction between the cyclone and the topography (Gill,
1977). These waves would tend to move north on the upwind slope and south on the lee
slope. It was found that the interactive cyclones moved faster over the crest of the
mountain than the control cyclones. This effect was also found in the semi-geostrophic
solutions in Part I, and it was caused by the advection by the divergent part of the flow over
the topography. The superposition process also led to a speeding up of the disturbance as
it moved over the crest because the topographically forced high tended to "hold back" the
low on the upwind side and "push it ahead" on the lee side.

Further research is needed to determine whether or not there is significant dynamic
enhancement of lee cyclogenesis. It would be highly desirable to find a true steady-state
mountain solution, which could then be analyzed directly for stability.
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Jet Mountain ¢, Doubling  Phase Lee

Width Height Time speed Growth Interaction
Model Run (°latitude) (km) (h) (h) C /day) (mb)
Control A 16 0.0 0 14 18
Control B 8 0.0 0 24 14
Exp Ia 16 1.5 24 13 22 14.0 9%
Exp Id 16 1.5 60 13 22 11.0 65%
Exp Ila 16 3.0 24 14 25 14.0 12%
Exp IId 16 3.0 60 13 25 184 11%
Exp Illa 8 1.5 24 23 28 7.0 9%
Exp Illc 8 1.5 48 17 28 7.0 33%
Exp IVa 8 3.0 24 21 28 8.0 11%
Exp IVc 8 3.0 48 32 20 7.0 11%
Exp Va 16 3.0 48 20 28 -123 -17%
Exp Vb 16 3.0 48 14 22 10.6 22%

Table 1 Summary of Experiments




List of Figures

Fig. 1 Meridional cross section of the zonal mean wind . Contour interval = Sms™; 20 ms™ contour is
emphasized: a) Control Run A; b) 'Control Run B.

Fig. 2 Topographic surface for standard mountains.

Fig. 3 Meridional cross section of the zonal wind fory (0): a) away from the mountain; b) at the ridge.
Contour interval = Sms™ ; Oms™ contour is em;};thasized. Negative values are dashed.

Fig. 4 Sea level pressure fory, (t) for standard 1.5 km mountains. Heavy vertical lines indicate the
location of the mountain ridge: a)t = 0;b) t = 12 h; ¢) t = 24 h. Contour interval = Smb; 1030
mb contour is emphasized.

Fig. 5 Sea level pressure for Control run A (» (t)): a)t = 0;b)t =24 h;c)t =48 h;d)t = 72 h;e)t =
96 h. Contour interval = Smb; 1010 mlc) contour is emphasized.

Fig. 6 Magnitude (solid line) and location (dashed line) of the minimum disturbance pressure (') for
Control run A.

Fig. 7 As in Fig. 6, but for Control run B.

Fig. 8 Magnitude (solid lines) and location (dashed lines) of minimum sea level pressure for Control run
A (heavy lines) and for Interactive run of Experiment I (thin lines). Time at which system was
near the mountain ridge is indicated by heavy dotted lines.

Fig. 9 As in Fig. 8, except for disturbance pressures.

Fig. 10 Mountain topography used for Experiment V.,

Fig. 11 Surface pressure deviation fields for Control (left) and Interactive (right) runs at three hour
intervals, and tracks of the disturbance centers for Experiment Ia. Heavy vertical lines in
Interactive panels show position of ridge line. Contour intervals are 0.S mb for hours 24-33; 1.0

mb for hours 36-48.

Fig. 12 Asin Fig 11, except for Experiment Id. Contour intervals are 2.0 mb for hours 60-78; 5.0 mb for
hours 81-84.

Fig. 13 Asin Fig 11, except for Experiment [1a Contour intervals are 0.5 mb for hours 24-33; 1.0 mb for
hours 36-48.

Fig. 14 Asin Fig 11, except for Experiment IIla. Contour intervals are 0.5 mb for hours 24-45; 1.0 mb
for hour 45.

Fig. 15 Asin Fig 11, except for Experiment Va. Contour intervals are 1.0 mb for hours 48-57; 5.0 mb for
hours 60-72.

Fig. 16 Asin Fig 11, except for Experiment Vb. Contour intervals are 1.0 mb for hours 48-57; 2.0 mb for
hours 60-72.
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