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DOPPLER STATISTICS OF OCEAN VELOCITY VARIABILITY

[. INTRODUCTION

In the past decade, the oceanographic community has shown a great deal of
interest in the use of high-frequency-Doppler sonar to measure the ocean
velocity field. Pinkel (1979, 1981) successfully used a 87.5-kHz, 3-kW system
mounted on the R/P FLIP to measure the velocity of internal waves. Regier
(1982) and Joyce et al. (1982) demonstrated that a Doppler profiler can be
employed underway from a ship to measure current shear. L'Hermitte (1973) and
Farmer and Crawford (1983) used coherent Doppler sonar techniques to iufer
ocean currents. Recent review articles in ocean Doppler sonar techniques
include Pinkel (1979) and Mathews and Hicks (1981).

Despite all of this recent work in the area of Doppler sonar, there has
been only limited research into the relationship between Doppler signal
statistics and ocean velocity statistics, and into the intrinsic limits of
performance of oceanographic Doppler sonar systems imposed by the nature of
the velocity field itself, in particular, by the spatial statistics of the
velocity field. Oceanographic boppler systems typically are limited to
estimating the Doppler shift associated with the component of velocity along
the mean acoustic ray path of the beam pattern, averaged over the scattering
volume. The effect of a random component of the velocity field and the effect
of the component of velocity transverse to the mean beam pattern axis is to
produce Doppler spectral broadening that is usually treated as noise. (See,
for example, Pinkel (1981), who employed the spectral estimation techniques of
Rummler (1968) to obtain internal wave-induced Doppler velocities.)

The problem of Doppler broadening by random velocity fluctuations and by
flow perpendicular to a finite sized beam pattern has drawn some interest both
in the general ultrasound literature (see Mathews and Hicks, 1981) and in the
laser flow literature (see Edwards et al., 1971). Doppler broadening by a
random velocity field has been considered by a number of authors, including




Green (1964), Rasmussen and Head (1978), Farmer (1983), and L'Hermitte
(1983). Their results show that this type of Doppler broadening is
proportional to the rms value of the fluctuating velocity.

Brown and Clifford (1973), Brown (1974), and Sullivan and Kemp (1979),
among others, examined Doppler broadening effects due the advection of the
component of the velocity field perpendicular to the beam pattern axis.
Newhouse et al. (1980) and Albright (1976) examined the combination of both of
the above effects.

The purpose of this report is to develop a model that will be useful in
obtaining the relationship between the space/time statistics of the ocean
velocity field and those of the returned acoustic signal for a pulsed, high-
frequency, narrowbeam, monostatic sonar system -- the type of system commonly
employed in oceanographic measurements. Special attention is given to the
statistics of the pulse-to-pulse correlation function, in particular, its
variance, which is a fourth-order moment. Also, the utility of using the
statistics of the returned signal to infer information about the spatial
structure of the microstructure velocity field is analyzed.




IT. SCATTERING MODEL

Consider the signal received by a narrowbeam, pulsed, monostatic sonar
resulting from the acoustic scattering of discrete particles embedded in a
randomly moving fluid. The following assumptions are made:

1. The frequency is sufficiently high that, in the farfield, straightline
geometric acoustic propagation applies.

2. The scatterers are assumed to follow the fluid motion perfectly.

The returned signal, then, is a linear sum of reradiated replicas of the
transmitted signal, modulated ih‘amplitude by individual particles strength,
transmission loss, and the transmitter/receiver beam pattern, and in phase by
the location of each scatterer. Only the farfield case will be examined.

A monostatic sonar transmits a series of identical pulses ¢T(t) of
duration Tp repeatable at time interval T,. Each pulse is expressed as the
Fourier series over the pulse duration Tp. Thus,

®
oT(t) = I yk exp(iwkt) for -Tp/2 < t < Tp/2 ,
k=-
(1a)
¢T(t) = O for Tp/2 < t «Tp - Tp/2 ,

and

o1l - (n - 1)T;] = &1(t) for0st-(n-1)T, ST, , (1h)
n=1, 2, 3,

where wg = 2rk/Tp = kiw. The pulse is taken as narrowband about some center
frequency ugq, with

l¥qer| %0,




where r « q, with the bandwidth B given by B = 2r&w. The contribution of
ambiguous scattering volumes in the returned signal is ignored. (This can be

accomplished by either taking

Tr > 2Rmax/c » Tp ’

where Rpax is the maximum range at which the returned scatterer signal is
above some prescribed detection threshold, or by the use of a series of
narrowband pulses with a sufficiently wide range of center frequencies.)

The returned signal ¢(t) of a narrowbeam, monostatic sonar system
operating in the geometric acoustics regime is just the sum of the
contributions of the individual discrete scatterers and can be represented by

o(t) = & dr b2(n)a(r)p(r,t)éy(t - 2r/c) ,
= £ dr £ b2(n)a(r)p(r,t) I gy exp ilwk(t-2r/c)} , (2)

where b(n), n = r/r is the beam pattern function. The summation over K will
be understood to mean, subsequently, over all k, from +» to -». The radial
integral in equation (2) is also understood to be constrained by the pulse
duration, i.e.,

c(t - Tp)/2 < 1 < c(t + Tp)/2 .
The discrete scatterer density function p(r,t) is defined as

N
p(r,t) = L 8[r - r(Xj, t - t5)], (3)
j=1

where r(X,t) is the vector position (at time t) of a fluid element. This
representation is termed Lagrangian in fluid dynamics (see Lamb, 1932). The
position at initial time t = O, namely X, is defined by X = r(X,0). For
scatterers being advected with the fluid, X; represents the initial position




of the jth scatterer. The factor t - tj in r of equation (3) is the time at

which acoustic energy was reflected from the jth scatterer, which was located
at the time of scattering (i.e., t - tj) at location r(Xj. t - tj).

The discussion is confined to the case where the scatterers follow the fluid

perfectly. The quantity a(r) in equation (2) is taken as real and represents
the signal amplitude resulting from the combined effects of transmission loss
and scattering strength.

Consider the received signal ¢y(t) due to the mth pulse. From equations
(2) and (1b), it follows that

ém(t) = & dr T yk b2(n)a(r)p(r,t) exp{iuk[t-(m-1)T,-2r/c]} . (4)
v

The subscript V in equation (4) indicates that the volume integral is over
scatterers ensonified by the mth pulse. A range gate is now applied to ¢y,(t)
and the returned gated function ¢y(t') is defined as

$p(t') = h(t )og(t) , (5)
where

t" =t - (m-1)Tp - ty
and

h = h(t') for -Tg/2 s t' s Tg/2 ,

h=20 otherwise.
Now, take

Ty « Tp .




Here, T, .s the duration of the range gate and tp is the time delay of the
range gate. Substitution of equation (4) into (5) yields

dp(t') = h(t') Jdr £ b2(n)a(r)elr,t' + (m - 1)T; + tqlyk
v

expliwg(t' +tg-2r/c)] ,

% h(t')a(Ry) & dr £ b2(n)p[r,t' + (m - 1)Tp + tglwk
v

exp{iwk[t +2(Rg-r)]/c} , (6)

where Ry = ctp/2 » cTp/2 . The signal amplitude factor in equation (8) has
been taken to be

a(r) 3 a(Rg) .

The volume integral in (6) at any instant t' (see figure 1) is taken over the

range interval

rySr-RysSry, (7)
with

£y = c(t' - Tp/2)/2 (8a)
and

ry = c(t' + Tp/2)/2 . (8b)

Equation (6) represents the starting point for Doppler processing. Pinkel
(1981) estimates Doppler shift by calculating an incoherent average cf the




clem + t)/2

X SOURCE/RECEIVER AT Z =0

Y

Figure 1. Scattering Volume Contribution
(The radial contribution of scatterers for the mth pulse transmitted during the
time interval (m-1)Tp-Tp/2 S t 3 (m-1)T;+Ty/2, where T, is the repetition
rate, Tp is the pulse duration, and t' refers to the receiver gate time
defined over the gate interval 0 s t's T = Tp.)

mean of the spectral estimate of $y(t') over the gated time interval Tj.
(This is a technique first suggested by Rummler, 1968.) The Doppler velocity
sensitivity of each estimate in the average is defined by the effective pulse
duration and is improved by performing an incoherent average over spectral
estimates of a set of pulses over a time period such that the estimated
Doppler-shifted velocity remains approximately constant.




In this report, the pulse-to-pulse statistics of ¢y(t') will be
examined. The statistics of the probiem enter through the Lagrangian position
vector r(Xj.t) in the scatterer density function p(r,t) given by equation
(3). One can decompose r(X;,t) as

r(X;,t) = Xj + dj , (9)

where di = d(X;,t) is the relative displacement of a scatterer from its
initial position Xj. Note the difference in the statistics of Xj and d;.

X; refers to the position of scatterers at a particular instant of time (in
this case, the initial instant of time t = 0), while d; is the displacement
from that position due to advection by the fluid velocity field. It will be
assumed that X; has an equiprobability of initially being anywhere in the
spatial domain of the problem (or, equivalently, each of the N scatterers are
placed equiprobably throughout the volume). Note that the statistics of Xj
and dj are independent and that, therefore, for any function F(Xj.dj), the
ensemble average <F(Xj,di)> can be written as

<F(Xj,dj)> = <«<F>xoq = <«<P>@x
where

<F>x = [ dX; FP(X;) ,
and

<F>q4 = J dd; FP(d;) ,

rzspectively, and P( ) indicates the probability density function. The time
average is also defined as

T
(G- = (/T) 5 dt (1),
0




and the space average as

L
((---)L = (/L) S dx (--) .
0

It is straightforward to show from equation (6) that the time average of the
received signal, the first-order time statistic, is zero:

[en(t' )], = O . (10)

For the second-order statistics, the pulse-to-pulse gated temporal correlation
function Sy is defined in the usual fashion and can be written as

S'am = [®n(t')on(t')IT; = «(Rp)a(Rp)<h?(t’) § dr' § dr"b%(n')b2(n")
Vn vm

I yv*1 exp{i(wp-w))t +2i[w](Ry-r' )] (Ryp-1")}/c}
k,l1

plr',t'+(n-1)Tp+tq] p[r",t'+(m—1)Tr+tm]>T[ , (11)

where the scattering volumes V,, Vp from equation (7) limit the range of
integration of (11) to

rl.s.r—Rn;rz,
and

ry St -Ry Sy,

respectively. Note from equations (8) that ry = c(t' - Tp/2)/2 and r3 =

c(t' + Tp/2)/2. In the appendix, a detailed derivation is carried out for the
normalized pulse-to-pulse correlation function Spp = S'pm/S'nn for the case in
which the largest scale of the fluctuation field is smaller than the range
dimension of the scattering volume. Generalization of these results to the




case where the scattering volume is smaller than the largest scale of the
microstructure field, as discussed in the appendix, is straightforward but
algebraically complicated. The final result of the appendix derivation is
equation (A-31); namely,

Snm = I w1¥*] J dopb?(np) expli2w)vh(m-n)Tr-np/c)
!

exp{iw][2vz(m-n)Ty/c~8t]} § dEg(E) exp{iw[2v',(m-n)Tp/cl} , (12)

where

Vg = vV'g(z) ,
and

£ = (z - R)/8z ,
with 4z = cTp/2 and R = Ry . Also, vz is the mean velocity averaged over the
scattering volume, equation (A-26), in the direction of the mean ray axis of
the beam pattern; v', is the random velocity in the direction of the mean ray
axis of the transducer, and vy is the vector component of velocity

perpendicular to the mean ray axis of the beam pattern. The range gate used
in deriving equation (12) takes Ty = Tp

and
h=1 for -Ty/2 s t' = Tp/2 ,
h=20 otherwise.
[t should be noted that equation (12) has appeared in a variety of forms in

the scientific literature. See, for example, Green (1964), Edwards et al.
(1971), Albright (1976), and Farmer (1983).

10




Equation (12) is further simplified by writing it in the form of the
product of three terms, namely,

Snm = E £1K1Q1 (13)
where
] = y¥7 (14)

(with 2] normalized, namely, L £} = 1) is the lth spectral component of the
transmitted pulse; and where

K] = § dopb?(np) exp(i2w]Vh(m-n)Tp-np/c] (15)

represents the contribution from the component of velocity perpendicular to
the mean ray axis; and

Q1 = expli2wj(m-n)Ty(vy-cat/2)/c] § dEg(E) expli2w)(m-n)T,v',/c] (16)
is the contribution to the correlation function from the component of velocity
along the mean ray axis of the transducer, including both mean and random
components. Note that, if v'; = 0 and v = O, substitution of equation (16)
into (13) yields

Sam = L ¥1¥*1Q] = E ¥]y+] exp{i exp[i2w)(m-n)T (v,-cAx/2)/c]} . (17)

Equation (17) is the theoretical basis for a coherent Doppler estimate of v,.
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[II. INPUT OF FLUID VELOCITY STATISTICS

Consider the role of the mean along-beam velocity component. From the
form of equations (13) and (16), Spy has a maximum if

At = 2v,(m - n)Tp/c , (18)

which can be interpreted as an along-beam alignment of the mth and nth
scattering volumes, which are separated by the time interval (m - n)T,.
Equivalently, the phase difference of the two received signals produced by v,
in equation (16) can be compensated for by adjusting At to maximize Spy. The
use of equation (18) represents a coherent Doppler estimate of .he cean
velocity in the direction of the sonar axis (L'Hermitte, 1983). The use of
equation (18) in (16) results in

Qp = J d£g(8) expli2w](m-n)T,v'z/c] . (19)

Consider the factor K} in equation (13), which from equation (A-10) is
recognized as a fourfold convolution integral of the aperture function w:

K] = wlvp(m - n)Ty - x'[*w*w*w , (20)
where the convolution operator is defined as
Ux - x')*'V =« § dx'U(x - x")V(x').

It is straightforward to show that if the weight w has characteristic lengths
Lx, Ly, then the fourfold convolution of w, i.e., equation (20), also has
characteristic lengths Ly, Ly. Thus K], which is the sole contributor to the
pulse-to-pulse correlation function in the absence of any radial velocity
fluctuations on the scale of the scattering volume and smaller, has a
characteristic length scale of the dimensions of the sonar aperture.
Therefore, K| (and, hence, Spy) becomes small when

Vh(m - n)T; > L, (21)

13




where L = (Lx, Ly) is the characteristic vector length scale of the sonar
aperture. Thus, v,,L can be combined to form a characteristic time of
decorrelation.

Note from equation (19) that Q) is a spatial average. Consider the
circumstances under which this spatial average can be used in place of an
ensemble average over displacement statistics, i.e, when

Q1 = «Q1>q - (22)

Assuming Gaussian statistics and a homogeneous turbulence (Hinze, 1959) model
for the microstructure velocity field yields from equation (19)

<Qp>d = § dEg(E)<exp[i2w] (m-n)Tpv' z/c]>g = exp -T2, (23)
where

T = (m-n)T/vg (24a)
with

(t0)"2 = 2612 <(v'7)®>q (24b)

where x| = w)/c. Note that tp represents the characteristic decorrelation
time associated with v'; -- the radial velocity fluctuations on the scale of
the scattering volume and smaller. It should be noted that results similar to
equation (23) have been derived by a number of authors; see, among others,
Green (1964), Edwards et al. (1971), Albright (1976), and Farmer (1983).

To examine the validity of equating the spatial average with the ensemble
average, i.e., equation (22), consider the variance of Q) defined by

8 = <(Q - <Q1>g)®d
= <Qp>g% S dEdE ' g(£)g(E' ) {exp[232Ry(2z-2")]-1} , (25)

14




where £ is defined in equation (12) and Ry is the normalized fluctuating
z-component velocity correlation function:

Ry(z - z') = «v'z(2)v'z(z' >a/<(vz)2>q - (26)

The spatial dependence of Ry on the difference variable z - z' results from
the assumption of homogeneity for the fluctuating field v',. Note that 8,
equation (25), is a fourth-order statistic of the received signal.

By definition, |Ry| S 1, with the limiting value Ry = 0 corresponding to
uncorrelated variability on the scale of the scattering volume and smaller for
which case, from equation (25), ® = 0 and

Q= <«Qq .
However, in general, Ry # 0 and, thus, 8 # 0, and Q # <Q>q .

As a simple example illustrating the nature of equation (25), set g(§) =
1 (even though this is not true and g is given by the triangle function, the
difference in results being a constant on the order of 1) and let Ry be given
by the simple expression

Ry(z) = 1 - z/1 forzs1,
(27)
Ry(z) = 0 forz»> 1,

where 1 is interpreted as the characteristic scale of the variability. This
simplification still retains the essential physics of the velocity correlation
function and its role in equation (25). The resulting © is plotted in figure
2 versus t for different values of the nondimensional parameter xg =~ (1/4z),
the ratio of the velocity variability length scale to the along-range
dimension of the scattering volume. Figure 2 also shows a plot of [<Q1>4)? -
fluid velocity field in the z-direction becomes very small compared with the
exp -2t versus . Note that as xg ~ 0, i.e., the spatial length scale of the

15




0 xg=1

o x0=05
A x9=0.2
o xg=0.1

o
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%o 90090
ac BAoase ¥
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0 05 10 15 20 25 30 35 40

T =(m-n)Te/g

Figure 2. Second- and Fourth-Order Moments
(The solid line is the function <Q]>q, equation (23); the symbols refer to
families of ©, equation (25), for different ratios of xg = 1/4z, with g(§) =
1 and equation (27) as the model for microstructure correlation function.)

scattering volume dimension Az, ® - 0. This implies that the variability
characterized by scales that are small relative to the scattering volume (in
the z-direction) result in small @ and, hence, Q = «Q>4. As xg -1, ©
increases and Q # <Q>4. From the general form of equation (25), note that
different spatial scales of the velocity field contribute to ® for different
t, the largest scales contributing relatively more for small T and the
smallest scales contributing more for larger T. To understand this, note that
from equation (25)

16




(d8/d(T2)]z.0 = 22 , (28)
where A is the integral scale defined by
A = Jf dEdE'g(£)g(E )Ry(z - 2') .

The integral scale is a measure of the largest scale of the variability. (See
Hinze (1959) for a discussion of integral scale in turbulence theory.) This
behavior is indicated through the family of different xg values in figure 2 by
noting the large change in the slope of © near T = 0, for increasing xg.

At large times T, only the smallest values of Ry(z - z') (and, hence,
smallest scales) contribute, since Ry is, in general, a monotonically
decreasing function for realistic ocean microstructure fields. Using the
lowest order expansion of Ry(z - z'), namely,

Ry(z - z') =1 - |z - 2z'|2/(212),

where 1,, is termed the turbulent microscale, which is a measure of the
smallest scale of the variability field (see Hinze, 1959, or Tatarski, 1971),
in equation (25) yields for T > 1 the approximation

<(Q1)2>4 = S dEdg'g(£)g(E') expl-(z-z')2%2/1,2] & 1,/(34z) . (29)

Note that while the function Q) contains information on the variance of the
velocity field, ® or <(Q1)2>4 contains additional information on the spatial
structure of the velocity field. Conversely, estimates of both Q) and & from
measurements might allow estimates not only of the variance <(v';)2>4 but also
of the velocity correlation function Ry and, in turn, its Fourier transform,
the velocity wavenumber spectrum.
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IV. OCEAN APPLICATION

The theory developed in sections II and IIl is applied here to the case
of ocean velocity statistics modeled as microstructure. The notation and
coordinate system of the earlier sections are continued. Note that the
z-coordinate is along the mean ray axis of the beam pattern. The dominant
velocity field transverse to the beam axis is in the horizontal. As a
concrete example, consider a moored, pulsed, monostatic, sonar system. A
comparison will be made between the operational parameters for a Doppler
velocity estimate and a velocity estimate that would be inferred through the
use of the higher order statistic <(Ql)2>dr given through equation (25), along
with the second-order statistic <Q]>q, from equation (23). This latter
estimation technique is called stochastic Doppler because it involves the
direct relationship between the ensemble statistics of the acoustic field and
the ensemble statistics of the oceanographic velocity field, in contrast to
traditional Doppler, which estimates velocity in real time.

The inverse relationship between the statistics of the velocity field and
® or <(Ql)2>d is not developed in this section, but is left for a subsequent
report. Rather, the limits of performance of the both traditional Doppler and
this new stochastic Doppler are examined in terms of the minimum spatial
resolution, maximum velocity sensitivity, and ranges potentially achievable,
given system noise and the variance of an estimate caused by the finite number
of degrees of freedom intrinsic to the measurement of microstructure.

In examining the constraints imposed on real-world operation, other
factors will be ignored for simplicity. These include the individual
scatterer strength and intrinsic phase variability (apart from relative
location, which is considered in this work), scatterer motion relative to the
fluid, and phase fluctuations from propagation through random index-of-
refraction variability. (Note that it may be possible to infer scatterer
motion relative to the fluid to the resolution/sensitivity discussed below if
such motion is statistically different from the fluid motion.) In addition,
the reader is reminded that an incoherent scatterer model has been used with a
large number of scatterers per unit scattering volume.

19




Small-scale ocean variability, which includes internal waves,
finestructure, and microstructure, is here defined as variability on the order
of and less than internal waves, i.e., spatial scales of tens of kilometers
horizontally, hundreds of meters vertically, time scales between the inertial
period (on the order of 24 hours at mid-latitude) and the buoyancy period
(typically 10 to 20 minutes). A "canonical" vertical wavenumber spectrum of
velocity variability, based on observed data, is shown in figure 3 from
Gargett et al. (1981). Note the regimes of internal waves, finestructure, and
microstructure. Implicit in this model is that microstructure is isotropic
with a characteristic (largest) scale size 1, and a dissipative (or smallest)
scale size 1,,. Note that 1 = meters and l, S centimeters for ocean
microstructure and that the spectral level of velocity microstructure varies,
following the three curves (I, [I, III) of figure 3.

1 -
107~ &(x) = 3.8 x 1076x-2 2

k) = 3.8 x 1073 -3

INTERNAL
10-5 WAVES

(M/SEC)2/CPM

&{x) = 3.8 x 10-6¢-5/3 }

FINE-
STRUCTURE

MICROSTRUCTURE
T

1 1
10-2 10-1 100 10 102 WAVE'Q&MBER

Figure 3. Observed Vertical Wavenumber Spectrum of Small-Scale Ocean Velocity
(From Gargett et al. (1981). Shown are three levels of microstructure,
labeled I, II, and III. Also indicated are regimes of internal waves,
finestructure, and microstructure.)
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The Doppler approach is considered first. This analysis is similar to
that of Pinkel (1981) for the internal wave range used in the R/P FLIP's
87.5-kHz sonar system, except that the coherent Doppler technique is used
(rather than the Rummler (1968) technique), since the problem has been
formulated in that manner. It can be shown that the two techniques yield the
same level of sensitivity/precision for the same number of independent,
real-time, velocity estimates.

The estimate of Doppler velocity is obtained from equation (18) via the
shifted time delay At = 2v,(m - n)T,/c, where v, is the spatially averaged
mean, defined by equation (A-26) in the appendix. Using equation (17) for the
case where v', is negiigible, which would occur if the scattering volume were
sufficiently small, then from equation (16) Q] = 1 when At = 2v,(m - n)Ty/c.
However, the contribution of K] in equation (13), which contains the effect of
motion perpendicular to the mean beam axis and represents a Doppler spread
effect, must be considered. (For examination of this effect, see (among
others) Green, 1964, and Brown, 1973.) As discussed in section IIIl, K] is
nonzero over a time scale L/v*, where v* is the characteristic velocity of
flow perpendicular to the mean beam axis, and L is the characteristic
dimensior of the sonar in the direction of v*. Note also that if a mean
shear, q = |V,vz|, of the along-beam velocity is present, it is
straightforward to show that there is a decorrelation effect of the same form
as equation (20) for the transverse component of flow. The same scaling for a
characteristic decorrelation time occurs; namely, L/v*, with v* & qR, R being
the range. This can also be derived from equation (A-25) using (A-10) by
including the shear term in the expansion for the mean velocity in equation
(A-26), whence, with this substitution, the shear term q has the same effect
as the mean component of flow perpendicular to the mean ray axis.

Thus, for an estimate of velocity from the pulse-to-pulse correlation
function Spy, the time delay between pulses must be restricted to

v = (m-n)Ty < Tgax = L/V* , (30)
where v* is taken as the maximum of gR and the transverse velocity component
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(perpendicular to the mean ray axis), and where equation (17) can be used to
estimate the Doppler time delay At. Note from equation (30) that the maximum
number of correlated sequential pulses p is given by

p=(o- n)pgax = L/(Tev*) .

The maximum time delay At = Atpax over which an estimate of the mean velocity

v, can be made is on the order of
Atgax = 2VzPTp/c & 2L(vg/v7)/c . (31)

To resolve this time shift, which is estimated by maximizing Spm (and hence
Q1) given by equation (18), namely,

Q) -~ expli2w](m-n)Tp(vz-c8t/2)/c] ,

it is necessary that the fluctuation level of Spy, A4S, due both to statistical
variability of the returned signal (so-called "speckle noise”) and system
noise, be less than the variation in Spp due to some prescribed variation
(desired precision) in vz, §vz; i.e.,

(88)2 ¢ 2SS = 2Sam(35/8Vz)maxéVz & dxqlévz/v” . (32)
nm nm max q

where the subscript q refers to the center frequency of the transmitted
(narrowband) pulse. Equation (32) has been evaluated at tpax and Spy has been
taken as & 1. If N-1 is the system signal-to-noise ratio, then (aS)2 is given

by
<(88)2> = 2[N2 + (1/BTp)] , (33)

the factor 2 arising because Spp iS @ second-order statistic, whence equation
(32) becomes

[(1/BTp) + N2] s [2rqL(¥2/Vv*}] . (34)
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Equation (34) can be further simplified. Let | be the spatial scale of the
velocity field necessary to be resolved. A pulse duration time Tp must then
be chosen that is no longer than

Tp =2 l/c . (35)
For a narrow-bandwidth pulse, one can write

B = wg/Q ., (36)
where wq is the center frequency of the transmitted pulse; for a narrow-
beamwidth planar transducer, one can use the approximation (Kinsler et al.,
1982) o

L/(2m) = 1/xqo , (37)

where v is the half-angle beamwidth, kq = wg/C. Substituting equations (35)
through (37) into (32) yields

[Q/(2xql) + N2] s [4w &vy/(wv*)] . (38)

Equation (38) can be considered the fundamental equation for setting
sensitivity/resolution limits for the mean Doppler estimate v,.

From figure 3, the model wavenumber spectrum of velocity microstructure
goes as Ex-5/3. The velocity sensitivity Av, corresponding to the spatial
scale is given by

§v, 5 E'11/3 | (39)
where, from figure 3, E' has the typical range of values
3 x 10-3m2/3/sec > E' > 10-3m2/3/sec |,

corresponding to strong and weak turbulence limits (i.e., curves [ and III,
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respectively, in figure 3). Substitution of equation (39) into (38) for the
case of zero system noise (N = 0) yields the minimum resolution criterion

12 [qu'/(BWKQE')]0'75 , : (40)
while for the case dominated by system noise, it yields

1 2 [N2vv*/(4nE')}3 . (41)
As an example, for the sonar parameters,

v = 1° = 1.7 x 10~2 radians,

Q = 15, and

fg = 100 kHz and 1 MHz,
table 1a shows the minimum spatial resolution for a signal-to-noise ratio of
20 log (N) = -10 dB. A value of v* = 0.3 meter/second and the weak turbulence
limit of figure 3 (E' = 10-3m2/311/3) have been used. Table 1a indicates that
over this frequency range coherent Doppler does have sufficient spatial
resolution to resolve the microstructure spectrum to scales on the order of
centimeters. However, to achieve this '] resolution for an isotropic
microstructure field, the transverse dimension of the scattering volume

(perpendicular to the mean ray axis) must be on the order of 1 and, hence, the
range is restricted to

R¢l/(2v) 8301,
with the range limited to less than 1 meter for | on the order of
centimeters. However, the range extent of the nearfield of a planar

transducer can be written (Kinsler et al., 1982) as

Rnearfield = 7/ (8xqu?) = 3.25 meters and 0.325 meters
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Table 1a. Sensitivity Limits: Spatial Resolution of Coherent Doppler

N2 =0 N2 - 0.1
1 MHz 0.44 cm 0.60 cm
100 kHz 2.5 cm 3.1 cm

for the 100-kHz and 1-MHz cases, respectively. Thus, although the sonar has
the spatial resolution and velocity sensitivity necessary to resolve
microstructure using a coherent Doppler estimate, the range over which this
occurs is very restrictive. The upper limit of 1 MHz for the calculation used
here was chosen somewhat arbitrarily based on transducer size, power output,
and range constraints. However, both equations (40) and (41) show a less than
linear increase in spatial resolution with increasing frequency.

Note that equations (23) and (25) establish relationships between the
statistics of the received signal and those of the velocity field, namely,
<(v'z)%>q and 2[1 - Ry(z)]}<(v'z)%>q, the variance and the structure function,
averaged over the scattering volume. Since this average is taken over a
spatial scale on the order of the largest scale of the microstructure field,
these relationships allow a relaxation of the spatial resolution criteria used
in Doppler estimates of the instantaneous velocity fluctuation from the
smallest scale of the variability field to the largest scale of the
variability, provided that the sensitivity of the estimate of the velocity
field statistics is sufficient to resolve the microstructure. This, in turn,
would increase the range capability to the order of 30 meters for 1 = 1 meter
and to 300 meters for | = 10 meters. The estimates of <(v';)2>q and
2[1 - Rv(z)]<(v'z)2>d obtained through the use of equations (23) and (25) are
called stochastic Doppler estimates.
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From this viewpoint, the sonar parameters are set such that the
scattering volume is on the order of (or larger than) the characteristic
volume of the velocity microstructure, which is on the order of meters. Note
that, for 1 > 1 meter, the mean velocity component v, corresponds to
oceanographic processes of larger scale than microstructure and, from equation
(38), can be estimated to be on the order of 0.1 mm/sec for N2 = 0.1 and for
the same sonar parameters used in the calculations of table 1a. Thus, the
variance of a v, estimate corresponding to spatial scales greater than 1 meter
would not be a limiting factor in the estimation of parameters associated with
the microstructure field by the use of equations (23) and (25). A
characteristic parameter that has arisen in the stochastic Doppler
relationships of (23) and (25) is the decorrelation time (namely, <g)
associated with the variability of scales on the order of the scattering
volume and smaller given by equation (24a). The maximum number of correlation
times obtainable is limited by the effect of transverse flow past the sonar
and, following the discussion above, is easily seen as given by

Emax - Tmax/‘to - [2( (V'z)2>d]1/2K‘qL/V*
= (2m)[2¢(v'7)%>q11/2/(w*) = 1.74 (42)
for the sonar parameters used above, with v* = 0.3 meter/second and <(v'z)2>d
calculated from equation (39) and the weak turbulence limit. To obtain the
precision possible using the stochastic Doppler approach, the variance of Qq
will be used as the fundamental relationship between the acoustics and the

fluid velocity field, with the along-beam mean component removed by equation
(18). Accordingly, from equations (23) and (25),

<Qq2>d = Jf dedg'g(£)8(E" ) {exp[-272Ry(z-2")]-1} ,
where T S Tpayx , With Tgax given by equation (42).
From equation (29) with 1 = AZ for T = Tpax
Qq2>d = 1v/(Tmaxl) = {lyv™v[2¢v'7)2>q11/2/(2n1)} . (43)
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Thus, equation (43) can be used as the smallest <Qq2>d to be resolved in order
to have sufficient sensitivity to resolve the smallest scale of the

microstructure 1,,. Let (AS)2 be the fluctuation level of (Qq)2 due to speckle
noise and system noise; then, since equation (43) is a fourth-order statistic,

(48)2 = 4(1/BTp + N2) . (44)

The sensitivity can be further improved if there exists some number of
independent samples of the returned signal ng over which v', is stationary, in
which case (4S)2 would be reduced by 1/ng. Thus, the criterion for resolving
the smallest scale of microstructure 1,, is

(1/n9)(48)2 < [1y/(Tmaxl)]? . (45)
One can write
nO - Ta/'tmax - v.ta/[a - a.l/L , (46)

where t3 = al/v* is the time period over which v'; is statistically
stationary. The parameter « is associated with the degree of anisotropy of
the larger scale variability generating the microstructure. If this field has
physics similar to that of internal waves, one would expect that « is a ratio
of horizontal-to-vertical scale of the larger scale field and that « = N/f =
100, where N is the buoyancy frequency and f is the coriolis frequency. (Note
that a can be considered as the ratio of the horizontal extent to the vertical
extent of a patch of microstructure.) Substituting equations (30), (35)-(37),
(44), and (46) into equation (45) yields

I, = {[N2 + Q/(anl)][64w3l<(v'z)2>d]/[xqau3(v')2]}1/2 . (47)

For the same sonar parameters as used for the coherent Doppler case (i.e.,
Q=15, v =1°, and v* = 0.3) but with 1 = 1 meter, the minimum resolvable 1,
for the 1-MHz and 100-kHz cases has been calculated and is shown in table 1b.
These results suggest that there is sufficient resolution to obtain 1,,,
although it is somewhat marginal at 100 kHz for the N2 = 0.1 case. Note that
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equation (47) depends only on the square root of a, the degree of anisotropy
of the microstructure patch. A factor of 10 reduction in a yields a factor of
3 reduction in sensitivity with acceptable values in all cases except the
100-kHz, N2 = 0.1 case. Also, note that equation (47) shows no dependence on
1 for the noise-free case -- a rather surprising result. Significant
improvement in sensitivity can occur by decreasing the mean transverse current
(linear dependence). The value of v* = 0.3 meter/second is an upper limit
estimate. Finally, although equation (47) shows an increase in sensitivity
with increasing beamwidth, the approximation used in equations (40) and (42)

involved tpax > 1, which from equation (42) shows a decrease in tpax with
increasing beamwidth.

Table 1b. Sensitivity Limits: Spatial Resolution of Stochastic Doppler

N .o N2 -.0.1
1 MHz 4.26 cm 1.1 cm
100 kHz 13.0 cm 3.5 cm
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V. SUMMARY AND CONCLUSIONS

This report has examined the returned signal statistics associated with
acoustic scattering from a large collection of scatterers embedded in a mode!
fluid velocity field appropriate for oceanographic application. The fluid
velocity field is three-dimensional and contains a microstructure or
"turbulent” component. The underlying acoustic model is quite simple -- a
monostatic, planar transducer projects very high frequency sound (>100 kHz)
into a very large number of identical scatterers that follow the fluid
perfectly. Identical pulses are transmitted at some constant repetition rate
Tr and then gated at some delay time corresponding to some prescribed range of
interest. The propagation is assumed to be in the geometric acoustics regime
and only the farfield case is considered. Ambiguous scattering volumes
associated with a repetitive set of transmitted pulse trains are ignored.
(This problem .s addressable either by restricting the repetition rate T; to
be much greater than the travel time to a range where the reverberation level
is below some prescribed amount or by using coded pulses.)

The components of velocity that affect the Doppler statistics of the
returned signal are:

1. The velocity component in the direction of the beam pattern axis and
on the scale of the scattering volume and larger v,;

2. The velocity component transverse to the direction of the beam pattern

axis;
3. The velocity shear field in the direction of the beam pattern axis;

4. The velocity components in the direction of the beam pattern axis and
on the scale of the scattering volume and smaller.

Since these effects have been addressed by many authors but in a variety of
contexts, a detailed derivation of the relationship of the returned signal
statistics in terms of these velocity components is presented in the
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appendix; the derivation can be summarized through equations (13), (15), and
(16).

The along-beam velocity on the scale of the scattering volume and larger
produces a Doppler shift or, equivalently, a time delay in the pulse-to-pulse
correlation function Spy. The transverse component of flow produces Doppler
broadening or, equivalently, a decorrelation in Spy. The decorrelation time
Tmax associated with the transverse component of flow is shown to be on the
order of L/v*, where L is a characteristic dimension of the sonar in the
direction of the mean transverse flow velocity v*. This decorrelation time
sets a maximum time over which a moored Doppler sonar can receive coherent
information for the model scattering field presented in this work.

Decorrelation effects or, equivalently, Doppler spread effects, caused by
velocity variability (microstructure) on scales smaller than the scattering
volume show up via the statistics of Q), equation (16), and have a
characteristic decorrelation time tg, given by equation (24b). Calculations
in section IV, i.e., equation (42), using typical oceanographic values and
sonar parameters show that tpay/tg & 1.7, and that this ratio is independent
of frequency but dependent on the beamwidth and the ratio of the micro-
structure velocity to the transverse velocity v*. These results indicate that
there is enough time of coherence to obtain the variance of the velocity
microstructure.

In section IV a comparison was made between a coherent Doppler estimate
and an estimate based on the statistical relationships, equations (23) and
(25), called stochastic Doppler. The coherent Doppler estimate from frequency
ranges of 100 kHz to 1 MHz has sufficient sensitivity to resolve the smallest
scales of ocean velocity microstructure but is very restrictive in range. On
the other hand, over the same frequency range, the stochastic Doppler
technique also appears to have the sensitivity to resolve the smallest scales
of ocean velocity microstructure with much less restriction on range.
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APPENDIX
DERIVATION OF PULSE-TO-PULSE CORRELATION FUNCTION

As discussed in the body of this report, the first-order statistics of
the received signal ¢y(t') are zero, as would be expected. For the second-
order statistics,

enm - ¢n¢.m .

Then, the pulse-to-pulse gated autocorrelation function, equation (11), is
given by

Snm = [hz(t')enm]T[ , _ (A-1)
with

Onm = a(Rp)a(Rp) & dr' § dr'b2(n')b2(n") I wiw']
Vy Vg k.1

exp{i(wg-w))t ' +2i[wk(Ry-r' )-w)(Ry-r")]/c}

p[r'.t + (n - l)Tr + Tn] p[r",t' + (m - 1)Tr + Tm] )

and the scattering volumes V, and Vp, are limited in radial extent by

ry Sr -RgsSrp for Vp .
and
riySr’' -RpgSrg for Vp ,
with
r; = c(t' - Tp/z)/z , (A-2a)
rg = c(t' - Tp/Z)/Z . (A-2b)
A-1




Since the initial position of each scatterer X; is taken as equiprobable, the
density fuaction p, being a sum of delta functions, can be considered from the
definition of the Lagrangian position vector r, i.e., from

r(Xj,t) = Xj + di ,

as a Poisson process with respect to X; (Albright, 1976). Note, also, that
the scatterer displacement is assumed to be small enough that the explicit
time dependence in p(r,t) can be neglected over the pulse duration time Tp and
the range gate time Ty. Since the scatterer initial position X; can be
described by a Poisson process, it is straightforward to show that to order
1/N, where N is the average number of scatterers in the scattering volume,

Snm = [h2(t")6nmlT; = <[h2(t')epplTp>x = [h2(t')<®@pm>xIT; (A-3)

where

®pm>X = «(Rp)a(Ry) £ dr' § dr'b2(n')b2(n") E ww*)
Vg Vg k,1

exp{i(wx—w) )t +2i{wk(Ry-r')-w](Ry-r"}]/c}
ple',t' + (n - 1)Tp + ) p(r",t" + (m - 1)Tp + 1))

- a(Rp)a(Ry) § dr' § de'b2(n')b2(n") I wiy*)
Va Vn k,1

exp{i(wy-w])t +2i[wk(Rp-r')-w] (Ry-r")1/c} pgé(r' - " + s).
(A-4)

Note that the second-order statistic for a Poisson process (Papoulis, 1965)
has been used; namely,




'

e’ t" + (n - 1)Tp + ] ple" t" + (m - 1)Tp + tgpl>x

2 ¢plr',(n - )Ty + 1) plr",(m - V)T + tqbx
= pg? + poS(r' - " + 8) , (A-5)
where
s = d[X,(m - 1)Tp + ty] - d[X,(n - 1)T + Tq]

is the displacement of a fluid element, initially at X, during the time
interval between the scattering of the nth and mth pulse. Again, since it has
been assumed that the pulse duration Tp and the gate function Ty are kept
sufficiently small, the explicit time dependence of p on t' can be neglected
in equation (A-4). However, since Ty » Tp + Ty , the dependence on
pulse-to-pulse time delay cannot be ignored. Note that the first term on the
right-hand side of equation “4-5) does not contribute to (A-4) by virtue of
equation (10). (The product of two zero-mean value terms is zero.)

Consider the effect of the delta function on the beam pattern functions

of equation (A-4). For nonzero contributions, the delta function in (A-4)
requires that

"apr +8 .
Then,

n' = (' +8)/|r +s8| s, (A-6)

since the displacements of the scatterer over the time intervals between
pulses are such that

8] « |r'| .

For the effect of the delta function on the radial spatial variables of




equation (A-4), note that contributions can occur only if the double integral
overlaps and, hence, that

[e' - " + s| $cTp/2 .

The condition for overlap of the radial component of the spatial integrals of
equation (A-4) can be written

Ry = Ry + cAt/2 = R + cAt/2 , (A~7)

where R is now identified as the range to the nth scattering volume, used as
a reference. The time delay At will be used to estimate a mean Doppler
shift. Integrating over the delta function in equation (A-4) using (A-6)
results in

-

Opm>X = R2a2(R)pg § drbd(n) T ypy*)
Vo k,l

exp{i(wg-wi)[t' +2(R-r)/cl-iw](4x-258;/c)} , (A-8)
where Vg, the scattering volume, constrains the range interval dy
rpsr-Rs=srg,

with ry, ry defined by equations (A-2a) and (A-2b), respectively. The radial
displacement S; is given by

Sy = n - 8. (A-9)

Note that in the dummy spatial variable r of integration in equation (A-8) the
prime notation has been dropped.

The beam pattern function can be written in the farfield as the Fourier
transform of the aperture function w(x); namely,

b(n) = S dxw(x) exp(iwgn-x/c) , (A-10)




where attention is confined to a planar sonar and x is taken in the x,y plane,
i.e., x = (x,y,0). (Note that the effect of finite frequency bandwidth
dependence of the beam pattern has been neglected; this effect can easily be
taken into account for the narrowband pulses in the analysis by replacing b(n)
with by(n), where k indicates the pulse Fourier series component number. The
frequency wq is the center frequency of transmission.)

Note that for a planar sonar

n - X=0hp " X,

where oy is the vector component of the radial unit vector m in the x,; plane,

i.e.,

op = (nx, ny, 0).
Then,

b(n) = b(ny). (A-11)
Substitution of equation (A-11) into (A-8) yields

Opm>X = RZa2(R)pg S drbd(np) I yiy*)
Vo k,1

exp{i(wp-w])[t'+2(R-r]/c-iw](4t-2S;/c)} . (A-12)
For a narrowbeam sonar,
ny = cos(v) 51,
since the polar angle v, defined with respect to the mean ray axis (taken as

the z-direction), is small, i.e., v « 1. Then, the radial spatial variable of
integration in equation (A-12) approximates to




r sr cos(v) =z, (A-13)
over the limits given by (A-9):

ry $z-R=ry, (A-14)
where rq, ry are given by equations (A-2a) and (A-2b), respectively. By

definition, the spatial variables of integration of equation (A-12) in the x,y
plane can be written as

X = Iy § zDp (A-15)

by virtue of (A-13). Using equations (A-13) and (A-15), the spatial volume
element of (A-9) can be written as

d3x s z2dzdny = R2dzdny |,
which results in (A-12) becoming
<8pm>X = RZa2(R)pp & dopb?(np)
Rec(t'+Tp/2)/2
Lye*] § dz exp{i(wg-w))[t'+2(R-z)/c]-iw)(At-2Sp/c)}. (A-16)
1,k R+c(t'-Tp/2)/2
Let
f1(z) = exp(2iw]Se/c) ,
where

-cTp/4 < z - R - ct'/2 < cTp/4 . (A-17)

To simplify equation (A-16), f(z) is expanded over (A-17) in the Fourier
series

A-6
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f1(z) = exp(2iw}Sp/c) = L a); exp[i(z—R—ct'/Z)nj] , (A-18)
j

where
kj = 2wj/(cTp/2) ,
and
R+ct'/2+cTp/4
alj = 1/(ch/2) J dz exp(2iw}Sy/c) exp[-i(z-R-ct'/z)nj] , (A-19)

R+ct'/2-ch/4

which, upon substitution into equation (A-16) and after some straightforward
algebra, yields

Onm>x = R%2(R)pg § dopbd(ny)(cTp/2) E wiijv*)
I,j

exp(—imlAt)al,j , (A-20)
and then substituting equation (A-20) into (A-3) yields

Snm = R2«2(R)pg dnhb4(nh)(CTp/2) L oylsj¥’l
l,j

exp(-iwjat) [b2(t")ay jlT, - (a-21)
Equation (A-20) shows that, in general, individual Fourier components of the

transmitted pulse mix, i.e., y],j¥"], contribute for m » 0 to the correlation
function Sp;. Note that for homogeneous Gaussian displacement statistics,

<Sp(z')Sp(2")>q = F(z" - 2') ,

<a],j>d = 0 for j # 0 ;
A-7




thus, for <Spp>. no mixing of pulse Fourier components occurs. So, if one
chooses a scattering volume sufficiently large to include all the scales of
variability, one expects that

{al,j}Tp - <a],j>¢ = 0 for j =0 . (A-22)
If one assumes condition (A-22) in equation (A-21),

Sam = R2a?(R)pg § dopb?(ap)(cTp/2)y1¥*]

exp(-iwlAt)[hz(t’)al'olTp. (A-23)

It should be noted that it is straightforward to include the j = 0 terms in

equation (A-23) and in the analysis of section III. Note that the last term
of (A-23) can be written for h = 1 as

Tp/Z R+ct'/2+ch/4
[hz(t')al‘o]Tp - (a1,0)T, ¢ h2dt’ § dz exp(2iw|S;/c)
~Tp/2 Rect'/2-cTp/4
= I g(§)dg exp[2iw)Sc(z)/c] , (A-24)

where g(£) is the triangle function:

g(g) =1-¢ forosgs1,
-=£ -1 for -1 2£s0 ,
=0 otherwise ,
and where § = (z - R)/Az, with &z = cTp/2 . Thus,
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Som = R2a?(R)Tpeg I § dopb?(op)yiv*| § g(§)dE
exp{-iw] [4t-28¢(2)/c]}. (A-25)

The form of equation (A-25) suggests decomposing the displacement field into a
mean and fluctuating component as follows

s =8 +8", (A-26)
where the overbar notation is used to indicate the weighted spatial average:

flz) = 5 g(£)f(z).
Thus, by definition,

g = a[x.(m - l)Tr + Tm] - a[x,(n - I)Tr + Tn] s

= V?(m - D)Tr ’ (A—27)

where equation (A-7) has been used and, hence, Ty = tp + At, At « Ty, Ty < Tp,
and where the time interval (m - n)T, has been selected to be small enough
that the mean velocity v does not change significantly over (m - n)T,. The
fluctuating displacement 8' can be written as

s =d'[X,(m- 1)Tp + tgl - 4'(X,(0 - 1)T; + 1g] . (A-28)

Note that for turbulence-like fluctuations, if (m - n)T; < t\ , where t) is
the temporal microscale, the frozen field hypothesis (Hinze, 1959) can be
invoked and s' can also be written in the form

s' = (m - n)Tev'(X) , (A-29)
where v' is the fluctuating velocity defined analogously to equation (A-27).

Substituting equations (A-27) and (A-29), using (A-10), into equation (A-25)
yields




Smn = R2a2(R)Tppg I ¢1¥*] J dopb*(np) expliZw)vy(m-n)T,-my/c]
1

exp{iw)[2vz(m-n)T/c-4t]} F dEg(E) exp{iw[2v'z(m-n)T,/c)}, (A-30)

where the overbar and prime notation (for mean and fluctuating) have been
combined with the vector component notation subscript h (indicating along the
x/y plane) and subscript z (indicating the direction of the mean ray axis).

Note that sp = vh(m~n)T; » s'p. (It is straightforward to include the
term s'y ~ v'p(m - n)T; with some additional algebra. However, most realistic
oceanographic cases will allow this generalization since the oceanographic
velocity variability is typically "red" in wavenumber spectra.) To normalize
equation (A-30), take Spy/Spn . which amounts to‘setting

e

S

and

Eyiy*1 = 1.
1

After redefining Spp as the normalized pulse-to-pulse gated correlation
function with Sy, = 1 from equation (A-30), the above normalization then yields

Snm = L ¥1¥*] § dopb4(ny) exp(i2w)vy(m-n)Tr-np/c]
1

exp{iw][2v;(m-n)Tp/c-8)} S dEg(E) exp{iw[2v',(m-n)T,/c]l} . (A-31)

A-10
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