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ABSTRACT

~ This paper is concerned with the problem of simultaneous testing for n—component
decisions. Under the specific statistical model, the n components share certain similar-
ity. Thus, empirical Bayes approach is employed. We give a general formulation of this
empirical Bayes decision problem with a specialization to the problem of selecting good
Poisson populations. Three empirical Bayes methods are used to incorporate information
from different sources for making a decision for each of the n components. They are: non-
parametric empirical Bayes, parametric empirical Bayes and hierarchical empirical Bayes.
For each of them, a corresponding empirical Bayes decision rule is proposed. The asymp-
totic optimality properties and the convergence rates of the three empirical Bayes rules
are investigated. It is shown that for each of the three empirical Bayes rules, the rate of
convergence is at least of order O(exp(—cn + Inn)) for some positive constant ¢, where the
value of ¢ varies depending on the empirical Bayes rule used. [/ ,
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1. Introduction

We consider a decision problem involving n components as follows. Let my,...,7,
denote n independent populations of the n components, respectively, where population
m; is characterized by a parameter §;, ¢+ = 1,...,n. For the given decision problem,
let a; denote an action for the i-th component and let L(6;,a,) be the corresponding
loss function. Thus, L*(§,a) = f: L(6;,a;) is the total loss where § = (6,,...,0,) and
a = (@1,...,a,). Suppose that ‘f:' each 1 = 1,...,n, the parameter 0; is a realization
of a random variable ©;, which has a prior distribution G; over the parameter space 0Q;.
Let X; denote a random observation arising from population 7; with probability density
function f;(z]0;). Let d; be a decision rule defined on the sample space X; of X; for the
t—-th component problem. Then, under some regularity conditions, the total Bayes risk of

the decision rule d = (dy,...,d,) is:

r(G,d) = Eri(Gi’di) (1.1)
where G = G| X... X Gy, and

ri(Gi, d;) =/‘;/; L(9, di(z)) fi(z]0)dzdG;(6)
i X 1.
= /r ‘ [ / L, d;(z))dci(a|x)] fi(z)dz (1.2)

where G;(6|z) is the posterior distribution of ©; give: A = z and f;(z) is the marginal
probability density function of X;. Thus, for the i-th co..., onent problem, the Bayes rule
is the one which minimizes fn.- L(0, di(z))dG;(60|z) among the class of decision rules for
the 1-th component decision problem. The overall minimum Bayes risk is

n

r(G,ds) = Zf’i(Gi,diB)

=1
where dp = (d1B,...,dnB) and d;p is a Bayes rule for the 1-th component decision

problem,:+ =1,...,n.

When the prior distributions G;, ¢+ = 1,...,n, are unknown, the Bayes rule cannot

be applied. However, in many situations, the n-component decision problems may share
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the same or similar properties. When this occurs, one may incorporate all the information
obtained from different sources and make an appropriate decision for each of the n com-
ponents. This i‘ca is analogous to the empirical Bayes approach of Robbins (1956,1964).
Thus, in the following, we let d; denote a decision rule for the i-th component problem,
where d; is now defined on the sample space X = X} x...x X, of X = (X},..., X,); also,

denote d;(z1,...,z,) by di(z;|z()) where z(¢) = (z1,...,%i_1, Zi+1,...,Zn). Then,

r;(G",d,') = E;’ [‘/n /; L(0, d{(IIX(i))fg(:l:|0)d.’1:dG,‘(0) y

where the expectation E; is taken with respect to the marginal distribution of X(i) =
(X1y.-y Xiz1, Xi41,--.,Xn). Since ri(G;,d;p) is the minimum Bayes risk for the i-th
component problem, r;(G;,d;) — ri(Gi,dig) > O for each ¢+ = 1,...,n, and therefore,

"G, d) - r(G,dp) = g [ri(Gir di) — r4(Gi, di)] > 0.

In certain compound decision problems, the average 1(r(G,d) — r(G,dg)| has been
used as a measure of the performance of the decision rule d. The asymptotic behavior
of 1(r(G,d) — r(G,dp)] has been investigated extensively; for example, see Vardeman
(1978,1980), Gilliland and Hannan (1986) and Gilliland, Hannan and Huang (1976), among
others. Many of the results indicate that 1(r(G,d) — r(G,dp)| tends to O as n tends
to infinity. However, so far as we know, the asymptotic behavior of the regret value
r(G,d)—r(G, dp) has not been investigated since it seems that r(G,d)—r(G,dp) might tend
to infinity when n tends to infinity. Very surprisingly, we find that in certain compound
empirical Bayes decision problems. r(G,d) —r(G,dp) — 0 as n — oco. This result indicates
the advantage of incorporating all the information from different sources for making a

decision for each of the n component problems.

In this paper, we investigate the asymptotic optimality properties of certain empirical
Bayes procedures for simultaneous testing problems. The regret value r(G,d) — r(G,dp)
is used as a measure of the performance of the decision rule d. The general framework
of the empirical Bayes decision problems under study is formulated in Section 2. Then,
examples are given and used to illustrate how to incorporate information from different

sources. For each of them, the corresponding convergence rate is investigated.
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2. Formulation of the Empirical Bayes Decision Problem

Let 7y,...,m, denote n independent populations. For each i = 1,...,n, population
7y is characterized by a parameter §;. Let 8p denote a standard or a control. The problem
of selecting populations with respect to a control has been extensively studied in the liter-
ature. Dunnett (1955) and Gupta and Sobel (1958) have considered problems of selecting
a subset containing all populations better than a control using some natural procedures.
Lehmann (1961) and Spjgtvoll (1972) have treated the problem using methods from the
theory of testing hypotheses. Randles and Hollander (1971), Gupta and Kim (1980), Mi-
escke (1981) and Gupta and Miescke (1985) have derived optimal procedures via minimax
or gamma-minimax approaches. The reader is referred to Gupta and Panchapakesan
(1979,1985) for an overview of this research area. In this paper, we study the problem of

selecting good populations from among n populations using the empirical Bayes approach.

For each 1 = 1,...,n, let X; denote a random observation arising from population
with probability density function f(z|6;). The observation X; may be thought of as the
value of a sufficient statistic for the parameter §; based on several iid observations taken
from m;. Let 89 be a known constant. This 8y can be used as a standard level to evaluate
each of the n populations. Population #; is said to be good if 8; > 6o, and bad otherwise.

Our goal is to select all the good populations and exclude all the bad populations.

Let @ = {8 = (01,...,0,)|f(z|0;) is well-defined, s = 1,...,n} be the parameter space
and let A = {a = (a1,...,a4)|a; =0,1,i = 1,...,n} be the action space. When action a is
taken, it means that population ; is selected as a good population if a; = 1, and excluded

as a bad one if a; = 0. For each § € Q1 and a € 4, the loss function L(§, a) is defined to be:
n n
L(Q,g) = Za;(ao — 0,‘)[(00 — 0,‘) + Z(l - a;)(ﬂ,- — 00)1(0,' — 00) (2.1)
=1 =1
where I(z) = 1(0) if z > (<)O0.

It is assumed that for each ¢, the parameter 8; is a realization of a random variable
;. It is also assumed that the n random variables 6;,1 = 1,...,n, are independently

distributed with a common but unknown prior distribution G. Thus, © = (0,,...,0,)
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has a joint prior distribution G(8) = H G(0;) over the parameter space 3. Under the

preceding assumptions, X;,..., X, are ud with the marginal probability density function
= [ f(z|0)dG(8).

For each ¢t = 1,...,n, let X; be the sample space of X;, and let X = X; x ... x X,.
Let X = (X;,...,X,) and let £ = (z1,...,2,) be the observed value of X. A selection
rule d = (di,...,dn) is defined to be a mapping from X into [0,1}* such that d;(z) is the
probability of selecting m; as a good population given X = z. Let D be the class of all
selection rules, and let r(G,d) denote the Bayes risk associated with each d € D. Then,
r(G) = dlgi) r(G,d) is the minimum Bayes risk.

The Bayes risk associated with any rule d € D can be rewritten as

n

r(G,d) = Er;(G’, d;) (2.2)

where .
(G, di) = / (80 — pi(z)ldi(z) [] f(z)dz + C (2.3)

Jj=1

where p;(z;) = E[0,|X; = z,] = [ 0f(z|0)dG(0)/f(z:), the posterior mean of ©; given
Xi=zi,and C = [ [°(8 — 80) f(]0)dG(6)dz

Since the value C is independent of the selection r_ule d, from (2.3), a Bayes rule, say
dp = (d1B,...,dnB) is clearly given by

1 if pi(zi) > o,
0 otherwise,

d;g(z) = {

(2.4)

n
and the minimum Bayes risk is: r(G) = }_ ri(G,d;B).

i=1
Since the prior distribution G is unknown, it is not possible to apply the Bayes rule
dp for the selection problem at hand. However, the selection problem under study can be
viewed as that in which we are dealing with a Bayes decision problem having n compo-
nents with a common unknown prior distribution. Thus, the empirical Bayes approach of
Robbins (1956,1964) can be employed here. We use all the observations obtained from the

n populations to form a decision for each of the n—component problems.
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Let ©;n(z:|z(1)) be an estimator of w;(z;) based on (z1,...,Zn) Where z(i) =

(T1y.+-yZTi_1,Tit1,---,Zn). We then define a selection rule dp, = (din,...,dnn) as follows:
e oy o (1 m(zdz() > b,

din(z; = din(z) = - 2.5

(zilg(i)) = din(g) = { ;X Pnl2i2 (2.5)

The associated Bayes risk of the selection rule d,, is:

r(G,dn) = }: ri(G,din) (2.6)
where
r.‘(G,d;,;) = FE; l;/r.[oo - go,‘(z;)]d.-n(x;|.{((i))f(z.-)d:z:,~ +C (2.7)

where the expectation E; is taken with respect to X(¢). Recall that r;(G,d;g) is the
minimum Bayes risk for the 1-th component problem. Thus, r;(G,dn) — ri(G,dig) > 0
and therefore, r(G,d,) — r(G) > 0. For the empirical Bayes selection rule d, to be useful,
we always desire that the average nonnegative difference (r(G,d,) — r(G))/n or the total

nonnegative difference (G, d,) — r(G) be small.

Definition 2.1

(a) A decision rule d, is said to be weakly asymptotically optimal relative to the (un-

known) prior G if (r(G,ds) — r(G))/n — 0 as n — oo.

(b) A decision rule d, is said to be strongly asymptotically optimal relative to the (un-

known) prior G if r(G,d,) — r(G) —» 0 as n — oo.

Clearly, for a selection rule d,, the strong asymptotic optimality implies the weak
asymptotic optimality. The weak asymptotic optimality of compound decision rules has
been studied in the literature by many authors, notably Vardeman (1978,1980), Gilliland
and Hannan (1986), and Gilliland, Hannan and Huang (1976), though the formulation of
their compound decision problems are different from the one we consider here. However,
very surprisingly, it seems that the strong asymptotic optimality has not been investigated
so far. In the following, we consider the problem of selecting good Poisson populations, and

use this as an example to illustrate how to incorporate information from different sources
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for making decisions. Selection rules are constructed according to how much we know
about the prior distribution G. The strong asymptotic optimality of the selection rules is

investigated. The associated convergence rates of selection rules are also established.

3. Selecting Good Poisson Populations

It is assumed that for each + = 1,...,n, the random observation X; arises from
a Poisson population with mean §;. That is, f(z:|6:) = e=%67/(z,!), zi = 0,1,2,....
Then, f(z:) = [5 e~ %%/(z1)dG(8) = a(z:)h(zi), where a(z;) = 1/z;! and hk(z,) =
IS €7%0%dG(6), and pi(zi) = h(zi+1)/h(z) = p(z:). Let §o > O be the known standard
level. The Bayes rule dp = (diB,...,dnp) for this problem is:

1 if p(zi) > 8o
d; = -~
5(z) { 0 otherwise,

Since the prior distribution G is unknown, it is not possible to apply the Bayes rule
dp here. Therefore, in the following, empirical Bayes rules are constructed according to

how much information we have about the prior distribution G.

3.1. A Nonparametric Empirical Bayes Rule

First, it is assumed that the prior distribution G is completely unknown. Thus, the
nonparametric empirical Bayes approach is employed. Note that the Bayes rule dp is
a monotone rule. That is, for each 1 = 1,...,n,d;p(z) is nondecreasing in z; when all
the other variables are kept fixed. This follows from the increasing property of ;(z;)
which can be verified by noting that f(z|6;) has the monotone likelihood ratio. Thus, it is

desirable that the considered empirical Bayes rules be monotone.

Foreach i =1,...,n, let Nj, = max X; — 1. For each z; = 0,1,...,Nin + 1, let

J#9
fin(zs) = -n_—l—I E Itz (X5), (3.1)
hin(z:) = fin(z:)/a(z:). (3.<)
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Since it is possible that h;,(z;) may be equal to 0, we define
(p,-,.(z,-) = [h,‘n(zg + 1) + 5,;]/[’1,‘,;(1,’) + 5,;], (3.3)

where 6, > 0 is such that 6, = o(1).

It is intuitive to use p;,(z;) as an estimator of p;(z,) and one may obtain an em-
pirical Bayes rule as follows: Select 7; as a good population if ;n(zi) > 6o, and ex-
clude 7; as a bad one otherwise. However, this selection rule is not monotone since
©in(z:;) may not possess the increasing property. Thus, we consider a smoothed version
of pin(zi). Let {cp:n(zg)}z‘_:_o be the isotonic regression of {goin(:rg)}z‘go with random
weights {W;n(z:) z‘;o, where Win(zi) = [hin(z:) + bn)a(zi + 1). For y > Ny, define
o y) = ©!,(Nin). Therefore, ¢}, (i) is nondecreasing in z;, z; = 0,1,2,.... We use
©in(zi) to estimate w;(z;) and propose an empirical Bayes rule d;, = (dj,,...,d,,) as
follows: Foreacht=1,...,n,

Zin(@lz() = din(e) = {1 T Linlz:) 2 0o, (34)

The performance of the preceding nonparametric empirical Bayes procedure will be

discussed in Section 4.

3.2. A Parametric Empirical Bayes Rule

Here we assume that the prior distribution G is a member of gamma distribution
family with unknown shape and scale parameters k and 3, respectively. That is, G has a

density function g(8|k,3), where
g9(0]k,8) = B*6*—1e=P/T(k), 6 > 0.

Then, X1,..., X, are iid with marginal probability function f(z) = I'(z + k)8*/[T'(k)(1 +
B)=tkzl), z = 0,1,2,.... Also, pi(z) = (z + k)/(1 + B). A straight computation yields
pr = E[X;] = k/B, p2 = E[X? = (k+1)k/B? + k/B. Thus, B8 = p1/(p2 — p1 — p2) and
k = ui/(k2 — p1 — u3). Therefore, pi(z) = [z(nz — p1 — u3) + ui]/ (42 — u}).
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n n
For each 1 = 1,...,n, let u1a(t) = o35 Zl X; and u2,(t) = Zl X?. That is,
J= J_.
J#s J#Y
p1n(?) and p2n(t) are moment estimators of 4; and u2, respectively, based on X(i). Note

that it is possible that w2, (1) — p1n(t) — u%,.(i) < 0 though puy — pu; — p? > 0. Now, for
eacht=1,...,nand z;, =0,1,2,..., define

pon(z) = | Zlz=lizisllonl Atla® if g (s) - pinli) = u3a(1) >0 (35
T otherwise.

A

We then propose an empirical Bayes rule d, = (cfln, e ,J,m) as follows:

J,'n(z¢|g:(i)) = ‘Ln(?) = {1 if ¢in(1i) > 0o, (3.6)

0 otherwise.

3.3. A Hierarchical Empirical Bayes Rule

Now, it is assumed that the prior distribution G is a gamma distribution with a known
shape parameter k& and an unknown scale parameter 8. In this situation, the preceding
parametric empirical Bayes approach can be applied here. However, since our purpose is
to introduce the methods to incorporate data from different sources, a new method, called

as hierarchical empirical Bayes, is used in the following.

Since J is a scale parameter, we assume that 3 has an improper prior h(3) = %, g >

0. Thus, conditional on 8, Xi,...,X, are iid with the probability function f(z|8) =
fo (z|0)g(0]|k,B)d6 = ;!—I%;:(Lli_%ﬂ, z=0,1,2,.... Therefore, (X1,...,Xy,) has a joint

marginal probability function f(z),...,Zs) where

f(@1,. . 2n) =/0 Hf(:z:.lﬂ f[ [rg{r”;k')‘)] /Ow (f’r;;bdﬂ, where

i=1

b= nk+ Y z;. Thus, the posterior density function of 3 given (X1,...,Xn) = (z1,...,Zn)
=1
is
f(z1]B) ... f(zn|B)h(B)
f(zl’ xn)

N ﬂnk—l ﬂ"k 1 ]“
_(1+ﬁ)"[/o wrar?)
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and the posterior mean of 8 given (X1,...,Xp) = (Z1,...,Za) is

2k if - z; >2,

Zz,'—l j=1
Bn = E[B|z1,...,2a] = { =1

8
=
\g
Ry
A
=

Now, for each1 = 1,...,n,and z; = 0,1,2,..., define

(zi +£)/(1+ Bn)

Pin(zi) = (3.7)
0
=1
We then give an empirical Bayes rule @n = (Eln, . ,E,m) as follows:
] . 3 1 lfa (Ii) > 00
d’. . = d; = n = ’ .
n(zil2(3)) = din(2) {0 otherwise. (38)

4. Asymptotic Optimality of the Proposed Empirical Bayes Rules

In this section, we investigate the asymptotic optimality of the proposed empirical

Bayes rules.

Let A(6o) = {z|p(z) > 60} and B(8o) = {z|p(z) < 8o}. Define

M= min A(o) if A(fo) # &, (4.1)
1 oo otherwise, -
_ [ max B(8o) if B(fo) # ¢,

m = { -1 otherwise, (42)

where ¢ denotes the empty set.

By the increasing pronerty of ¢(z) in the variable z, m < M; alsom < M if A{6,) # ¢.
Furthermore, z < m iff p(z) < 0y and y > M iff p(y) > 0o. In the following, we
consider only those priors G such that [;° 0dG(#) < oo and m < co. Note that the
preceding requirements are always met if the prior distribution G is a member of gamma
distribution family. Let d, = (din,...,dnn) be any of the three proposed empirical Bayes

rules and let (©1n(Z1),...,9Pnn(zn)) be the corresponding empirical Bayes estimators. By
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the definitions of ], (z:), Pin(z:) and B;,(2i), pin(zi) is increasing in z; when all the

other variables z;, j # i, are kept fixed. Thus, for each ¢t =1,...,n,

0 < ri(G,din) — ri(G,diB)

= Y (00 — ©(z:)|P{pin(z:) > b0} f(=:) Z [o(z:) = o] P{pin(z:) < 80} f(z:)
._0 ;=M
o0
< Z [80 — 0(z:)|P{pin(m) = 80} f(z:s) + Y [p(2:) — bo] P{win(M) < b0} f(z:)
z,=0 zi=M
= blP{SOin(m) > 00} + bgP{(p,'n(M) < 00}. (4.3)
In (4.3), the probability measure P is computed with respect to X(1). Also,0 < b; = f:
z=0
(=]
(60 — p(z)]f(z) < 00,0 < by = Y [p(z)— 00]f(x) < co. The finiteness of both b, and
=M
b, is guaranteed by the assumption that f;o 0dQ(8) < oo.
From (4.3), we obtain:
0 < 1(Gydn) - 7(G)
n
=Y [ri(G,din) — 7:(G,diB)]
=1 (4'4)
<Y (b1 P{pin(m) > b0} + b2 P{pin(M) < 60}].
1=1
Therefore, it suffices to consider the asymptotic behavior of P{p;n(m) > 6o}
and P{Pin(M) < 00}
4.1 Asymptotic Optimality of d;,
We first present some useful results.
y
Foreachi--, ..,nand y=0,1,..., N, let ¥in(y) = > 0in(z)Win(z), ¥, (¥) =

z=0
E ©in(Z)Win(z) 200 Tin(y)= E Win(z) where Wi, (z), £ = 0,1,..., Nin, are the ran-
dom weights a-fi.ied 1n Section 3 From Barlow, et al. (1972),

Vi (y) < Yin(y) for ally =0,1,..., Nin. (4.5)
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From Puri and Singh (1988), the isotonic regression estimators ¢}, (z), £ =0,1,..., Nin,

can be rewritten as:

¥in(z) = __min

Pin(y) - ¥i,(z - 1)
zSySNin

 2=0,1,...,N;p, 4.6
Fel R (40
where ¥, (—1) = Hin(—1) = 0. Thus, from (4.5) and (4.6),

Vin(y) — Win(z - 1)
Hin(y) — Hin(z - 1)

©Vinl(z) 2 <min‘ [ ], z=0,1,..., N, (4.7)

where ¥,,(—1) =0.
The following Lemma is taken from Liang (1989).

Lemma 4.1. Let {a,,} be a sequence of real numbers and let {b,,} be a sequence of positive
numbers such that b,, < 1 and b,, is nonincreasing in m. Then, for each positive constant

¢,

Zam Zam-

sup
n>1

Je = sup
n>1

Lemma 4.2. Define a function Q(y) = 6o E f(z )9-?(%)1)- Z f(z+1) on the set {y|ly =
M,M +1,...}. Then, Q(y) is a decrea.smg function of y. Hence ma.x Q(y) = QM) =

£ (M) 2885 — o(M)] < 0.

Proof: Q(y+1)-Q(y) = fly + 1)%8%3[00 —o(y+1)] < Osincey+1> M and thus

o(y +1) > ¢(M) > 8o. Thus, Q(y) is a decreasing function of y which leads to the result

of this lemma.

Theorem 4.3. P{p], (M) < fo} < O(exp(~7yn))
where 1, = min(2(Q(M) max(1,05")/8)*, In[F(M)]~") > 0

Proof: P{p},(M) < 8o}
= P{p!.(M) < 8o, Nin < M} + P{pjn(M) < 80, Nin > M}. (4.8)

Now,

P{pin(M) < 80, Nin < M} < [F(M)|"~* = O(exp(~nIn[F(M)| ")), (49)

12




where F(-) is the marginal distribution of X, and the inequality is obtained by the defi-

nition of N;n.

Also, from (3.1)-(3.3), (4.7), Lemma 4.2, and by the definitions of ¥;,(y) and H;n(y),

straightforward computation yields the following:

C {¥in(y) — Yin(M — 1) < 06[Hin(y) — Hin(M — 1)] for some y, M < y < N;n}

A Y il + 1) = Sz 4 D] =60 3 Uinte) ~ 1@ LZE < G~ )6 3 a4 1)
=M =M

= E,. (4.10)
Since a(z) > 0 for all z = 0,1,..., ) a(z) < oo and 6, = o(1), then, for sufficiently
z=0
v
large n, (6o — 1)6, Z a(z +1) + QM) < Q(M)/2 < 0 for all y > M. Note that
a(z+1)/a(z) = (= + 1) , which is positive, bounded above by 1, and decreasing in z for

z=0,1,2,.... By the preceding facts and Lemma 4.1, we obtain:

oy Q(M) S QM)
C yyM{ IZ_:A‘[fm(.’C +1) = f(z+1)}} > - 4 or zz;w[fm (z) — f(2)]| > - . }
c {aup1Rat) - F0) > ~Q(a0 mes(, 8578} o

where F;n(y) is the empirical distribution based on X(s).
From (4.10) and (4.11), we obtain
P{pin(M) < by, Nin > M}
< P{zgglFm(y) ~ F(y)| > -Q(M) max(1,65")/8} (4.12)
< dex;{—2n(Q(M) max(1,05')/8)%}
where the last inequality follows from Lemma 2.1 of Schuster (1969).
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Now, let 7, = min(2(Q(M) max(1,0;')/8)?, In[F(M)]~!). Clearly r; > 0. Combining
(4.8), (4.9) and (4.12) gives the result of this theorem.

Theorem 4.4. P{p;,(m) > 0o} < O(exp(—72n))
where 72 = [R*(m) min(1,685')]2/8 > 0 and R*(m) is defined below.

Proof: From (3.1)-(3.3) and by the definition of ], (m),

{pin(m) > 6o}
C{pin(z) > 85 for some 0 < z < m} (4.13)

c{a(z)Ain(z + 1) — boa(z + 1)Ain(z) > R(z) — a(z)a(z + 1)6a[1 — b0} for some 0 < z < m},

where A;n(z) = fin(z)-f(z), R(z) = —a(z) f(z+1)+boa(z+1) f(z) = a(z+1) f(z)[—p(z)+
o) > O since 8o — p(z) > 0o — p(m) > 0, by the definition of m and the fact that

0 < z < m. Thus, R*(m) = oéniél R(z) > 0 and therefore, for sufficiently large n,
Zsm

R(z) — a(z)a(z + 1)6a[1 — o] > R*(m)/2 since 6, = o(1). Therefore, from (4.13) and by
Theorem 1 of Hoeffding (1963),
P{pin(m) > 6o}
< é[P{Ai"(I +1) > R*(m)/(4a(2))} + P{Ain(z) < —R*(m)/(460c(z + 1))}]
< f:[c exp{—2n[R*(m)/(4a(2))]*} + cexp{—2n[R"*(m)/(480a(z + 1))|*}]
STZXp(—Tgn)).

Based on the preceding discussions, we have the following result.

Theorem 4.5. Assume that the prior distribution G is such that f;° 8dG() < oo and
m < oco. Then, for the empirical Bayes rule d;,, 0 < r(G,d;) — r(G) < O(exp(—7n + Inn))

where 7 = min(r;,72) > 0.
Proof: By (4.4), Theorem 4.3 and Theorem 4.4, we have
0 <r(G,d};) - r(G) < O(nexp(—7n))

= O(exp(—rn + Inn)).
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4.2. Asymptotic Optimality of z:in

We let M;(t) and M;(t) denote the moment generating functions of X; and X?,

respectively. For each real value a, define
my(a) = irtlfe_“'Ml (¢)

mg(a) = iltlfe_ath(t)
where the infimum is taken with respect to real values of t.

Lemma 4.6. For any positive constant ¢,
0<mi(ui+¢) <1, 0<my(u; —¢) <1 fori=1,2,

where 1 = E[X}] and up = E[X?).
Proof: For the fixed real value a, consider the funciion
S1(t) = e **M(t) = E[e!(X1—2)],
We have 0
$17(t) = E[(Xy - a)et 1)),
S () = E((X, — a)?etXi-9),
where Sl(j )(t) denotes the j-th derivative of S;(t) with respect to ¢.

Since Sl(z)(t) > 0 for all t, S;(t) is a convex function. Also, Sl(l)(O) = E[X; —a] <
(=,>)0 iff uy < (=,>)a. Thus, as p; < a, Sl(l)(O) < 0, which implies that S,(t) is
strictly decreasing in a neighborhood of point zero. Also, S1(0) = 1. Therefore, m;(a) < 1
if 41 < a. Similarly, we can also obtain the following result: m;(a) < 1 if u; > a.

Now, by the definition, m;(a) > 0. These results yields that 0 < m;(u; + ¢) < 1 and

0 < my(p1 —¢) < 1 for any positive constant ¢.

The results that 0 < ma(uz+¢) < 1 and 0 < mz(u2 —¢) < 1 for any positive constant

¢ follow from similar arguments.

Lemma 4.7. For each 1 = 1,...,n, let 41,(¢) and p3,(s) be the moment estimators of u;

and ug3, respectively, which are defined in Section 3. Then, for any positive constant ¢,
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(a) P{p1a(i) — 1 < =} < [ma(pr = o),

(b) P{u1n(i) ~ 1 > c} < [my(p1 + )],

(c) P{u2n(d) ~ p2 < —c} < [ma(uz — ¢)]*~" and
(d) P{pan(i) — p2 > ¢} < [ma(p2 + )| "

Proof: This lemma is a direct application of Chernoff (1952). The proof can be completed
by noting the fact that 0 < E[X;] < oo and 0 < E[X?] < oo.

Let u = py — py — p?. Thus, u > 0, see Section 3. Define A = max(mz(u2 ~ £),
my (g1 + §), my(u1 + 5*;—1), m1(2u,)). By Lemma 4.6,0 < A < 1.
Lemma 4.8. P{uz2n (i) — p1n(s) — p2,(:) <0} < O(exp(~—ayn))

~lnA if 4A>0,
00 if A=0.

Proof: P{uzn(i) — p1n(r) — pia (i) < 0}

where a; = {

= P{[p2n(3) — p1a () — #1n(9)] — (w2 — 1 — p}] < —u}
< P{uznli) —p2 < -£} + P {minli) -1 2 £}

By Lemma 4.7,
. “ n—1
— =\l < .l
P {ﬂzn(i) u2 < 3} < [mz (#2 3)] ,
. “ u n—1
P{#ln(’)‘#lZ;}S [ml (#1+3>] , and
: U
P{uia() - ui 2 £}
=P {ufn(i) —pui 2 g, H1a () < 2#1} +P {#fn(*') —p3 2 % p1n (i) 2 2#1}
<P {mn(z) - B > ﬁ} + P{u1n(?) — p1 2 p1} (4.14)
< [m1 (m + —”—)]n—l + [ma (2u1)]" 1.
| 9uy

Combining the preceding results, the lemma follows.
Theorem 4.9. P{Pin(M) < 65} < O(exp(—azn)) for some positive constant a;.
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Proof: P{@in(M) < 80} = P{pin(M) < 8o, pan(?) — u1a(t) — u?,(i) < 0}
+P{pin(M) < o, p2n(i) — p1a(s) — ui,(5) > 0}, (4.15)

where ) .
P{pin(M) < 80, p2n(i) — p1a(s) — ui, (i) < 0}

(4.16)
< O(exp(—ain)) by Lemma 4.8.

Now, let ¢(M) = M(uz — pu1 — p?) + p2 ~ 8o(uz — u3). By definition of M, ¢(M) > 0.
Thus,

P{in(M) < 00, uan(i) - p1nli) — u2a(3) > 0}
<P{(M — Bo)uzn(i) — Mp1a () ~ (M — 1~ 80)u2,(3) < 0
P{(M — 00)(u2n (i) — ) = M(u1n () — 1) — (M — 1 = 06) (43, 4) - ) < —g(M)}

I

<P {(M —00)(n2n(t) ~ p2) < —3(—3@} + P {M(ul,,(i) - 1) > ﬂf;ﬂ} (4.17)
+P{ -1 0)uda(0) - i) > 0.
By Lemma 4.7,
P {M(yln(z) — ) > ?-%Q} < [ml (u + %l)]n_l (4.18)

K2 = 30a—6,)
P {01 - 60) () - ) < - 200} < {0 M -06=0,
"—
[m; (u2+ag-£¥ﬁ)] if M -6y <0,
(4.19)

and analogous to (4.14),

P{or-1- 00wt - ) > G0

[ml ([1.1 + Rﬁﬁ)]n-l + [m1(2u1)]"‘1 ifM~—-1-66>0, (4.20)
0

ifM—-1-6,=0,

[ (m+aﬁg%),—om)]"_l if M —1— 6 <0.

Combining (4.15)-(4.20), and by Lemma 4.6, it follows that there exists a positive
constant, say az, such that P{@;n(M) < 8o} < O(exp(—a2n)).
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Theorem 4.10. P{pin(m) > 8o} < O(exp(—azn)) for some positive constant az.
Proof: The proof is analogous to that of Theorem 4.9. We omit the detail here.
The following theorem is a direct result of (4.4) and Theorems 4.9 and 4.10.

Theorem 4.11. Let d, be the empirical Bayes rule defined in Section 3. Assume that the

prior distribution G is a member of the gamma distribution family. Then,

-

0 < r(G,dn) — r(G) < O(exp(—an + Inn)),
where a = min(az,a3) > 0.

4.3. Asymptotic Optimality of En‘

Theorem 4.12. Let E,. be the empirical Bayes rule defined in Section 3. Assume that the
prior distribution G is a member of gamma distribution family T'(k, 8), where k is a known

positive constant. Then,

0 < 7(G,dn) — r(G) < O(exp(—+n + Inn))

for some positive constant ~.

Note that the statistical model considered here is simpler than that of Section 4.2.
Thus, the proof for Theorem 4.12 is analogous to and simpler than that for Theorem 4.11.

We omit the detail here.
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