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ABSTRACT
This paper deals with the problem of estimating the binomial parameter via the
nonparametric empirical Bayes approach. This estimation problem has some surprising
phenomenon that estimators which are asymptotically optimal in the usual empirical Bayes
sense do not exist (Robbins (1956, 1964)). However, as pointed out by Liang (1984) and
Gupta and Liang (1986), it is possible to construct asymptotically optimal empirical Bayes
estimators if the unknown prior is symmetric about the point 1/2. In this paper, assuming
symmmetric priors a monotone empirical Bayes estimator is constructed by using the isotonic
regression method. This estimator is asymptotically optimal in the usual empirical Bayes
sense. The corresponding rate of convergence is investigated and shown to be at least of
order n"\!, where n is the number of past observations at hand. \/ ke
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1. INTRODUCTION

Consider a sequence of Bernoulli process consisting of N trials. Let p denote the
probability of success for each trial and Y stand for the number of successes among the
total IV trials. Then Y follows a binomial distribution with probability function f(y|p) =
(g)py(l—p)N"y, y=0,1,...,N. Suppose that the parameter p is a realization of a random
variable P having a prior distribution G. Thus, under the squared error loss, given ¥ = y,
the Bayes estimator of p is the posterior mean of P given by

Jy PHEIP)G(P) _ w(y)
St Fzlp)dG(p) — h()

we(y) = (1.1)

where h(y) = fol p¥(1 - p)N-¥dG(p) and w(y) = fol p*t1(1 — p)N-¥dG(p). Also, fi(y) =

(1;’) h(y) is the marginal probability function of Y. The minimum Bayes risk is 7(G) =
r(G,ps) = E{(ps(Y) - P)?.

When the prior distribution G is unknown, many authors, based on the past observa-
tions, treated this estimation problem via the empirical Bayes approach of Robbins (1956,
1964). For details, the reader is referred to Liang and Huang (1988), Vardeman (1978)
and the related references. However, as pointed ou: "+ Robbins (1956, 1964), this estima-
tion problem has some surprising phenomenon that estimators which are asymptotically
optimal in the usual empirical Bayes sense do not exist. This is due to the fact that
the function w(y) cannot be consistently estimated when the prior distribution G is com-
pletely unknown. To remedy this deficiency, Robbins (1956) suggested taking one more
observations at each stage and proposed an estimator whicli is asymptotically optimal in a
modified sense. Gupta and Liang (1989) treated this estimation problem through the para-
metric empirical Bayes approach assuming the prior to be a member of beta distribution

family with unknown hyperparameters and then using the past observations to estimate
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the unknown hyperparameters. Liang (1984) and Gupta and Liang (1986) have pointed
out that if the unknown prior is symmetric about the point %, it is possible to construct
asymptotically optimal empirical Bayes estimators for the binomial parameter p. However,

no estimators were proposed.

In this paper, we deal with this estimation problem through the nonparametric em-
pirical Bayes approach assuming symmetric priors. A monotone empirical Bayes estimator
is constructed by using the isotonic regression method. This estimator is asymptotically
optimal in the usual empirical Bayes sense. The corresponding rate of convergence is inves-
tigated and shown to be at least of order n~! where n is the number of past observations

at hand.

2. CONSTRUCTION OF EMPIRICAL BAYES ESTIMATORS

Foreach ; = 1,2,..., let (Y}, Pj) be a pair of random variables where Y} is observable
but P; is not. Conditional on P; = p;,Y; has a binomial probability function f(y|p;) =
(I;I)p;'(l - pj)N"y,y =0,1,...,N. It is assumed that P;,j = 1,2,..., are independently
distributed with common unknown prior distribution G. Therefore, Y;,7 = 1,2,..., are
ild with marginal probability function f;(y). Let Y, = (Y1,...,Y,) denote the n past
observations and Y,4+; = Y the current random observation. In the empirical Bayes
estimation case, an estimation ¢, for the present problem is a function based on a sequence
of past observations Y, and the present observation Y = y. We investigate this estimation

problem under the following assumption.

Assumption A: The prior distribution G is symmetric about the point 4, and N is an

even number.

Under Assumption A, we have the following lemma which describes the relationship

3




between w(y) and h(y).
Lemma 2.1. Under Assumption A, we have

) w (&) = b (&),

b) w(z)=w(N -z —-1)forz=0,1,...,N — 1.

c) w(z)+w(N —z)=h(z)=h(N -2),z=0,1,...,N.

d) w(z)+w(z+1)=h(z+1),z=0,1,...,N - 1.

e) ps(z)=1—@ (N —z),z=0,1,...,N, and

f) w(z) = iz:’! Wz —i)(-1) = (-1)*"Fh(§)/2,z=&,...,N.
Proof: Straight computation.

For each y =0,1,..., N, define

o .él Iy -y (Yy) ify# &,
fay) = fa(N=y)=¢
n 2 w5 if y = 2.
N
hos) = £}/ () ). and
. 5
wa(y) = T haly = )(=1) = (-1 Fha (§) /2 N2y 2 4,
wn(y) = ha(y) — wa(N —y) ifo<y<Z-1

Both h,(y) and wa(y) are unbiased estimators of h(y) and w(y), respectively, y =
0,1,...,N. Thus, it is intuitive to use ';:—”“((3 as an estimator for p (y) = ';:4(5)2 However,
this naive estimator may have serious deficiencies. First, hn(y) may be equal to zero and

thus, the function %nﬂ(-ﬁ is not well defined. Second, it is possible that the value of %
may be greater than 1 or less than 0, while 0 < ¢, (y) < 1for all y =0,1,...,N. Hence,

in the following, we seek a better estimator. The following lemma states the monotone
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properties of the functions ¢, (y), h(y) and w(y). These properties may suggest a way how

to construct reasonable empirical Bayes estimators.

Lemma 2.2. a) For any prior distribution G, ¢ (y) is an increasing function of y,y =

b) Under Assumption A, both h(y) and w(y) are increasing in y for y = %, ..., N.

Based on the monotone properties described in Lemma 2.2, we let {An(z)}"_5 be
=9

the isotonic regression of {hn(z)}"_ y with equal weights and from Lemma 2.1, define
=%

t—&~ . - -~
Wn(z) = _z; hn(z — i)(=1)' — (=1)==%ha (&) /2, for & < 2 < N. Thus, ha(z) is

nondecreasing in z for %’- < z < N, and by this nondecreasing property, @wn(z) > 0 for

% < z < N. However, w,(z) may still not possess the nondecreasing property. Thus, we

let {w;(z)}iv__ x be the isotonic regression of {u”;,.(a:)}iv_ y Wwith equal weights and from
] -2

Lemma 2.1, define h%(z) = wi(z — 1)+ wi(z) for £ +1 <z < N and b* (§) = 2w}, (£).

By the nondecreasing property of w}(z), h},(z) is nondecreasing in r for % <z < N. Now,

for -I,j— <z < N, define

on(z) = { %:?%)l if hy(z) #0,

a(z) =

: if h%(z) = 0.

Since ¢n(z) may be not a nondecreasing function of z for %’- < z £ N, we consider the

isotonic regression {vz(x)}iv__: a of {qon(x)}iv_ x With equal weights. Also, for 0 < z <
2 -2

_ 12! — 1, define p%(z) =1 — pi(N — z). Now one can see that ¢} (r) is nondecreasing in z

forz =0,1,...,N. We propose using ¢%(z) as an estimator of p.(z),z =0,1,..., N,

Remark 2.1. By the nondecreasing property of w}(z) on z,z = %,...,N, ealz) 2 % for
all z > & and hence, ¢4(z) > 1 for z > §. Also, hjy(z) = 0 iff w}(z) = 0 iff Wa(y) =0
forall £ <y<ziff ha(y)=0forall & <y<aziff ha(y)=0forally=N-z,...,z,

where z > %




3. ASYMPTOTIC OPTIMALITY

Let y,(y) denote an empirical Bayes estimator based on the current observation y
and the past data Y, = (¥1,...,Y,). Let r(G,¢¥n) denote the conditional Bayes risk
(conditional on Y,) of the estimator ¥, and Er(G,¥,) the associated overall Bayes risk
where the expectation E is taken with respect to Y ,. Since r(G) is the minimum Bayes
risk, (G, ¥n) — r(G) > 0 and therefore Er(G, %) — r(G) > 0. The nonnegative difference
Er(G,¥n) — r(G) is often used as a measure of the optimality of the empirical Bayes

estimator ¥y,.

Definition 3.1. A sequence of empirical Bayes estimators {¢,}7%, is said to be asymptot-
ically optimal in E at least of order 3, relative to the prior distribution G if Er(G, ¢, ) —

7(G) < O(Bn) where {B8,}3%, is a sequence of positive numbers such that lim 3, = 0.

n—oo

The usefulness of empirical Bayes estimators in practical applications clearly depend
on the convergence rates for which the risks of the successive estimators approach the
minimum Bayes risk. In the following, the performance of the proposed empirical Bayes
estimators {3} is evaluated on basis of the rates of convergence of the nonnegative dif-
ference Er(G,¢},) — r(G). Without loss of generality, we assume that G(0) < 1 to exclude

the extreme case. In the following, all the computations are made under Assumption A.

Lemma 3.1. For each y = % +1,...,N, suppose that hj(y) > 0. Then for 0 < t <

min(1 — ¢4(y), ¢6(y) — 1),

lon(y) = ve(y)l >t = (N +2) _gu |hn(z) = h(2)* > [(N/2)t)" .

-2

Proof: |@y(y) — v (y)| > t = 0i(y) —@s(y) >t or pr(y) — ¢s(y) < —t. By the definition
of p2(y), ws(z), Wa(z), hn(z), Lemma 2.1 and Theorem 2.1 of Barlow, et. al. (1972), we
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have:

waly) —woly) >t
= on(z) —po(y) >t forsome N/2+1<z<y.
= wa(2)[1 = 9s(y) — t] —wi(z — Dps(y) +1] >0 for some N/2+ 1<z <y
= [wh(z) — w(@)][l — ¢s(y) —t] = [wi(z = 1) —w(z - D]lps(y) + 1] > A(N/2)t
for some N/2+1<z <y
= [wi(z) — w(z)] > A(N/2)t or [wy(z — 1) —w(z - 1)] < —h(N/2)t
for some N/2+1<z<y

= sup |wh(z)—w(z)| > h(N/2)t

A <z<N
N
= T |wi(z)—w(z)? > [A(N/2)]?
=&
N
> T loa(z) - w(@) > ((N/2),
= 2
N
since Zﬁ[w'( z) —w(z)]? < }_'_‘,m(wn(a:) w(z))?, see Theorem 2.1 of Barlow, et. al. (1972).
r= 2 r=
Now, by the definition of w,(z), we have, for each z = %, ..., N,

[n(2) — w(z)]*

& . .
= | £ [ka(z — i) = h(z — )](-1) = (=1)*~ F[Ra(N/2) = h(N/2)]/2

2

<2'TVD R h(z))?
El;-[ n(z) — h(z)]
N

<2 :5;[ n(z) — h(z)]

where the last inequality is again from Theorem 2.1 of Barlow, et. al. (1972).

Based on the above discussions, we conclude that

Pa(y) —pa(y) >t => (N +2) z [ha(z) — h(z)]® > [R(N/2)t]* . (3.1)

’_2
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Analogous to the preceding discussion, under the assumption that h}(y) > 0, we can

obtain:

Fuy) ~ 9oly) < ~tand AL(y) > 0= (N +2) T [ha(2) - A=) > [A(V/20  (3.2)

=¥

Therefore, (3.1) and (3.2) together lead to the result of the lemma.
Remark 3.1. Note that for each y = % + 1,...,N, as t > 1 — p.(y),
{Pn¥) = wa(y) > t} = ¢; also, as t > s (y) ~ 7, {Pn(y) — waly) < -t} = 6.

Lemma 3.2. For each y = ¥+1,...,N and ¢t > 0,

N _4nh2! %’-N’;’)zﬂ
I >tand h(y) >0} < £ 2 (N+2) )

2=

P{lon(y) = vely

Proof: By Remark 3.1, P{|pi(y) — ¢s(¥)] > t,hn(y) > 0} = 0 if t > max(1 — ¢,(y),

©s(y) — %). Thus, as 0 < t < max(1 — ¢4 (y), 5(y) — 1), from Lemina 3.1,

P{lon(y) — ve(y)l > t,hp(y) > 0}

< p{z i{hnm - h(z)f > [t_?v%?éﬁ}

< ,;P{'h"(z) — h(z)| > %}
- i P{ |fal2) = fo(2)] > ﬁt}fv(% )2(1:)}
< § TR

where the last inequality is obtained from Theorem 1 of Hoeffding (1963).
The following theorem is our main result.

Theorem 3.1. Let {5}, be the sequence of empirical Bayes estimators constructed in
Section 2. Then, under Assumption A,
Er(G,oh) ~r(G) < O(rn™1).
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Proof: Straightforward computation leads to the following.

0 < Er(G,p}) —r(G)
N . 2
= T El(vnly) — 2 (1)) 1fo(y) (3.3)

N . 2
=2 % El(pn(y) —va(u)1fa(y).

Foreachy=%+1,...,N.

El(¢h(y) — wa(y))?]
/max(l—vc(y).vc(y)—";)

2tP{len(y) —@s(y)| >t hy(y) > 0}dt
0

+(pe(y) — 1/2)* P{hy(y) = 0},
Now, from Remark 2.1,

P{hy(y) =0} = P{fa(z)=0forallz =N —y,...,y}

=[1-Fo(y) + Fe(N —y = 1]"
(3.4)
= exp(—nin(l - Fo(y) + Fo(N -y - 1))_1)
<0O(n™th).
where F_(-) is the marginal distribution function of Y. Also, from Lemma 3.2, and the
fact that max(1 ~ ¢ (y),¢s(y) — 3) < 3 for y > % + 1, we have

max(1-¢g(¥),¢g(¥)—13) ) . ,
/ 2P{l0n(y) = 0o (¥)] > £, h(y) > 0}ot.

0
% N 4nh2!*!!’:!202

< / 4 T e venF 4t

0 z=q- (35)

1 g (N +2)?
S oretan () ()
= O(n™%).
From (3.4) and (3.5), we conclude that for each y = % +1,...,N,
El(v7(y) = 9a(¥)’] S O(n71). (3.6)
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Since N is finite and fixed. (3.6) and (3.3) together complete the proof of the theorem.
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