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In infinitely dilute ionic solutions, i-e., r c-40. the limiting flux of ionic
species may be computed directly from the Smoyuchowski-Debye theory for ionic
bimolecular reaction rates. Computation of theoretical voltammograms in the
limit of infinite dilution (i e., r ic-+O) reveals the surprising results that
under certain reaction conditions tee steady-state current-violtage curve will
be peaked rather than sigmoidal giving the appearance that electrochemical
activity occurs only within a small'(several hundred milliv61) potential
window. The effect is easily explained when the electric field, and the charge
of the reacting species is considered. Implications in the design of microscopic
redox substrates, e.g., dispersed metal catalysts, are discussed.
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Abstract. An analysis of transport of charged and uncharged species associated with a
steady-state faradaic process at a spherical microelectrode is reported. We examine systems
comprising various relative concentrations of a redox species and, if charged, its counter
ion, and an inert electrolyte. Of particular interest is the behavior of these systems when
the thickness of the diffuse double layer (characterized by the Debye length, i- 1) and the

radius of the electrode (ro) are comparable. Transport of each species is assumed to be
governed by the Nernst-Planck equation. A generalized solution obtained using finite-
difference simulations demonstrates that significant enhancement or inhibition of the
steady-state flux can occur and will depend upon the dimensionless parameter roic, upon

the relationship between the applied potential (E,.1,p), the formal redox potential (EO'), and
the potential of zero charge (Epzc), and upon the cti.,- s and relative concentrations of the

species in solution. Analytic solutions for several limiting cases are discussed and serve as
simple expositions of the phenomena as well as a verification of the simulations. In
infinitely dilute ionic solutions, i.e., roc - 0, the limiting flux of ionic species may be

computed directly from the Smoluchowski-Debye theory for ionic bimolecular reaction
rates. Computation of theoretical voltammograms in the limit of infinite dilution (i.e., r0oc

- 0) reveals the surprising result that under certain reaction conditions the steady-state

current-voltage curve will be peaked rather than sigmoidal giving the appearance that
electrochemical activity occurs only within a small (several hundred millivolt) potential
window. The effect is easily explained when the electric field, and the charge of the
reacting species is considered. Implications in the design of microscopic redox substrates,

e.g., dispersed metal catalysts, are discussed.
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Introduction. Development of electrochemical applications of microelectrodes has

flourished during the last decade expanding considerably beyond early applications as

biological stimulators and sensors1 ,2. The development has been driven by advances in

solid state technology which continues to produce faster and more sensitive electronic

devices as well as novel techniques for the fabrication of microelectrode devices. It is now

possible to produce a microelectrode or microelectrode array whose critical dimension, ro

(e.g., the half-width of a band electrode or the radius of its hemicylindrical approximation;

the radius of a disk electrode or its hemispherical approximation), is of the order of tens of

angstroms 3,4 . The reduced iR error associated with a microelectrode coupled with

increasingly fast and sensitive amplifiers permits extremely fast voltage perturbations and

current measurement, e.g., cyclic voltammetry at -2 x 106 V/s, thereby accessing a new

time domain in electrochemical measurements. The size of an electrode dictates the spatial

(as well as the time) domain that is probed and an electrode with angstrom dimensions may

reveal fundamental information about the solvent structure and ion distribution within a few

angstroms of the electrode surface.

When a microelectrode having an ro as small as 10- 7 cm, 3,4 operates in an

electrolyte concentration in the range of 10-5 - 10-1 M, the thickness of the diffuse double

layer (characterized by the Debye length, K-1 ) is comparable with or much larger than the

diffusion layer 8. It is thus meaningful (and necessary) to ask how the overlap of the

diffusion layer and diffuse double layer will affect the fluxes and spatial distributions of the

various solution species. For example, consider a spherical electrode of radius ro in

contact with a solution containing a redox active ion (e.g., A ) as well as supporting

elctrolyte, Fig. 1. The characteristic lengths K-1 and 8 have different dependencies on the

electrode radius, ro, and the chemical composition of the electrolyte. In a solution

containing a symmetrical electrolyte, K- 1 is proportional to the inverse square root of the

2



total ionic concentration, C-1/2, and independent of the electrode radius, ro. Conversely, 8

is proportional to ro and independent of C. The relative thicknesses of the diffuse double

layer and the depletion layer determine the extent to which ion transport is affected by the

former. At macroscopic electrodes, --1 << 8, the double layer has an insignificant effect

on the rate at which ions are transported to the surface. However, K-1 can become

comparable to 6 by either decreasing the ionic concentration or the electrode radius. When

I-1 > 6, the transport and net current of reactant ions will be increased or decreased by the

electric field originating at the electrode surface.

We are particularly interested in the behavior (at microelectrodes) of systems

comprising a redox species and its counter ion with little or no supporting electrolyte. The

generalized system comprises 4 chemical species: a redox couple, Oz° , RZRrelated by

Ozo+(zO -zR)e " - RzR (1)

along with a pair of supporting electrolyte components, Xzx and y. The systems we

examine may initially contain as few as two species (e.g., Ozo and Xzx) with the faradaic

process producing RZR (eq. 1). The generalized problem is solved by presuming that

transport and distribution of all species is governed by the Nemst-Planck equation and by

classical electrostatics. The resulting set of equations are solved using a finite difference

methodology. In order to simplify our inquiry we consider only spherical geometry. This

not only simplifies the computations, but also permits us to discuss true steady-state fluxes.

However, the results are qualitatively applicable to any geometry and comparable ro.

A number of workers have considered migration effects at microelectrodes. With

presumption of spherical geometry and the constraint of electroneutrality (corresponding to

the limiting case where roK --+ 00, i.e., K-I << ro) they can obtain some useful analytic

expressions for the steady-state flux. Bond et al, also mention (but do not calculate) the
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infinite dilution limit (the "single-ion case") which occurs when ro0 -* 0 (i.e., K1 >> ro).

Electrostatic ion-ion interaction is negligibly small compared to the interaction with the

electric field produced by the charge on the electrode. We shall present the analytic solution

for that limiting case since it provides a simple basis for understanding the more

complicated systems. We shall also discuss several other limiting cases which have

analytic solutions (the aforementioned electroneutrality limit, the trivial diffusion limit

attained with an excess ot supporting electrolyte, and the zero-current equilibrium

(spherical) diffuse double layerX). The simulations serve to identify the range of roic values

appropriate for analytic solutions.

Results and Discussion.

At sufficiently low concentrations of supporting electrolyte or small electrode radii,

roK -* 0, the number of ions surrounding the electrode is negligible, resulting in an

unscreened electrostatic force between the electrode and redox ions. Analysis of this

limiting case is developed in three main sections. First, we derive an exact solution for

current-voltage behavior as roKi - 0. We then report finite-difference simulations of the

flux as a function of roic and concentration to determine the useful working range of the

analytic solution. In the final section, we present examples of steady-state voltammograms

expected as ro - 0.

General current-voltage relationship as ro -4 0

The i-V expression is obtained for the situation in which the solution contains both

reduced and oxidized forms of a redox couple (Oz° + (zO - zR)e" - RZR). For clarity, the

superscripts zo and ZR are omitted.

Assuming that the electron-transfer reaction is governed by Butler-Volmer kinetics,

the net flux to the electrode surface is given by
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i ko[Coexp'1nM - CRsexp(1-1)nf ] (2)

where k is the standard heterogeneous rate constant, a is the transfer coefficient, f

F/RT, and r1 = (E - EO'). The surface concentrations Co s and CRs in the limit ro0 - 0 can

be obtained by solving for the diffusional-migrational fluxes of 0 and R. We assume that

the flux of all species is govern by the Nemst-Planck equation

dC1  F

fj = -Dj d + Dj F E Cj zj (3)

For an unscreened spherical electrode, the electric field resulting from the charged

electrode is defined by:

= r= ro(2) (4)

Substitution of eq. 4 into the Nemst-Planck equation (eq. 2) yields

f j = dj_ + DjCjWj/r 2  (5)

where Wj = (F/RT)zjro~r = ro The dimensionless group Wj can be rewritten in terms of

experimentally defined parameters by substituting the expression

r(=ro = L-'( )r=ro = (47t-Eoro 2)lo, (6)

to yield W -(7)
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In this form, Wj is recognized as the dimensionless unscrcened electrostatic interaction

energy between the electrode at potential 00 and the ion of charge zj.

The equation of continuity, for a spherical coordinate system applied to species j

yields

--(r2(-DjdC + DjCjW/r2))=0 (8)

dr J r

which can be integrated and evaluated using the boundary conditions

Cj =Cj* as r 00 (9)

Cj =Cj atr =ro

to yield the concentration profile of j, eq. 10.

= C* [(Cis/Ci* - 1)(e-Wjr./r - 1)1 + (10)
e-Wj - 1

Substitution of eq. 10 into eq. 5. yields the flux of species j evaluated at the electrode

surface, r = ro.

WiDiC," [ e-Wj - Cis/Cj* ]
ro e-Wj - 1

Rearranging eq. 10 to obtain the surface concentrations of 0 and R yields

COS = co*,[ ewo - ro(fo)(e'Wo -1) (12)
DoCo*Wo

mm m | | ~ r
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and

CRs = CR* I e-WR _ ro(fR)(e-WR - 1) (13)
DRCR*WR

From the stoichiometry of eq. 1, fo = - fR. In addition, nFA -fo (the sign convention

used in writing eq. 2 indicates that the reduction of 0 results in a positive current; because a

positive species flux corresponds to transport away from the surface, a negative flux of 0

corresponds to a positive current). Using these relationships and substituting eqs. 12 and

13 into the Butler-Volmer equation (eq. 2) yields the general i-E relationship in the limit ro0

-- 0,

i e-WoCo*kf - e-WRCR*kr (14)
nFA - r_[(e-Wo-1)kf + (e'WR- 1)kr]

-DL W 0  WrR

where kf = koe-anfl and kr = koe(la) nfr . Several limiting cases of this general flux

equation are considered below.

I. W -4

This limit corresponds to purely diffusional controlled transport of both 0 or R,

which is difficult to obtain in the strictest sense since both the electrode and either 0 or R

has a net charge. However, for a macroscopic electrode in a concentrated electrolyte

solution, the electric field originating from the electrode rapidly decays to a small value at a

very short distance compared to the diffusion layer thickness, 8. Under these conditions,

the charge on the electrode is fully screened and the effective interaction energy, Wj, at

distances greater than -2- 1 is zero. The dominant transport resistance is diffusion of 0
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and R through the depletion layer, unaffected by the electric field in the thin double layer.

In this limit, eq. 14 reduces to

_ (Co*kf - CR*kr) (15)
nFA - r

I +-6-(kf + kr)

which is identical to the result obtained by Shain et. al. for spherical electrodes 5 . The

criteria for a reversible electron-transfer reaction is ko >> 1, where the mass-transport
km.t.

rate is defined as km.t. = D/ro. When this criteria is satisfied, eq. 15 yields

RT (iLC(diff.) - i)

E = E°' + =n - La(diff.)) (16a)

where iLC(diff.) = nFADCO*/ro and iLa(diff.) = - nFADCR*/ro.

II. Wj # 0 and Reversible Electron-Transfer.

The criteria of a reversible electron-transfer reaction remains ko >> 1. However,
km.t.

the mass-transport rate is now given by km., D W which is a potential dependent
ro (l - eWj)w

quantity. When ko >> km.t., eq. 14 reduces to eq. 16b

E = EO' + RT (iLC - i) (16b)E n (i - iLa)

where the migration-diffusion limited currents are given by

nFADCO*[ Wo ](7
iLC = - ro (17)

and iLa = nFADCR* [ WR ] (18)

8ro eW R
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It is noteworthy that km.t. is dependent on the electrostatic potential 00( = E - Epzc) for

all E, a result of electrostatic attraction or repulsion of the reactant. This is in contrast to a

purely diffusional controlled rate which is independent of E at sufficiently large values of

r1. A consequence of the dependence of kn.t, on 00 is that the apparent reversibility of the

electron-transfer reaction wrill depend on the relative values of EO' and Epzc. In addition,

eqs. 1 7)and '3 indicate that no steady-state limiting current plateau is expected when Wj is

finite. We return to these points when we consider specific examples of the voltammetric

behavior of a spherical microelectrode in the limit roK - 0.

III. Normalized Limiting Flux at Large 1 and Finite W

Dividing eqs. 17 and 18 by the corresponding limiting diffusional fluxes in the

absence of migration (i.e., Wj - 0), iLC(diff.) = nFADCo/ro (for reduction) and iLa(diff.)

= - nFADCR/ro (for oxidation), yields the normalized limiting current to a spherical

electrode in the limit roK -- 0

iL W(19)
iL(diff.) eWj- 1

Eq. 19 indicates that the normalized flux is dependent only on the electrode potential (vs.

Epzc) and the charge of the reactant zj. The normalized flux is independent of the electrode

radius as rok -- 0, a point we shall return to latter in discussing finite difference

simulations of the flux.

An alternative and more intuitive approach in analyzing the transport limited flux

(large ril) at microelectrodes to is treat the electrode as a small stationary sphere (i.e., an ion)

that reacts with freely diffusing reactant in a bimolecular collision. The rate of such a

reaction between ions in an infinitely dilute solution was originally considered by Debye6

using Smoluchowski's method 7 and shown to be dependent on the charges of the two

reactants. If the diffusivity of one of the ions is set equal to zero (corresponding to the
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stationary electrode) and the radius of the other set to zero (corresponding to a point charge

reactant), the Smoluchowski-Debye equation yields eq. 19, the flux to a spherical

microelectrode (see Appendix). The enhancement or inhibition of bimolecular rates

predicted by Debye results from the electrostatic force between the reactant ions. In

general, because the valencies of ions in solution are relatively low (+4 to -4), bimolecular

transport controlled rate constants in aqueous solutions do not vary by more than a factor of

3 or 4 from the diffusional controlled rate constant for uncharged species. The effective

valence, zelec,, of a spherical microelectrode is given by eq. 20.

Zelec. = 41EEO(E-Epzc)ro/e" (20)

In comparison to the charge of a solution ion, Zelec., can be potentiostatically controlled and

set to exceeding large values. For example, at 0.1 V vs Epzc, zelec. for a 100A electrode is

+54 and the normalized flux (relative to an uncharged species) for the oxidation of a

monovalent cation is 0.081. Under the same conditions, if the electrode potential is poised

at 0.5 V vs Epzc, the Zelec" increases to +270 and the normalized flux decreases to a

negligible value, 6.8 x 10-8. Conversely, an enhancement of the normalized flux is

predicted for the reduction of a monovalent cation at electrode potentials more negative than

Epzc.

Finite-,.-'f ence Simulation. In this section, we report finite difference simulation of the

transport liA'' I flux at large 1 for two specific electrochemical reactions. The results

obtaineO allow a useful estimate of the maximum permissible value of ro : for applying the

analytic solution presented above. The simulations also yield the flux for intermediate

values of roK. The model utilizes the finite-difference method to simulate the current and

ion distribution occurring at a spherical microelectrode of radius, ro. The electrochemical
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reactions considered are the l-e- reduction of a singly charged cation (A+ + e- -* A) and

the l-e- oxidation of singly charged anion (A- --- A + e-). The solution contains reactant

(A+ or A-) and a 1:1 electrolyte which shares a common counterion. The spherical working

electrode is assumed to be surrounded by a large concentric spherical counterelectrode,

naintaining a radial flux under all conditions.

The finite-difference program calculates the time-dependent fluxes and

concentrations of all species following a potential step to the electrode at t = 0. Initially,

the electrode is assumed to be uncharged with respect to the solution, and all species are

distributed uniformly throughout the solution. At t = 0, a potential (00) of +0. IV versus

Epzc is applied to the electrode. The potential step is assumed to be sufficiently large to

cause the mass-transfer limited reduction (or oxidation) of A+ (or A-) at the limiting current

plateau. Only the final steady-state fluxes are reported here.

The model considers migration resulting from electric fields established by the

diffusive ion flux as well as that due to the charged electrode surface. At any point in

solution a distance r from the electrode surface, the flux of species j in the radial direction is

given by the Nemst-Plank equation (eq 3). The time-dependent net flux of charged species

gives rise to a time-dependent electric field which is represented by:

dE F I fzj 
(21)

The digital simulation is based on a system devised by Joslin and Pletcher 8 and

modified by Feldberg 9, employing the finite-difference method with an exponential space

grid and modified to incorporate the DuFort Frankel algorithm1 ° . A detailed description of

the simulations will be presented in a forthcoming publication 11.

A preliminary test of the accuracy of the model and the numerical calculations was

made by simulating the equilibrium concentration profiles of a 1:1 electrolyte within the
11



diffuse double layer for the case in which no faradaic reaction occurs. These results were

compared to numerical values tabulated by Loeb, et. al., 12 using Gouy-Chapman theory,-

for spherical colloidal particles.

Fig. 2a-c shows a comparison of the ion concentration profiles generated by digital

simulation (solid lines) with the results of Loeb, et. al.(points), for 5, 50, and 100 A

radius spherical electrodes. The bulk concentration of the 1:1 electrolyte (0.148 -372 mM)

and the surface potential (0.026 - 0.103 V) used in the simulations are indicated in each

figure. In all cases, excellent agreement (within 1 %) is obtained between the simulated

profile and the numerical results of Loeb, et. al.

Simulated Fluxes.

Transport limited steady-state currents obtained from finite-difference simulations

corresponding to the 1 -e- reduction of a +1 species (A+ + e- -* A) and the I -e- oxidation of

a -1 species (A- -4 A + e-) are shown in Fig. 3. In each system,we assume an 1:1

supporting electrolyte, an applied potential of +0.1 V versus Epzc, and zero product

concentration in the bulk. The results are plotted in Fig. 3 as a function of ro!¢

(corresponding to electrode radii ranging from 5 to 10,000 A, and supporting electrolyte

concentrations from 10- 7 to 10 M). Each line in Fig. 3 corresponds to a different ratio of

the concentrations of reactant (A+ or A-) to supporting electrolyte, Credox/Celec..

Numerical values of limiting currents have been normalized to the current expected

at a sphere for a purely diffusion controlled reaction (iL(diff.)= 47rnFDC*ro where C* is the

bulk reactant concentration). Thus, the horizontal line at i/iL(diff.) = 1 in Fig. 3

corresponds to the oxidation or reduction of a neutral reactant.

Fig. 3 shows that a deviation from classical diffusion lirmted current is observed as

roi decreases or as Credox/Celec. increases. This behavior results from two distinctly
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different phenomena: (i) migration resulting from depletion of reactant ions at the electrode

and (ii) migration resulting from the electrostatic field originating at the surface.

(i) Migration resulting from depletion of reactant ions at the electrode.

At large ro i (e.g., corresponding to a macroscopic electrode), the current for either

the reduction of A+ or the oxidation of A- to the neutral A increases to a value

approximately twice as large as the purely diffusional current when the electrolyte

concentration becomes appreciably smaller than the reactant concentration, Credox/Celec

>102 (Fig. 3). This behavior was first described quantitatively by Heyrovsky 13 and

Ilkovic 14 and more recently addressed in context of microelectrode behavior in solutions of

low ionic strengthxx xx. In the limit of little or no supporting electrolyte, the system can be

approximated as containing three species in solution, the charged reactant, j=l, its

corresponding counterion, j=2, and the neutral product, j=3. Solution electroneutrallity

requires that:

C1z1 + C2z2 = 0 (22)

and: dC Z +dC 2 z2 = 0 (23)
dr drz2

Using eq. 3 to define the fluxes of reactant and counterion:

fj = -D 1  C- + Di -L Cizi (24)

f2 = 0=-D 2 d- + D2 - EC 2 z2  (25)

and substituting eqs. 22, 23, 25 into eq.24 yields the steady-state reactant flux:

13



d Z2

Combining eq.26 with the continuity equation for a spherical system (d (r2fj) = 0), and

integrating using the boundary conditions C -+ Cb as r -4 o and C = 0 at r=-ro yields the

expected transport limited current:

iL = 41nFDCbro(1 - (27)

In solutions containing a monovalent reactant (A+ or A-) and a monovalent counterion of

opposite charge (X- or X+), the limiting current (eq. 27) for cation reduction or anion

oxidation should increase by a factor of 2 relative to the diffusion limited current in the

presence of excess supporting electrolyte, iL(dff.).

The dotted line in Fig. 3 shows the asymptopic limiting value of 2 that the

normalized current approaches as Credox]Celec increases. We find that that iJiL(diff.) for

the oxidation of A- equals 2 for Credox/Celec >> 103. However, for the same values of

Credox/Celec and ro0 , iI/iL(diff.) is significantly smaller for the reduction of A+ , -1.32,

than the expected value of 2. We show in the following section that this deviation is due to

electrostatic repulsion between the positively charged electrode (00 = 0.1 V) and A+ .

(ii) Migration resulting from the electrostatic field originating at the electrode surface.

For ro0 < 50, the limiting current deviates from the diffusional currents even when

the supporting electrolyte concentration is considerable larger than the redox active

concentration. For example, the current corresponding to the oxidation A- at roKi = 10

Credox/Celec = 10-2 is -20% larger than the purely diffusional controlled value. The

reduction of A+ yields a current that is 55% smaller than the purely diffusional controlled

14



value. We ascribe these deviations from a purely diffusional response to electrostatic

double layer forces acting on the reactant within the depletion layer. Qualitatively, the flux

of an anionic reactant, to a positively charged electrode is expected to be increased,

resulting from electrostatic attraction. Conversely, the flux of cationic reactant would be

decreased. This behavior is observed in Fig. 3 for the reaction of +1 and -1 species at a

positively charged electrode (00 = 0.1 V).

As anticipated, the effect of the electrical double layer on migrational currents

becomes more pronounced as ro0 decreases. This behavior reflects the relative dimensions

of the double layer with respect to the depletion length, which in turn is determined by the

electrode radius and electrolyte concentration (see Fig. 1). For K- << ro (i.e., large roK),

the thickness of the double layer is insignificant compared to the depletion length (-1Oro),

and reactant ions do not experience an electrostatic force until they are in the immediate

vicinity of the electrode. Under these circumstances, ions diffuse to the surface accross an

electroneutral depletion layer. Conversely, for x-1 > ro (i.e., small roic), the double layer

extends into the solution to distances comparable with the depletion layer, resulting in an

increased or decreased transport limited current.

As ro0 -- 0, the normalized limiting current asymptotically approaches limiting

values for the reduction of A+ and for the oxidation of A-. The asymptotic limits are given

in Table 1 and compared to the exact analytic solution (eq. 19) obtained using 00 = 0. IV

and zj = -I and +1. The disparity between these two values is less than 1%, demonstrating

the accuracy of the simulations.

Table 1. Normalized Mass-Transfer Currents as roi --+ O.a

Reaction Analytigal.b Finite Difference Simulationc

A- -+ A + e- 3.97 3.95
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A+ + e- A 0.081 0.081

a) The electrode potential is +0.1 vs Epzc
b) eq. 19.
c) simulation conditions: ro < 5A; Cb = 1 rM; no supporting electrolyte.

In the following section, we describe the overall steady-state voltammetric behavior

of spherical microelectrodes in the limit roK --+ 0. Before describing the results, it is useful

to consider the applicabilty of the analytic theory in prediciting the behavior of real

electrochemical systems. From Fig. 3, we find that normalized flux for the oxidation of A-

predicted by eq. 19 (which is exact in the limit roie -- 0), is closely approximated by the

simulated fluxes when roic < 0.1. For the reduction of A+, the analytic and simulated

values coincide when ro i < 1.0. Thus, the analytic solution (eq. 14) can be applied to

approximate the behavior of these particular systems when roic is less than the

abovementioned values. As a specific example, a 300 A radius electrode in an aqueous

solution (250C) containing -0.1 mM of A+X - corresponds to roK = 1. The voltammetric

behavior of this system would, thus, be prescribed by eq. 14.

In general, the useful working range of eq. 14 is dictated by both the sign and

magnitude of the dimensionless interaction energy, Wj (for both 0 and R), as well as roK.

Double layer effects on transport limited fluxes become more prounounced as Wj increases,

which occurs when the species charge, zj, or the electrode potential, 0o (E vs. Epzc), is

increased. In choosing to simulate the fluxes for the oxidation and reduction of a

monovalent species (A- or A+) at low values of 00 (0.1V), we have, in effect, provided a

very conservative estimate of the upper limit of roK for which eq. 14 is useful. At larger

00, or when considering the oxidation or reduction of a multivalent species, the electrostatic

forces influencing migrational currents will be more pronounced, causing the transition

16



between macroscopic behavior (roK -- -0) and microscopic behavior (roK -- 0) to occur at

larger values of ro ¢.

Voltammetry at Microelectrodes as ro -- 0.

Eq. 14 was used to calculate the voltammetric behavior expected for following

redox systems:

A+ + e- A (Fig. 4) (28)

A+  i A2  + e- (Fig. 5) (29)

A z A2+ + 2e- (Fig. 6) (30)

Each system exemplifies different types of behavior resulting from migration effects within

the double layer. In each system, we have calcultaed the voltammograms assuming that

both halves of the redox couple are soluble in solution, and that only the reactant (l.h.s. of

eqs. 28, 29, and 30) is inital present in bulk solution. In plotting the voltammograms we

have set EO equal to 0.OV vs. an unspecified reference electrode, allowing numerical values

of Epc to be defined vs. EO'. Numerical values of 0o correspond to E-Epzc.

Fig. 4 shows the voltammetric response expected for the I -e- reduction of A+ (eq.

28) for several values of Epzc relative to EO' and as a function of koD/ro. The sigmoidal

shaped voltarnograms (dashed curves) in Fig. 4 corresponds to classical diffusion-limited

reduction ignoring double layer effects. When double layer effects are taken into

consideration, the voltammetric current is increased or decreased depending on the relative

values of E and Epzc. For example, in Fig. 4a, when Epzc = 0, the reduction of A+ is

enhanced greatly when the E is more negative than Epzc, reflecting an attractive force

between the negative electrode and positive ion. Conversely, when E is moved more
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positive than Epzc, electrostatic repulsion between the ion and electrode decreases the

magnitude of the current. Voltammograms for Epzc = 0.1 and -0.1V vs. Eo', also shown

in Fig. 4a, can be qualitatively explained in a similar fashion. For reversible e- - transfer,

koro/D > 102, the intercepts between the sigmoidal shaped diffusion-limited curve and the

voltammograms including double layer effects occur at Epzc in eash case, corresponding to

zero electrostatic force.

Fig. 5 shows voltammograms for the 1-e- oxidation of A- to A2  (eq. 29) for the

same potential range and values of Epzc as in Fig. 4. Here, the voltammograms have a

skewed bell shape resulting from electrostatic repulsion of A+ from the electrode at

potentials that normally correspond to the diffusion limiting current plateau. At potentials

sufficiently positive of Epzc the limiting current is suppressed to negligible values. For

instance, at an electrode where Epzc = 0 vs EO', the limiting current at E = 0.2V is reduced

to 0.3% of the value in the absence of migration. For systems where Epzc is more negative

than Eo', electrostatic repulsion effectively eliminates the voltammetric wave (Fig. 5).

Fig. 6 shows voltammograms for the 2e- oxidation of A (eq. 30) for (Epzc - E ') =

0.5 and -0.5 V. In this case, reduction at sufficiently large overpotentials is controlled by

diffusion of A to the surface resulting in a sigmoidal shaped curve with a well defined

limiting current plateau. Near EO' the migration of electrogenerated A2  has a strong effect

on the E1/2 of the reaction. When (Epzc - EO') is positive, migration of A2  towards the

electode surface at potentials between Epzc and EO' increase the rate of back reaction

resulting in a shift of E1/2 to more positive potentials. For (Epzc - E° ' ) = 0.5, E1/2 is

shifted - 0.25 V positive Eo'. When (Epzc - EO') = - 0.5, migration of A2  away from the

surface decrease the rate of backreaction, shifting E1/2 towards negative values.

However, the effect is less in this case since migration of A2+ occurs only when the

potential is suffciently close to EO' to cause the oxidation of A.
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Also shown in Figs. 4, 5, and 6 is the effect of varying the dimensionless rate

krJo/D on the voltarnmetric waves. We plot curves for koro/D = 102, 1, and 10-2 which in

the limit of Wj -4 0 correspond to reversible, quasi-reversible, and irreversible electron-

transfer reactions. For the reduction of A+ (eq. 30), a decrease in koro/D has the effect of

shifting the voltammetric curve to more negative values. At sufficiently negative values of

the potential, mass-transfer becomes rate limiting and current is given by eq. 19. For the

oxidation of A+ (eq. 29), a decrease in koro/D shifts the foot of the wave to more positive

potentials as expected. However, since migration of A+ away from the surface at positive

potentials effectively blocks the reaction, the bell-shaped voltammogram is diminished in

size (note scale change between Fig. 5a and 5b). The effect of koro/D on the wave

corresponding to oxidation of A (eq. 30) has a similar dependence on the position of Epzc.

As a final note, because the potential decays slowly as r 1 away from an unscreened

spherical electrode, (i.e., O(r) = 0o(l - ro/r)), only a fraction of the total applied potential (E

vs EO') that drives the electron-transfer reaction will be sensed by the reactant at the distance

at which electron-transfer occurs, re.t.. In considering this effect, we assume that re.t. is

comparable or equal to the distance of closest approach of ions to the electrode surface

without being specifically adsorbed (the outer Helmholtz plane, -2 -10A). We also assume

that specific adsorption of the supporting electrolyte and dipole orientation at the surface

make an insignificant contribution to the overall potential distribution. Under these

conditions, the driving force for electron-transfer, Tlcorr., at the distance re.t. is given by eq.

(31).

Tlcorr. = E(1 - ro/re.t.) - EO' eq. (31)

Fig. 7 shows voltammograms for the l-e- oxidation and reduction of A+ obtained by

substituting ilcofr. (eq. 31) into eq. 14 and using values of (1 - ro/re.t.) = 0.02 and 0.10
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(corresponding approximately to 2 and 10 A electron-transfer distances at a 1OA radius

electrode). For comparison, we also show the case where (1 - ro/re.L) = 1, corresponding

to qcorr. = T = E - EO'.

Conclusions. The simulations and theorectical analysis presented above yield the

following conclusions regarding the steady-state current at submicron spherical electrodes:

1) A deviation from classical diffusion-migration limited currents is expected as the

supporting electrolyte concentration or electrode radius is decreased. These deviations are

the result of an increased effect of the electric field within the diffuse double layer. The

numerical results provided in Fig. 3 provide an estimate of the ionic concentration and

radius at which electrostatic double layer forces must be included in transport equations.

2) In the limiting case of roic -- 0, the mass-transfer limited current to a spherical

microelectrode, eq. 14, can be used to calculate the flux for multivalent species or electrode

potential not considered here.

3) The voltammetric response of a spherical electrode as ro0 -- 0 is non-classical in that a

mass-transfer limiting current plateau is not expected for the reduction or oxidation of a

charged reactant. The shape of the voltammogram depends on EO', Epzc, ro, the supporting

electrolyte concentration, as well as the reactant and product valencies. Figs. 4 and 5 show

the magnitude of these effects for the reduction and oxidation of a + I ion. The deviation of

current-voltage from a sigmoidal shape will be more pronounced for multiply charge

reactants.
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4) The voltammetric response may be a function of the electrode work function since the

Epzc is a function of this parameter.

5) In drawing the analogy between bimolecular rate theory and voltammetry at submicron

electrodes, we assumed that the reactant can be treated as a point charge (i.e. rion = 0).

However, explicit inclusion of the reactant and product radii in the analysis indicates (see

Appendix) that the magnitude and shape of the voltammetric curve will be weakly

dependent on the size of the ionic reactant.

The results of this research have applications to several areas of electrochemistry.

Many submicron systems exist in which the effect of the electric field within the diffuse

double layer may affect electrochemical rates. For example, the fabrication and use of

hemispherical mercury microelectrodes as small as 0. 15 gm has been recently reported 15.

Several research groups are currently performing electrochemistry through the use of tips

of scanning tunnelling microscopes 16 7,18. These tips typically range in diameter from

0.1 to 5 iim and can be characterized as hemipheres. Other applications include the

electrochemical behavior of colloidal sytems, 1920 and supported catalyst particles 21.

Appendix.

Derivation of the Normalized Flux to a Spherical Microelectrode (eq.

19) from Diffusion Controlled Bimolecular Reaction Rate Theory. The rate,

kD, of a diffusion controlled bimolecular reaction between charged species was determined

by Debye using Smoluchowski's method:

W
kD = 4nNA(DA + DB)(rA + rB) W _ 1 (A1)
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W zAzBe
2

4TrEEokT(rA + rB)

A and B represent the reacting ions with diffusivities DA and DB, and radii rA and rB,

respectively. The factor W/ew - 1 in eq. (Al) corresponds to the work required in bringing

charged reactants together.

The steady-state flux of an ionic redox species to a charged spherical electrode can

be obtained from eq. (A l) by letting B represent a stationary electrode (DB = 0 and r3 = ro)

to which redox species A is diffusing. The effective "valency" of the electrode, ZA, is

defined by eq. (1) of the text.

Combining eqs. (A1) and (20) and representing the redox species by point charges

(rA = 0) yields the expected current at a spherical electrode:

iL = 4wnFCbDAro _ (A2)

If either the electrode or reactant is uncharged, then:

iL(diff.) = 4ntnFCbDAro (A3)

which is the diffusional current to a spherical electrode. Combining eqs. (A2) and (A3)

yields the normalized current as roc -+ 0:

iL W
iL(diff.) - eW-l

which is identical to eq. (19) in the text.
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Figure Captions

1. Diagram (drawn to scale) of the relative thicknesses of the diffuse double-layer and the

diffusion layer, 6, (- 10 ro) surrounding a 100A radius hemispherical electrode immersed

in a 10-3 M aqueous solution of a 1:1 electrolyte. The spherically symmetric diffuse layer

thickness is approximated as 2K- 1, corresponding to the distance from the surface where

the electrical potential decays to -5% of its surface value 22.

2. Simulated diffuse double layer concentration profiles surrounding a spherical electrode

in a 1: 1 aqueous electrolyte. The surface potential (vs. Epzc), electrolyte concentration, and

electrode radius for each simulation are indicated in the figures.

3. Normalized steady-state flux as a function roic for various values of Credox/Celec.. The

diffusion limited current in the absence of migration, iL(diff.), is equal to 47rnFDCbro.

The dashed lines (iL/iL(diff.) = 3.975 and 0.0809) correspond to eq. 19, the analytic value

of the flux in the limit rojc - 0. The dotted line (iL/iL(diff.) = 2) corresponds to the

diffusion-migration limit (eq. 26) when the supporting electrolyte concentration is much

smaller than the redox species concentration, Credox/Celec> 1.

4. Theoretical voltammograms calculated from eq. 14 for the reaction A+ + e- -- A as a

function of Epzc, and koD/ro. The formal redox potential of the couple A+/A, E° ', is set

equal to OV vs. an arbitrary reference electrode. The dotted line indicates the diffusion

limited reversible voltammograms.

5. Theoretical voltammograms calculated from eq. 19 for the reaction A+ -4 A2  + e- as a

function of Epzc and koD/ro . The formal redox potential of the couple A+/A, EO', is set
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equal to OV vs. an arbitrary reference electrode. The dotted line indicates the diffusion

limited reversible voltammograms.

6. Theoretical voltammograms calculated from eq. 19 for the reaction A -4 A2+ + 2e- as a

function of Epc and koD/ro. The formal redox potential of A/A 2+, E0 1, is set equal to OV

05, an arbitrary reference electrode. The dotted line corresponds to the reversible diffusion

limited voltammogram.

7. Theoretical voltammograms for the oxidation and reduction of A+ showing the effect of

the dimensionless electron-transfer distance, (re.L - ro)/ro, on the waveshape. Each curve

corresponds to koD/ro = X, Epzc = EO' = 0, and
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