AD-A211 586

L

u‘;}“ ’

QOFFICE OF NAVAL RESEARCH
Contract N00014-87-K-0494

R&T Code 400X027YIP

Technical Report No. 6

Effect of Electrical Double Layer on Transport Limited Currents at Microelectrodes

by
J. D. Norton, H. S. White, and S. W. Feldberg

Prepared for Publication in the

Joumal of Physical Chemistry

University of Minnesota
Department of Chemical Engineering and Materials Science
Minneapolis, MN 55455

July, 1989

Reproduction in whole or in part is permitted for any purpose of the United States

Government.

This document has been approved for public release and sale; its distribution is unlimited.

i




REPORT DOCUMENTATION PAGE

T 323.ATY JLasie CATCN " RESTACTVE MARKNGS

PREEEL

O

Unclassified

23 SICLAITY JLALLACATICN AU TRCAITY 3 ISTRIBUT.ON. avAaiAad LTy JF 333217

23 22ILAN S CATON . ZOWAGRASING QAT

Unclassified/Unlimited

4 FERACANMNG SRCANMIZAT ON REIBCART NLMBEAS) 5. MCONITCRING CRCANIZAT/ICN REFCAT NUMBER!S)

ONR Techmical Report 6

23, NAME TF FISFCAMING SACANIATCN 30. 375 CZ 1vM3QL Ta. NAME CF MCNITCAING 1CANIZATCN
Dept of Chemical Engineering (f sceicsore)
and Materials Science Code 1113 Office of Naval Research
3¢ ACCAEIS oy, ltaca, ang 2P Cice) 73, ACCRE3S Gy, itate, anag P Cice)
Ut‘uversit).l of Minnesota 800 North Quincy Street
Minneapolis, MN 55455 Arlington, VA 22217
32, NAME ZF FUNOING SPCNSCRING ap. IFFCI 3MSCL 3. PARCCLREMENT INSTRUMENT CENTIF.CATICN NLMEER
CRGANIZATICN (If appricaoie)
Office of Naval Research Contract No. N00Q014-87-KR-0494
3¢ ASORESS (Cry, State, ang 2P Cogel 0 SCLACE JF ZLNDING VL \WIBE3S
800 North GQuincy Stre cGaam PR0.ECT il AT
19 y reet S_IMENT NO. NO. §O. ACCZSSICN NO

Arlington, VA 22217-5000

v

ITLE Unciuce Secunty lassinication)

1)
[N

Effect of the Electrical Double Layer on Transport Limited Currents at Microelectrodes

t2. PCASCNAL AL THCR(S)
John D. Norton and Henry S. White and S.W. Feldberg

1la. TYPE CF RERCRT 11o. "ME CCTVEASS 14, DATE QF RFPQRT (Year, Mcentn, Cay) {15, PAGe COUNT
Technical _eM_ "o

'6. SUPOLINMENTARY NOTATICN

prepared for publication in the Journal of Physical Chemistry

- e = Az
: Z25AT Z2%¢:

18, 303,237 TERMS Continue on reverse if necessary ang .gentify dy 5iack numaoer)

) | 33CL2 i SL3-GACL? -

! { T

t

'3, A35TRALT (Conunue an reverte if necessary ana igenufy 0y 0I0CK numoer)

An analysis of transport of charged and uncharged species associated with a steady-
state faradaic process at a spherical microelectrode is reported. We.examiné systems
comprising various relative concentrations of a redox species and, if charged, its counter
ion, and an inert electrolyte. Of particular interest is the behavior of these systems
vhep thelthickness of the diffuse double layer (characterized by the Debye length, x~1)
andfthef radius of the electrode (ro) are comparable. Transport of each species is assumed
to be governed by the Nernst-Planck equation. ‘A generalized solution obtained using
finite-difference simulations demonstrates that significant enhancement or inhibition of
the steady-state flux can occur and will depend upon the dimensionless parameter r x, upon
the relationship between the applied potential (Eap ), the formal redox potential (Eo'),
and the potential of zero charge ~), and upon the charges and relative concentrations
of the species in solution. Analytlc solutions for several limiting cases are discussed
and serve as simple expositions of the phenomena as well as a verification of the

| simulations. (contipued on
TYTISTIEALTION AVaILABILTY CF ABSTAACT 21. ABSTRACT SECLRAITY CLASSIACATICN
X .ncassFeaunumTEd (O SAME as 2PT Z 27:C se3S | Unclassified
223 NAME CF IESFCNSIBLE NOIVIDUAL 125, T2.IPHONE Unciuge Area Cade) | iic. OFFCE STMBCL
Henry S. White (612) 625-6995
00 FORM 1473. 34 MAR R 33 APR eqition May 0@ usea untl exnausted. STCURITY CASSIFICATION OF “wi$ 2aGE

All gtrner @QiTONS 3re Q0sOIRTe.




In infinitely dilute ionic solutions, it.e., r x~>»0, the limiting flux of ionic
species may be computed directly from the s-oYuchovski-Debye theory for iomic
bimolecular reaction rates. Computation of theoretical voltammograms in the
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under certain reaction conditions tfe steady-state current-voltage curve will

be peaked rather tham sigmoidal giving the appearance that electrochemical
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window. The effect is easily explained when the electric field, and the charge
of the reacting species is considered. Implications in the design of microscopic
redox substrates, e.g., dispersed metal catalysts, are discussed.




Effect of the Electrical Double Layer on Transport
Limited Currents at Microelectrodes

John D. Norton and Henry S. White
Department of Chemical Engineering and Materials Science
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and

Stephen W. Feldberg
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Abstract.  An analysis of transport of charged and uncharged species associated with a
steady-state faradaic process at a spherical microelectrode is reported. We examine systems
comprising various relative concentrations of a redox species and, if charged, its counter
ion, and an inert electrolyte. Of particular interest is the behavior of these systems when
the thickness of the diffuse double layer (characterized by the Debye length, k1) and the
radius of the electrode (rp) are comparable. Transport of each species is assumed to be
governed by the Nernst-Planck equation. A generalized solution obtained using finite-
difference simulations demonstrates that significant enhancement or inhibition of the
steady-state flux can occur and will depend upon the dimensionless parameter rok, upon
the relationship between the applied potential (E .., the formal redox potential (E°), and
the potential of zero charge (Epzc), and upon the ct.~ s and relative concentrations of the
species in solution. Analytic solutions for several limiting cases are discussed and serve as
simple expositions of the phenomena as well as a verification of the simulations. In
infinitely dilute ionic solutions, i.e., rogk — 0, the limiting flux of ionic species may be
computed directly from the Smoluchowski-Debye theory for ionic bimolecular reaction
rates. Computation of theoretical voltammograms in the limit of infinite dilution (i.e., rok
- 0) reveals the surprising result that under certain reaction conditions the steady-state
current-voltage curve will be peaked rather than sigmoidal giving the appearance that
electrochemical activity occurs only within a small (several hundred millivolt) potential
window. The effect is easily explained when the electric field, and the charge of the
reacting species is considered. Implications in the de<ign of nicroscopic redox substrates,
e.g., dispersed metal catalysts, are discussed.




Introduction. Development of electrochemical applications of microelectrodes has .
flourished during the last decade expanding considerably beyond early applications as
biological stimulators and sensors!-2, The development has been driven by advances in
solid state technology which continues to produce faster and more sensitive electronic
devices as well as novel techniques for the fabrication of microelectrode devices . It is now
possible to produce a microelectrode or microelectrode array whose critical dimension, r,
(e.g., the half-width of a band electrode or the radius of its hemicylindrical approximation;
the radius of a disk electrode or its hemispherical approximation), is of the order of tens of
angstroms34. The reduced iR error associated with a microelectrode coupled with
increasingly fast and sensitive amplifiers permits extremely fast voltage perturbations and
current measurement, e.g., cyclic voltammetry at ~2 x 106 V/s, thereby accessing a new
time domain in electrochemical measurements. The size of an electrode dictates the spatial
(as well as the time) domain that is probed and an electrode with angstrom dimensions may
reveal fundamental information about the solvent structure and ion distribution within a few
angstroms of the electrode surface.

When a microelectrode having an r, as small as 10-7 c¢m, 3.4 operates in an
electrolyte concentration in the range of 10-5 - 10-1 M, the thickness of the diffuse double
layer (characterized by the Debye length, k1) is comparable with or much larger than the
diffusion layer 8. It is thus meaningful (and necessary) to ask how the overlap of the
diffusion layer and diffuse double layer will affect the fluxes and spatial distributions of the
various solution species. For example, consider a spherical electrode of radius r, in
contact with a solution containing a redox active ion (e.g., A*) as well as supporting
el>ctrolyte, Fig. 1. The characteristic lengths k-1 and 8 have different dependencies on the
electrode radius, ro, and the chemical composition of the electrolyte. In a solution

containing a svmmetrical electrolyte, k-1 is proportional to the inverse square root of the
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total ionic concentration, C-1/2, and independent of the electrode radius, ro. Conversely, &
is proportional to r, and independent of C. The relative thicknesses of the diffuse double
layer and the depletion layer determine the extent to which ion transport is affected by the
former. At macroscopic electrodes, k-1 << 8, the double layer has an insignificant effect
on the rate at which ions are transported to the surface. However, k-1 can become
comparable to § by either decreasing the ionic concentration or the electrode radius. When
k-1 > 3, the transport and net current of reactant ions will be increased or decreased by the
electric field originating at the electrode surface.

We are particularly interested in the behavior (at microelectrodes) of systems
comprising a redox species and its counter ion with little or no supporting electrolyte. The

generalized system comprises 4 chemical species: a redox couple, OZ°, RZrelated by

0% +(zp-2zp)es — RZ (1)

along with a pair of supporting electrolyte components, XZx and YZ¥. The systems we
examine may initially contain as few as two species (e.g., O%° and XZ¥) with the faradaic
process producing RZR (eq. 1). The generalized problem is solved by presuming that
transport and distribution of all species is governed by the Nernst-Planck equation and by
classical electrostatics. The resulting set of equations are solved using a finite difference
methodology. In order to simplify our inquiry we consider only spherical geometry. This
not only simplifies the computations, but also permits us to discuss true steady-state fluxes.
However, the results are qualitatively applicable to any geometry and comparable ro.

A number of workers have considered migration effects at microelectrodes. With
presumption of spherical geometry and the constraint of electroneutrality (corresponding to

the limiting case where rok — ©9, i.e., k' <<r,) they can obtain some useful analytic

expressions for the steady-state flux. Bond et al, also mention (but do not calculate) the
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infinite dilution limit (the "single-ion case") which occurs when rok — 0 (i.e., K1 >> ).
Electrostatic ion-ion interaction is negligibly small compared to the interaction with the
electric field produced by the charge on the electrode. We shall present the analytic solution
for that limiting case since it provides a simple basis for understanding the more
complicated systems. We shall also discuss several other limiting cases which have
analytic solutions (the aforementioned electroneutrality limit, the trivial diffusion limit
attained with an excess ot supporting electrolyte, and the zero-current equilibrium
(spherical) diffuse double layerX). The simulations serve to identify the range of rok values

appropriate for analytic solutions.

Results and Discussion.

At sufficiently low concentrations of supporting electrolyte or small electrode radii,
1ok — 0, the number of ions surrounding the electrode is negligible, resulting in an
unscreened electrostatic force between the electrode and redox ions. Analysis of this
limiting case is developed in three main sections. First, we derive an exact solution for
current-voltage behavior as rok — 0. We then report finite-difference simulations of the
flux as a function of roK and concentration to determine the useful working range of the
analytic solution. In the final section, we present examples of steady-state voltammograms

expected as rok — 0.

General current-voltage relationship as r,x — 0

The i-V expression is obtained for the situation in which the solution contains both

reduced and oxidized forms of a redox couple (O%° + (zp - zr)e- — RZ®), For clarity, the
superscripts zg and zg are omitted.
Assuming that the electron-transfer reaction is governed by Butler-Volmer kinetics,

the net flux to the electrode surface is given by
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& = KolCoSexpon - Crexp(l-cnfn] (2)

where kg is the standard heterogeneous rate constant, o is the transfer coefficient, f =
F/RT, and n = (E- E9). The surface concentrations CoS and CRrS in the limit rox — 0 can
be obtained by solving for the diffusional-migrational fluxes of O and R. We assume that

the flux of all species is govern by the Nemst-Planck equation

dC; F
fj = -Dj—dr-'l- + DjﬁSCij 3)

For an unscreened spherical electrode, the electric field resulting from the charged

electrode is defined by:

€=£-u(3 )

Substitution of eq. 4 into the Nernst-Planck equation (eq. 2) yields

dC;
fj = -DjTL + Dj Cjo/r2 (5)

where Wj = (F/RT)er08,= ro- The dimensionless group Wj can be rewritten in terms of

experimentally defined parameters by substituting the expression

d
€ero = - (Phrer = Uneearedyls, ®)
to yield w; = %I W)

")




In this form, W;j is recognized as the dimensionless unscrecned electrostatic interaction

energy between the electrode at potential ¢, and the ion of charge z;.
The equation of continuity, for a spherical coordinate system applied to species j

yields

2Dyl + DiGWy) =0 8)

which can be integrated and evaluated using the boundary conditions

Cj =C* asr —o° 9)

G =Cp atr = rg

to yield the concentration profile of j, eq. 10.

« [(C#/C]" = D(e-WyrolT - D]+ 1

€ =G eWj-1
i -

(10

Substitution of eq. 10 into eq. 5. yields the flux of species j evaluated at the electrode

surface, r = rg,

an

WD,C* r eV - C§/Cy*
f; = 'r(: j [ i- 4 IL]

W, -

Rearranging eq. 10 to obtain the surface concentrations of O and R yields

* f )(e-WO - l)
ChS = -Wn . LO( (0] - 12
0 Co [e ° DoCo Wo ] (12)




and

s — [ .-Wp _ ro(fR)(eWR - 1)
Cr Cr [e R DRCR*WR ] (13)

From the stoichiometry of eq. 1, fo = - fr. In addition, 1 nF A= -fo (the sign convention

used in writing eq. 2 indicates that the reduction of O results in a positive current; because a
positive species flux corresponds to transport away from the surface, a negative flux of O
corresponds to a positive current). Using these relationships and substituting egs. 12 and
13 into the Butler-Volmer equation (eq. 2) yields the general i-E relatonship in the limit rox

- 0,

i e VoCo'kf - e WRCR Kk,
nFA r_Q_[(e’Wo - Dke (e-W'R - l)kr]
Wr

(14)

where kf = koe-®nfM and k; = koe(1-0)nfM, Several limiting cases of this general flux

equation are considered below.

W >0

This limit corresponds to purely diffusional controlled transport of both O or R,
which is difficult to obtain in the strictest sense since both the electrode and either O or R
has a net charge. However, for a macroscopic electrode in a concentrated electrolyte
solution, the electric field originating from the electrode rapidly decays to a small value at a
very short distance compared to the diffusion layer thickness, 8. Under these conditions,

the charge on the electrode is fully screened and the effective interaction energy, Wj, at

distances greater than ~2x"1 is zero. The dominant transport resistance is diffusion of O
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and R through the depletion layer, unaffected by the electric field in the thin double layer.
In this limit, eq. 14 reduces to
i _ (Co'kf - Cr'kp)

nFA Bk + kp)

(15)

which is identical to the result obtained by Shain et. al. for spherical electrodesS. The

criteria for a reversible electron-transfer reaction is E—kQ— >> 1, where the mass-transport
m.t.

rate is defined as k. = D/ro. When this criteria is satisfied, eq. 15 yields

. RT ,_ (iLSWiff) - i)
= EO —_—.
E = B9 + Sl A Shrs (16a)

where i ¢(diff.) = nFADCQ* /1y and iL &(diff.) = - nFADCR"/ro,

1. W; =0 and Reversible Electron-Transfer.

ko

The criteria of a reversible electron-transfer reaction remains Kt >> 1. However,
m.L.
. . DW. . .
the mass-transport rate is now given by km ¢ = ——-1—(1 W)’ which is a potential dependent
Toll - J

quantity. When ko >> km.t, €q. 14 reduces to eq. 16b

e
RTln(lL 1)

E = EO + nE G ia (16b)
where the migration-diffusion limited currents are given by

iL¢=-“FAr?Q£[ IXQVO] (17)
and iLa=“FA£CR‘ [ R (18)




[t is noteworthy that kpy ;. is dependent on the electrostatic potential ¢,( = E — Epzc) for
all E, aresult of electrostatic attraction or repulsion of the reactant. This is in contrast to a
purely diffusional controlled rate which is independent of E at sufficiently large values of
N. A consequence of the dependence of k,,; on ¢ is that the apparent reversibility of the
electron-transfer reaction wvill depend on the relative values of E° and Ep:c. In addition,
eqs. 17)and '8 indicate that no steady-state limiting current plateau is expected when W is
finite. We return to these points when we consider specific examples of the voltammetric

behavior of a spherical microelectrode in the limit rok — 0.

III. Normalized Limiting Flux at Large 1 and Finite W

Dividing egs. 17 and 18 by the corresponding limiting diffusional fluxes in the
absence of migration (i.e., Wj — 0), i ¢(diff.) = nFADCg/r, (for reduction) and i 3(diff.)
= - nFADCR/r, (for oxidation), yields the normalized limiting current to a spherical

electrode in the limitrgk — 0

i, _ W
iLdiff) — eWj1

(19)

Eq. 19 indicates that the normalized flux is dependent only on the electrode potential (vs.
Epzc) and the charge of the reactant z;. The normalized flux is independent of the electrode
radius as rok — 0, a point we shall return to latter in discussing finite difference
stmulations of the flux.

An alternative and more intuitive approach in analyzing the transport limited flux
(large 1) at microelectrodes to is treat the electrode as a small stationary sphere (i.e., an ion)
that reacts with freely diffusing reactant in a bimolecular collision. The rate of such a
reaction between ions in an infinitely dilute solution was originally considered by Debye®
using Smoluchowski's method? and shown to be dependent on the charges of the two

reactants. If the diffusivity of one of the ions is set equal to zero (corresponding to the
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stationary electrode) and the radius of the other set to zero (corresponding to a point charge
reactant), the Smoluchowski-Debye equation yields eq. 19, the flux to a spherical
microelectrode (see Appendix). The enhancement or inhibition of bimolecular rates
predicted by Debye results from the electrostatic force between the reactant ions. In
general, because the valencies of ions in solution are relatively low (+4 to -4), bimolecular
transport controlled rate constants in aqueous solutions do not vary by more than a factor of
3 or 4 from the diffusional controlled rate constant for uncharged species. The effective

valence, zejec,, Of a spherical microelectode is given by eq. 20.

Zelec. = 4MEEG(E-Epzc)rofe” (20)

In comparison to the charge of a solution ion, zejec, can be potentiostatically controlled and
set to exceeding large values. For example, at 0.1 V vs Epg, zelec, for a 100A electrode is
+54 and the normalized flux (relative to an uncharged species) for the oxidation of a
monovalent cation is 0.081. Under the same conditions, if the electrode potential is poised
at 0.5 V vs Epzc, the zejec. increases to +270 and the normalized flux decreases to a
negligible value, 6.8 x 10-8. Conversely, an enhancement of the normalized flux is
predicted for the reduction of a monovalent cation at electrode potentials more negative than

Epzc.

Finite-i.-*i?. -ence Simulation. In this section, we report finite difference simulation of the
transport ! 1 flux at large N for two specific electrochemical reactions. The results
obtaine ! allow a useful estimate of the maximum permissible value of 1ok for applying the

analytic solution presented above. The simulations also yield the flux for intermediate

values of rok. The model utilizes the finite-difference method to simulate the current and

ion distribution occurring at a spherical microelectrode of radius, ro. The electrochemical
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reactions considered are the 1-e- reduction of a singly charged cation (A* + e~ — A) and
the 1-e- oxidation of singly charged anion (A- — A + e-). The solution contains reactant
(A*or A7) and a 1:1 electrolyte which shares a common counterion. The spherical working
electrode is assumed to be surrounded by a large concentric spherical counterelectrode,
naintaining a radial flux under all conditions.

The finite-difference program calculates the time-dependent fluxes and

concentrations of all species following a potential step to the electrode at t = 0. Initially,

the electrode is assumed to be uncharged with respect to the solution, and all species are
distributed uniformly throughout the solution. Att =0, a potential (¢g) of +0.1V versus
Epzc 1s applied to the electrode. The potential step is assumed to be sufficiently large to
cause the mass-transfer limited reduction (or oxidation) of A* (or A-) at the limiting current
plateau. Only the final steady-state fluxes are reported here.

The model considers migration resulting from electric fields established by the
diffusive ion flux as well as that due to the charged electrode surface. At any point in
solution a distance r from the electrode surface, the flux of species j in the radial direction is
given by the Nernst-Plank equation (eq 3). The time-dependent net flux of charged species

gives rise to a time-dependent electric field which is represented by:

d€ F Z szJ'

de = €8, 21

The digital simulation is based on a system devised by Joslin and Pletcher8 and
modified by Feldberg®, employing the finite-difference method with an exponential space
grid and modified to incorporate the DuFort Frankel algorithm!0. A detailed description of
the simulations will be presented in a forthcoming publication!!,

A preliminary test of the accuracy of the model and the numerical calculations was

made by simulating the equilibrium concentration profiles of a 1:1 electrolyte within the
11




diffuse double layer for the case in which no faradaic reaction occurs. These results were
compared to numerical values tabulated by Loeb, et. al.,!2 using Gouy-Chzpman theory, .
for spherical colloidal particles.

Fig. 2a-c shows a comparison of the ion concentration profiles generated by digital
simulation (solid lines) with the results of Loeb, et. al.(points), for 5, 50, and 100 A
radius spherical electrodes. The bulk concentration of the 1:1 electrolyte (0.148 -372 mM)
and the surface potential (0.026 - 0.103 V) used in the simulations are indicated in each
figure. In all cases, excellent agreement (within 1 %) is obtained between the simulated

profile and the numerical results of Loeb, et. al.

Simulated Fluxes.

Transport limited steady-state currents obtained from finite-difference simulations
corresponding to the 1-e- reduction of a +1 species (A* + e- — A) and the 1-e- oxidation of
a -1 species (A- — A + e-) are shown in Fig. 3. In each system,we assume an 1:]
supporting electrolyte, an applied potential of +0.1 V versus Ep,c, and zero product
concentration in the bulk. The results are plotted in Fig. 3 as a function of rpk
(corresponding to electrode radii ranging from 5 to 10,000 A, and supporting electrolyte
concentrations from 10-7 to 10 M). Each line in Fig. 3 corresponds to a different ratio of
the concentrations of reactant (A+ or A-) to supporting electrolyte, Credox/Celec.-

Numerical values of limiting currents have been normalized to the current expected
at a sphere for a purely diffusion controlled reaction (ir (diff.)= 4nnFDC*r, where C* is the
bulk reactant concentration). Thus, the horizontal line at i/iL(diff.) = 1 in Fig. 3
corresponds to the oxidation or reduction of a neutral reactant.

Fig. 3 shows that a deviation from classical diffusion limuied current is observed as

roK decreases or as Credox/Celec. increases. This behavior results from two distinctly
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different phenomena: (i) migration resulting from depletion of reactant ions at the electrode

and (ii) migration resulting from the electrostatic field originating at the surface.

(i) Migration resulting from depletion of reactant ions at the electrode.

At large ryk (e.g., corresponding to a macroscopic electrode), the current for either
the reduction of A* or the oxidation of A- to the neutral A increases to a value
approximately twice as large as the purely diffusional current when the electrolyte
concentration becomes appreciably smaller than the reactant concentration, Credox/Celec
>102 (Fig. 3). This behavior was first described quantitatively by Heyrovsky!3 and
Ilkovic!4 and more recently addressed in context of microelectrode behavior in solutions of
low ionic strength***X, In the limit of little or no supporting electrolyte, the system can be
approximated as containing three species in solution, the charged reactant, j=1, its
corresponding counterion, j=2, and the neutral product, j=3. Solution electroneutrallity

requires that:

C1z1 +Crzp =0 22)
dC dC
and: —dr—l z1 + ?2 =0 (23)

Using eq. 3 to define the fluxes of reactant and counterion:

fi= -D %— +Di %Eclzl (24)
f2=0=-D; &2 + Dy 2 €02 (25)

and substituting eqgs. 22, 23, 25 into eq.24 yields the steady-state reactant flux:
13




fn=-D 5l (1-2) (26)

Combining eq.26 with the continuity equation for a spherical system (9— (r2f;) = 0), and
dr J

integrating using the boundary conditions C — CP as r — oo and C = 0 at r=r,, yields the
expected transport limited current:

iL = 4TnFDCPro(1 - 2 ) @7
In solutions containing a monovalent reactant (A* or A-) and a monovalent counterion of
opposite charge (X- or X*), the limiting current (eq. 27) for cation reduction or anion
oxidation should increase by a factor of 2 relative to the diffusion limited current in the
presence of excess supporting electrolyte, ip (diff.).

The dotted line in Fig. 3 shows the asymptopic limiting value of 2 that the
normalized current approaches as Credox/Celec increases. We find that that if /ip (diff.) for
the oxidation of A- equals 2 for Credox/Celec >> 103. However, for the same values of
Credox/Celec and rox, i /ip(diff.) is significantly smaller for the reduction of A+, ~1.32,

than the expected value of 2. We show in the following section that this deviation is due to

electrostatic repulsion between the positively charged electrode (o = 0.1 V) and A*+.

(it) Migration resulting from the electrostatic field originating at the electrode surface.

For rok < 50, the limiting current deviates from the diffusional currents even when

the supporting electrolyte concentration is considerable larger than the redox active

concentration. For example, the current corresponding to the oxidation A-at rox = 10
Credox/Celec = 102 is ~20% larger than the purely diffusional controlled value. The

reduction of A+ yields a current that is 55% smaller than the purely diffusional controlled
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value. We ascribe these deviations from a purely diffusional response to electrostatic
double layer forces acting on the reactant within the depletion layer. Qualitatively, the flux
of an anionic reactant, to a positively charged electrode is expected to be increased,
resulting from electrostatic attraction. Conversely, the flux of cationic reactant would be
decreased. This behavior is observed in Fig. 3 for the reaction of +1 and -1 species at a
positively charged electrode (o = 0.1 V).

As anticipated, the effect of the electrical double layer on migrational currents
becomes more pronounced as rox decreases. This behavior reflects the relative dimensions
of the double layer with respect to the depletion length, which in turn is determined by the
electrode radius and electrolyte concentration (see Fig. 1). For x'1 <<, (i.e., large rok),
the thickness of the double layer is insignificant compared to the depletion length (~10r,),
and reactant ions do not experience an electrostatic force until they are in the immediate
vicinity of the electrode. Under these circumstances, ions diffuse to the surface accross an
electroneutral depletion layer. Conversely, for k1 > r, (i.e., small 1K), the double layer
extends into the solution to distances comparable with the depletion layer, resulting in an
increased or decreased transport limited current.

As 1ok — 0, the normalized limiting current asymptotically approaches limiting
values for the reduction of A+ and for the oxidation of A-. The asymptotic limits are given
in Table 1 and compared to the exact analytic solution (eq. 19) obtained using ¢, = 0.1V
and zj = -1 and +1. The disparity between these two values is less than 1%, demonstrating

the accuracy of the simulations.

Table 1. Normalized Mass-Transfer Currents as rgx — 0.2
B . ! ] . l.b E. . D-Eﬁ S. l . c
A > A+e 3.97 3.95

15




At+e > A 0.081 0.081

a) The electrode potential is +0.1 vs Epyzc
b) eq.19.
¢) simulation conditions: ro < SA; cb= mM; no supporting electrolyte.

In the following section, we describe the overall steady-state voltammetric behavior
of spherical microelectrodes in the limit ryk — 0. Before describing the results, it is useful
to consider the applicabilty of the analytic theory in prediciting the behavior of real
electrochemical systems. From Fig. 3, we find that normalized flux for the oxidation of A-
predicted by eq. 19 (which is exact in the limit rox — 0), is closely approximated by the
simulated fluxes when rok < 0.1. For the reduction of A*, the analytic and simulated
values coincide when rok < 1.0. Thus, the analytic solution (eq. 14) can be applied to
approximate the behavior of these particular systems when rok is less than the
abovementioned values. As a specific example, a 300 A radius electrode in an aqueous
solution (25°C) containing ~0.1 mM of A+X- corresponds to rok = 1. The voltammetric
behavior of this system would, thus, be prescribed by eq. 14.

In general, the useful working range of eq. 14 is dictated by both the sign and
magnitude of the dimensionless interaction energy, Wj (for both O and R), as well as ToK.
Double layer effects on transport limited fluxes become more prounounced as Wj increases,
which occurs when the species charge, zj, or the electrode potential, ¢o (E vs. Epzc), is
increased. In choosing to simulate the fluxes for the oxidation and reduction of a
monovalent species (A- or At) at low values of ¢4 (0.1V), we have, in effect, provided a
very conservative estimate of the upper limit of rok for which eq. 14 is useful. At larger
¢o, or when considering the oxidation or reduction of a multivalent species, the electrostatic

forces influencing migrational currents will be more pronounced, causing the transition
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between macroscopic behavior (rok -- e) and microscopic behavior (rox — 0) to occur at

larger values of rpk.

Voltammetry at Microelectrodes as rox — 0.
Eq. 14 was used to calculate the voltammetric behavior expected for following

redox systems:

At + e <— A (Fig. 4) (28)
A* = A» + & (Fig. 5) ’ (29)
A == A + 2 (Fig. 6) (30)

Each system exemplifies different types of behavior resulting from migration effects within
the double layer. In each system, we have calcultaed the voltammograms assuming that
both halves of the redox couple are soluble in solution, and that only the reactant (l.h.s. of
eqgs. 28, 29, and 30) is inital present in bulk solution. In plotting the voltammograms we
have set E equal to 0.0V vs. an unspecified reference electrode, allowing numerical values
of Epyc to be defined vs. E. Numerical values of ¢, correspond to E-Epyc.

Fig. 4 shows the voltammetric response expected for the 1-e- reduction of A+ (eq.
28) for several values of Epy relative to E9 and as a function of koD/ro. The sigmoidal
shaped voltammograms (dashed curves) in Fig. 4 corresponds to classical diffusion-limited
reduction ignoring double layer effects. When double layer effects are taken into
consideration, the voltammetric current is increased or decreased depending on the relative
values of E and Epzc. For example, in Fig. 4a, when Ep;c = 0, the reduction of A* is
enhanced greatly when the E is more negative than Ep,, reflecting an attractive force

between the negative electrode and positive ion. Conversely, when E is moved more
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positive than Epgc, electrostatic repulsion between the ion and electrode decreases the
magnitude of the current. Voltammograms for Epzc = 0.1 and -0.1V vs. E?, also shown
in Fig. 4a, can be qualitatively explained in a similar fashion. For reversible e- - transfer,
kofo/D > 102, the intercepts between the sigmoidal shaped diffusion-limited curve and the
voltammograms including double layer effects occur at Epc in eash case, corresponding to
zero electrostatic force.

Fig. 5 shows voltammograms for the 1-e- oxidation of A* to AZ+ (eq. 29) for the
same potential range and values of Epzc as in Fig. 4. Here, the voltammograms have a
skewed bell shape resulting from electrostatic repulsion of A* from the electrode at
potentials that normally correspond to the diffusion limiting current plateau. At potentials
sufficiently positive of Epzc the limiting current is suppressed to negligible values. For
instance, at an electrode wh.ere Epzc =0vs E©, the limiting current at E = 0.2V is reduced
to 0.3% of the value in the absence of migration. For systems where Ep;c is more negative
than EO, electrostatic repulsion effectively eliminates the voltammetric wave (Fig. 5).

Fig. 6 shows voltammograms for the 2e- oxidation of A (eq. 30) for (Ep, - E9) =
0.5 and -0.5 V. In this case, reduction at sufficiently large overpotentials is controlled by
diffusion of A to the surface resulting in a sigmoidal shaped curve with a well defined
limiting current plateau. Near E°' the migration of electrogenerated A2+ has a strong effect
on the Eq; of the reaction. When (Ep - EO) is positive, migration of A2+ towards the
electode surface at potentials between Ep,c and E© increase the rate of back reaction
resulting in a shift of Ejpp to more positive potentials. For (Ep; - E®) = 0.5, Eypis
shifted ~ 0.25 V positive Eq'. When (Epy - E) = - 0.5, migration of A2+ away from the
surface decrease the rate of backreaction, shifting Ejpp towards negative values.
However, the effect is less in this case since migration of A2+ occurs only when the

potential is suffciently close to E°' to cause the oxidation of A.
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Also shown in Figs. 4, 5, and 6 is the effect of varying the dimensionless rate
koro/D on the voltammetric waves. We plot curves for koro/D = 102, 1, and 10-2 which in
the limit of W; — 0 correspond to reversible, quasi-reversible, and irreversible electron-
ransfer reactions. For the reduction of A+ (eq. 30), a decrease in koro/D has the effect of
shifting the voltammetric curve to more negative values. At sufficiently negative values of
the potential, mass-transfer becomes rate limiting and current is given by eq. 19. For the
oxidation of A* (eq. 29), a decrease in kqro/D shifts the foot of the wave to more positive
potentials as expected. However, since migration of A* away from the surface at positive
potentials effectively blocks the reaction, the bell-shaped voltammogram is diminished in
size (note scale change between Fig. 5a and 5b). The effect of koro/D on the wave
corresponding to oxidation of A (eq. 30) has a similar dependence on the position of Epyc.

As a final note, because the potential decays slowly as r1 away from an unscreened
spherical electrode, (i.e., §(r) = ¢po(1 - ro/r)), only a fraction of the total applied potential (E
vs E©) that drives the electron-transfer reaction will be sensed by the reactant at the distance
at which electron-transfer occurs, re;. In considering this effect, we assume that re; is
comparable or equal to the distance of closest approach of ions to the electrode surface
without being specifically adsorbed (the outer Helmholtz plane, ~2 -10A). We also assume
that specific adsorption of the supporting electrolyte and dipole orientation at the surface
make an insignificant contribution to the overall potential distribution. Under these
conditions, the driving force for electron-transfer, Ncorr,, at the distance re ¢ is given by eq.

31).

Neorr. = E(1 - To/fe.t) - E¢ eq. (31)

Fig. 7 shows voltammograms for the 1-e- oxidation and reduction of A* obtained by

substituting Ncorr. (€q. 31) into eq. 14 and using values of (1 - ry/re ) = 0.02 and 0.10
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(corresponding approximately to 2 and 10 A electron-transfer distances at a 100A radius
electrode). For comparison, we also show the case where (1 - ro/re ) = 1, corresponding

t0 Neorr, = N =E - E°.

Conclusions. The simulations and theorectical analysis presented above yield the

following conclusions regarding the steady-state current at submicron spherical electrodes:

1) A deviation from classical diffusion-migration limited currents is expected as the
supporting electrolyte concentration or electrode radius is decreased. These deviations are
the result of an increased effect of the electric field within the diffuse double layer. The
numerical results provided in Fig. 3 provide an estimate of the ionic concentration and

radius at which electrostatic double layer forces must be included in transport equations.

2) In the limiting case of rgk — 0, the mass-transfer limited current to a spherical
microelectrode, eq. 14, can be used to calculate the flux for multivalent species or electrode

potential not considered here.

3) The voltammetric response of a spherical electrode as rox — 0 is non-classical in that a
mass-transfer limiting current plateau is not expected for the reduction or oxidation of a
charged reactant. The shape of the voltammogram depends on E©', Epz, o, the supporting
electrolyte concentration, as well as the reactant and product valencies. Figs. 4 and 5 show
the magnitude of these effects for the reduction and oxidation of a +1 ion. The deviation of
current-voltage from a sigmoidal shape will be more pronounced for multiply charge

reactants.
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4) The voltammetric response may be a function of the electrode work function since the

Epzc is a function of this parameter.

5) In drawing the analogy between bimolecular rate theory and voltammetry at submicron
electrodes, we assumed that the reactant can be treated as a point charge (i.e. rign = 0).
However, explicit inclusion of the reactant and product radii in the analysis indicates (see
Appendix) that the magnitude and shape of the voltammetric curve will be weakly

dependent on the size of the ionic reactant.

The results of this research have applications to several areas of electrochemistry.
Many submicron systems exist in which the effect of the electric field within the diffuse
double layer may affect electrochemical rates. For example, the fabrication and use of
hemispherical mercury microelectrodes as small as 0.15 um has been recently reported!S.
Several research groups are currently performing electrochemistry through the use of tips
of scanning tunnelling microscopes!6.17.18, These tips typically range in diameter from
0.1 to 5 um and can be characterized as hemipheres. Other applications include the

electrochemical behavior of colloidal sytems,!9-20 and supported catalyst particles?!.

Appendix.

Derivation of the Normalized Flux to a Spherical Microelectrode (eq.
19) from Diffusion Controlled Bimolecular Reaction Rate Theory. The rate,
kp, of a diffusion controlled bimolecular reaction between charged species was determined

by Debye using Smoluchowski's method:

A
kp = 4nNA(DA +DB)(ra +1B) 7~ (AD)
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B zazRe?
4neeokT(rp + 1B)

A and B represent the reacting ions with diffusivities Da and D, and radii ra and rp,
respectively. The factor W/eW - 1 in eq. (A1) corresponds to the work required in bringing
charged reactants together.

The steady-state flux of an ionic redox species to a charged spherical electrode can
be obtained from eq. (A1) by letting B represent a stationary electrode (Dg =0 and rg = 1)
to which redox species A is diffusing. The effective "valency"” of the electrode, z4, is
defined by eq. (1) of the text.

Combining egs. (A1) and (20) and representing the redox species by point charges

(ra = 0) yields the expected current at a spherical electrode:

. W
= 4nnFCPDArg ———
iL rnFC Aroew 3 (A2)
If either the electrode or reactant is uncharged, then:
iL(diff.) = 4nnFCbDar, (A3)

which is the diffusional current to a spherical electrode. Combining egs. (A2) and (A3)

yields the normalized current as rok — 0:

i W
iL(diff) = eW-1

which is identical to eq. (19) in the text.
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Figure Captions
1. Diagram (drawn to scale) of the relative thicknesses of the diffuse double-layer and the

diffusion layer, 8, (~ 10 ro) surrounding a 100A radius hemispherical electrode immersed

in a 10-3 M aqueous solution of a 1:1 electrolyte. The spherically symmetric diffuse layer

thickness is approximated as 2x"1, corresponding to the distance from the surface where

the electrical potential decays to ~5% of its surface value?2.

2. Simulated diffuse double layer concentration profiles surrounding a spherical electrode
ina 1:1 aqueous electrolyte. The surface potential (vs. Epzc), electrolyte concentration, and

electrode radius for each simulation are indicated in the figures.

3. Normalized steady-state flux as a function rok for various values of Credox/Celec.. The
diffusion limited current in the absence of migration, if (diff.), is equal to 4tnFDCPbr,,.

The dashed lines (i /iL(diff.) = 3.975 and 0.0809) correspond to eq. 19, the analytic value

of the flux in the limit rgk — 0. The dotted line (ip/ip (diff.) = 2) corresponds to the
diffusion-migration limit (eq. 26) when the supporting electrolyte concentration is much

smaller than the redox species concentration, Credox/Celec >> 1.

4. Theoretical voltammograms calculated from eq. 14 for the reaction A+ +e- — A asa
function of Ep,c, and koD/ry. The formal redox potential of the couple A*/A, E°, is set
equal to OV vs. an arbitrary reference electrode. The dotted line indicates the diffusion

limited reversible voltammograms.

5. Theoretical voltammograms calculated from eq. 19 for the reaction A* — A2+ +¢- asa

function of Ep,c and koD/ro. The formal redox potential of the couple A*/A, EO' is set

23




equal to OV vs. an arbitrary reference electrode. The dotted line indicates the diffusion

limited reversible voltammograms.

6. Theoretical voltammograms calculated from eq. 19 for the reaction A — A2+ +2e-asa
function of Epyc and koD/ro. The formal redox potential of A/A2+ EOL s set equal to OV
05, an arbitrary reference electrode. The dotted line corresponds to the reversible diffusion
limited voltammogram.

7. Theoretical voltammograms for the oxidation and reduction of A* showing the effect of
the dimensionless electron-transfer distance, (Te . - To)/To, on the waveshape. Each curve

corresponds to koD/ro = X, Epze =E° =0, and
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