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Abstract:

The large plastic deformations at the tip of a crack in a ductile heat treatment of 4340 steel are
studied numerically and experimentally. The numerical simulation of the experiment uses a
small strain, incremental plasticity law, with a power law hardening behavior. Both the in-
plane and out-of-plane deformations are measured on the same specimen at the same time.

The experimental technique of moire interferometry is used to measure the in-plane displace-
ments. This technique is described in detail, including an analysis of the effect of out-of-plane
rotations on the use of the technique. A three beam interferometer and a four beam interferom-
eter are compared.

The out-of-plane displacements are measured with a Twyman-Green interferometer. The
analysis of this data is still underway and will be forwarded when completed. /

The analysis of the data from the experiment is analyzed through a digital image processor.
The hardware and software are briefly described. (Further information is available in 'previous
reports submitted under this contract.)

'The numerical model is described in detail. The material properties are determined from a
uniaxial test on specimens taken from the same bar as the fracture specimens and with identical
heat treatment. A numerical model of the fracture specimen having 7581 degrees of freedom is
used to provide data for comparison between 400 N (inear behavior) up to 75000 N (catas-
trophic failure of the steel specimen) in fourteen steps.-Phis model characterizes the crack as a
notch having a similar size as the notch in the steel fracture specimen. Data from a previous
study is also available, but at only five load levels; this model uses a sharp crack.

Comparison between the experiment and the numerical model is shown at two load steps, 4000
N, where plastic deformation is contained within about 0.01 cm, and 30000 N, where the plas-
tic deformation is on the order of 0.2 cm.
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Abstract:

The large plastic deformations at the tip of a crack in a ductile heat treatment of 4340 steel are
studied numerically and experimentally. The numerical simulation of the experiment uses a
small strain, incremental plasticity law, with a power law hardening behavior. Both the in-
plane and out-of-plane deformations are measured on the same specimen at the same time.

The experimental technique of moire interferometry is used to measure the in-plane displace-
ments. This technique is described in detail, including an analysis of the effect of out-of-plane
rotations on the use of the technique. A three beam interferometer and a four beam interferom-
eter are compared.

The out-of-plane displacements are measured with a Twyman-Green interferometer. The
analysis of this data is still underway and will be forwarded when completed.

The analysis of the data from the experiment is analyzed through a digital image processor.
The hardware and software are briefly described. (Further information is available in previous
reports submitted under this contract.)

The numerical model is described in detail. The material properties are determined from a
uniaxial test on specimens taken from the same bar as the fracture specimens and with identical
heat treatment. A numerical model of the fracture specimen having 7581 degrees of freedom is
used to provide data for comparison between 400 N (linear behavior) up to 75000 N (catas-
trophic failure of the steel specimen) in fourteen steps. This model characterizes the crack as a
notch having a similar size as the notch in the steel fracture specimen. Data from a previous
study is also available, but at only five load levels; ' i model uses a sharp crack.

Comparison between the experiment and the numeric, aodel is shown at two load steps, 4000
N, where plastic deformation is contained within about 0.01 cm, and 30000 N, where the plas-
tic deformation is on the order of 0.2 cm.
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SECTION 1

Introduction

A crack in a body dominates the nature of the stress and strain fields near its

tip, and within the framework of two-dimensional linear elastostatics, the distri-

butions of stress and strain are independent of the geometry of the specimen and

loading except for a multiplying factor, the stress intensity factor, K, and completely

independent of the specimen composition. This notion of crack tip autonomy, which

leads to a universal square root singularity at the crack tip, has, in the past, left

only the calculation of the stress intensity factor, K, as the main effort of fracture

mechanics research [24,26]. For a problem which has only load boundary conditions,

the stress intensity factor is a function only of the geometry and magnitude of the

applied loading, and is independent of material properties. The displacement field

does depend on the material properties, and for a problem including displacement

boundary conditions the stress intensity factor is also a function of the material

properties.

The stress intensity factor does describe the conditions near the crack tip for

many applications when the applied loads are small, such as for fatigue, but it is clear

that it does not represent the correct solution in most cases. The K-field solution

is derived for two-dimensional problems, plane strain or plane stress. These two

cases iiay be thought of as the limiting cases of infinitely thick and infinitesimally

thin bodies. While the two-dimensional solutions for the in-plane displacement field

quantities are identical to each other except for a factor depending on the Poisson's



ratio il of the material, the out-of plane displacement are zero in the )lan(, strain

case and unbounded in the plane stress case. This implies that for bodies of finite

thickness the field quantities will differ from the two-dimensional K-field because

of three-dimensional effects.

It is recognized that the stress-strain response at the tip of the crack must be

non-linear. Since the stresses predicted within the linear theory of elasticity are

singular, the material at the crack tip must act in a non-linear way to mitigate the

effect of the stress singularity through plastic deformation. Thus, while the stress

intensity factor has been an important tool of fracture mechanics investigations up

to now, it is clear that it is only a starting point for the characterization of the

fracture process. In an effort to emphasize the realities of the fracture process, this

study investigates the plastic deformation at the tip of a crack in a ductile material,

in this case, a ductile heat treatment of 4340 steel.

There are several analytical models of the nonlinear plastic behavior at the

crack tip, from the simple Dugdale-Barenblatt cohesive zone model to the power

law hardening model of Hutchinson [6] and Rice and Rosengren [20]. Along with

high speed computers have come numerous finite element and other numerical ap-

proximations. These models make assumptions about the constitutive nature of

materials and attempt to predict the nature of the fracture process on the basis of

those assumptions. Such assumptions must be evaluated experimentally, by com-

paring the analytical or numerical results with the real world. Actual displacement,

strain and stress distributions must be determined experimentally and compared

with the predictions to test the validity of the models.

The current study has been undertaken to determine an experimental technique

capable of measuring physical quantities in a region surrounding a crack tip, to use
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that technique to evaluate the numerical simulations, and to make a comparison

between the experimentally measured quantities and the quantities predicted from

a state of the art three-dimensional plastic numerical model. The experimental

measurements in this study are obtained through a technique called moire interfer-

ometry developed by Post [18,19]. This optical technique measures relative iii-plane

displacements over an entire field of view. The displacements are revealed as fringes

which represent contours of constant in-plane displacement parallel to one axis of an

imposed coordinate system. Both orthogonal components of in-plane displacement

are measured simultaneously over the same field on one side of the specimen, while

the out-of-plane displacement component can be measured from the reverse side

using a Twyman-Green interferometer.

There are many size scales of importance in this problem, and the measurement

technique must be able to encompass all of them. There is an external or large scale,

within which the field quantities are well described by linear elastostatics. There is

the scale of the fracture process zone, which, for the ductile material in this study

which introduces plastic yielding, can become large compared with the dimensions,

of the specimen (on the order of one centimeter). Additionally, there is the scale of

the sensitivity of the measurement technique, which must be fine enough to detect

discrepancies between the experiment and analytical or numerical predictions.

One limitation on the use of the moire interferometer is that it is sensitive to

both in-plane and out-of-plane displacement gradients. However, if the in-plane dis-

placement gradients are large, the effect of the out-of-plane displacement gradients

may be neglected. The effect of the out-of-plane displacement gradients is most

apparent in the formation of a shadow spot around the crack tip, due to limitations

in the recording optics. Large in-plane displacements will themselves result in a
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shadow spot, also due to limitations of the recording optics, but this occurs at a

higher load level than the shadow spot due to the out-of-plane deformation.
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SECTION 2

Moire Interferometry

2.1 Preview

The initial section is a discussion of the technique of moire interferometry, and

its relation to geometric moire techniques. The equations describing the fringcs in

geometric moire will be given; these e-uations indicate that the fringes represent

contours of constant in-plane displacement. The equations describing the fringes in

moire interferometry will be compared to those for geometric moire.

Second, the governing equations frr a two beam interferometer will be derived

for the general problem of interference between two diffracted plane waves. This

derivation will then be made more specific to the case of moire interferometry.

Planar deformation will be discussed, and the correspondence between the equations

describing the fringes in moire interferometry and the equations describing fringes

observed in geometrical moire will be shown, leading to the conclusion that the

fringes observed in moire interferometry can be taken as contours of constant relative

in-plane displacement for planar deformation. The effects of non-planar deformation

will be investigated under the assumption of small rotations of the surface away from

the original plane of the grating.



Third, the four boeaifl intei-fcronieter i.use1 in the experiments wvill be described,

its -Nll1 thle procedure for ailignling the interferometer during anl exp)eriment. The

requirements for coherence, polarization and matching of beam~f intensity xvill 1)e

touched upon. The optical collection apparatus wvill be (liscise(I. ;nd the theoret-

ical limits of the measurement system wvill be estimated.

Fourth, the Performance of a three beam interferometer wviil ie comipared wvith

that of the four beam interferometer. The governing equations dlescribinig the fringes

for the three beam interferometer wvill be derived for the caise of edlit lplilar (lefor-

mlat ion.
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2.2 Moire Interferonietry and Geometric Moire

Moire interferomctry is an experimental technique developed by Dr. Daniel

Post at Virginia Polytechnic Institute and State University for measuring in-plane

displacements at the surface of an object [9,17,18,19]. This technique relies upon

the interference between two laser beams diffracted from the specimen surface to

infer th- in-plane deformations at the surface. The sensitivity of the measurement

is on the order of the wavelength of light.

The equations describing the fringes observed using the moire interferometer

will be derived. It will be shown that the equations describing the fringes in moire

interferometry are identical to the equations describing the fringes in geometric

moire when the deformation remains strictly in a plane. (Moire interferometry is

insensitive to translations, but it is sensitive to rotations of the specimen surface

away from the original plane of the surface.) This identity between the two sets of

equations indicates that the fringes observed in moire interferometry can be taken as

contours of constant relative in-plane displacement as they are in geometric moire,

even though the fringes are generated by very different mechanisms.

The fringes observed in moire interferometry arc generated by interfering light

waves which intersect at a small angle. This angle varies with the in-plane dis-

placement through the change in the state of a diffraction grating on the surface

of the specimen. However, the angle may also vary due to rotations of the sur-

face out of the plane, as will be the case in fracture problems, which may have

sizable out-of-plane displacement gradients near the tip of the crack. These rota-

tions will introduce additional terms in the equations describing the fringes, which,

if significant will mean that the fringes can no longer be viewed as displacement

contours. The equations describing the fringes will be derived allowing for rotations



which change the plane of the grating in an attempt to estimate the magnitude of

the error introduced if the fringes arc taken as contours of displacement. Alterna-

tiveiy, this investigation will help to determine how corrections could be made if

the out-of-plane displacement gradients are known through some other method, as,

for example, from measurements using the Twyman-Green interferometer.

It is desirable to be able to view the fringes observed using the moire interfer-

ometer as contours of displacement, because then similar data reduction methods

can be used on data generated from either the Twyman-Green interferomneter or

the moire interferometer. The fringes observed in a Twyman-Green interferometer

represent contours of constant relative out-of-plane displacement, if the slope of

the surface is not too large. In the Twyman-Green interferometer, a path length

difference caused by out-of-plane deformation causes interference between two laser

beams, one reflected from the specimen and one reflected from a flat reference mir-

ror. Along a given fringe, the phase difference of the interfering light waves is the

same, indicating that the path length difference is also the same, which indicates

that the out-of-plane displacement is constant along that fringe.

2.2.1 Geometric Moire

'. c of geometric moire methods requires a grating consisting of regularly spaced

1nii :,, ihnked or scribed upon the specimen. A similarly spaced set of lines is inked or

s-ribe "upon a transparent medium; this is called the reference or master grating.

These lines are usually straight lines parallel to one axis, but they can bc concentric

circles or radial lines. The reference grating is usually identical to the specimen

grating before deformation, but sometimes the specimen grating has a spacing which

is an integral multiple of the reference grating. The fringes in geometric moire are
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patterns which result when the deforming specimen grating is viewed through the

reference grating. [2,3.4.23] The spacing and inclination of the fringes are related

to the pitch po of the reference grating, the pitch p of the specimen grating and the

angle 0 between the lines of the two gratings. The spacing of the fringes is 6, which

is found as

6 = ppoo(2.2.1)[p'2 + p2 - 2plpo CoO 9)-2

The inclination of the fringes is described by the angle 6, which is the angle between

the fringes and the lines of the reference grating.

tan PO ( 2.2.2)
p0 cos 0 - p

The increment of displacement between adjacent fringes is Po, and the direction

of the displacement measured is perpendicular to the lines of the reference grating.

2.2.2 Moire Interferometry

If the fringes generated by the moire interferometer do correspond to displace-

ment contours, the fringes will be described by equations which are identical to the

equations describing fringes generated in geometrical moire. In the case of the moire

interferometer, the equations describing the fringes will be written in terms of the

initial (undeformed) state of the grating (which is retained by the arrangement of

the incident laser beams) and in terms of the the current state of the grating. The

grating itself is a periodic surface height variation which has an initial wavelength

of w0 and a current wavelength of to. Let the angle between the current grating

ridges relative to the initial grating ridges be -y. The fringe spacing 6 in the case of

strictly planar deformation is found to be

+ 2tw 0 cos-y] (2.2.3)

[Z• +I 11
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Note that there is a fringe multiplication factor of two in the denominator of equa-

tion (2.2.3) compared with equation (2.2.1). This produces twice as many fringes as

expected from equation (2.2.1), or, equivalently, halves the displacement increment

between adjacent contours, so that while the displacement increment between the

fringes of equation (2.2.1) is Po, the displacement increment between the fringes

of equation (2.2.3) is w0/2. The angle 0 between the fringes and the lines of the

grating in its initial state is described by an equation identical to equation (2.2.2):

tan 0 = (2.2.4)

w 0 cos-Y - w

The displacement increment between adjacent fringes is wo/2, and the direction

of the displacement measured is perpendicular to the ridges of the diffraction grating

in its initial state.

The knowledge of the initial state of the grating is retained in the laser beams

which are diffracted to produce the interference fringes observed in moire interfer-

ometry. These laser beams are aligned to the initial grating state and held constant

whil, the grating deforms.

It has been suggested that a direct analogy can be drawn between fringes of

geometrical moire and the fringes in moire interferometry. [9,19] The incoming laser

beams are aligned to the initial grating state in such a way that the interference

between the beams produces a standing wave with a spacing of wo/2 (where wo

is the initial grating spacing). This interference pattern can be thought of as a

virtual reference grating, and the fringes seen using the moire interferometer can be

thought of as due to moire patterns between the current grating at spacing w and

at an angle of -y to the virtual reference grating. The fringe multiplication factor

arises from the fact that the reference grating is spaced at exactly half of the initial
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cgrating spacing, and therefore is spaced at approximately half the deformed grating

spacing (at least for small deformations), as described in by Livnat and Post [9] and

by the author [21].

Although the analogy between geometric moire and moire interferometry is apt

when the deformation remains strictly in the plane of the original grating, rotations

of the plane will introduce angular changes in the diffracted laser beams which

are not related to the in-plane displacement of the grating. This will introduce

changes in the equations governing the spacing and orientation of the fringes. The

equations describing the fringe spacing and orientation will be derived allowing for

arbitrary rotations of the grating in an effort to determine the magnitude of the

error introduced by assuming that the fringes represent contours of purely in-plane

displacement.

2.2.3 Assumptions Underlying the Governing Equations

Moire interferometric fringes are the result of the interference between two sets

of light waves which travel from the surface of the specimen to the observer at

slightly different angles. The two light beams originate at the same laser source and

follow paths of equal length to the specimen, but they arrive at the specimen from

different directions. The surface of the specimen is a reflective diffraction grating,

also called a phase grating, since it diffracts the light by altering its phase and not

its amplitude as a transparent grating with inked lines would.

Initially, the incoming laser beams are arranged to intersect the phase grating

at equal but opposite angles relative to the surface normal in such a way that the

first diffraction order beams exit along the normal to the specimen surface to the
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observer. Assuming a perfect grating and perfectly planar coherent light waves, this

initial configuration produces a null interference pattern, since the phase difference

of the diffracted light waves is constant over the field of view. If the grating is

now stretched or shrunk to have a new wavelength, but the plane of the diffraction

does not change, the laser beams will be diffracted away from the specimen normal

by equal but opposite amounts (due to the symmetry of the incoming laser beams

with respect to the surface normal). Since the exiting beams now intersect at an

angle, the phase difference between the light waves will vary across the field of view,

and the interference will be constructive in some places, destructive in others. This

interference pattern can be used to infer the new wavelength of the grating and thus

the in-plane deformation at the specimen surface.

If the plane of the grating does change, either through a rigid rotation or

through out-of-plane deformation gradients, the angles of the diffracted beams will

have an additional deflection which does not depend on the in-plane deformation.

The equations governing the formation of the fringe patterns observed in moire

interferometry are derived under the assumption that the interference occurs be-

tween two coherent plane light waves of equal amplitude and similar polarization,

which means that each plane wave can be described by a unit vector (or ray) normal

to the plane wave (as in geometric optics). The light waves intersect at an angle

and interfere to form a volume of parallel light and dark bands which are stationary

in space. These bands (fringes) are perpendicular to the vector difference of the

unit normal light rays. The spacing of the fringes depends on the wavelength of the

light and the angle of intersection since the relative phase information of the two

waves can be determined from the wavelength and the angle of intersection as long

as plane wavefronts are assumed. Since the fringes observed in moire interferometry
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are analogous to the fringes observed in generalized moire methods or the fringes

generated in a Twyman-Green interferometer in that they represent contours of

constant displacement, the absolute phase information of the waves is not impor-

tant, since a shift in the phase of one or the other (by a shift in path length for

example) will only shift the amplitude of the fringe without altering the spacing or

shape of the contours. In other words, whether the fringe is light or dark is not

important as long as the fringe spacing and inclination remains the same. This

statement emphasizes one of the important facts about interferometry in general,

namely that the displacements measured at a point are only known in relation to

the displacements at other points in the field of view. In order to make absolute

measurements, the absolute displacement of one point in the field must be known

from some other method.

This derivation of the equations describing the fringes in moire interferometry

is similar to that by Livnat and Post [9] in approach, although they restricted their

derivation to planar deformation, and the approach was arrived at independently.

The work by Livnat and Post offers some interesting comparisons between moire4

interferometry and geometric moire methods. The equations for the case of planar

deformation and the correspondence between moire interferometry and geometric

moire were also derived in a slightly different way by the author [21] and in a

very different manner by Pirodda [16]. The paper by Pirodda contains interesting

descriptions of several interferometric measurement techniques.
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2.3 The Governing Equations of Moire Interferometry Allowing

for Arbitrary Changes in the Orientation of the Grating

2.3.1 Diffraction Equations

One type of diffraction grating which acts in reflection is called a phase grating

because it alters the phase of a light wave periodically across the width of the light

wave. This is in contrast to an amplitude grating, which alters the amplitude of

a light wave periodically across its width. A phase grating is simply a periodic

height variation, arranged in peaks and valleys. Ordinarily, the height variation is

much smaller than the distance between peaks, while this spacing between peaks,

the grating wavelength, is on the order of the wavelength of light.

X3

1X

FIGURE 1. The Grating Coordinate Frame. The x 2 coordinate axis remains parallel
to the ridges of the grating during deformation. The x 3 axis remains
normal to the mean grating surface. The current grating wavelength is
W.
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Consider such a phase grating of wavelength t. Attach a right-handed orthog-

onal coordinate system to the grating so that the x1 -x 2 plane coincides with the

mean grating surface such that the x2 axis is parallel to the ridges of the grating.

This coordinate frame moves with the grating, so the x 2 axis always remains parallel

to the current ridges of the grating and the x3 axis always remains perpendicular

to the mean grating surface. See Figure 1.

To calculate the direction of a diffracted light ray (of any ordcr) from an incident

light ray which is directed at the grating from an arbitrary angle. the incident

light ray must be resolved into components with respect to the coordinate frame

attached to the grating as describe above and in Figure 1. For instance, if unit

vector a represents the incident ray and unit vector b") represents the n"h order

ray diffracted from the incident ray, the equations relating the components of a to

the components of W" ) are:

a, + -= n (2.3.1)
w

a2 + b( n 0 (2.3.2).

where a, and b., are the components of a and W") in the grating coordinate frame

and A is the wavelength of light used. Note that while the diffracted light rays are

directed along W") , the incident light rays are actually directed along -a. This

means that both a3 and b(') are nonnegative, and since a and W" ) are unit vectors,

equations (2.3.1) and (2.3.2) uniquely determine W ") from any given a. Equations

(2.3.1) and (2.3.2) are given in this form to correspond to the form usually presented

in the literature concerning diffraction gratings following Guild [3,4].
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2.3.2 Interference of Plane Light Waves

Let the unit vectors u and v represent the normals of plane light waves which

interfere to form the fringes observed in moire interferometry. These plane light

waves interfere so as to create a standing wave pattern of parallel light and dark

fringes as shown in Figure 2. The fringes are surfaces along which the phase differ-

ence between the two sets of light waves is constant. The planes of constant phase

difference are normal to the difference vector z = u - v and are spaced a distance b

from one dark band to the next dark band. (Alternatively, one could say that the

standing wave has a wavelength of 6.) Let 2/ be the (acute) angle between u and

v, then 6 is given by:

- (2.3.3)21 sin 3[

where A is the wavelength of light used.

2sinp

FIGURE 2. Standing interference pattern formed between collimated laser beams
crossing at angle 2fl. The light has a wavelength of A. The interference
pattern has a wavelength 6.
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The spacing and orientation of the fringe bands can be specified by a single

vector d which contains all the information about the fringes. The vector d is

normal to the fringe planes and has a length equal to the distance between the

fringe planes. Since & is the distance between the fringe planes and the vector

z u - v) is normal to the fringe planes, the vector d is determined by

z A z
d 6- 2(2.3.4)Izi 21lsin 01Hzi

U-V U-V

UU

FIGURE 3. Unit vectors representing the normals to diffracted plane light waves. It
is seen that 12 sin /t = lu - vj. The spacing of the interference fringes is
6= /(I2 sin31).

From Figure 3, it is apparent that since u and v are unit vectors,

2Isini3I = Iu- vi = IzI (2.3.5)

Therefore,

A6=-z (2.3.6)
Si lm
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and

d A z (2.3.7)

2.3.3 Geometry

In moire interferometry, it is necessary to calculate the directions of diffracted

rays originating from two different incident rays. These incident rays are fixed in

space while the grating is allowed to undergo an arbitrary change in orientation and

line spacing.

Consider a coordinate frame which is fixed in space. Denote the fixed axes

by X 1 , X 2 , X 3 . The grating coordinate system, x 1 , x 2 , X3 as shown in Figure 1, is

initially aligned with the fixed system. As the grating deforms, the lines of the

grating rotate so that the grating coordinate frame no longer coincides with the

fixed frame. Additionally, the plane of the grating is allowed to rotate with respect

to the fixed axes. The change in the orientation of the grating can be described

through the use of Euler angles. First let the grating rotate an angle 73 about the

X3 (or X 3) axis. Next let the grating rotate an angle -f2 about the new position

of the grating X2 axis. Finally, let the grating rotate an angle 7y about the new

position of the xi axis to its final position.
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The relation between the components of any vector a resolved in the XIX 2X 3

coordinate frame and the components of a resolved in the final position of the

xIx 2.r3 (grating) coordinate systemn are determined through the successive matrix

operation:

(a, (1 0 S0,Y 1 COS - 2  0 -il-
a 2  = 0 COs I in 0 , 1 0
a3 0 -sill n cos - sin's 2  0 cosy%

sin^3 cost3 0 (4) (2.3.8)
0 0 1 A.3

where al,a2,a3 are the components of a in the x1X 2X3 frame and AI,A 2 ,.4 3 arc

the components of a in the X 1X 2X 3 frame.

This transformation is necessary, because the diffraction equations are written

in terms of components in the grating frame while the incoming laser beams are

specified in components in the fixed frame.

2.3.4 Moire Interferometry

The light rays represented by u and v are diffracted from two fixed incident

light rays. The two fixed incident rays will be represented by unit vectors j and k.

Again, it is emphasized that these vectors are directed outward from the original

grating surface, in the opposite direction from the incoming light waves. These two

unit vectors have components J1 , J2, J3 and KI, K 2 , A 3 , respectively, in the globally

fixed X 1X 2 X 3 frame, and components jj, j 2 ,j3 and kj, k2 , k3 , respectively, in the

grating fixed xIx 2x 3 frame.
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Let unit vector u represent the diffracted ray of order 1 from the incident ray

represented by j, and let unit vector v represent the diffracted ray of order -1 from

the incident ray represented by k. Let these vectors have components uL, 1 2 , U 3

and VI, v2 , z.3, respectively, in the grating fixed xI X2 X3 frame. Then from equations

(2.3.1) and (2.3.2),

A
ILI = - - jl (2.3.9)

w

U2 = -J2 (2.3.10)

A
V = -- - (2.3.11)

w

v2 = - k2  (2.3.12)

and since u and v are unit vectors,

Ul3  [1 - (LI - (u2)21 (2.3.13)

V3 = (1 - (V1,)2- (V)2]2 (2.3.14)

In the experimental arrangement as used in this study, the two fixed incident,.

rays represented by j and k lie in the X 1 -X 3 plane and arc symmetric with respect

to the X 2-X 3 plane. In the global X 1X 2X 3 coordinate frame, these vectors have a

simple representation:
{sin}a A sin a

J 2 >= 0 K 2  0 , < c < - (2.3.13)
J3 Cosa K3  cosa

The components of j and k in the xlx 2x 3 frame are then found using equation

(2.3.8) as

I sin a~ COSY 3 COS ^Y2 - cos a~ sin 7Y2{2 = -sin a sin 3 COS-Y+in a cos 73 sinY2 sin -y1 + cos a cos Y2 sin 1

j3 sin a sin -y3 sin -y1 + sin a cos Y3 sin 72 cos 'Y1 + cos o cos 'Y2 cos 71
(2.3.16)



-21-

i -sin 0COS 3 COS ^t2 - COS )Si-').2
k2 } sina Sin -Y3 cos" 1 - sin a cosY 3 sin 72 sin 71 + Cos a cos 7 2 sill 1
k3 - sin a sin 73 sin 71 - a C OS Y sin Y72 COS 71 + COS a COS 72 COS 71

(2.3.17)

By using equations (2.3.9) through (2.3.14), the components of the unit vectors

u (which represents the diffracted ray of order 1 from the incident ray represented

by j) and v (which represents the diffracted ray of order -1 from the incident ray

represented by k) in the grating coordinate frame can be found as

vi - sin ccos3 cos72 + cosasin72 (2.3.1S)

w

v2 sin a sin 3 cos I + sin a COS 7Y sin -y2 sin y - cos a cos Y2 sin -Y, (2.3.22)

3 [1 - (V1,)
2 - (V2 )']-2 (2.3.23)

The components of the difference vector z = u - v in the grating coordinate

frame are then

z1  = 2 sin a c os a3 siC2) (2.3.24)

2 = -2(sin a sin -y3 cos -y - sin a cos y3 sin 72 sin 71 (2.3.25)

= [1 _ (u1 )2 ( )2]- _ [1 2 (VI )2 V 2 (2.3.2G)

Because the fringe planes are perpendicular to the vector z, their spacing 6 is found

from equation (2.3.6) as

65 = A (2.3.27)
IzI



so that the orientation and spacing of the fringes is described by the normal vector

d as in equation (2.3.7), by

d = (2.3.28)
Z1

2.3.5 Initial Alignment

Before any deformation occurs, i.e., while the grating axes and the global axes

coincide, the angle a is adjusted so that there are no fringes visible in the field of

view, which means the fringe spacing 6 is infinite. This angle a remains constant

throughout the deformation. The angle a depends only on the initial wavelength of

the grating, and, in effect, a acts to retain the initial grating wavelength to compare

it with the current deformed grating wavelength.

Recall that the initial grating wavelength is wo; this is known in advance. Also,

'Y1, 'Y2 and Y3 are zero initially. The two incident laser beams are arranged so that

the diffracted beams lie along the x 3 axis, meaning t_ =V = V2 = 0 and

U3=V3 =1I.

It follows from equations (2.3.18) through (2.3.23), making the indicated sub-

stitutions

u, = 0 = - sina (2.3.29)
w0

u 2 = 0 (2.3.30)

U3 = 1 (2.3.31)

V, = 0 = _m + sina (2.3.32)
wo

V2 = 0 (2.3.33)

V3 = 1 (2.3. 4)
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which requires that

sina = (2.3.35)
w)o

This relation does not change during the deformation.

There is no similar simple representation for cos a, so the terms sin a and cos a

will be retained unless the substitution helps to simplify an equation. It should be

understood, however, that a is a known quantity which is related to the undeformed

grating wavelength w0 and to the wavelength of light used A.

2.3.6 Observed Fringes

In general, the fringe surfaces described by the vector d are not directly ob-

served, because the fringe planes are not aligned with the optical axis of the record-

ing device. The optical system used to record the fringes is aligned along the fixed

X 3 axis and focuses on a plane parallel to the X1 -X 2 plane; it will thus record the

fringe planes where they intersect a plane parallel to the X 1 -X 2 plane. Thus the

optical system will not in general record the true fringe wavelength 6, but instead

an apparent fringe wavelength 6*. This apparent fringe wavelength corresponds to

the spacing between the intersections of the fringe planes with planes parallel to

the X 1 -X 2 plane.

Let El, E 2 and E 3 be unit vectors aligned with the globally fixed X 1 ,XA2 and

X3 axes, respectively. The observed wavelength and inclination of fringes can be

represented by a vector d* which lies in the XI-A? 2 plane and is perpendicular to

the unit vector E 3 , as shown in Figure 4 Knowing the vector d which contains all

the information about the fringes, the vector d* can be constructed as the apparent

fringe spacing 6* times a unit vector in the X 1 -X 2 plane in the proper direction.
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The vector d* will always have a length that is greater or equal to the length of

d, since d is the shortest vector between two fringe planes. (The vector d is a

projection of the vector d*.)

' d

Fringe Plane Fringe Plane

FIGURE 4. The relation between the apparent fringe vector d* and the true fringe
vector d. The vector d* is perpendicular to the globally fixed direction
along E3 .

Let 0 be the angle between the vectors d and d*

6*1 cosol = 6 (2.3.36)

d' = V - (d. E3 )E 3 ) (2.3.37)
Id - (d. E 3 )E31
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The denominator of equation (2.3.37) can be expanded to find

Id - (d. E3 )E 31 = [(d - (d. E 3 )E 3 )" (d - (d. E 3 )E 3 )]2

= [d d - 2(d • E3) 2 + (d • E3 )2]

= [d d - (d. E3)2]

= 2 [z .z- (z. E 3 )2] (2.3.38)

where z (= u - v) is the difference vector between the unit vectors representing the

interfering plane waw's. To find 6",

d*.d=* (d - (d. E 3 )E 3 )[d.d-(d. E 3 )21-2 d

= (d -d - (d. E 3 )(d. E 3 ))

[d • d - (d. E 3 )21-

= 6*[d • d - (d • E 3)2]2

.A
= IZ12 [z .z - (z. E 3 )2] (2.3.39)Izi2

but

(A) 2  (2.3.40)

Therefore,

d.d

[d d - (d. E3

AA=21 (2.3.41)
[z z - (z- E3)2(.

and so,

d*= d.d- )2.E3 ) (d-(d. E3)E3)

A ( ](z - (z . E 3 )E 3 ) (2.3.42)z.- z - (z.- E3)2
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Let 6* be the angle between the observed fringes and the X 2 axis. * is also

the angle between the vector d* and the AC1 axis, so that

d* -E d • E2  z. E 2tan ¢*- - = (2.3.43)
d* • El d-E, z. El

T , emphasize the equations describing the fringe spacing and inclination, they

are written together here again. The observed or apparent fringe spacing * and

inclination angle 0* are found to be

5= )2,1(2.3.41)

[z. z - (z. E 3)2(3

tan - (2.3.43)
z'E 1

Again, z is the difference vector between the vectors representing the diffracted

rays, z = u - v, and E 1 , E 2 and E 3 are unit vectors aligned with the globally fixed

coordinate frame.

The components of z are known in the grating coordinate frame. In order

to use equations (2.3.41) and (2.3.43), one must find the components of z in the

globally fixed frame, or find the components of the vectors El, E 2 and E 3 in the

grating system. The latter course will be followed here. Let el, e2 and e3 be unit

vectors aligned with the grating x1 , X2 and X3 axes, respectively. Ei, E 2 and E 3 are

the unit vectors aligned with the globally fixed X 1, X 2 and X 3 axes. Then, again

using equation (2.3.8),

El = (cos 72 cos73)el + (sin -yi sin 72 cos 73 - cos71 sin 73)e

+ (cos 7l sin-y2 cos 73 + sin -t sin 73)e 3  (2.3.44)

E2 = (cos '2 sin 73 )el + (sin -y sin -y2 sinY3 + cos 71 cos ' 3 )e 2

+ (cos 71 sin -y2 sin -y 3 - sin -y1 cos - 3 )e 3  (2.3.45)

E3 = (-- sin y2 )el + (sin - j cos- 2)e 2 + (cosy71 cosY2 )e 3 (2.3.46)
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2.3.7 Special Case: Planar Deformation

Examine first the case of deformation in which the mean grating surface remains

parallel to the globally fixed X 1-X 2 plane. This is the ideal case in which the moire

interferometric fringes exactly correspond to the fringes of geometric moire methods

as contours of constant in-plane displacement. In this case, 71 - 0 and v2 _ 0 and

the components of u and v are given by:

A

II = - - sin a cos 73  (2.3.47)

U2 = sina sin7 3  (2.3.4S)

1 3 = [1 - (ui )2 - (u 2 )2 1 (2.3.49)

v, = -- + sin a cos Y3 (2.3.50)
W

V2 = -sin a sin Y3  (2.3.51)

V3 = [1 -(vI) 2 - (V2)2]2 (2.3.52)

Notice that ul = -vl and u 2 = -v 2 , which implies that U3 = v3 . The vector

z (= u - v) is found to have components in the grating coordinate frame given by

z,= 2 A' - sin a cos - 3) (2.3.53)

Z2 = 2(sin a sin 3 ) (2.3.54)

Z3 = 0 (2.3.55)

In vector form,

z= 2( A- sin a cos 7 3) el + 2(sin csiny 3 )e 2  (2.3.56)

•~~~ W ii
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IzI2=4[ +sin a S 2 Sin2 - 2 sin cosS 73

=4 A(+)sin2 a - Sinca (2.3.57)

The true fringe spacing 6 is

6 = A (2.3.58)

(2 + sin 2 a - 2- sin a cos 73

The vector d = (z/Izl)b is

A [(A-- sina cos^ 3 )e1 + (sinasin 3 )e 2 (

d [A 2  (2.3.59)

+sin 2 a-2 sin a cos -3

Equations (2.3.44) through (2.3.46)reduce to

E = cosy 3 e1 - sin Y3e 2  (2.3.60)

E 2 = siny 3e 1 + cos 73 e2  (2.3.61)

E 3 = e3 (2.3.62)

Therefore, d. E3 = 0, and so the observed fringe spacing P5 is the same as the

true fringe spacing 6 in equation (2.3.58),

A (2.3.63)

2 (A2+ sin 2 a - 2A sin a cos 73

The inclination of the fringe planes with respect to the X 2 axis is

tan ( i y (2.3.64)( cosy 3 - sina

... . -,., .,~m.mUD • m mN m umm mmTV) i
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Substituting sin a = A/wo from equation (2.3.35), one finds for the fringe spac-

ing and inclination

6* =L'wo (..5
2 [W2 + , - 2ww cos 3  

(2.3.65)

tan* WOSin 73 (2.3.66)
wO0 COS 73 - w

Equations (2.3.65) and (2.3.66) are important because they imply that in the

case of planar deformation, the fringes can be interpreted as contours of constant

displacement, as shown by the author [211, as well as by Livnat and Post [9] and

Pirodda [16]. Note that the fringe spacing and inclination depend only on the

initial and current states of the grating and are independent of the wavelength of

light used. The constant displacement increment between adjacent fringes is w0 /2

as shown by the author [21]. Figures 5 and 6 show the variation of the fringe spacing

and inclination for the case where there is no out-of-plane rotation. The choice of

w0 = 1.667pm matches the grating wavelength used in the experiments.

2.3.8 Approximations for General Deformations

The case of planar deformation provides a starting point for approximating the

equations describing the fringes in cases where the deformation does not remain

strictly in a plane parallel to the original mean grating surface. These approxi-

mations will help show the dominant sources of error caused by the out-of-plane

rotations -y, and 72. In effect, it is desirable to be able to interpret the fringes as

contour lines of displacement, rather than to back out the underlying parameters w

and 73. The identity of equations (2.3.65) and (2.3.66) with the the equations for the
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OBSERVED FRINGE SPACING WITH NO OUT-OF-PLANE ROTATION

5 .0 - -I

-- r = 0.000 Y l= 0.000

02= 0.000
4.0r=ww)W

... -r = 0.010 r1= 0.000-
Wo=i.657pm 

T2= 0.000

...... r = 0.100 71= 0.000
3.0 -2 = 0.000_

0

C)

.00

1.0

.0
-. 5 -. 3 -. 1 .1 .3 .5

T3 (radians)

FIGURE 5. The variation of the observed fringe spacing 6* when the out-of-plane
rotations are identically zero. The fringe spacing is always maximum,
at 73 = 0. Negative stretch ratios have similar effect on the fringe
spacing. wo = 1.667tim corresponds to the grating wavelength used in
the experiments.

case of geometric moire means that the fringes do represent contours of displacement

when -t = -y2 = 0. If the effects of these out-of-plane rotations on equations (2.3.43)

and (2.3.41) can be neglected, then the fringes can still be interpreted as contours

of displacement. In the initial, undeformed configuration both of the diffracted rays

arc parallel to the global X 3 axis, and which corresponds to the grating x 3 axis, so

U3  V3 1. Assume that as the grating deforms, these components do not differ

from unity by very much. (This assumption can be justified on the basis of the
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OBSERVED FRINGE INCLINATION WITH NO OUT-OF-PLANE ROTATION

4.0 I I

r = 0.000 71= 0.000
T2= 0.000

....-wo)/w r = 0.010 TI= 0.000
3.0 wo=1.667pm Y2= 0.000-

. . r = 0.100 Y1=  0.000
Y2= 0.000

C I "

., 2 .0 ---'- - ---"-

1.0 -

.0.

- .5- 3- 1. 3.

N
* N

'I
.0 I I I

-. 5 -. 3 -.1 .1 .3 .5

T3 (radians)

FIGURE 6. The variation of the observed fringe inclination " when the out-of-plane
rotations are identically zero. Note that the fringe inclination is periodic•
in 7r, the abrupt jumps at y3' = 0 are really smooth transitions across
branches of the arctangent function. Negative stretch ratios have similar
effect on the fringe inclination, but the curves will be in the opposite
direction. w0 = 1.6671im corresponds to the grating wavelength used in
the experiments.

physical limitations of the optics used to record the fringes: large changes in these

components that would violate this assumption lead to fringe densities that cannot

be recorded.) Using this assumption, u 3 and V3 can be approximated by two term

Taylor expansions about unity:

2(,4 +U2) (2.3.67)U3 2
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1 2

v3= 1 M- ( + v2) (2.3.68)

Therefore,

Z3 = U3 - V3= (V + - -U ) (2.3.69)

Using equations (2.3.18) through (2.3.23), which spell out the components ul, u2,

v, and V2,

Z3 =2[( sinacosy3 cosS 2)(-- sin72 cosa)

+ (sin a sin -y3 COS 3yi - sin a cos -3 sin - 2 sin - 1 )(cos a cos "Y2 sin .Y )] (2.3.70)

From equations (2.3.24) and (2.3.25) it is seen that

z (- sin -y2 cos a)(ui - v1 ) + (sin 71 cos 72 cos a)(u 2 - v2)

- (-sin y 2 cos a)(zi) + (sin -yi cos -(2 cos a)(z2) (2.3.71)

For this approximation,

z -2(-- sin a cos3 cos 2 ) (2.3.72)

Z- 2(sin a sin 7,3 cos -'Y - sin a cos -3 sin 72 sin 71) (2.3.73)

Z3 Iz(- sin-y2 cosa) + z2(sin -1 cos-y2 cosa) (2.3.74)

Using the relations for El, E 2 and E 3 in terms of the grating coordinate frame,

z . E 3 = z1(-sin 7 2) + z2 (sin -y cos 7 2 )

± Z1 (Cos 71 cos 'Y2)(- sin 72 cos a)

+ z2 (cos 71 cos 72 )(cos a cos 72 sin 7 )

= z1(1 + cos -f1 cos7 2 cos a)(- sin -y2)

+ z2(1 + cos 71 cos7 2 cos a)(sin-y1 cos ,2) (2.3.75)
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z = z2 ± z2(cos 2 a sin 2 72)

- 2z- z2(cos a sin '2 )(cos a cos 2 sin -y)

+ z2(cos 2 a Cos 2 2 sin2 n (2.3.76)

(z E 3 )2 = z(sin2 12)(1 + cos7 1 cos7 2 cos a) 2

- 2z, z2 (sin 72 sin 71 r-s 72)(1 + cos 1, COS ^2 COS a) 2

+ z2(sin2 7i cos2 y2)(1 + cosT cos-Y cos a) 2  (2.3.77)

z z-(z" E3) 2

= z1 [1 ± 2 y7(cos 2 a -(1 + COSa COS cos.)2)]

+ z [1 + sin2 11 cosY2 (cos 2  _ (1 + cos c-yl cos a)2)]

- 2z, z 2 [sin 72 sin -1 cos _2 (cos 2 a - (1 + cos 71 COS 72 cos a) 2 )]

(2.3.78)

= z 2

z1 ±+Z2

+ (z, sin 2  -Z2si , COS 7 )(COS - (1 + COS 71 COS -2COS )2 )

(2.3.79)
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z E 2 = ZI (COS 2 sin Y3 ) ± Z2(sin -Y1 sin 72 Siny73 + COSy 71COS7 3)

± zl(- sin 72 COSa) (COS7 1 Sin 72 sin 7 3 -sin yiCOS 73)

" Z2 (Sin 71 cosy 2 cos a)(cos -i sin 72 sin y3 - sin y1 cosy-/3)

(2.3. SO)

z El = ZI (COS 72 COS y3 ) ± Z2 (sin -yl sin -f2 COS 73 - cos -y1 sin-Y3)

± z, (- sin 72 cos a)(cos -/I sin 72 COS 73 + sin ^/I sin 73)

" Z2 (sin -yl COS7 2 cos a)(cos -f1 Sin 72 COS -13 + sin yi sin Y3)

(2.3.81)

2.3.9 Small Angle Approximations

As the plane of the grating rotates away from its initial orientation, fringes are

generated which are not due to the in-plane deformation alone, but have a part

which is due to the rotaton of the grating surface. The effect of this rotation can

be estimated by approximating the rotations which change the orientation of the

grating plane with small angles. This approximation wvill provide information about

the leading sources of discrepancy in the equations describing the fringe spacing and

orientation.
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If the angles Yij and 1N (which are measures of how far the plane of the grating

hias vairied from its Initial orientation) are restricted to be small so that terms of

Order - 2( = 1,2) can be neglected when compared with 1, the trigonometric

functions sin and cos are approximated by:

Sill lx l
ct= 1, 2

Cosy 1YC

The angle 'Y3 is not restricted as it is part of the in-plane deformation even though

this angle is usually small.

With these approximations,

Z1 =2 - -sin a COS_ 3 ) (2.3.82)

Z2 =2(sin asin y3 -11 2 in aCOS513) (2.3.83)

Z3 I( - 2 cos a) ± Z2(Yl COS a) (2.3.84)

z -(z .E 3 ) z -2 z - (ZI -Y2 - Z2 71i)'(1 + 2 cos a) (2.3.S5)

z E2 = Z, (sin _3 ) + Z2 (-Y1 _Y2 sin 73 + COS Y3)

+ Z( -72 COSa) (72 sin ^3 -1 ' COS7 3)

+ Z2(7y1 COSa) (-Y2 si n 13 1~ COS 73) (2.3.86)

z El = ZI(COS 73)±+Z2 (-y 2 COS '3 -sin -yj)

"+ z( - Y2 COSa) (72 COS 73 ± 1 ISin 13)

+ Z2(_Y ICOSa) (7 2 COS 73 + -yi sin 13 ) (2.3.87)
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The third term in equation (2.3.85) can be neglected with respect to the first

two terms since it is of the order y0 7y/ times the first two terms, and is itself

identically zero when the sum of the first two terms is zero. (x2 + y2 = 0 ' x 

y 0). So for this approximation

= 2 + 2z z - (z. E 3 )2  + z 2

= (4 )+sin a - 2- sin a cos 73

Zv/ W

+ 7 72 sin 2 c cos 2 73 - 7072 sin a sin 273  (2.3.88)

z • E 2 z Sin 73 + z 2 cOs 73

+ Z 2 7 1 7 2 sin 73(1 + cosa)

- z 2 1 1 COS 7 3 COSa

- z17 2 sin y3 cos a

+ zr7y2 cos t3 cos a (2.3.89)

z E 1 = z cosY3 - z 2 sin-y3

+ z2 717 2 cos 73(1 + cos a)

+ z271 sin -3 cos a

2
- z 1 7 2 cos 7 3 cos a

- z 1717 2 sin 73 cos a (2.3.90)
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z. E 2  A
2 -sin -/3

2 w

-7 1 72 sin a cos 2 73 -4

+ 7172 sin a sin 2 73(1 + cos a)
2 2

7l7 2 sin a sina -cos7(1 + cosa)

2
7i sin a sin 73 COS 73 COS

+,7 2 sin a cos 2 7 3 Cos a

- 72 - sin IN COS a

w

+ 72 sin a sin 0 coS7 3 COS

A
+ 71 72- Cos 7 3 COS a

w

-yi-2 sin a Cos 7 3 CS a (2.3.91)

z.Ex Az E A COS 73 - sin a
2 w

+ 7172 sin a sin -y Cos 73

" ±yl-f2 sin a sin 73 cos 73(1 + cos a)

71 72 sin a coS 2 73 (1 + cosa)

+y 2 sin a sin 2 -3 cos a

- 71 -2 sin oa sin 73 COS 73 cos a
2A

- 7I2 S COS 73 cos S

+ 722 sin oa COS - cos a

w
A.-7172- sin 7a cos&

+ 7172 sinl asin 7a cos7"3 cos a (2.3.92)
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z. E2  A-sin'73
2 w

- 7172 sin a cos 2 -Y3(1 + cos Ce)

A
+ 7172 - COS 73 Cos a

2 2
1 "y2 sin a sin 73 cOs 7 3 (1 + cos a)

+(yg -- "r)sin a sin'-3 cos 73 cosa

" -/172 sin a cos2 3 cosa

- -- sin y3 cos a (2.3.93)w

z*Ej A
S= -- cos 73 - sin a2 w

+ 7y1y2 sin a sin 273(1 + cos a)
A.

- 717-2 sin 73 cos a
w

2 22
- 71 72 sin a cos 73(1 + cos a)

+ (_ 2 - 2)sinasin 7 3cosa

- 172 sin a sin7 3 cos7 3 cos a

- 72 (W COS 73 - sin a) cos a (2.3.94)

In equation (2.3.93), the last four terms can be neglected with respect to the

first three, however, in equation (2.3.94) the first five terms must be kept to capture

the behavior of the denominator in all cases. So for this level of approximation,

z. E2 _AA-E sint3 - 7 17 2 sina cos 27 3(1 + cosa) + 77 2-- cos73 cosa (2.3.95)
2 w w
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__ • E _ A.

zE = A 3 3 - sin a + 312 sin a sin 2-Y3 (1 + cos a) -'Y 1'2- sin 3 cos a

2 w w
2 2 2-3+CSa _2__

-- ̂/2 sin a cos2 (1 os&)( 2 _ 2) sin a sin2 3 cosa

(2.3.96)

As in the case of strictly planar deformation, it is assumed that the initial

grating wavelength is w0 and that the incoming laser beams are aligned so that the

fringe spacing is infinite, which leads to the relation sin a = A/wo. Making these

substitutions (and dividing out the dependence on A) gives

. --. WW0 , (2.3.97)

2[w2 ± -w2 -2ww 0 cos 3' -y11 2 cos2  - y1y2w 2 sin 2"Y31 (.

tanS* = Wo sin 7 3 - yi7 2w cos 273(1 + cosa) + -(17 2wo cos7 3 cosa
[w0 cos73 - w + 1722 w sin 2y 3 (1 + cosa) - 71 f2 w0 sin 3 cosa

--71-N w cos -t3(1 + cos a) + 2--y)wsin 2
3 cosa]

(2.3.98)
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FIGURE 7. The variation for 5* with out-of-plane rotations for the case where the
stretch ratio is zero. In this case the effect of the out-of-plane rotations,
is most sc vere. The offset of the curve for larger -ij and 'Y2 would be in
the opposite direction if y1 or -Y2 were negative.

2.3.10 Discussion

For planar deformation, it is clear that the equations governing the fringe

spacing and inclination in moire interferometry are identical with the equations

governing the fringe spacing and inclination in geometric moire techniques, which

means that the fringes can be construed as contours of constant relative in-plane

displacement. The increment of displacement between fringes and the direction of

the displacement is determined by the angle at which the incoming laser beams

intersect and the plane in which the lie. (This in turn is determined by the initial



-41-

EFFECT OF OUT-OF-PLANE ROTATIONS ON OBSERVED FRINGE INCLINATION
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FIGURE 8. The variation for * with out-of-plane rotations for the case where the
stretch ratio is zero. Again, this is the case where the effect of the,
out-of-plane rotations is most severe.

state of the grating: its wavelength w0 and orientation. The incoming laser beams

are aligned using the initial grating.) Further discussion of the case of planar defor-

mation and the relation to general moire methods can be found in papers by Livnat

and Post [9] and the author [21].

These equations have been derived assuming that the deformation is homo-

geneous. In order to extend these equations to nonhomogeneous deformations, it

must be assumed that the equations can be applied locally and that the displace-

ment field is continuous and smooth enough for the fringes to remain continuous
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FIGURE 9. The variation for 6* with out-of-plane rotations for the case where the
stretch ratio is an intermediate value. (About 1% strain.) In this case,
the error due to the out-of-plane rotations is less severe than for the
case where the stretch ratio is zero.

and smooth. Of course, this raises the question of the size scale at which the local-

ization and continuity arguments are no longer valid. Unfortunately, solutions of

diffraction problems are hard to come by. Most of the work analyzing diffraction

gratings is aimed at predicting the diffraction efficiency of a given grating profile.

These problems are attacked by assuming a solution of plane waves for each of the

diffraction orders and matching the amplitudes of those plane waves to the bound-

ary conditions imposed by the grating profile. In the case of the interferometer, the

assumption that the diffracted light is a plane wave would have to be discarded,
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FIGURE 10. The variation for q* with out-of-plane rotations for the case where
the stretch ratio is an intermediate value. (About 1% strain.) In this,
case the error due to the out-of-plane rotations is less severe than for
the case where the stretch ratio is zero, except near the region where
73 = 0.

and a solution for a grating of varying spacing would need to be constructed to de-

termine if the assumption of locally plane waves at the angle predicted by equation

(2.3.1) is valid.

In undertaking the derivation of the equations describing the fringes for a gen-

eral (not necessarily planar) deformation, the goal was to determine the error in-

troduced by deformations which rotate the plane of the grating surface. This was

motivated by the fact that the surface near the tip of a crack dimples inward. This
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(limple is confined to a small region, and even within this region, the surface slopes

are approximated well by small angle theory over most of the dimple.

The two term approximation for the out-of-plane component of the unit vectors

representing the diffracted beams U3 and V3 is quite good for the experimental moire

interferometer. The error in this approximation is less than 1 percent for deviations

from the surface normal up to 30 degrees, while the theoretical limit which can be

captured using the current configuration of the interferometer is about 20 degrees.

The small angle approximation to the general equations simplifies the equations

somewhat and helps to determine the leading sources of discrepancy in the fringe

formation equations, but the equations retaining the sin and cos terms could be

used as well. To a large extent the surface rotation will be in the range where small

angle theory is valid. Experimentally, large surface rotations mean large deviation

from the original path of the laser beams to the camera, which means that the light

will be lost. Additionally, when the surface rotations are beyond small angles the

out-of-plane displacement measurement made by the Twyman-Green interferometer

must have a correction for its measurement.

It can be seen from Figures 7 and 8 that the out-of-plane rotations have the

most effect when the stretch ratio and the in-plane rotation 73 are zero. As the

in-plane deformation increases, the errors introduced by the out-of-plane rotations

are reduced, as shown in Figures 9 and 10.
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2.4 Description of the Apparatus and Experimental Technique

.Moire interferometry is a method of measuring in-plane displacements at the

surface of an object. The displacement information is contained in interference

fringes which have been shown to represent contours of constant in-plane displace-

ments. In order to measure these displacements, a diffraction grating must first be

attached or etched onto the surface of the object to be measured. This diffraction

grating is a periodic reflective surface height variation; its period is on the order of

the wavelength of the light used in the measurements.

The increment of displacement between adjacent contours is proportional to

the period of the diffraction grating and so is itself on the order of the wavelength

of light used; the smallest theoretically possible displacement increinent between

contours is one-half of that wavelength. This means that moire interferometry is

very sensitive to small displacement gradients, and that the fringe density becomes

very high when the strains become large. This measurement technique displays the

displacement contours over a field which is limited by the size of the diffraction

grating and the diameter of the laser beams used to create the interference pattern.

However, since the light which travels to the observer is nearly collimated, the

collection device must have an aperture as large as the measurement area in order

to collect all of the information from the object. As the specimen deforms, the light

diverges from its initial path and at some point the aperture will not be large enough

to capture all of the information from the specimen. Ordinarily, this would happen

first at the edge of the field of view, but in the case of fracture the deformation may

be so large at the center of the field of view near the crack ip that this region also

diverts the light outside the collection apparatus.
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2.4.1 Fringe Quality

The moire interferometric measurement technique relies on the interference

between two laser beams at the surface of the specimen. In order to produce inter-

ference patterns of high contrast, the two laser beams must originate from the same

laser and travel paths of similar length to the object. Although lasers are nearly

monochromatic, the wavelength of the laser beam does vary slightly with time (and

therefore with distance from the laser). This variation is often approximated by

considering the laser light to be the sum of two waves with wavelengths slightly

above and below the nominal laser wavelength. These two waves interfere with

each other and cause the wave pattern to vary slightly in time and in space as the

waves travel while still retaining the nominal laser wavelength. If the difference in

wavelength between these two waves is A, and the nominal wavelength of the laser

is A0, the path length difference between the two beams AL should be such that

1 A2

AL < -- (2.4.1)8 AA

for high contrast fringes. Although the laser output is more complex than the sum,.

of two waves, this relation is still a good estimate of the allowable path length

difference, if AA represents the bandwidth of the light waves from the laser as

described by Vest [25]. This allowable path length difference is expressed as the

coherence length of the laser, and for a Helium-Neon laser it is on the order of 20

cm, so that for interferometric purposes the difference in path lengths between the

two legs of the interferometer should be less than 20 cm and as nearly equal to

zero as possible. This notion of the coherence length is actually a description of

the temporal coherence of the laser because it describes the variation of the laser

output with time and is related to a length because of the propagation of the light

waves and because that length is of a scale which is more easily comprehended (the
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light waves travel over the coherence length in 6.67 x 10-10 seconds).

A second important coherence measurement is the spatial coherence of the light

waves, which describes the similarity of the waves across the width of the beam.

A laser source has excellent spatial coherence, in contrast to a diffuse monochro-

matic source, for instance, such as a sodium vapor tube, where the light emitted

from two separate points on the source may have different phases, amplitudes and

polarizations, even though they are presumed to have the same wavelength.

The coherence of the interfering light waves is the reason that the two interfer-

ing laser beams must come from a single source, since matching the outputs from

two different lasers is effectively not possible. Besides matching the path lengths to

maintain the temporal coherence of the laser beams, the amplitude and polarization

of the two laser beams should be similar to provide high contrast fringes.

2.4.2 The Moire Interferometer

The moire interferometer used in these experiments uses two Spectra-Physics

Model 120 S 15 mW Helium--Neon lasers, one for each of the two in-plane displace-

ment components to be measured. It also depends strongly on precisely adjustable

mirrors and beam splitters for the initial alignment with the diffraction grating.

The mirrors, beam splitters and alignment hardware is all from the Newport Cor-

poration, Fountain Valley, Ca. For each displacement component, the laser beam

passes through a beam expander and lens to produce a collimated laser beam of

50 mm in diameter. This beam is then reflected from a mirror through a beam

splitter where half of the beam is reflected and half transmitted. Each of the two

beams from the beam splitter travels to a mirror which directs the beam to the
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specimen surface. See Figures 11 through 14. This arrangement consisting of a

laser, a beam splitter and three mirrors is used twice, once to provide laser beams

which cross in a vertical plane to measure the vertical component of displacement,

and once to provide laser beams which cross in a horizontal plane, measuring the

horizontal component of displacement. All of the mirrors and beam splitters are

angularly adjustable by means of micrometers which rotate the optical components

about fixed pivots in their mounts. This feature of the interferometer makes it quite

flexible and provides ease of alignment of the laser beams so that they intersect at

the specimen surface at the proper angle and at a specific location.

All of the components are mounted on a Newport Corporation breadboard

measuring three feet by four feet, and the breadboard is held upright in a vertical

plane on a Newport Corporation vibration isolated optical table which is ten feet

by four feet by 18 inches thick.

MIRROR

BEAI -- MIROR

MIRROR SPLrTER

F[GURE 11. Diagram of the interferometer configuration to measure the horizontal
component of displacement.
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FIGURE 12. Diagram of the interferometer configuration to measure the vertical
component of displacement.

MIRROR

-BE MIRROR

LASER

FIGURE 13. Diagram of the interferometer configuration to measure both the hor-
izontal and vertical components of displacement.
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MIRRBEAM EXPANDER
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FIGURE 14. Diagram of the interferorneter configuration to measure both of the
displacement components with optics for beam expansion and collima-
tion. All optics are mounted on a Newport Corporation breadboard
which measures three feet by four feet. The breadboard is held in a
vertical plane. All four laser beams intersect approximately one meter
from the breadboard surface.

2.4.3 Interferometer Alignment

The interferometer is aligned by first aligning the unexpanded laser beams.

The beam which passes through the beam splitter is aligned first by adjusting the

angles of the mirror which lies between the laser and the beam splitter (Mirror A in

Figure 15) and the the mirror which the laser beam reaches after passing through

the beam splitter (Mirror B in Figure 15). By adjusting these mirrors alternately,

the laser beam can be brought, to the specimen surface at the desired location and

at the proper angle. The angle can be checked by tracing the path of the second

diffraction order beam from the specimen. Since the first diffraction order beam

should exit along the normal ,o the specimen surface, the second diffraction order

beam should return along the path of the incoming beam. Although this order
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carries considerably less of the energy than the zero order or first order beams, it

is visible when using the unexpanded laser beam. After the beam which passes

through the beam splitter is aligned, the beam which is reflected from the beam

splitter is aligned in an analogous manner by alternately adjusting the angles of

the beam splitter and the mirror the beam reaches after reflecting from the beam 

splitter (Mirror C in Figure 15). Slight angular changes in the orientation of the

beam splitter do not significantly alter the path of the laser beam passing through

it.

Once the unexpanded laser beam has been aligned, the collimating lens is

inserted into the path and adjusted so that the beam passing through it is not

deflected from its original route and so that the reflection from the lens travels back

to the laser. This ensures that the lens is centered on the laser beam and that it is

placed perpendicularly with respect to the path of the beam. The beam expander,

a microscope objective and pinhole arrangement, is then aligned. The microscope

objective lens focuses the laser beam to a small diameter and the pinhole filters out

noise. In essence the microscope objective acts as a Fourier transform on the laser.

light in spatial coordinates and the pinhole filters all but the central peak of the

beam in the spatial frequency domain, leaving a smooth beam that consists only of

components of low spatial frequency. The distance from the collimating lens to the

pinhole is adjusted so that the pinhole lies at a focal point of the lens; the light that

leaves the lens then consists of plane waves. At this stage the overlapping beams

diffracted from the specimen can be adjusted to produce a null field, that is, the

number of fringes visible is minimized, and zero if possible. (If there is an initial

pattern, it is hoped that it is negligible compared to the pattern obtained when

the specimen is loaded. For steel, the initial pattern is in general only one or two

random fringes. For polymers, however, the initial pattern can be several fringes.)
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MIRROR A

MIRROR C SPLTTER MIRROR B

FIGURE 15. Diagram of interferometer configuration to measure the horizontal dis-
placement components. Mirrors A, B and C and the beam splitter can
be angularly adjusted about two axes with micrometers. Mirrors A
and B are adjusted to bring the the beam which passes through the
beam splitter to the specimen at a precise location and at proper angle
so that the first diffraction order beam exits along the normal to the
specimen surface. Then the beam splitter and mirror C is adjusted
to bring the beam which reflects from the beam splitter to the correct
location at the proper angle. (Changing the angle of the beam split-
ter slightly does not cause the beam which passes through the beam
splitter to deviate significantly from its path.) The beam expander is
then inserted into the beam, and mirror B or C adjusted to minimize
the number of fringes. The interferometer configuration for measuring
the vertical displacement component is adjusted in same way.

This completes the alignment of the interferometer.
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2.4.4 The Grating

The specimen gratings are applied after the method of Post [18,19]. Figure 16

was taken from Post [18], and describes the process. A holographic plate is exposed

to two crossed laser beams. The crossing of the beams produces an interference

pattern of standing waves which creates a periodic light intensity variation across

the surface of the holographic plate as shown in Figure 2. This period can be

changed by changing the angle at which the laser beams cross. Again, the laser

beams must originate from the same source and travel paths of similar length to

create an interference pattern of high contrast. During the exposure, the structure

of the emulsion on the holographic plate changes. Where the emulsion is exposed to

light, the silver halide crystals suspended in the emulsion absorb energy and form

metallic silver; this happens with more frequency in regions where the light is bright

than where it is dark [7]. During development, the conversion to metallic silver is

completed in those silver halide crystals where it has begun. When the plate is

fixed, the unchanged silver halide crystals are removed, causing the emulsion to

shrink in the regions where there is less metallic silver. This shrinkage therefore

follows the irradiance pattern of the interfering laser beams, creating a periodic

surface height variation which acts as a reflective diffraction grating. By coating

this rippled surface with optical quality aluminum in a thin film, the reflectivity is

enhanced and so is the diffraction efficiency. This rippled surface variation and the

aluminum coating can be transferred to a specimen if the adherence between the

aluminum film and the holographic emulsion is weak.

The details of the preparation of the specimen grating follow. Kodak Type 649

F spectroscopic holographic plates are exposed twice to two crossed laser beams

emanating from a 15 mW Spectra-physics Helium-Neon laser, with the plates being
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FIGURE 16. The process for preparing the specimen grating and transferring it to
the specimen. (After Post [18].)

rotated by 90 degrees between exposures to produce orthogonal sets of lines making

two orthogonal specimen gratings. The exposure time in each case is two seconds.

The Kodak 649 F plates are sensitive to the 632.8 nm Helium-Neon laser wavelength

and have an emulsion of 17 /ms thick with a nominal sensitivity of 70 pJ/cm2 and a

resolution of 2000 lines/mm. The plates are anti-halation backed to reduce reflection

from the rear surface of the plates. The plates are developed as recommended by
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Kodak, 6 ninutes in Kodak D-19 developer, 30 seconds in Kodak indicator stop

bath, 3 minutes in Kodak rapid fixer, rinse in water for 25 minutes and dip for 30

seconds in Kodak Photo-flo solution. After the plates have dried, they are dipped a

second time in the Photo-flo solution for 30 seconds. When the plates are completely

dry, they are coated with a thin coating of reflective aluminum in a vacuum coating

chamber. This aluminum coating is on the order of 200 nm in thickness. The grating

is transferred to the specimen using Photolastic PC-1 epoxy adhesive. (Photolastic

Division, Measurements Group, Inc., P.O. Box 27777, Raleigh, North Carolina,

27611, (919) 365-3800) The double dip in the Photo-flo solution provides a very

weak interface between the aluminum film and the emulsion on the holographic

plate.

The gratings used in this study that have been made this way have a wavelength

of 1.667 jim or 600 lines/mm. The gratings are produced to a known wavelength

by aligning the crossed laser beam angle to a commercially produced grating of

wavelength 3.333 tim or 300 lines/mm in exactly the same way that the moire

interferometer is aligned to the specimen grating. If there are no fringes visible

over a 25.4 cm field of view, the wavelength of the laser interference is twice that of

the alignment grating to within 0.01 %. The grating was obtained from Diffraction

Products, Inc., P.O. Box 645, Woodstock, Illinois, 60098. (815)338-6768.
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2.4.5 Requirements and Limitations for the Collection Optics

The maximum strain which can be measured corresponds to the minimum

fringe spacing which can be captured by the optical system and recorded on the

film. Since the diffracted laser beams are still approximately collimated, the collec-

tion optics must have an aperture at least as large as the field to be viewed in order

to record information from the entire field. The fringes observed in the experiment

are the result of angular deviations of the diffracted beams from the original paths.

Higher fringe densities, corresponding to higher displacement gradients (strains),

are the result of relatively large angular deviations from the original specimen nor-

mal. Hence, in order to capture large strain behavior, the angular aperture of the

collection optics must be large.

The angular aperture is a measure of the largest angle a ray may attain without

being lost by the optical system; it is inversely related to the f number of the optical

system, so a large angular aperture corresponds to a small f number. The f number

of a lens is the ratio of the focal length of the lens divided by its aperture diameter.

The ability to capture fringes representing large strains is also limited by the

resolution of the film used to record the image. For the Kodak Technical Pan film

used in the experiments, the minimum fringe wavelength which can be recorded on

the film is about 5 microns (8]. However, the modulation transfer function of the

film does drop off quickly as the fringe spacing decreases.

The modulation transfer function is a measure of how well the contrast of the

fringes is transferred to the recording film. Each optical component has a mod-

ulation transfer function, they assemble in a complicated fashion resulting in a

modulation transfer function for the entire system. All modulation transfer func-

tions tend toward zero as the fringe wavelength becomes smaller. Even a simple
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aperture without a lens shows this feature because diffraction from the edges of the

aperture will cause the fringes to blur when the fringe wavelength becomes small

enough.

The optical system can also be limited by aberrations in the lens, as well as

diffraction from the edges of any aperture the light must pass through. These

aberrations cause a blurring of the image which will smear out the light intensity

distribution, destroying fringes of short wavelength. The Nikon camera lenses used

in the experiment are optimized to be diffraction limited, that is, the most significant

aberration in the lens is diffraction due to the aperture, and not due to defects

in the lens. As a first estimate of the resolution limits of the optical recording

system, only the effects of the angular aperture limit on the maximum observable

diffraction angle will be considered. Diffraction from the edges of the aperture

and the effect of aberrations will be neglected. (These effects are all included in the

modulation transfer function for the system.) The angular aperture will be assumed

to be dominated by the lens aperture closest to the specimen (any ray which passes

through the lens aperture closest to the specimen will be assumed to pass through:

the rest of the lenses in the system and fall on the film plane). In this case, the

angular aperture is only a function of the distance between the specimen surface

and the initial lens aperture and is assumed not to depend on the internal workings

of the lens system.

If the camera aperture has a diameter A and the distance from the specimen

to the aperture is L, as in Figure 17, the angular aperture, 0, is found from

tan€ = A (2.4.2)
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Aperture

Diameter
A

FIGURE 17. The angular aperture, 0, is a measure of the largest angle a ray from
the center of the field may achieve and still pass through the aperture
of the lens closest to the specimen. L is the distance from the specimen
to the aperture, A is the aperture diameter, and tan q0 = A/(2L).

If two diffracted light rays (representing the normals of locally plane light

waves) leave the specimen surface from the center of the field of view and just pass

through the aperture of the lens, they will give rise to fringes with a wavelength b,

which depends on the angular aperture 0 by

6 = (2.4.3)
2 sin o

where A is the wavelength of light used. In planar deformation, the light waves are

diffracted symmetrically about the normal to the specimen surface, so the two rays

intersect the aperture at either end of a diameter of the aperture, which leads to the

relation in equation (2.4.3) above. For a small angular aperture 4, tan q0 z sin 0.

This is a good approximation for the camera lens used in this study,which had an

angular aperture of about 0.08 radians (about 5*). For small angular aperture 0,
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then, 6 be approximated by
AL

6 = - (2.4.4)
A

For an optical system which has a magnification M, the fringes which arrive at the

film plane have a wavelength M6. The film is able to record fringes which have

wavelengths as small as 5ym. Using film, the fringes must be magnified so that

5ym < M6 (2.4.5)

in order to capture fringes of wavelength 6 at the specimen surface. From these

equations, the required magnification can be related to the angular aperture, and

thus to the camera aperture and specimen to aperture distance) as

51pm ALM A (2.4.6)

For a Helium-Neon laser with A = 0.6328pm this gives

7.90 L
< A (2.4.7)

The required magnification M for a specimen to aperture distance L is shown in

Figure 18 with an aperture A equal to 50 mm.

The Nikon Micro-Nikkor 200mm f/4 Internal Focus lens to be used in the ex-

periments has an aperture of 50mm and at its closest focus it has a magnification of

1/2 with a specimen to aperture distance of 500mm. With the addition of the Nikon

TC-200 Teleconverter, the magnification is doubled to 1 without changing the spec-

imen to aperture distance. The lens alone does 3t provide enough magnification

for the film to record the smallest fringes which the lens can capture. However,

with the addition of the teleconverter, the magnification is sufficient for the film to

resolve the smallest fringes, but at the expense of imaging only one quarter of the
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FIGURE 18. Required magnification to match film resolution to aperture limitation.

Performance of Nikon 200 mm f/4 with close-up attachments.

area seen without the teleconverter. The minimum resolvable fringe wavelength can

be improved by the use of close-up attachment lenses, which decrease the specimen

to aperture distance and improve the magnification by creating a virtual object,

which is farther away than the actual object, but is proportionately larger than the

actual object. These attachment lenses can be approximated by thin lens theory,

creating a virtual object which is 500mm away as seen by the primary 200mm f/4

lens. Addition of such a lens gives a relation between the magnification and the

specimen to camera distance of
M = 500mm (2.4.8)

2L

The magnification is doubled with the addition of the teleconverter. The required

focal length of the added close-up lens is given by

500mm -(L)500mm

2M - 1 500mm- L (2.4.9)
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The necessary magnification to match the film resolution with a 50mm aperture is

shown in Figure 18, along with the performance of the Nikon 200mm f/4 lens with

close-up attachments and teleconverter. It is necessary to be above the curve where

the film resolution matches the aperture limitation to record all of the fringes which

travel through the optical system.

The magnification can also be increased by use of an extender which moves the

film plane farther away from the lens; this also reduces the specimen to aperture

distance. While this is not normally recommended since the lens is optimized to

focus on the film plane at a certain distance, the Nikon 200mm f/4 lens is designed

to give better performance at this off-design usage than other lenses. For this

means of improving the magnification and angular aperture, the relation between

the magnification and the specimen to aperture distance can be described by

167mm
M = L- 167mm (2.4.10)

The performance of the Nikon 200mm f/4 with extensions is shown in Figure 19.

The addition of the teleconverter would double the magnification without changing

the specimen to aperture distance.

2.4.6 Physical Limitation

The maximum angular aperture of the recording device is limited by the fact

that it cannot block the incoming laser beams, as illustrated in Figure 20. Addi-

tionally, if the aperture were to get in the way of the incoming beams, it would also

be in a position to capture light from the zeroth order reflected beams. For a given

specimen grating diameter of D, an aperture diameter of A, separation L between
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FIGURE 19. Required magnification to match film resolution to aperture limitation.
Performance of Nikon 200 mm f/4 with extensions.

the two and angle a between the normal to the grating surface and incoming laser

beams, it can be seen from Figure 20 and Figure 17 that

tan - AD (2.4.11)

tan A = A tan (2.4.12)
2L A+D

where 0 is the maximum allowable angular aperture without blocking the incoming

laser beams.The lhtrgest possible 0 occurs when A becomes very large compared

with D, which gives 4 = a. Of course, as A becomes large, so must L, unless a is

very large.
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Incoming Laser Beams ', : ....

Grating

DI
DI Aperture A

FIGURE 20. The aperture of the optical recording device may not be so large that
it blocks the incoming laser beams. This limits the angular aperture to
be less than the angle a of the incoming laser beams. If the aperture
lies just inside the incoming beams, tan a = (D + A)/(2L), while the
angular aperture q0 is determined from the relation tan 0 = A/(2L).

2.4.7 Sensitivity

The sensitivity of the measurement technique depends on the wavelength of

the undeformed diffraction grating, w0 . The displacement increment from one black

fringe to an adjacent black fringe is wo/2. The incoming laser beams are arranged

in such a way that sina = A/wo. From this relation it is seen that the minimum

possible grating wavelength is w0 = A, and the al)s)lute limit on the sensitivity is

A/2, identical to the sensitivity of the Twyman-Green interferometer. This requires

that a = 7r/2, which means the incoming laser beams are parallel to the surface.

However, because the sensitivity is inversely proportional to the sin of a, it is



-64-

possible to make a reasonable approach to the limit with a significantly smaller

value for a.

2.4.8 Strain Measurement

The minimum fringe spacing can be converted to a measure of the maximum

strain if the deformation is assumed to have a simple form. If it is assumed that

the fringes are due entirely to stretching (no shear or rotation), the fringe spacing

6 is found to be

21w-wo (2.4.13)21w - w0l

where w0 is the initial grating wavelength, and w is the current grating wavelength.

The engineering strain, e, is defined by the stretch ratio (w - vo)/Wo, which leads

to the equation

6 wo(1 + e) (2.4.14)

le (2.4.15)
1+e 26

The largest stretch ratio which can be measured corresponds to the minimum 6,

which depends on 0, the angular aperture of the camera. The parameter wo/(26)

is the ratio of the sensitivity of the measurement to the minimum fringe spacing,

and it is also proportional to the angular aperture of the system, since

w0 - sin (2.4.16)

26 sin a

Note that sin 0/ sin a varies between zero and unity. The variation of e with w0 /(2b)

is shown in Figure 21. Figure 22 shows a plot of the same data with the engineering

strain e replaced by the 'true strain', c. The engineering strain, e, and the 'true

strain,' c, are related by the equation

S= ln( -c) (2.4.17)
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which is the same equation used in the reduction of the uniaxial stress-strain data

(See the section on uniaxial data in the chapter on plastic fracture). Of course,

for large stretch ratios the nonlinearity of the strain-displacement relation must be

accounted for, but the observable stretch ratio is a parameter which will quickly

show how well the interferometer can perform, and how close it is to its limits.

10

0
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e

05

3

2

0

0.2 0.4 0. .

W0o/(28)

FIGURE 21. The stretch ratio (w - wo)/wo as a function of fringe spacing 6. The
parameter wo/(25 ) is proportional to the angular aperture of the optical
system.

It is interesting that the observable stretch ratios due not behave symmetrically

in extension and contraction, due to the absolute value of the change in the grating

wavelength, w - w0 , in equation (2.4.13). If the grating wavelength increases, in

the limit the grating will eventually appear like a flat surface, and the diffracted

beam will approach the zeroth order reflected beam. In this case, the strain can

approach infinity while the angle of the diffracted ray is bounded. If the wavelength
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FIGURE 22. The function ln(w/wo) as a function of fringe spacing b. In a uniaxial
test, the log of the 1 plus the stretch ratio is called the 'true strain.'

decreases, the diffracted ray has a different kind of constraint. As the wavelength

of the grating decreases, the diffracted ray may keep rotating until it is parallel to

the grating surface. At that point, no solution to the diffraction equation exists (it,

implies that sin 0 > 1), but the grating wavelength may continue to decrease.

2.4.9 Compromises

A compromise must be struck between the desire for high sensitivity in the

measurement technique and the desire to measure large displacement gradients.

There are a number of parameters which affect these quantities that must be deter-

mined. The waw'elength of light is fixed at 0.6328pm by the use of a Helium-Neon

laser source. It is assumed that the aperture diameter A and grating field diam-

eter D are equal, for this experiment it was chosen to be 50 mm. If the camera
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is capable of a magnification of 2, and the film can record fringes of 5pm, the

smallest fringe spacing on the specimen is 2 .5#um. This indicates a need for an

angular aperture of 0 = 0.127 radians = 7.30 . Since A and D are equal, equations

(2.4.11) and (2.4.12) indicate that tana = 2tano, so a must be greater than or

equal to 0.250 radians = 14.30. This value for alpha yields a grating wavelength

u,0 = 2.56pm. The parameter wo/(26) is then equal to 0.51, and the corresponding

stretch ratios observable range from -0.34 to 1.04, or 'true strains' between -0.36

and 0.72.

On the other hand, if the sensitivity is chosen to be about equal to the wave-

length of light, so that the moire interferometer has half of the sensitivity of the

Twyman-Green interferometer, w0 = 1.26 6 tim. Using this value for w0 and 2 .5pm

for 6 yields measurable stretch ratios between -0.20 and 0.34, or 'true strains' be-

tween -0.22 and 0.29.

The specimen gratings are made with a precise wavelength by aligning the

intersection angle of the laser beams at the holographic plate with a commercially

produced grating. A compromise was made by choosing a grating with a wavelength

of 3.333pm for alignment. The specimen grating produced has a wavelength half

that of the alignment grating, so w0 - 1.667/im. With 6 = 2 .5,um, the measurable

stretch ratios lie between -0.25 and 0.50, and the 'true strains' lie between -0.29 and

0.41.

The camera magnification of 2 is chosen somewhat arbitrarily, although with

a 50mm field, a magnification of 2 would fill a 4 inch by 5 inch plate for a framing

camera. If larger magnifications can be made, the lower limit on the fringe spacing

grows smaller. Still assuming that A = D = 50mm and A = 0.6328jtm, and with

wo = 1.667pm, the smallest 6 that can be captured without blocking the incoming
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laser beams is 1.57tim, assuming the magnification is high enough to allow the film

to record the fringes. This is the smallest fringe spacing which can be observed with

the limitations imposed on A, D, A and w0 . The stretch ratios are then between

-0.35 and 1.11, and the 'true strains' between -0.43 and 0.75.

In the experiment for this study, the highest magnification used was about 1.4,

A=D=50mm , L=320 mm. This gives tan 0 = 0.08 so S = 3.8/im. The measurable

stretch ratios are then predicted to lie between -0.18 and 0.28, and the 'true strains'

between -0.20 and 0.25.

2.4.10 Performance

With the case of w0 = 1.667tim, the minimum possible fringe spacing is b =

wo/2 = 0.8333 tm for an infinitely large aperture. With the limitation to a finite

aperture of 50 mm, the minimum fringe spacing increases to 1.57ttm. Thus the

introduction of an aperture has increased the lower bound on the fringe spacing by

only a factor of 1.9, assuming that aperture is just inside the limit for blocking the

beams. In the experiment for this study, with a predicted minimum fringe spacing

of 3.8tim, the minimum 6 is 4.5 the lower bound for an infinite aperture, and 2.4

times the lower bound for a 50 mm aperture. The next experiment will be done as

close to the 50 mm aperture limit as possible.
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2.5 Orthogonal Displacements with a Three Beam Moire Interferometer

The moire interferometer used in this study was originally designed to use three

laser beams to measure orthogonal in-plane displacements instead of using four

laser beams. This type of interferometer is described by McDonach, McKelvie and

Walker [11]. The configuration of optical components to make such measurements

is shown in Figure 23 and can be compared with the configuration of the four beam

interferometer in Figure 24.

C MIRRORD ASFER

BEAM

MIRROR B
A

FIGURE 23. Diagram of the three beam interferometer configuration to measure
both horizontal and vertical displacement components. Beams from
mirrors B and C yield the horizontal component, and beams from mir-
rors C and D yield the vertical.

The three beam interferometer has several advantages over the four beam in-

terferometer; it uses two fewer mirrors and only one laser source. However, there

are problems due to unequal beam intensity and polarization mismatch, and there is
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FIGURE 24. Diagram of the four beam interferometer configuration to measure both
horizontal and vertical displacement components.

considerably less light as the single laser beam must be divided twice, necessitating

longer exposure times and making vibrations more of a problem. Figure 25 shows

the three beam interferometer with the addition of the beam expander to produce

collimated beams of 50 mm diameter.

The three beam interferometer uses two crossed gratings at -45* to the globally

fixed X1 and X 2 axes to measure components of displacement along those axes. As

in the four beam interferometer, the three incoming laser beams are aligned so that

the first diffraction order exits along the normal to the specimen surface (the X3

axis). Interference between any pair of diffracted laser beams will produce fringe

patterns which are related to the deformation of the grating.

Referring to Figure 23, interference between the beams from mirrors B and

C produces a fringe pattern of contours of horizontal displacement; interference

between the beams from mirrors C and D produces a fringe pattern of contours of



-71-

MIRROR

EXPANDER

FIGURE 25. Diagram of the three beam interferometer configuration to measure
both horizontal and vertical displacement components, including com-
ponents to expand the beam.

vertical displacement; and interference between the beams from mirrors B and D

produces a fringe pattern of contours of displacement parallel to the line between

mirrors B and D.

Analysis of the governing equations of fringe formation for the three beam

interferometer will follow the lines of the derivation for the four beam interferometer.

However, only the case of planar deformations will be analyzed. The effects of

rotations about axes in the plane can be determined in a manner analogous to that

in the section describing the four beam interferometer with arbitrary changes in

grating, if required.
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2.5.1 Grating Geometry

The interference patterns observed will come from two light beams, each dif-

fracted from one of the crossed gratings. The mean grating surface coincides with

the X1 - X 2 plane in a globally fixed right handed coordinate frame. Initially, the

gratings have identical wavelengths of w0 and are perpendicular to each other, but

at angles of ±450 to the X1 axis.

Let El, E 2 and E 3 be unit vectors aligned with the X 1, X 2 and X 3 axes,

respectively. Let the unit normal to the lines of grating #1 be n1 , and let t1 be a

unit vector parallel to the lines of grating #1 such that ni, tl and E 3 form a right

handed orthogonal coordinate system. Let the unit normal to the lines of grating

#2 be n 2 , and let t 2 be a unit vector parallel to the lines of grating #2 such that n2 ,

t 2 and E 3 form another right handed coordinate system. Initially, ni is at an angle

of - radians to the X1 axis, and n 2 is at an angle of - radians to the X1 axis. The44

gratings are allowed to deform independently. Grating #1 stretches or contracts to

a new wavelength wl, and the grating lines are rotated so that the normal nj is at,

an angle of (1 + 01l) radians to the X1 axis. Grating #2 stretches or contracts to a

new wavelength w 2 , and these grating lines rotate so that the normal n2 is is at an

angle of (LE + /#2) radians to the X, axis. See Figures 26 and 26. Figure 26 shows

the overlap of the crossed gratings, and Figure 27 shows the geometry of the two

gratings separately.
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n2 ti
ni

E2

t2
I

\El

FIGURE 26. Diagram of crossed lines of grating used in three beam interferometer.
Vector nj is normal to ridges of grating #1, which are spaced w, apart.
Vector n2 is normal to ridges of grating #2, which are spaced W2 apart.
Unit vectors E1 and E2 lie along the globally fixed coordinate axes.

2.5.2 Diffraction Equations

To calculate the direction of a diffracted light ray (of any order) from an incident

light ray which is directed at a grating from an arbitrary angle, the incident light

ray must be resolved into components with respect to a coordinate system which

is aligned with the lines of the grating as it deforms. For instance, if unit vector

a represents the incident ray and unit vector b( O represents the ft th order ray

diffracted from the incident ray, the equations relating the components of a to the

components of bOn are:

a, + - (2.5.1)
w

a2 + b ) = 0 (2.5.2)

where a, and b ( ) are the components of a and bOn perpendicular to the lines of the

grating and parallel to the mean grating surface; a2 and b( ) are the components of
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FIGURE 27. Diagram showing the geometry of gratings #1 and #2 separately.
Grating #1 has wavelength wl. Unit vector n1 is normal to the ridges
of grating #1 and unit vector t1 is parallel to the ridges of grating
#1. The angle between the globally fixed unit vector E1 and the unit
vector n1 is 1 + 81. Grating #2 has wavelength W2. Unit vector n2 is
normal to the ridges of grating #2 and unit vector t 2 is parallel to the
ridges of grating #2. The angle between the globally fixed unit vector
E 1 and the unit vector n 2 is + /32.

a and b(' ) parallel to the both the lines of the grating and the mean grating surface.

Again, A is the wavelength of light used, and w is the current wavelength of the
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grating. a3 and b3 lie along the normal to the mean grating surface, and both are

positive, which means that while the diffracted light rays are directed along b ( ' ) ,

the incident light rays are actually directed along -a. Since a and b ( ' ) are unit

vectors, equations (2.5.1) and (2.5.2) uniquely determine b ( ") from any given a.

Let the diffracted light ray of interest from grating #1 be represented by the

unit vector u, and let the diffracted light ray of interest from grating #2 be rep-

resented by unit vector v. Let u have components ul, U2 and U3 in the nlt 1 E3

coordinate system and components U1 , U2 and U3 in the E 1 E 2 E 3 coordinate sys-

tem. Let v have components vj, v 2 and V3 in the n 2 t2 E 3 coordinate system and

components V1 , V2 and V3 in the E 1E 2 E 3 coordinate system. The fixed unit vector

representing the incident light ray to grating #1 is at an angle a to the X 3 axis

and at an angle of -I radians to the X1 axis. The fixed unit vector representing
4

the incident light ray to grating #2 is also at an angle a to the X 3 axis and at an

angle of -. 1 radians to the X1 axis. The components of the diffracted rays, u1, u 2 ,

Vl and V2 are found using equations (2.5.1) and (2.5.2),

A
- sin a cos 1 +ul = - (2.5.3).Wl

sin a sin# 1 + U2 = 0 (2.5.4)

- sin a cos32 + vI = -- (2.5.5)
W2

sin a sin 2 + v2 = 0 (2.5.6)

Again, since u and v are unit vectors with U3 > 0 and V3 > 0, u and v are completely

determined from equations (2.5.3) through (2.5.6).

U1 = U1 COS(: + ) - U2 sin(.+01 (2.5.7)

•( (4mn
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U2 =ulsin (r +31 +u 2 Cos (+31 (2.5.8)

V, = VCOS ( L±3 2 ) -V 2 sin(31 +3 2 ) (2.5.9)4 (4
V2 = v, sin (3- + 2) + v 2 cos( 3 + 0 ) (2.5.10)

Using trigonometric identities for addition of angles,

cos( +#3) = 1 (cosgh -sin3,) (2.5.11)

cos - + 12 = #(cos13 + sin'1) (2.5.13)

sin(3 +912)= 12(cos/3 2 - sin # 2 ) (2.5.14)

which leads to the result,

1 [uI(COS 1 -sin#I)-u 2(cos1l -sinfl1 (2.5.15)'

F2

v,=9 I[vi(COS #12 + sin # 2 ) + v2 (cos #2 - sin # 2 )] (2.5.17)

2 1 =- V2(CO sin (2.5.18)

From equations (2.5.4), (2.5.5), (2.5.6) and (2.5.7)

u l -- + sina cos3 (2.5.19)
Wl
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U2 = - sin a sin,31  (2.5.20)

A
v, = -- + sin a cos/3 2  (2.5.21)

W 2

V2 = - sin a sin 02  (2.5.22)

Therefore,

U, = 1 [ (cos l, -sin3i)+sin a (2.5.23)

"2 = 1-A (os 01 + sin 01 ) + sin a (2.5.24)

1 = L (cos 3 + sin3 2 ) - sin a (2.5.25)

V2 1 A (COS 02 - sin/32 ) + sin a] (2.5.26)

2.5.3 Initial Alignment

Initially, before any deformation occurs, the incoming laser beams are aligned

so that the diffracted beams are parallel to the X3 axis. The initial conditions are

that )31 = 02 =-0, w, =W2 = w0 and ul = = V= = 0. This leads to the

conclusion that

sina = A (2.5.27)
Wo

This does not change during the deformation.
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.%akling the substitution from equaition (2.5.27) into equations (2.5.23) through

(2.5.26),

U1I = [ ~~(COS 1 - sin 01) + (2.5.28)

U2 =+1[_ (COS/3 ±1+sinfli) + A (2.5.29)

i"1 = 1 [iA COS 02 + Sill 2) _ A 2.5.30)

17 -(COS 32 - Sill 2 ) + +1(2.5.31)

2.5.4 Observed Fringe Spacing and Inclination

As dIescribedl in Section 2.3, the observed tringe spacing, 6*, andI the angle be-

tween the fringes and( the X2 aXis, 0*, can be dletermined from the vector (lifrerellce

z =u - v. These relations are found to be

1z - z - (z. E 3)2~(..2

tn z E 2  (2.5.33)

Note that if the vector z is written in terms of comp~onents in the globally fixedI

X I 2 .X3 coorinlate system, olY teV CoIloneIltS ZI 1 1and Z2 are needec' sliwe

z z - (z . E3 )2 = (Z1 )2 + (Z 2)2 +(Z)-

= (Z1 )2 + (Z 2)2 (2.5.34)
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and

z- E2 = Z 2  z.E 1 =Z 1  (2.5.35)

From equations (2.5.28) through (2.5.31) it is found

Z 1 =U1 -v1

_L A (cosf 1 - sinf31 ) - A(cos f2 -- sin 2 ) + 2- A- (2.5.36)
Vr 1Wi W 2  W

z 2 =U2 -v 2

='- (cos 1 + sinfl1) + -(cos 02 -sinf3 2 ) (2.5.37)?Vj W2

2.5.5 The Third Grating

It is proposed that the interference pattern produced by the light diffracted

from gratings #1 and #2, originally with lines at ±45' to the X 1 or X2 axes as

described above, is equivalent to an interference pattern due to the deformation'

of a grating (grating #3) which originally had lines parallel to the X 2 axis. From

Figure 28, it can be seen that the peaks and valleys of a crossed grating at ±45' to

the X, axis with wavelength w0 make peaks and valleys for a grating at 90' with a

wavelength of wo/V'2.

As seen in Figure 29, and from Durelli and Parks (2], or Theocaris [23], it can

be shown that after deformation, grating #3 will have a wavelength w which is

related to the wavelengths of the deformed gratings #1 and #2 (originally at ±45° )

by the equation:

WWl + W2 W W2 o (2.5.38)+W 2o - 2w, W2 COS 0
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FIGURE 28. The ridges and valleys of gratings which cross at +450 and which have
identical wavelengths of wo form a third grating which has a wavelength
of wo / v/2.

where w, is the wavelength of grating #1, .S2 is the wavelength of grating #2, and

O is the angle between the unit normals of gratings #1 and #2, nj and n2 (Or,

equivalently, the angle between the lines of grating #1 and the lines of grating #2).

The angle between the lines of grating #1 and the lines of grating #3 is denoted

0, and it is related to gratings #1 and #2 by the equations:

ttin + , sin - ww 2 s (wsinO) (2.5.39)

lu+W'-2w 2\O/61W
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1E4

ww

FIGURE 29. The geometry of the third grating after deformation. Grating #1 has
wavelength wl, grating #2 has wavelength w2, and the angle between
the ridges of grating #1 and grating #2 is 0. The third grating has
wavelength w and the angle between the ridges of grating #1 and
grating #3 is 0.

Wl = W1 COSO - W2 (w cos Z (2.5.40)
2[w + w2 - 2/w 2 cos W2 w

Vector n1 is at an angle of (4 + #1) radians to the X 1 axis, and vector n2 is at an

angle of (I + 32) radians to the X1 axis. T. 0 can be calculated from the

angles 31 and 32

9= 4

=(+- 1) (2.5.41)
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2.5.6 Equations in Terms of the Third Grating

In order to show the correspondence between the equations describing the

fringes observed with the three beam interferometer and the equations describ-

ing the fringes observed using geometric moire methods, it is necessary to write

the equations governing the fringe formation, equations (2.5.32) and (2.5.33), in

terms of variables associated with grating #3. These variables are the wavelength

of grating #3, w, and the angle f3, which is the angle between the lines of grating

#3 and the X 2 axis (the same as the angle between the normal to the grating lines

and the X 1 axis).

S01 1 -- (2.5.42)
2 4 4

From equation (2.5.41),

Cos6 =Cos(2 0-1

= -Sin(6 2 - 01)

= sin 01 cos 02 - sin /32 cos 01 (2.5.43)

sin 0= sin(2 ± 2 01)

= cos(/3 2 - 31)

= cos/32 cOs 3 1 + sin/32 sin/1 (2.5.44)
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From equations (2.5.42), (2.5.43) and (2.5.44),

Cos =Cos (0+031- 4

2- (sin(O +/31) - cos(O + 01)

}- (sin O(cos 01 + sin/1) + cos V)(sin 3 1 - cos/1))

1 (wsinO (cos 1 + sinCO1 ) + w Cos 0 (sin 31 - cos 01)

N- W2 W 2

- -(sin/31 - cos 31))
Wl

-- ---( sin(O-t- 01)- wv cos(O +,31) - (sin 01--Cos~l)-r2W

v/-W2W 2  Wi

(2.5.45)

sin --sin ( + 0, -

-1in s i n ( O - - ,3 1) - c os ( V - / +1 ) l)

sin (wsin9 , 1 - sil) - cos O(sin + cos)_1 (w sin 0 (Cos #I - sin 01 )w Cos 0 (sin f01 + cos #Il)

2 W2 W2

+ - (sin/31 + cos/))
Wl

1(wsin(O + 01) + w cos(O + 1) + -w(sin 01+ Cos#,))

v"2--W2 W2 Wl

(2.5.46)

From the formula for 0, equation (2.5.41),

sin(9±/#)= sin (2 +2 2 .-5. +4)

= Cos /02 (2.5.47)
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cos(O + 01 ) = Cos(2~ ±02/3 1 +01

= -sin f2 (2.5.48)

From equations (2.5.45) through (2.5.48),

cosl= - (COsl 2 + sinfl2 ) + - -(cJsf1 - sin01)) (2.5.49)

sin (sin 2 - cos02) + -(sin01 + cosdi) (2.5.50)

2.5.7 Initial Condition of the Third Grating

Let tiv be the initial wavelength grating #3, before any deformation. From

geometry (or equation (2.5.38) with w =W2 = wo and 0 = -, the initial conditions

for gratings #1 and #2),

wo (2.5.51)

2.5.8 Result

The equations for the fringe spacing 6 and inclination 0*, equations (2.5.32)

and (2.5.33), can now be rewritten in terms of variables associated with grating #3:

w, t-o and i. Substituting equations (2.5.49) and (2.5.50) into equations (2.5.36)

and (2.5.37), it is found that

Z1 = U1 -v 1

_A A
= -cosIO (2.5.52)w0 w
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Z2 =U 2 -v 2
A sin. (2.5.53)
W

Therefore,

A2  A2  2A2

1 2 = _ cos 3 (2.5.54)0WoZ w wzuvo

and finally,

b* A = (2.5.55)
[Z2l+Z22 + z[w 2 -Wo-±2wto cos 0]2

Z wo sin/3
tan Z2 :t-vo sin(2.5.56)Zl t-0 OS ' - W

2.5.9 Discussion

Equations (2.5.55) and (2.5.56) are exactly the equations for the fringes to,

represent contours of constant displacement parallel to the X, axis with an incre-

ment of displacement between fringes of z 0, as shown in Durelli and Parks [2] or

Theocaris [23]. They are identical to the equations for the four beam interferometer

under planar deformation except for a multiplying factor of 2 in the fringe spacing

6*. This factor can be thought of as due to the spacing of the virtual reference

grating formed by the interference between the two incoming laser beams. In the

four beam interferometer, the incoming laser beams intersect at an angle of 2a,

creating an interference pattern spaced at wo/2, which is half the initial wavelength

of the grating used of measurement. In the three beam interferometer, the incoming

laser beams intersect at an angle such that the interference pattern is spaced at ti'0 ,
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which is exactly the same as the initial wavelength of the grating being measured.

See the paper by Post [17], or the author [21], for further discussion of this fringe

multiplication factor.

Though the three beam interferometer will measure the same quantities as the

four beam interferometer, the disadvantages of the three beam interferometer as

shown in Figure 23 outweigh its advantages compared to the four beam interfer-

ometer shown in Figure 24. In order to produce fringe patterns of high contrast,

one requirement is that the laser beams follow paths of similar length to maintain

the coherence between the two interfering light wavefronts. Both the three and

four beam interferometers meet this requirement. However, high contrast fringe

patterns also require that the two interfering beams have similar amplitudes and

are polarized similarly. Here the three beam interferometer falls short (at least in

the configuration shown in the figure). At the first beam splitter in the path of the

laser, the light is divided approximately in half, with half of the light going to one of

the mirrors and then to the specimen, and half of the light going to the next beam

splitter. At the second beam splitter, the remaining light is again divided approxi-.

mately in half, with each beam passing to a mirror and then to the specimen. Thus,

one of the beams is approximately half of the strength of the original laser beam,

while two of the beams are one quarter of the strength of the original laser beam. In

order to match the amplitude of the beams, an additional beam splitter would have

to be inserted into the path of the beam which only encounters one beam splitter.

(Or the mirror directing the beam. to the specimen could be replaced with a half

reflecting mirror.) The intensity of each of the beams would then be one-quarter

the original laser beam, in contrast to the four beam interferometer, where each

of the beams is one-half the intensity of the original laser beam. The lower light

levels in the three beam case would lead to longer exposure times for the fringe
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recording system, which makes the experiment more sensitive to vibrations. Also,

if an additional beam splitter is used, it reduces the cost and material advantage of

the three beam interferometer over the four beam interferometer.

The polarization of the diffracted beams must be similar for the interference

patterns to have high contrast. The three beam interferometer does not preserve

the polarization of the three beams as well as the four beam interferometer. The

polarization mismatch can be improved with a rotating polarizing filter on the

recording camera, which forces the diffracted beams to be similarly polarized, and

can be adjusted to find the best polarization angle at which this occurs. However,

the addition of a polarizing filter also reduces the available light, increasing exposure

time and the sensitivity to vibrations.

Another difficulty with the three beam interferometer when compared with the

four beam interferometer is that it will lose information at lower displacement gradi-

ent levels. For the same fringe spacing, the diffracted light deviates from the normal

to the specimen surface at a larger angle for the three beam interferometer than for

the four beam interferometer. This is because the three beam interferometer uses

light diffracted from two different gratings to infer displacement information about

a third grating. Stretching of the two diffracting gratings can occur with only part

of the resulting angular deflection of the diffracted light being related to the stretch

of the third grating.
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SECTION 3

Image Processing

3.1 Introduction

The fringes recorded using the moire interferometer or the Twyman-Green

interferometer represent displacement contours over a field. The amount of infor-

mation is somewhat staggering. Consider a 35 mm photographic negative which has

a smallest spot size of about 2.5 fum. The 35 mm film frame is 24 mm by 36 mm,

which means there are approximately 10,000 by 15,000 pixels in the f Line. If each

pixel can be assigned an intensity value between 0 and 255, this is 150 megabytes

of data. In contrast, a normal television screen is about 512 by 512 pixels with 0.25

megabytes of data. In order to attack this problem, the data reduction is auto-

mated to some extent, allowing a computer to trace the fringes and determine the

displacement at any point in a video field. In order to do this, the computer must

be able to translate from the light intensity input to the displacement data output.

The computer operator controls the assignment of the data value to each fringe and

oversees the fringe tracing to correct mistakes.
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3.2 Hardware and Software

The system hardware consists of a stand alone Digital Equipment Corporation

11-73 microprocessor linked to 4 MB of RAM, 180 MB of hard disk, a pair of 1

MB floppy disks and a 70 MB tape drive for long terrm storage. The operating

system1 is Digital Equipment Corporaion RT-11 (PT ;tands for real time), which

supports Macro-li machine language and Fortran-77. A quad serial I/O port allows

communication with a Visual 550 terminal, a C-Itoh dot matrix printer, a terminal

emulator connection with the CADRE VAX cluster and the Microtek MSF 300 G

digitizing scanner. Faster communication with the CADRE VAX cluster is accom-

plished through a Digital Equipment Corporation DEQNA parallel interface card

and Ethernet network connection line controlled by Interfield Research Associates

IRANET software.

Images to be analyzed are acquired through the Microtek digitizing scanner.

The scanner is capable of digitizing an eight and one-half inch by fourteen inch

field at 300 points per in,' 'writh eight-bit resolution (256 intensity levels) at each

point. Digitization of the entire field produces 10.21 megabytes of data which can

be stored on memory locally or transmitted over the Ethernet network connection

to the CADRE VAX cluster memory. The operation of the scanner is controlled

through software written by Guillermo Pulos.

Images may also be acquired with a black and white television camera through

an Imaging Technology Incorpoiated Analog Processor, which contains an eight-

bit flash analog-to-digital (A/D) converter. The Analog Processor can digitize the

television signal at 512 by 480 pixels (picture elements) in 1/30 second, which is

realt.mefor television transtinsio of a flat-ne. Tis results in data transfer rates of

7.5 megabytes/second, which must be accomplished over a parallel communication
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line to an Imaging Technology Incorporated Frame Buffer, which stores the frame.

Frames can be acquired continuously, with the Frame Buffer being overwritten

every 1/30 second, or a single frame can be acquired and stored in the Frame

Buffer indefinitely. Once a frame has been stored in the Frame Buffer, it can be

written to the system memory, but at a significantly slower speed. Each frame

contains 0.23 megabytes. There are four Frame Buffers in the system, each of

which can be individually addressed by the Analog Processor, so four frames can

be acquired before they must be written to the system memory. The data from

the Analog Processor A/D converter passes through a programmable look-up-table

before reaching the Frame Buffer; the look-up-table takes an input data value as

an address and passes the value at that address along in place of the input data

value. This provides the ability to adjust for contrast or brightness before the

image reaches the Frame Buffer, although the information content of the image

cannot be increased in this way. The Analog Processor also makes it possible for

images stored in a Frame Buffer to be displayed on a color television monitor. The

Analog Processor contains three eight-bit digit al-to-analog (D/A) converters, one

each for the red, blue and green color guns of the monitor. Again, tb," Analog

Processor can read the Frame Buffer memory and send it to the television screen

in 1/30 second. Each of the three D/A converters is preceded by a programmable

look-up-table, which allows the generation of false colors on the screen; again there

i. 11,1 chai':ffe in the iT.fU,1tI ion content, the color just makes it easier for humans

to discriminate data levels. Although the four Frame Buffers can only be accessed

singly by the Analog Processor, to the computer system they are configured as two

sixteen-bit memory arrays. This is also how the Frame Buffers are accessed by the

Imaging Technology Incorporated Arithmetic Logic Unit, which is a fast processor

for manipulation of images stored in a Frame Buffer. These manipulations can
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include additions, multiplications and convolutions by limited size kernels. Control

of the image display and manipulation is through software written by Dr. Jon D.

Melvin, Guillermo Pulos, Peter Washabaugh and the author.

Portions of images digitized by the Microtek scanner can be written from mem-

ory storage into a Frame Buffer for display on the monitor. Images can also be trans-

lated into a language called Postscript (Adobe Systems Incorporated) for hardcopy

(black and white) output on an Apple Laserwriter. Images can also be displayed

on the CADRE Vaxstation 3000 through a program written by Peter Washabaughi

and then an eight color dotmatrix printer can make a color approximation of the

image with a screen dump.

3.3 Fringe Tracing Approach

The fringe analysis programs used with the Moire Interferometric patterns

obtained from the fracture experiments begin with a smoothing of the data to,

reduce noise in the pictures and equalize the light intensity variation of the fringes

about a common value. The image is first low-pass filtered to extract any large

scale intensity variations, such as those due to the approximately Gaussian intensity

variation across the width of the laser beams. The low-pass filter simply replaces

the intensity value of each pixel with the average of the intensity values over a

square array of pixels centered about the pixel to be replaced. The smoothness of

the result is controlled by the choice of the size of the square array. By using a very

large array size, on the order of one-quarter of the the size of the image, intensity

variations of very low spatial frequency can be extracted. By subtracting this low

frequency variation from the original image, the fringes can be seen to oscillate
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about a common mean. This subtracted image is again low-pass filtered with an

array size of about three to five pixels to remove high spatial frequency noise.

Once the fringe pattern intensity has been equalized and smoothed, the fringes

can be traced and assigned a displacement value. In this case, the crossings of the

mean intensity value are traced rather than trying to trace the peaks or valleys

of the intensity variation. These crossings correspond to the zero crossings of the

phase of the of the fringe intensity and also fall on curves representing contours of

constant relative displacement. The computer begins at a point and moves in an

operator chosen direction, looking for a crossing of the mean intensity value (or any

chosen intensity value) between two pixels. Once a crossing has been found, the

pixel of higher intensity is saved and the computer sweeps the nine pixels adjacent to

the saved pixel in a clockwise manner, searching for another crossing of the chosen

value. The next crossing found now becomes the center for a new clockwise sweep.

This continues until a boundary is reached or no crossings of the chosen data value

can be found. The computer then returns to the initial saved pixel and sweeps in

a counter-clockwise direction looking for crossings. In this way the entire edge of a

fringe is traced and assigned an integer corresponding to the displacement. As the

fringe edge is traced, the pixels discovered as crossings are stored in a buffer. This

buffer can be used to undo accidental wanderings away from the correct fringe edge.

Once a fringe edge has been completely traced, the computer can continue the search

for edges in the direction originally chosen with the fringe counter incremented by

a chosen amount.

The final result of the edge tracing is a skeleton of the original image, with

each fringe edge reduced to a curve of pixels having a data value corresponding to

the relative displacement of that edge with respect to the other fringe edges.
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In order to extract the data for comparison with a finite element analysis, the

locations of the finite element nodes are converted into screen coordinates. At each

of those screen coordinates, the surrounding pixels are searched for a fringe edge.

Once an edge is discovered, an approximate normal to that edge is constructed

and the search for fringe edges is continued along that normal for a second fringe

edge. The search is then directed backwards along the constructed normal to find

a third fringe, at which another normal is constructed and used to find a fourth

fringe. If all works properly, the computer has found the four fringes surrounding

the desired data point, if the routine should find a boundary or screen edge, it will

adapt to find any set of four (or three or two) fringes in the neighborhood of the

chosen location. Having found a set of fringes, the computer will space five points

along each fringe to fit a surface through. The surface fit is a polynomial with six

parameters, alx 2 + a2xy + a 3 y 2 + a 4 x + a5 y + a6 . Determination of the coefficients

requires solution of a six by six matrix equation which is accomplished through

Gaussian reduction followed by an iteration procedure to reduce any error.

For the three point bend experiment, which has a numerical model for compar-

ison, the locations of the nodes in the finite element model are used as the locations

for the determination of the displacements and slopes.



-94-

SECTION 4

Plastic Fracture

4.1 Elastic and Plastic Constitutive Relations

4.1.1 Elastic Strain

For a given current stress state a, and strain state e, it is assumed that the

strain can be decomposed into an elastic part ee and a plastic part eP.

e = ee +eli (4.1.1)

The elastic strain is related to the stress state by the usual linearly elastic consti-

tutive law, which will be written in this case as a compliance relation between the

stress and strain tensors. This relation is valid in both the elastic regime and the

plastic regime, and includes the possibility of elastic unloading from a plastically

strained state. In terms of components, the elastic constitutive law is written as

aij -- Cijki'Ekl (4.1.2)

where (ijkl is the constant, positive definite elastic compliance four tensor for ho-

mogeneous, isotropic material behavior.
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4.1.2 Plastic Strain

The plastic strain is assumed to be independent of the hydrostatic pressure, or

plastically incompressible. This means that the plastic strain eP is only a function

of the deviatoric stress S, where S is the current stress state minus the hydrostatic

pressure. In components,

Sj = 0'ij - "O'kkbij (4.1.3)

In particular, the small strain, incremental form of the plastic constitutive

relation used in the numerical simulation is assumed to depend only on the second

invariant (J 2 ) of the deviatoric stress tensor, S, and the history of the loading,

which determines the magnitude and direction of the plastic strain increment from

the current state. The history will be contained in a parameter 10, called the

accumulated equivalent plastic strain. The invariant J2 is found to be

J2 = ISjSij (4.1.4)

The incremental form of the plastic constitutive re.- -n will be written in rate

form, with time as a parameter. The numerical code uses a specified load history!

and time steps to produce load steps. Thus, the elastic and plastic strain increments

will be converted to strain rates, ie and ip.

The rate of change of the history parameter, the accumulated equivalent plastic

strain 7P, will be defined by
- == 2 : p' (4.1.5)

dt 3 tj '.1

from which it follows that the current accumulated equivalent plastic strain, V is

described by an integral over the loading history:

- J( f-)4dt (4.1.6)
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4.1.3 Yield Surface - Condition for Plastic Deformation

The yield surface is a function of the current stress and strain states, f(a, E),

such that the condition for plastic deformation to occur is that f(a,e) = 0. If the

stress and strain states are such that f(a, e) < 0, the deformation is purely elastic.

The yield surface moves during plastic deformation so that it is impossible for the

stress and strain to reach a state where f(a,e) > 0. The yield surface follows the

Huber-Von Mises criterion, making it a sphere in deviatoric stress space, specifically,

f(a, e) = 3J2 _ § 2 (-p) (4.1.7)

The function -, which is a function of the accumulated equivalent plastic strain TP,

= (ZP)) is assumed to follow a power law of the form:

-~ (4.1.8)

Here ao is the yield stress in uniaxial tension and e0 is the corresponding strain at

yield in uniaxial tension.

Again, for elastic loading or unloading, the stress state must be such that

f(r, e) < 0, with plastic deformation taking place when f(o, e) = 0. The yield

surface expands during plastic loading so that the current stress state must always

lie on or inside it.
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4.1.4 Normality

The J12 incremental theory assumes that any plastic strain increment is normal

to the yield surface. This assumption yields the result that the plastic strain rate

is proportional to the rate of change of the deviatoric stress invariant, J2, and is

parallel to the deviatoric stress tensor itself, since the yield surface is a sphere in

deviatoric space. The magnitude of tbe plastic strain rate is contained in a paraii-

eter H, which is a measure of the hardening behavior of the material. Therefore,

while plastic strain is occurring, the plastic strain rate can be written as:

3 dJ
= Sij 2 AS,,j (4.1.9)

where A is a parameter containing the rate and hardening terms.

4.1.5 Hardening

Using equations (4.1.5) and (4.1.9), the rate of change of the accumulated

equivalent plastic strain is found to be

&CI3 J (4.1.10)
dt 2H dt 3J2)

However, during plastic deformation, the function describing the yield surface,

f (a, e), is equal to zero. Therefore,

7 = 3J2  (4.1.11)

d - 3 dJ2 1__ 2 (4.1.13)

dt 2 dti 3 (4



Substituting this relation into equation (4.1.10),

dI-p 1 da-- = (4.1.14)
dt H dt

from which it can be seen that H is the rate of change of function 7 with respect

to the accumulated equivalent pi.stic strain, V,

H d-(4.1.1)

The function H can be derived explicitly from equation (4.1.8), and is found to be

H =d- =00 (4.1.16)

4.1.6 Constitutive Relation for the Total Strain Rate

The total strain rate i can be related to the stress rate a by combining the

plastic and elastic parts. Writing the elastic stress-strain relation in rate form,

Ciiktik1 =6rii (4.1.17)

Using the rate form of the plastic strain relation, equation (4.1.9), and operating

on both sides with the constant elastic compliance tensor Cijk1,

-- 4fJ = 3Cijk 2Skt"J" (4.1.18)

4HJ2  d

Adding equations (4.1.17) and (4.1.18), noting that i = ie + iP,

k3 + dJ2  (4.1.19)
Cij k141 = 0'ij + " 2 C ij klSki d

4HJ d
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From the definition of J2 , equation (4.1.4),

d J2  1 d(SmSmn) = s__ dSmn

dt 2 dt dt
d

Smn-. (O'mn - -31mndO'kk)
=m m S dokk (4.1.20)

=m m - "Smn~mnnd

3 dt

= Smn 'mn

since

Smnbmn = 0 (4.1.21)

Replacing dJ 2 /dt with Smn&m, in equation (4.1.19),

3
Cijklk -= ij + 4 H-j 2 CijklSklSmnbmn (4.1.22)

Using the rate form for the elastic strain, equation (4.1.17),

3
Cijklikl = 0rij + 4-j CijkISklSmnCmnpq~pq (4.1.23)

Equation (4.1.18), the rate form of the plastic strain can also be rewritten using the

substitution for dJ 2 /dt Of Smn,mn.

3
CijklPkl -- CijkISk1iSmnCmnpq9q (4.1.24)

Operating on both sides of equation (4.1.24) with the deviatoric stress Sij yields a

form which can be used to transform the dependence of equation (4.1.23) on the

elastic strain rate ie into a dependence on the total strain rate i.

SijCijk1i = 4HJ2 SijCijkSklSmnCmnpqpq (4.1.25)

Since all indices are summed out, the indices ijkl may be replaced on the left by

the indices mnpq, respectively.

SmnCmnpqiPq = SCjklSk1S-,CmnpqEq (4.1.26)

4H Sj2 ik~Im~nqe
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Adding SmnCmnpq;q to both sides of equation (4.1.26) gives the total strain rate

on the left-hand side:

SmnCmnpq~pq 3 SijCijk ISkI + 1 SmnCmnpqipq (4.1.27)

3 SmnCmnpqiq = S,,C,-pqipq (4.1.28)
4HJ2  !HJ 2 + SijCijkISkl

The relation between the strain rate and the stress rate, equation (4.1.22), can now

be written as
1

Cijklikl = &ij + HJ 2 ± SrtCrtuvSuv CijpqSqSmnCmnkik (4.1.29)

Grouping the strain terms on the right, the total strain rate can be related to the

stress rate by

aij = CiIkl - SirtS,,,,4HJ 2] ik (4.1.30)

During plastic deformation, the function describing the yield surface, f(a, C) is

identically zero. From equation (4.1.7), it is found that

2- 17 2('P) (4.1.31)

Replacing the quantity J2 in equation (4.1.30) with the relation in equation

(4.1.31),

CijpqSpqSmnCmnkl 1.
S- SrICr uvSuv + - 6 2  ej CH*kj~k1 (4.1.32)

The quantity Cijkl in equation (4.1.32) is the history dependent compliance

tensor used to relate the stress and strain rates during plastic deformation. During

elastic deformation the compliance Ck*jkl reduces to the constant elastic compliance

If"
-ijkl
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4.1.7 Uniaxial Test to Determine Hardening Behavior

The yield stress, strain at yield and hardening exponent n must all be de-

termined through a uniaxial test. The procedure for determining the hardening

exponent will be described here. In the uniaxial test, the stress and strain are

measured along one axis, in this case the x, axis. It is assumed that all stress com-

ponents are zero except the tensile stress in the x, direction, so that 0 ll a1 (t).

The stress tensor has the form

aTll(t) 0 0 0 (4.1.33)
0 0 0

The deviatoric stress is also a constant tensor multiplied by or (t).

/2/3 0 0
S = (t) 0 -1/3 0 (4.1.34)

0 0 -1/3)

The second invariant of the deviatoric stress, J2, is thus 31(t). The condition for

plastic yielding, f(o', e) = 0 implies that

- (4.1.35),

Since both aol(t) and 7 are positive for this case, this is equivalent to

011(t) = a(zP) (4.1.36)

In proportional loading conditions such as the uniaxial test, where the devi-

atoric stress can be described by a scalar function of load multiplying a constant

tensor, the plastic strain is also proportional to that constant tensor, as can be seen

from equation (4.1.9). From that equation, it is found that

= i u(t) (20 -1/3 0 (4.1.37)
o 0 0 -_1/3)
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The ineasured strain is ll (t). The plastic part of the measured strain is l (t) and

in terms of strain rate, '(t) = o I1(t). Rewriting equation (4.1.37) in terms of

i 16(t) leads to the result

1 0 0
iP =d (t) 0 -1/2 0 (4.1.3S)

0 -1/2!

Using equation (4.1.5), the rate of change of the accumulated equivalent plastic

strain. ", is given by

-=(2P3ij) - 1 (t) (4.1.39)

Integrating over the loading history,

" P,(t) (4.1.40)

Substituting equations (4.1.36) and (4.1.40) relating the equivalent accumu-

lated plastic strain TP to the plastic strain E11(t) and the function 5(FP) to the

measured stress a1 1(t) into equation (4.1.8), the power law relating FP and -(P),

However, all(t)/ao is the elastic part of ell(t) divided by fo, the strain at yield.

Therefore, the measured strain el (t) is related to the measured stress aI(t) by the

power law

Ell = (i)all (4.1.42)

This equation is fit to the measured data from a uniaxial test to provide the pa-

rameter n for the numerical simulation. The yield stress and strain at yield are also

determined from the measured data.
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4.2 Uniaxial Test Results

The uniaxial tests were done to ensure that a meaningful comparison could be

made between the measurements made for this study, the measurements by Zehn-

der [27,28] and the numerical simulation of Zehnder's experiment by Narasimlian

[13]. Although the specifications for the steel and heat treatment of the specimens

matched that of Zchnder, and the steel was purchased from the same source, it

would be unrealistic to expect that the constitutive relations would be identical.

Consequently, it was hoped that the uniaxial tests would indicate that the differ-

ent studies matched closely enough for the various studies to be compared directly,

which was the original reason for choosing the specimen geometry, material and heat

treatment. As an alternative, if the material properties failed to match closely, it

was hoped that the numerical simulation might be redone with material properties

generated from the current study.

4.2.1 Testing Procedure

The uniaxial tests were done in the Baldwin hydraulic loading machine (ca-

pacity 1,000,000 N) which does not allow precise control of either the force or dis-

placement history. The tests were done with the loading valve slightly open to give

a slowly increasing load to failure of the specimen. The overall strain rate was less

than 0.5%/sec in each case. The load was read from a SENSOTEC 400,000 N ca-

pacity load cell and the strain was read from two Instron strain gage extensometers,

a 10% extensometer with a 2 inch gauge length and a 100% extensometer with a 1

inch gauge length. All three signals were recorded on a Masscomp computer data

acquisition and control system using Laboratory Workbench software under a Unix

operating system. The data are shown in Figures 30 through 33. Two specimens
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were tested with identical geometry and heat treatment to check the repeatabilit,

of the measurement. Figures 30 and 31 show the measurements done with the 10

% extensometer, which was released from each specimen before it reached the end

of its travel.

Specimen 1 Load vs. Strain
180000: i I i I i
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0
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FIGURE 30. Load versus Strain history for uniaxial test specimen number 1. Load
in Newtons. The 10 % extensometer was freed from the specimen at
9.5 % Strain.

Figures 3'.. 1 33,.iow the data from the 100% extensometer, which shows the

effect of neck .)eyond about 8 %. Obviously, when the specimen has begun to

neck, the stress - train states are no longer homogeneous throughout the speci-

men, and the exteisometer measurement no longer represents the actual lengthening

of the specimen material.

The Laboratory Workbench software allows for the inclusion of multiplying

factors and offset voltages during the recording of the data, so the calibrations of

the load cell and extensometers could be used convert the voltages to load and dis-
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Specimen 2 Load vs. Strain
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FIGURE 31. Load versus Strain history for uniaxial test specimen number 2. Load
is in Newtons. Specimen number 2 was identical to specimen number 1.
The 10 % extensometer was freed from the specimen at 9.5 % Strain.

Specimen 1 Load vs. Strain
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FIGURE 32. Load versus Strain history for uniaxial test specimen number 1. Load
in Newtons. The 100 % extensometer shows the effect of necking. The
specimen failed at about 34 % Strain.
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Specimen 2 Load vs. Strain
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FIGURE 33. Load versus Strain history for uniaxial test specimen number 2. Load
is in Newtons. Specimen number 2 was identical to specimen number
1. The 100 % extensometer shows necking. The specimen failed at
about 33 % Strain.

placement units during the experiment. Also, the gauge length of each extensometer

could be divided out to give the engineering strain e = Al/lo. The engineering stress

S was then calculated from the recorded load L and the initial cross sectional area,

A as S = L/A. When the specimen is deforming plastically, but before the onset of

necking, the assumption of plastic incompressibility leads to the relation that the

current area A* = A/(1 + e). Thus the true stress a is calculated by a = S(1 + e).

The true strain f is calculated by noting that df = dl/l. Integrating this quantity

from the initial length 10 to the current length I gives e = ln(l/lo) = ln(1 + e).

The data in this form are shown in Figures 34 and 35 for specirr.n.s 1 and 2. The

data from both specimens is plotted on the same graph in Figure 36, showing the

repeatability of the measurement.
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Specimen 1 Stress vs. Strain
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FIGURE 34. Stress versus True Strain for specimen number 1. Strain data from the
10 % extensometer. Stress includes correction for plastic incompress-
ibility.

Specimen 2 Stress vs. Strain
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FIGURE 35. Stress versus True Strain for specimen number 2. Strain data from the
10 % extensometer. Stress includes correction for plastic incompress-
ibility.
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Specimen 1 and Specimen 2
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FIGURE 36. Stress versus True Strain for specimens 1 and 2 on the same figure.
This figure shows the repeatability of the measurement procedure.

4.2.2 Comparison and Discussion

The uniaxial constitutive relation for input to the numerical model is expressed

in the following way:
(aa
I- or< ro

= (T n

Co a ~ u

where a0 is the yield stress, c0 is the corresponding strain at yield and n is the

hardening exponent. Young's Modulus is calculated as ao/o.

The yield stress a0 and the strain at yield co were determined from the stress-

strain diagrams of Figure 36, with ao = 960.OMPa and co = 0.500%. Young's

Modulus is therefore found to be 192.0 GPa. A power law of the form above was

least squares fit minimizing the error in stress as a function of strain for the stress-

strain data from yield to a strain of 8 %, where necking can be seen to initiate. The

hardening exponent n is calculated to be n = 23.7. The resulting stress-strain law
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is shown in Figure 37. The power law is compared to the experimentally measured

stress-strain law in Figure 38.

Power Law Fit
1400 i I I I I

m 1200

(L
1000--n 

= 23.7
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(/)
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(.1 400

200 /
0o 3 4 5 6 7 "oT

0/ Strain

FIGURE 37. Power Law Hardening Law least squares fit to the data below 8 %
Strain from Figure 36. The measured hardening exponent was 23.7.

Although a different law could fit the experiment better, the power law is useful

because of its ease of implementation in the finite element code and because of the

existence of the HRR analytical asymptotic solution for comparison. (A very good

fit would be provided by a law consisting of two linear regions and then a power

law region.)

A comparison of the uniaxial stress strain curves from Zehnder's experiment

and the current experiment is shown in Figure 39. It can be seen from the figure

that the yield stresses differ by about 10% between the two cases, but the plastic

hardening behavior is similar. This indicates that if the two studies could be nor-

malized with respect to the yield stress, the comparison of the plastic deformations
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Comparison With Power Law
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FIGURE 38. Comparison of measured Stress-Strain relation with Power Law Fit.
Although a fit of a different law might be better, the power law is used
because of its simplicity for input to the finite element calculation, as
well as the existence of the HRR asymptotic analytical solution for
comparison.

should be quite close. The data from the two cases is shown in Figure 40 with

Zehnder's data normalized to the current study by the yield stresses.

In the original numerical simulation, the Young's Modulus was 199.2 GPa while

the yield stress a0 and strain at yield co were determined to be ao = 1067MPa and

f0 = 0.536%. The hardening exponent n was found to be n = 22.0.
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Stress vs. Strain Comparison
1400 1 1 1 1 1

Zehnder

S1200-

1000

U 800

(I)
() 600

Q) 400

200

0

/ Strain

FIGURE 39. Comparison of Stress-Strain relation for the current study and the
identical study by Zehnder. The yield stress differs by about 10 %.

Data Normalized by Yield Stress
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FIGURE 40. Comparison of Stress-Strain relation for the current study and the
study by Zehnder, with Zehnder's data normalized by the yield stress.
This suggests that comparisons between studies should be normalized
by the yield stress.
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4.3 Finite Element Analysis

4.3.1 Model Description

The three point bend experiment of Figure 41 was modeled using a three di-

mensional finite element code with a power hardening elastic-plastic constitutive

relation. Due to the symmetry about the plane of the crack and about the midplane

of the specimen, only one quarter of the specimen must be modeled.

P

I

FIGURE 41. Diagram of the geometry of the three point bend experiment. Due to
symmetry, only the shaded side of the specimen needs to be modeled.
ALso, symmetry about the midplane of the specimen means only one
quarter of the entire specimen must be modeled.

Two different numerical simulations of the three point bend experiments were

performed using a three dimensional code with a small strain, incremental plasticity

law; both of the model were constructed by Dr. R. Narasimhan of the India

Institute of Technology. The first model was designed to simulate the experiments

by Zehnder and Rosakis [27,28]. The specimen modeled was a plate of 30.0 cm by
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7.3 cm by 0.975 cm thick with a crack 3.0 cm in length centered in the longest side.

The elastic modulus, yield stress and power hardening exponent were calculated

from a uniaxial tension test. In this case, the crack was modeled as having a sharp

tip. This model consisted of 2100 eight noded block elements arranged in 5 layers

and having 2814 nodes and 8442 degrees of freedom. The mesh for this model is

shown in Figures 42, 43 and 44. The elements become smaller near the crack tip,

and around the tip the elements are arranged in eighteen wedges of 100 each. At

the tip, the nodes at two adjacent corners of the elements coincide to produce the

sharp crack tip. The element size varies through the thickness as well, with the

elements being smaller near the free surface to capture the corner singularity.

7.5 0J

15.00

FIGURE 42. Diagram of mesh used in the original three point bend model. The
crack is at the lower right, and is modeled as having a sharp tip. The
elements are concentrated near the crack tip. All dimensions in cen-
timeters.

The existence of the previous work by Zehnder and Rosakis and by Narasimhan

and Rosakis was the basis for choosing the specimen geometry for the current study,

so that direct comparisons could be made. However, the data available from the
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FIGURE 43. Detail of the mesh near the crack tip in the original three point bend
model. The crack is modeled as having a sharp tip. All dimensions
in centimeters. Diagram c shows the two smallest rings of the block
elements around the crack tip, each element in the smallest ring has
two coincident nodes at the crack tip.

finite element model was somewhat sparse, as displacement data was only saved

for five load steps: 24 N, which serves to characterize the linearly elastic response,

35000 N, 52296 N, 68256 N, and 78863 N, which was approximately the failure

load of the corresponding experiment. The lack of information available from loads

between 24 N and 35000 N, which is where plastic behavior initiates and where the
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FIGURE 44. Detail of the element variation through the thickness of the original
three point bend model. The crack tip is in the center of the diagram,
running horizontally. The scale corresponds to diagram b in Figure 43.
The free surface is at the left, the midplane at the right. All dimensions
in centimeters.

use of the moire interferometer is likely to be most fruitful, made it desirable to

run a second simulation of the experiment. Additionally, the material properties

of the two experiments were different, most noticeable in the yield stresses, which

differed by about 10 %. A second model of the three point bend specimen had.

been constructed by Dr. Narasimhan to study the growth of voids using a Gurson

theory. This model was adapted by Dr. Narasimhan and the author to duplicate

the material properties of the current study. The second model was similar to the

first: a plate of 30.0 cm by 7.6 cm by 0.975 cm thick with a crack 3.0 cm in length

centered in the longest side. However, the second model does represent the physical

specimen better in that it contains a notch with a circular tip of radius 0.01 cm,

rather than a sharp crack. (The steel plate in the experiment is cut with an electrical

discharge, which results in a notch which is about 0.03 cm across.) In this case,

the model consisted of 1920 eight noded block elements arranged in 6 layers and

having 2527 nodes and 7581 degrees of freedom. Again the element size varied with
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distance from the crack tip and with distance from the free surface. Near the tip,

the elements are arranged in wedges of 150 each. The mesh geometry of the second

simulation is shown in Figures 45 through 47.

ix

y

15.00

FIGURE 45. Diagram of the mesh in the second three point bend model. The crack
is at the lower right, and is modeled as a notch having a circular tip of
radius 0.01 centimeter. Again, the elements are concentrated near the
crack tip. All dimensions in centimeters.

Displacement output from the second simulation is available for fourteen load

steps: 390 N, 3950 N, 8450 N, 13450 N, 18450 N, 23450 N, 28450 N, 33450 N, 38450

N, 43450 N, 48450 N, 58450 N, 63450 N, and 73450 N.
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FIGURE 46. Detail of the mesh near the crack tip for the second three point bend
model. The crack is modeled as a notch having a circular tip of ra-
dius 0.01 centimeter. The scale of each diagram corresponds to the
diagrams in Figure 43. The elements for the second model are smaller
and more nearly square than those in the first model. All dimensions
in centimeters.

4.3.2 Model Constitutive Relations

The numerical models assume material homogeneity and isotropy in both the

elastic and plastic constitutive relations, and the numerical simulations are carried

out using a small strain, incremental plasticity theory. The stresses are computed



0.213 -

2: 0.4875

FIGURE 47. Detail of the element variation through the thickness of tile second
three point bend model. The crack tip is in the center of the diagram,
running horizontally. The scale corresponds to diagram b in Figure 46.
The free surface is at the left, the midplane at the right. All dimensions
in centimeters.

and the yield surface updated using a tangential predictor - radial return method

with subincrementation. The stress update procedure is describe, ii. asimhan

and Rosakis [14]. The B method of Hughes [5] modified by Nakamura, Shih and

Freund [12] was used to relieve artificial mesh locking due to plastic incompressibil-

ity. As recommended by Nakamura, Shih and Freund [12], a stabilization parameter

of 0.05 was used in the calculations.

Both models used a power law hardening relation between the stress and strain

in the plastic regime. The initial yield stress of the first model was about 10% higher

than that of the second model. The plastic behavior of the two models was quite

similar, as the hardening exponent of the first model was 22 as compared to 23.7

in the second model. An exponent of 1 corresponds to linear elasticity, while an

exponent of infinity corresponds to an elastic-perfectly plastic material.

Although the constitutive relations used in the numerical models contain no
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explicit time dependence (no rate dependent effects, no dynamic effects and no time

dependent effects such as creep), the solution of the finite element equations is per-

formed in a time domain to allow for the inclusion of such explicit time dependence.

In this model the load history alone is explicitly a function of time, and time steps

are used to implement load steps. The load history is monotonically increasing and

is specified to be linear with time in this study.

4.3.3 Solution Approach

An iterative solution method is used to solve for the increments of the displace-

ments, strains and stresses corresponding to the increment of the applied load at

each time step.

It is assumed that an equilibrium solution for time t has been achieved. At

time t, the displacements are held in the displacement matrix U(t). The strains at

time t are calculated from the displacements through the B matrix

f(t) = u(t) (4.3.1)

The B matrix is used in place of the normal B matrix to eliminate numerical

error caused by mesh locking due to plastic incompressibility. The normal B matrix

is calculated from the derivatives of the shape functions for the element. The "B

matrix is derived from the B matrix by dividing the B matrix into a deviatoric

part and a volumetric part, B = Bde,, + Boot. The volumetric part of the B matrix

is replaced by a volumetric matrix calculated at a reduced number of quadrature

points using reduced order shape functions, B = Bdev+'Bvol. In elastic analysis, the

B method yields an identical stiffness matrix when compared to selective reduced
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integration in which the compliance matrix, C, is separated into deviatoric and

volumetric parts, and the volumetric part is numerically integrated at the reduced

quadrature points. A stabilization parameter of 0.05 was used to create a B matrix

which lies between the usual B matrix and the full B matrix, B = Bdev + B,,o +

0.05(Bvo, - 9Boi). This stabilization parameter is intended to eliminate spurious

zero energy modes which may occur due to the reduced integration, while still

providing a strain displacement matrix that does not significantly over-estimate the

stiffness of the element in the event of the nearly incompressible behavior in fully

plastic deformations.

Since small strains are assumed in the model, the B matrix remains constant

throughout the loading history. The equilibrium stresses at time t are held in the

matrix u(t), and the nodal force vector P(t) is calculated from the stresses through

the B matrix in a numerically calculated integral over the volume of the model

P(t)= J B a(t) dV (4.3.2)

Volume

The applied nodal force vector F(t) is specified by the load history. Gross equilib-

rium of the model requires that

F(t) = P(t) (4.3.3)

for all time t. The tangent stiffness matrix K(t) at time t is calculated by numerical

integration over the volume

K(t)= B T C*(t) B dV (4.3.4)

Volume

where C*(t) is the history dependent compliance matrix, derived from the history

dependent compliance four tensor. As described in the section on the elastic and
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plastic constitutive relations, C*(t) depends on the accumulated plastic strain as

well as the current stress and strain states. For purely elastic behavior, C* reduces

to the elastic compliance C.

The time is incremented to t+At, where At is a suitably chosen time increment.

At time t + At, the externally applied forces F(t + At) must still balance with the

forces due to the element stresses P(t + At),

F(t + At) = P(t + At) (4.3.5)

The forces due to the element stresses at time t + At are decomposed into the

known forces at time t, P(t), and the increment at time t + At, AP. The increment

of the nodal forces due to the element stresses is approximated through use of the

tangent stiffness matrix of time t, K(t), multiplying the displacement increment at

time t + At, AU.

AP - K(t)AU (4.3.61

Thus the equation that must be solved for the displacement increment AU at time'

t +At is
K(t)AU = F(t + At) - P(t)

(4.3.7)
= AF

The stiffness matrix is inverted and the matrix equation is solved using Gaussian

elimination, leading to an approximation for the displacement increment AU.

Equation (4.3.7) is a first approximation to the equilibrium solution at time

t + At. In general, the actual increment of the nodal forces corresponding to the dis-

placement increments will not satisfy the equilibrium condition of equation (4.3.5).

In order to refine the solution, an iteration procedure is used.
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4.3.4 BFGS Iteration

The solution the displacement increment at time t + At in equation (4.3.7)

is used as a first approximation in an iterative scheme to improve the solution. This

iteration method is called the BFGS method (after Broyden, Fletcher, Goldfarb and

Shanno), and was suggested for use in finite elements by Matthies and Strang [10].

This method is labelled a quasi-Newton approach because it updates the stiffness

matrix (or actually its inverse) in a limited way at each iteration to improve speed of

convergence. A full Newton method updates the stiffness matrix completely at each

iteration, while a modified Newton method does not update the stiffness matrix at

all during iteration.

The matrix equation to be solved is still as shown in equation (4.3.7), however,

it is now done in an iterative procedure. At the ith iteration,

(K(t ± At)) ~'i1 AU"( = F(t ± At) - (P(t + At))'i) (4.3.8)

where (K(t + At))( °) = K(t) and (P(t + At))(') = P(t) are from the equilibrium

solution at time t. AF (i-') is the out of balance force vector which becomes zero

(or very small) when equilibrium is satisfied.

As mentioned, the BFGS method effectively acts to update the inverse of the

stiffness matrix at each iteration. Actually, the stiffness matrix is not inverted, but

is factored. The BFGS method uses vector multiplications and the factors of the

original stiffness matrix to solve for the displacement increment at each iteration.

The effect of the vector multiplications is identical to updating of the inverse of the

stiffness matrix. Rewriting equation (4.3.8) to use the inverse form of the stiffness
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matrix,

-UO (K-' (t + At)i) [F(t + At) - (P(t + At))]1 439

- (K-' (t + At)) 'AF(-')

The total displacement is then approximated by

U)(t + At) = Ui-1)(t + At) + /3AU' i )  (4.3.10)

with U(0 )(t + At) = U(t). The scalar parameter /3 is varied until the component of

the new out of balance load vector parallel to the vector AUO ) is small compared

to some tolerance. This is accomplished by varying /3 until the calculated nodal

force vector, (P(t + At))" ) , which corresponds to /3 is such that the inner product

(AU(")T [F(t + At) - (P(t + At)) (i,] = (AU())TAF ( ')  (4.3.11)

is less than some tolerance.

The new out of balance force vector depends on the parameter / through the

constitutive law. Increasing /3 increases the displacement increment and therefore

the strain increment. The stress increment is a nonlinear function of the strain

increment, and the new nodal forces are calculated from the stresses as in equation.

(4.3.2), which is also put in iterative form

(P(t + At))(i' = f f (= (J + At))(i) dV (4.3.12)

Volume

The procedure for calculating the stresses corresponding to the displacement incre-

ment /3AU are described in the next section.

As described in Matthies and Strang, the BFGS method is an attempt to make

an efficient iterative search for the solution AF = 0. The variation of /3 produces

a search direction which is nearly orthogonal to the out of balance force AF' ) . In

particular, the updating of the inverse of the stiffness matrix is made inexpensive

to compute.
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Two difference vectors, b(') and Y(i) are formed to represent the change in the

displacements and out of balance forces between increments.

b(i) -- (U(--+At))(") - (U(t + At)) -  (4.3.13)

t =_.FO- n - AF )  (4.3.14)

Thc updated inverse of the stiffness matrix, (K-'(t + At))('), should satisfy the

quasi-Newton equation

-
( ) = (K-I (t + At))(i') ,() (4.3.15)

In the BFGS method, the update of the inverse of the stiffness matrix is accom-

plished through a matrix multiplication of the form

(K-'(t + At))( = (AT)( (K-(t + At)) A() (4.3.16)

where AW') is a square matrix calculated from 6 ) and. ,(i). A(') is defined by

A ( ) = I + v(i)(W(i)) T  (4.3.17)

V(i) T (b6 6)) T(j),) ](K(t + At)) ( i(Z (4.3.18)

( +)(- At))

w - (4.3.19)

The term in brackets in equation (4.3.18) is the condition number of the update,

COi).

C I) T (6 i) Ij 0I 2 (4.3.20)
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If the condition number becomes very large, the update in equation (4.3.16) would

be numerically dangerous, so a preset tolerance is used which prevents updating if

the condition number exceeds the tolerance.

With the newly calculated matrices (K- 1 (t + At))(') and (P(t + At))('), the

process can begin again at equation (4.3.9) to evaluate the displacement increment

at iteration i + 1.

The iteration for the displacement and force increments continues until the

Euclidean norm of the out of balance force vector AFO) is smaller than the out of

balance force at the start of the iteration by a preset tolerance.

I[AIF(i)[I _< TOL IIAF(')1 I (4.3.21)

The displacement at time t + At, tJ(t + At), is then given by

U(t + At) -- U(t) + AU ( i (4.3.22)
i=1

where n is the number of iterations to convergence.

4.3.5 Stress Update

The stresses in the elements are computed from the calculated strain increment

using a tangential predictor - radial return method. In order to prevent artificial

unloading during the iteration procedure, the stresses and strains at each iteration

are calculated from the known equilibrium solution from the previous time step

and the total displacement increment for the current time step. At the i th iteration

for time step t + At, the total displacement increment, AU"OtaL, is the sum of the

displacement increments for iterations 1 through i for time step t + At. The strain

increnment duc to that displacement increment is given by

Ae B AUtotal (4.3.23)
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In calculating the stress increment for the current iteration, this total strain incre-

ment is used along with the previous equilibrium solution to prevent the possibility

that the stress increment at one iteration will lie outside the current yield surface,

while the the next stress increment will be a correction in the opposite direction,

causing artificial elastic unloading due to finite step sizes.

The procedure for updating the stress and yield surface requires only the con-

stant elastic compliance matrix, C, and the current parameter defining the yield

surface, 7. First, an elastic stress increment is determined from the strain increment

through the elastic compliance tensor C.

Aae = C Ae (4.3.24)

A trial stress state a is calculated from the stress increment and the stress state

from the known equilibrium solution at time t, a" .

a A -- a° + Aa e  (4.3.25)

The stress state a' is assumed to lie inside the yield surface at time t. The yield

surface at time t is defined by the function f(Ao,e) = 3J 2(a) -_ 2 where - is

a function of the accumulated equivalent plastic strain, and is a measure of the

current yield stress. At time t, 7 = 70. If the trial stress state aA is such that

3,J2 (aA) _< (7 0)2 (4.3.26)

the stress path has stayed in the elastic regime, and no further calculation of the

stress state is necessary. Otherwise, the yield surface has been crossed by the trial

stress solution, and the yield surface and stress state must be updated together. A

stress state between the equilibrium stress of time t, a' and the trial stress state

aA is found which lies on the yield stress of time t. This contact stress state, a c ,

is defined by

a c = O° + quA (4.3.27)
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and

3J2(a) = (F0 ) 2 (4.3.28)

For the isotropic hardening material satisfying the Huber-Von Mises yield condition,

this results in a quadratic equation for the scalar parameter q. Note that the path

from ao to a c is completely elastic.

A corrected trial stress a T is dctermined from the contact stress Cc using the

assumption that the plastic strain rate is always normal to the yield surface. If the

plastic strain rate is directed along a normal to the Huber-Von Mises yield surface,

it will be given by

ip = AS (4.3.29)

where S is the deviatoric stress and the invariant J2 = -!SijSij. An approximate

plastic strain increment is given by AAS, where S and AA are calculated at the

contact stress a c . This plastic strain increment is subtracted from the calculated

strain increment from the stress state oC to the stress state OA, approximated by

(1 - q)Ae, to estimate the elastic strain increment during plastic deformation.

Ae' ; (1 - q)Ae - AAS (4.3.30)

The stress increment corresponding to that elastic strain increment is

Aa = C((1 - q)Ae - AAS) (4.3.31)

The corrected trial stress aT is the contact stress a c plus the calculated stress

increment.
CT = ac + C((1-q)Ae -AS)

= ac + ((aA _ C) - AAC S) (4.3.32)

= 0'A - AAC S
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The yield surface is updated using the hardening law H, in this case a power

law. The accumulated equivalent plastic strain increment ATP is given by

S(2 ASiAASi) 2

= AA23 S Sij(4.3.33)

20=,AX(Z)J2 )2

3-

= AQ a ))
2 

--i

H is defined as the rate of change of the function F with respect to the equivalent

accumulated plastic strain ZP, which is determined from the power law described in

the section on the constitutive behavior. In order to update the yield surface, H

will be determined at &0.

H( ) = d - (4.3.34)

The final value of the yield stress, FF, is then calculated as

-= F o + H(-50 )Ap (4.3.35)!

In general, the corrected trial stress aT will not lie on the updated surface. A final

update of the stress state is scaled from aT, forcing it to lie on the updated yield

surface

F  (-- aT (4.3.36)

The stress path from a C to a F is an elastic-plastic path. To minimize the

effect of finite increments, the excess stress increment aE - aC is divided into m

subincrements and the corrected trial stress aT, the yield surface update, and the

final correction to aF are calculated m times.
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4.3.6 Discussion

The BFGS method is an attempt to increase the speed of the convergence of

the iterative solution. In general, the most time consuming portion of the solution

is the factoring of the tangent stiffness matrix for solution of the equation K AU =

AF. This must be done only once per time step, however, with additional matrix

updates done by simple multiplications. In contrast, the full Newton method must

update and solve the entire matrix equation at each iteration. The modified Newton

method must also update and solve the stiffness matri. quation at each time step,

but retains that stiffness matrix throughout all iterations. The modified Newton

method might seem the best choice, but the slowness of convergence in large plastic

deformations offsets the gain in not updating the matrix. If the stiffness matrix

were kept constant for all deformations, as in the elastic case, it would only have

to be inverted once, but as the deformation moved away from its original state

the convergence would be extremely slow because the search for a solution would

take place along poorly chosen directions. Hcwc-'r, i th . of iterations

becomes large, the task of updating the matrix itself involves a large number of.

multiplications. In that case, the factors of the original stiffness matrix for that

time step may be used alone, and the BFGS sequence started again.

This finite element model contains nonlinearity only in the constitutive rela-

tion, and not in the strain-displacement relation. The small strain assumption will

become invalid in a region around the crack tip which grows with the applied load.
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4.4 Three Point Bend Experiments

4.4.1 Specimen Material and Dimensions

The three point bend experiments were performed on Aircraft Quality Vacuum

Degassed 4340 steel plates 1 cm thick and 30.5 cm long by 7.6 cm high with a single

edge crack 3 cm in length as shown in Figure 48. The loading configuration is shown

in Figure 49.

7.60

3.00 _

15.88-

31.75

Specimen Thickness 1.00

All Dimensions in centimeters.

FIGURE 48. Three point bend specimen geometry. Material is a ductile heat treat-
ment of 4340 steel.

All of the test specimens were cut from the same piece of 4340 steel, a plate four

inches wide by one-half inch thick by eight feet long. The steel was heat treated to

give a ductile response, first being "normalized" at 871 C with air cooling to remove

any effects of rolling or cutting, then heated to 815 C and oil quenched to produce

a Martensitic transformation and finally tempered at a temperature of 538 C for
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3 0.00

FIGURE 49. Loading configuration for three point specimen, showing the cylindrical
supports and cylindrical indenter opposite the crack. (In the experi-
ment, the specimen was inverted, with the crack in the top edge.)

one hour and air cooled. Two uniaxial test specimens were also cut from the same

piece of steel and heat treated identically with the three point bend specimens. The

uniaxial test geometry is shown in Figure 50. The composition of the 4340 steel is

shown in Table 1.

Chemical Composition, %

C Mn P S Si Ni Cr Mo Cu Sn Al Fe

0.420 0.740 0.010 0.012 0.250 1.710 0.800 0.240 0.060 0.000 0.036 balance

Table 1. Composition of 4340 Steel. Aircraft quality, vacuum degassed, cold drawn.

One side of the fracture specimen was lapped flat and polished to a mirror finish

in order to measure the out-of-plane displacements with a Twyman-Green interfer-

ometer, while a diffraction grating was epoxied to the other side of the specimen

as described in the section describing the moire interferometer to measure the two
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Clear (2)
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--- 0.63 5
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-- -- 1.270
13.97

0.635 Radius
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5.08

112.54

Specimen thickness 1.245 2.54

All Dimensions in
centimeters. 5.08

FIGURE 50. Uniaxial test specimen geometry. Material is a ductile heat treatment
of 4340 steel. Test section is ground flat and parallel with a thickness
of 1.245 cm.

in-plane displacement components. It is assumed that the specimen deformation is

symmetric, so that the three measured components can be treated as if they were

measured on the same surface.

The current material properties were found to be different from the previous

work, by Zehnder and Rosakis, as seen from Figure 39. The Young's modulus was

about 3.5% lower, and the yield stress was about 10% lower than that of Zehnder's
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cxI)erinent. The calculated hardening exponent was 23.7 as opposed to 22 from the

earlier experiments. Because of these discrepancies, and also because the numerical

data available from Narasimhan's numerical comparison was somewhat sparse, it

was decided to try to rerun the numerical simulation with the current material

parameters (see the sections describing the elastic-plastic constitutive relation and

the finite element model). Narasinihan's data was retained for only five load steps:

24 N, 35000 N, 52296 N, 68256 N and 78863 N. Data from the second numerical

simulation is available at fourteen load steps: 390 N, 3950 N, 8450 N, 13450 N,

18450 N, 23450 N, 28430 N, 33450 N, 38450 N, 433450 N, 48450 N. 5S430 N. 63450

N and 73450 N.

4.4.2 Experiment

The experiments were carried out on the Newport Corporation vibration iso-

lated optical table (ten feet by four feet by eighteen inches thick) to reduce vibrations

from the surroundings. The loading frame was designed and constructed at Caltech

and has a test section length which is adjustable by means of threaded rods. The

load itself is introduced through a hydraulic ram which is supplied from a Miller

559-Hydraulic Power Unit 66 which is rated for 11.6 gallons per minute at a work-

ing pressure of 2670 psi. The pressure is supplied through a Moog Series 62 Flow

Control Servovalve which is controlled by a Shore Western Mfg., Inc. SC1100-1 DC

Servo Controller.

The servo controller balances the load feedback against an input command

voltage to provide control of the desired applied load. The load was measured and

fed back to the servo controller with the same Sensotec 400,000 Newton capacity

load cell used in the uniaxial tests. As seen from the figure, the central point of
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the three point bend arrangement is held fixed, transmitting the load to the load

cell, while the two outer loading points are attached to an I beam which is moved

by the hydraulic ram. Although this setup makes it slightly more difficult to align

the apparatus under no load, it does have the advantage that the crack tip remains

nearly stationary under loading. This is important because it means that the optics

do not need gross adjustments during a test.

During a test, the servo controller is supplied with a command voltage corre-

sponding to a load where information is available from one of the finite element

simulations. That load- is held fixed while the optics are adjusted to try to remove

any effects of rigid rotations which are most easily seen as loss of symmetry in the

fringe patterns. For small deviations, this adjustment is orthogonal to the adjust-

ment for the spacing of the virtual reference grating formed by the crossed incoming

laser beams, so the virtual reference grating spacing and the displacement incre-

ment between contours remains constant. The two in-plane displacement fringe

patterns are then photographed, as is the out-of-plane displacement pattern on the

opposite side of the specimen. The load and load point displacement are recorded-

continuously by either the Masscomp Laboratory Workbench software or the A/D

converter card in the Image Processing computer system.

In the first experiment, the in-plane displacements were photographed using a

Nikon FA camera body with a Nikon Micro-Nikkor 200mm f/4 lens and a Nikon 3T

close-up lens (focal length 665 mm) attached to the front of the 200mm lens. This

camera setup produced a magnification of about 0.8 (that is, 1 mm on the specimen

corresponded to 0.8 mm on the negative). After the fringes were photographed this

way, a Nikon TC-200 Teleconverter was placed between the camera and the 200 mm

lens. The teleconverter doubles the magnification of the image without disturbing
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the focus of the lens. Six pictures of each displacement component were taken at

each load step, three using the teleconverter and three without. The three pictures

were each taken using a different length of exposure, in an attempt to bracket the

optimum exposure and also to provide some redundancy in the event of a mishap

in the development. (Since the image is made up of essentially collimated light, the

exposure cannot be controlled by the aperture without losing some of the informa-

tion around the edges.) The pictures taken without the teleconverter were intended

to capture the fringe information away from the crack, but the magnification was

not high enough to record the smallest fringe spacing which the optical system was

capable of transmitting to the film. With the teleconverter in the path, the field

of view is reduced, but the image is magnified enough so that the limitations due

to the film resolution are less restrictive than the limits due to the finite aperture

of the camera. The film used was Kodak Technical Pan set at an exposure index

of 120 and developed in Kodak HC-110 (dilution D) for 6 minutes. This film has

extremely fine grain size, and it can record fringes with wavelengths as small as

5 microns at the film plane, this corresponds to 5 microns divided by the camera

magnification on the specimen.
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SECTION 5

Comparison of Results

5.1 Numerical and Experimental Comparison

The in-plane displacement contours on the free surface of the specimen as

generated from the numerical program at 3950 N are shown in Figures 51 and 52.

The contours are only shown for a region of 5 cm in diameter which represents the

maximum field of view of the experiment.

The corresponding contours ks measured from the experiment axe shown in

Figures 53 and 54. It can be seen that there is noise in the measured contours near

the crack tip. These contours are determined from the experimental photograph

which has the largest field of view. The data from the photograph with higher

magnification should reduce the noise, but at the cost of a smaller field of view.

This comparison is made for the purpose of examining the large scale match of the

numerical and experimental data.

The contours from the experiment and the numerical model are shown together

in Figures 55 and 56. As seen in Figure 55, the contours of constant U displacement

match well except ahead of the crack (x > 1.5). This appears to be due to a

misalignment of the saddle point in the fringe pattern. At this low load level, the

small number of fringes makes it difficult to align the saddle point precisely. (An
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FIGURE 51. Contours of constant U displacement at the free surface at 3950 N.
These contours are generated from the three dimensional finite element ?
model. The crack lies along the line x < 0, with the crack tip at x = 0,
y = 0. The increment of displacement between contours is 4.67 x 10- '
cm.

attempt was made to align the fringe saddle point with the saddle point predicted

by the numerical model for comparison.) The contours of constant V displacement

also match well at this low load level.

The deformation at 3950 is mostly elastic, with any plastic deformation con-

tained in a region of about 0.01 cm around the crack tip (as determined from the

numerical data). This is the lowest load for which meaningful experimental data is

available. The ultimate failure load of the specimen is about 75000 N.
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FIGURE 52. Contours of constant V displacement at the free surface at 3950 N.
These contours are generated from the three dimensional finite element!
model. The crack lies along the line x < 0, with the crack tip at x = 0,
y = 0. The increment of displacement between contours is 1.58 x 10- 4

cm.
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EXPERIMENTAL U DISPLACEMENTS 3950 N
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FIGURE 53. Contours of constant U displacement at the free surface at 3950 N.
These contours are measured from the experiment. The contour in-!
crement is the same as in Figure 51, which shows contours from the
numerical model. The crack lies along the line x < 0, with the crack
tip at x = 0, y = 0. The increment of displacement between contours
is 4.67 x 10 . cm.
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EXPERIMENTAL V DISPLACEMENTS 3950 N
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FIGURE 54. Contours of constant V displacement at the free surface at 3950 N.
These contours are measured from the experiment. The contour in-:
crement is the same as in Figure 52, which shows contours from the
numerical model. The crack lies along the line x < 0, with the crack
tip at x = 0, y = 0. The increment of displacement between contours
is 1.58 x 10- 4 cm.
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EXPERIMENTAL AND NUMERICAL U 3950 N
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FIGURE 55. Contours of constant U displacement at the free surface at 3950 N.
The contours measured from the experiment are solid lines, and the
contours from the numerical model are dashed lines. The increment of
displacement between contours is 4.67 x 10- 5 cm.
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FIGURE 56. Contours of constant V displacement at the free surface at 3950 N.
The contours measured from the experiment are solid lines, and the:
contours from the numerical model are dashed lines. The increment of
displacement between contours is 1.58 x 10 - 4 cm.
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FIGURE 57. Comparison of the U displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the.
numerical data is shown in dashed lines.

Comparison of the experimental ard numerical displacements are shown in

Figures 57 through 64. The dispiacements are plotted as a function of r/h, the

ratio of the radius from the crack tip to the thickness of the plate. These plots

are made at angular increments of 45 degrees, where the angle is measured from

the positive x axis ahead of the crack. Since the experimental data is measured

from fringes which only determine relative displacement, the experimental data was

forced to match the numerical data on the x axis at r/h of 0.8. This offset value is

kept constant for all the data.
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FIGURE 58. Comparison of the U displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the.
numerical data is shown in dashed lines.

It can be seen from the figures that the U component of displacement matches

well except along the line 0 = 450, and along 9 = 00 for r/h > 1.5. Again,

this is most likely due to a slight misalignment of the saddle point. The noise in

the experimentally determined displacements is most visible for 0 = ±S 0 ° . In

the comparison of the V displacement components, the noise in the experimental

measurements is quite evident near the crack tip.
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FIGURE 59. Comparison of the U displacement from thle experiment and the nu-
merical model. The experimental data is shown in solid lines, the-
numerical data is shown in dashed lines.
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FIGURE 60. Comparison of the U displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the
numerical data is shown in dashed lines.
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FIGURE 61. Comparison of the V displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the.
numerical data is shown in dashed lines.

The agreement for the V displacements does not appear as good except along

9 = ±180° . This is also most likely the result of a slight misalignment of the saddle

point in the experiment. The shapes of the curves agree quite well, however, as in

the case of 9 = ±45', where both the experiment and numerical model show first a

deviation from zero displacement and then a trend back toward zero displacement

as r increases.
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FIGURE 62. Comparison of the V displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, thee
numerical data is shown in dashed lines.
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FIGURE 63. Comparison of the V displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the
numerical data is shown in dashed lines.
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FIGURE 64. Comparison of the V displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the.
numerical data is shown in dashed lines.
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NUMERICAL U DISPLACEMENTS 28450 N
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FIGURE 65. Contours of constant U displacement at the free surface at 28450 N.
These contours are generated from the three dimensional finite element .
model. The crack lies along the line x < 0, with the crack tip at x = 0,
y = 0. The increment of displacement between contours is 6.12 x 10'
cm.

Numerically generated in-plane displacement contours are shown for a load

level of 28450 N are shown in Figures 65 and 66. Note that the field of view in these

figures is much smaller than the view in Figures 51 and 52. The finite shape of the

notch is evident in Figures 65 and 66.

The equivalent contours as measured from the experiment are shown in Figures

67 and 68. Again, there is considerable noise in the measured displacement field near



-152-
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FIGURE 66. Contours of constant V displacement at the free surface at 28450 N.
These contours are generated from the three dimensional finite element,
model. The crack lies along the line x < 0, with the crack tip at x = 0,
y = 0. The increment of displacement between contours is 2.85 x 10 - 4

cm.

the crack tip. This is the largest load step for which there is essentially no shadow

spot in the experimental photographs, and the data is taken from the pictures

with the highest magnification and are blown up approximately twenty times for

printing. The reproduction of the negative by the enlarger to paper for scanning is

not particularly good, owing to the limitations of the enlarger. In order to produce

a better print, the negative will have to be blown up through a microscope and then

printed.
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FIGURE 67. Contours of constant U displacement at the free surface at 28450 N.
These contours are measured from the experiment. The contour in-
crement is the same as in Figure 65, which shows contours from the
numerical model. The crack lies along the line x < 0, with the crack
tip at x = 0, y = 0. The increment of displacement between contours
is 6.12 x 10- ' cm.

The contours from the experiment and the numerical model are shown together

in Figures 69 and 70. The U displacement contours appear to match quite well in

shape and spacing except in regions near 9 = +90 ° . It is interesting that there

is a closed loop in the U displacement field at the tip of the crack in both the

experimental and numerical contours, as this implies that the displacement is not

monotonic, as would be expected from either the linearly elastic or the HRR analytic

solutions. The match of the V displacement contours does not appear as good from
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FIGURE 68. Contours of constant V displacement at the free surface at 28450 N.
These contours are measured from the experiment. The contour in-:
crement is the same as in Figure 66, which shows contours from the
numerical model. The crack lies along the line x < 0, with the crack
tip at x = 0, y = 0. The increment of displacement between contours
is 2.85 x 10- 4 cm.

Figure 70, although do seem to correspond approximately in shape.

At 28450 N, the plastic zone is on the order of 0.2 cm surrounding the crack tip.

This is the highest load for which there is no shadow spot visible in the experimental

photographs. The ultimate failure load of the specimen is about 75000 N.
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EXPERIMENTAL AND NUMERICAL U 28450 N
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FIGURE 69. Contours of constant U displacement at the free surface at 28450 N.
The contours measured from the experiment are solid lines, and the-
contours from the numerical model are dashed lines. The increment of
displacement between contours is 6.12 x 10-5 cm.
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FIGURE 71. Comparison of the U displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the:
numerical data is shown in dashed lines.

Comparison of the experimental and numerical displacements for the load of

28450 N are shown in Figures 71 through 78. The displacements are plotted as a

function of r/h, the ratio of the radius from the crack tip to the thickness of the

plate. These plots are made at angular increments of 45 degrees, where the angle is

measured from the positive x axis ahead of the crack. Since the experimental data is

measured from fringes which only determine relative displacement, the experimental

data was forced to match approximately the numerical data on the x axis at r/h of

0.2. This offset value is kept constant for all the data.
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FIGURE 72. Comparison of the U displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the.
numerical data is shown in dashed lines.

The data for the U displacements seem to match qiite well away from the crack,

except along the lines 9 = 900 and 9 = 1350. Again the noise in the experimental

measurement is evident in the vicinity of the crack tip. Again, although the match

is not exact, the trends of the data are similar for the numerical model and the

experiment. Two features in the U displacement field which may be important are

seen along 0 = 00 and 9 = ±90° . Along 9 = 0*, there is a local minimum away

from the crack tip, which gives rise to the closed loop contours noted above. Along

9 = ±900, it is seen that the experimental data does not drop off as the crack tip

is approached in the same way that the numerical data does. This may also be
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FIGURE 73. Comparison of the U displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the.
numerical data is shown in dashed lines.

seen for 0 = ±135'. It will be interesting to see if these features are apparent for

comparisons at other loads.
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FIGURE 74. Comparison of the U displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the,
numerical data. is shown in dashed lines.
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FIGURE 75. Comparison of the V displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, thee
numerical data is shown in dashed lines.

The data for the V displacements seem to match well in the region ahead of

the crack as r/h increases. It is interesting that along 0 = ±45' there is a local

minimum (or maximum) away from the crack, as in the U displacement field. Again,

this is not predicted in either the elastic K-field solution or the HRR field solution.

This feature is apparent in both the experimental and the numerical data. As in

the U displacements, the largest deviations between the two data sets occurs along

0 = ±90° near the crack.
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FIGURE 76. Comparison of the V displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the-
numerical data is shown in dashed lines.
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FIGURE 77. Comparison of the V displacement from the experiment and the nu-
merical model. The experimental data is shown in solid lines, the.
numerical data is shown in dashed lines.
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These two load values (3950 N and 28450 N) were chosen as the lowest and

highest loads at which data could be acquired over the entire field. Unfortunately,

the experimental data for these loads has two different problems which make com-

parison difficult. For the lower load, the sparse fringe pattern made it difficult

to align the saddle points of the displacement fields, and any misalignment would

represent a considerable discrepancy in the measured displacements. At the higher

load, the high fringe density made it difficult to analyze anything except a very

small field of view, and the difficulty in enlarging the photograph made that analy-

sis more troublesome than it should have been. The next step will be to investigate

the data available from the second lowest and second highest load levels, to see if

the features apparent in this data, particularly for the higher load, are also visible

at other loads.

A planned second set of experimental measurements will push the data col-

lection optics so that data from higher load levels will be captured, at least in the

region surrounding the crack tip.
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