
Technical Report 

CMU/SEI-89-TR-18 
ESD-89-TR-26 

Carnegie-Mellon University 

Software Engineering Institute 

A Real-Time Locking Protocol 
Lui Sha 

Ragunathan Rajkumar 
Sang Son 

Chun-Hyon Chang 

April 1989 

ADAin^ 



Technical Report 
CMU/SEI-89-TR-18 

ESD-89-TR-26 
April 1989 

A Real-Time Locking Protocol 

Lui Sha 
Real-Time Scheduling in Ada Project 

Ragunathan Rajkumar 
Carnegie Mellon University 

Sang Son 
University of Virginia 

Chun-Hyon Chang 
Kon Kuk University, Seoul, Korea 

Approved for public release. 
Distribution unlimited. 

Software Engineering Institute 
Carnegie Mellon University 

Pittsburgh, Pennsylvania 15213 



This report was prepared for the 

SEI Joint Program Office 
ESD/AVS 
Hanscom AFB, MA 01731 

The ideas and findings in this report should not be construed as an official DoD position. It is pub- 
lished in the interest of scientific and technical information exchange. 

Review and Approval 

This report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

.haries J. Ryan, Major.^SAF 
SEI Joint Program Office 

This work is sponsored by the U.S. Department of Defense. 

Copyright © 1989 Carnegie Mellon University 

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of scientific and 
technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agency personnel 
and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center, Attn: FDRA. Cameron 
Station. Alexandria, VA 22304-6145. 

Copies of this document are also available through the National Technical Information Service. For information on ordering, please 
contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 



Table of Contents 

1. Introduction 1 

2. The Read- or Write-Priority Ceiling Protocol 3 
2.1. Basic Concepts 3 
2.2. Definitions and Properties 7 

3. Performance Evaluation 13 

4. Conclusions 19 

References 21 

CMU/SEI-89-TR-18 



CMU/SEI-89-TR-18 



List of Figures 
Figure 2-1:   Sequence of Events Described in Example 2 6 
Figure 3-1:   Balanced Workload 14 
Figure 3-2:   I/O Bounded Workload 15 
Figure 3-3:   With Intention I/O 16 
Figure 3-4:   Percentage of Missing Deadline 17 

CMU/SEI-89-TR-18 ill 



A Real-Time 
Locking Protocol 

Abstract: When a database system is used in a real-time application, the concur- 
rency control protocol must satisfy not only the consistency of shared data but 
also the timing constraints of the application. In this paper, we examine a priority- 
driven two-phase lock protocol called the read- or write-priority ceiling protocol. 
We show that this protocol is free of deadlock, and in addition a high-priority trans- 
action can be blocked by lower priority transactions for at most the duration of a 
single embedded transaction. We then evaluate system performance experimen- 
tally. 

1. Introduction 

In a real-time database context, concurrency control protocols must not only maintain the 
consistency constraints of the database but also satisfy the timing requirements of the trans- 
actions accessing the database. 

Both concurrency control [2,3,4,5,7,16,17,18, 20, 21, 23, 26] and real-time scheduling 
algorithms [10,11,13,14,15,19, 22,27] are active areas of research in their own right. It 
may seem that the development of a real-time locking protocol is a simple matter of combin- 
ing priority scheduling with a locking protocol. For example, we may require each trans- 
action to use a well-known concurrency protocol such as the two-phase lock protocol [6] and 
assign priorities to transactions according to some well-known scheduling algorithms such 
as the earliest deadline algorithm [19]. Next, we process transactions in priority order. Un- 
fortunately, such an approach may lead to unbounded priority inversion, in which a high- 
priority task would wait for lower priority tasks for an indefinite period of time. 

Example 1: Suppose T.,, T2, and T3 are three transactions arranged in descending order of 
priority, with T1 having the highest priority. Assume that transaction T1 and T3 share the 
same data object O. Suppose that at time t: transaction T3 obtains a write-lock on O. Dur- 
ing the execution of T3, the high-priority task T, arrives and attempts to read-lock the object 
O. Transaction T1 will be blocked, since O is already write-locked. We would expect that 
Tv being the highest priority transaction, will be blocked no longer than the time for T3 to 
complete and unlock O. However, the duration of blocking may, in fact, be unbounded. This 
is because transaction T3 can be preempted by the intermediate-priority transaction T2 that 
does not need to access O. The preemption of T3, and hence the blocking of T1, will con- 
tinue until T2 and any other pending intermediate-priority level transactions are completed. 

The blocking duration in Example 1 can be arbitrarily long. This situation can be partially 
remedied if transactions are not allowed to be preempted; however, this solution is only ap- 
propriate for very short transactions, because it creates unnecessary blocking. For instance, 
once a long, low-priority transaction starts execution, a high-priority transaction not requiring 
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access to the same set of data objects may be needlessly blocked.1 An objective of this 
paper is to design an appropriate priority management protocol for a given concurrency con- 
trol protocol so that deadlocks can be avoided and the duration of blocking can be tightly 
bounded. 

1The priority inversion problem was first discussed by Lampson and Redall [9] in the context of monitors. They 
suggest that each monitor always be executed at a priority level higher than ail tasks that would ever call the 
monitor. 
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2. The Read- or Write-Priority Ceiling Protocol 

2.1. Basic Concepts 
Real-time databases are often used by applications such as tracking. Since tracking opera- 
tions consist of both signal processing and database accessing, we assume that each in- 
stance of a periodic task consists of data-processing code and embedded transactions 
operating on the database. We assume that an embedded transaction consists of a se- 
quence of read and write operations operating upon the database. A task can have multiple 
embedded transactions. However, embedded transactions in a task do not overlap. Each 
embedded transaction will follow the two-phase lock protocol [6], which requires a trans- 
action to acquire all the locks before it releases any lock. Once a transaction releases a 
lock, it cannot acquire any new lock. 

In this section, we also assume that all the tasks are periodic, which models the periodic 
operation of sensors. In addition, we assume that the database resides in the main memory. 
We will, however, relax both assumptions in the next section. When tasks are periodic, we 
assume that their priorities are assigned by the rate monotonic algorithm in which a shorter 
period task has a higher priority. It was shown in [15] that the rate monotonic algorithm is an 
optimal static-priority scheduling algorithm for periodic tasks. A high-priority task will preempt 
the execution of lower priority tasks unless it is blocked by the read- or write-priority ceiling 
protocol defined later in this report. 

With only two-phase locking and priority assignment, we can encounter the problem of un- 
bounded priority inversion as illustrated in Example 1. However, the idea of priority in- 
heritance [24] solves the unbounded priority inversion problem. In the context of preemptive 
scheduling, a higher priority task x can preempt the execution of lower priority tasks unless x 
is blocked by the locking protocol. The priority inheritance rule states that when the trans- 
action of task x blocks the execution of higher priority tasks, it executes (inherits) at the 
highest priority of all the tasks blocked by x. To illustrate this idea, let us apply this protocol 
to Example 1. Suppose that task x1 is blocked by task x3. The priority-inheritance protocol 
requires task x3 to execute its transaction at the priority of task x1 until it releases the lock on 
data object O. As a result, task x2 will be unable to preempt x3. Once task x3 unlocks data 
object O, it returns to its assigned priority and will immediately be preempted by x-,. As we 
can see, this simple priority-inheritance idea reduces the blocking time of a higher priority 
task from the entire execution time of lower priority tasks to only the duration of lower priority 
tasks' embedded transactions. 

The second idea is a total priority ordering of active transactions. A transaction embedded in 
a task is said to be active if it has started but not yet completed its execution. Thus a trans- 
action can be active in one of two ways: executing or being preempted in the middle of its 
execution. The idea of a total priority ordering is that we want our protocol to ensure that 
each active transaction is executed at a higher priority level, taking priority inheritance and 
the read and write semantics into consideration.   Together with the first idea, we get the 
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properties of freedom from deadlock and a worst-case blocking of at most a single em- 
bedded transaction. We shall refer to the latter property as the block-at-most-once property. 

To ensure the total priority ordering of active transactions, we define three parameters for 
each data object in the database: the write-priority ceiling, the absolute priority ceiling and 
the read- or write-priority ceiling. The write-priority ceiling of a data object O is simply the 
priority of the highest priority task that may write O. The absolute priority ceiling of O is the 
priority of the highest priority task that may read or write O. The read- or write-priority ceiling 
of the data object is, however, set dynamically. We shall use the rule that a task x cannot 
read or write-lock a data object and execute its transaction unless its priority is higher than 
the highest priority read- or write-priority ceiling locked by tasks other than x. We shall refer 
to this rule as the ceiling rule. 

When a task write-locks a data object O, O cannot be read or written by another task. To 
ensure that, we can set the read- or write-priority ceiling of O equal to its absolute priority 
ceiling. Since the absolute priority ceiling of O is equal to the priority of the highest priority 
task that may either read or write O, it prevents another task from reading or writing O until 
the lock on O is released. Similarly, when a task read-locks a data object O, O cannot be 
written by another task. To ensure this, when a data object O is read-locked by a trans- 
action, we set the read- or write-priority ceiling of O equal to the write-priority ceiling of O. 
Since the write-priority ceiling equals the priority of the highest priority task that may write O, 
the ceiling rule prevents another transaction from writing O. Read transactions with priorities 
higher than the write-priority ceiling of O can share the read-lock on O however. On the 
other hand, this protocol forbids read transactions with priorities lower than or equal to the 
write-priority ceiling of O from sharing the read-lock on O. This is important. Should we allow 
these low-priority read transactions to share a read-lock on O, when the high-priority write 
transaction arrives and attempts to write O, it has to wait for multiple readers. That is, a task 
can be blocked by multiple lower priority embedded transactions. As we shall see in 
Theorem 8, longer blocking durations lead to lower schedulability. 

From the viewpoint of priority management, the objective of the read- or write-priority ceiling 
is to ensure that each embedded transaction is executed at a higher priority level than the 
priority levels which can be inherited by preempted transactions. When a transaction T 
write-locks a single data object O, the read- or write-priority ceiling of O represents the 
highest priority that T can inherit through O. For example, when T write-locks O, it can block 
the highest priority task xH that may read or write O and hence inherit the priority of xH. 
Therefore, the read- or write-priority ceiling of a write-locked object is defined to be equal to 
the absolute priority ceiling. Alternatively, let a low-priority transaction hold a read-lock on a 
data object O and let transaction Tw be the highest priority transaction that may request a 
write-lock on O. Transaction T can block xw and inherit the priority of xw. Therefore, the 
read- or write-priority ceiling of a read-locked data object is defined as the data object's 
write-priority ceiling. 

Under the read- or write-priority ceiling protocol, a task x cannot acquire a lock and execute 
its embedded transaction unless its priority is higher than all the read- or write-priority ceil- 
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ings of the data object locked by tasks other than x. Since the highest read- or write-priority 
ceiling of the locked data objects represents the highest priority level that the currently active 
transactions can execute (inherit), we ensure that the transaction of x executes at a priority 
level higher than all the preempted transactions, should x be able to execute its transaction. 

Such total priority ordering of active transactions leads to some interesting behavior. For 
example, the read- or write-priority ceiling protocol may forbid a transaction from locking an 
unlocked data object. At first sight, this seems to introduce unnecessary blocking. How- 
ever, this is, in fact, the "insurance premium" for preventing mutual deadlock and the block- 
at-most-once property. 

Example 2: Suppose that we have three tasks, x0, x1, and x2, arranged in descending order 
of priority. In addition, there are two data objects 01 and 02. 

to » {• • •, write-kxKO^, • • •, unlock(P^, •••) 

x, • {• • •, reacHocKOJ, • • •, write-lock{Oj), • • •, unlockiP^, • • •, unlock(Ox), •••} 

X2 • {• • •, read-/oc/c(02), • • •, write-lock(0{), • • •, unlocKpx), •••, unlock(p2), •••} 

The sequence of events described in Example 2 is depicted in Figure 2-2. A line at a low 
level indicates that the corresponding task is blocked or has been preempted by a higher 
priority task. A line raised to a higher level indicates that the task is executing. The absence 
of a line indicates that the task has not yet arrived or has completed. Shaded portions in- 
dicate execution of transactions. 

First, we establish the priority ceiling of each of the data objects. The write-priority ceiling 
and absolute priority ceiling for data object 01 are the priorities of tasks t2 and x1, P2 and 
Py respectively. For data object 02, both the write and absolute priority ceiling are equal to 
Py For data object O0, both ceilings are equal to P0. 

Suppose that at time tQ, task x2 starts its execution. At time ^, x2 has executed read-lock 
(02) and the read- or write-priority ceiling of 02 is set at the write-priority ceiling of 02, i.e., 
Py Having locked 02, task x2 starts executing its embedded transaction T2. At this instant, 
task x1 is initiated and preempts transaction T2. However, when task x1 tries to execute its 
embedded transaction at time f2 by making an indivisible system call to execute read-lock 
(0.|), the scheduler will find the priority of P^ of task x1 is not higher than the read- or write- 
priority ceiling of locked data object 02, which was set at Pv Hence, the scheduler 
suspends transaction x1 without letting it lock 01. Note that x, is blocked outside its em- 
bedded transaction. Transaction T2 now inherits the priority of task x1 and resumes execu- 
tion. Since x1 is denied the lock on 01 and suspended instead, a potential deadlock be- 
tween T| and T2 is prevented. If x, were granted the lock on 01, then x., would later wait for 
x2 to release the lock on 02, while x2 would wait for x1 to release the lock on 01. 

On the other hand, suppose that at time t3, while T2 is still in its transaction, the highest 
priority task x0 arrives and attempts to write-lock data object O0.  Since the priority of x0 is 
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'o     l1 V3 l<     Ve t t time 

Figure 2-1:   Sequence of Events described in Example 2. 

higher than the read- or write-priority ceiling of locked data object 02, task x0's transaction 
T0 will be granted the lock on the data object O0. Task x0 will therefore continue and execute 
its transaction, thereby effectively preempting T2 in its transaction and not encountering any 
blocking. At time f4, T0 completes execution and T2 is awakened, for T, is blocked by T2. T2 

continues execution and write-locks Ov At time %, T2 releases O.,. At time /g, when T2 

releases 02, task x2 resumes its assigned priority. Now T, is signaled. Having a higher 
priority, it preempts T2 and completes execution. Finally, T2 resumes and completes. 

Note that in the above example, T0 is never blocked. x1 was blocked by the lower priority 
task x2 during the intervals [t2, f3] and [f4, y.2 However, these two intervals correspond to 

^e interval [tj, r4] is not considered blocking for T, since it was only preempted by the higher priority task TQ. 
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the duration that T2 needs to lock the two data objects. Thus, the blocking duration of x1 is 
equal to the duration of a single embedded transaction of a lower priority transaction T2, 
even though the actual blocking occurs over disjointed time intervals. It is, indeed, a prop- 
erty of this protocol that any task x can be blocked by, at most, one lower priority embedded 
transaction until x suspends itself or completes. 

2.2. Definitions and Properties 
Having reviewed the basic concepts, we now review our assumptions and state the notation 
used. We assume that we are given a centralized database system and there is a set of 
periodic tasks. In addition, we assume that all the data objects reside in the main memory. 
Since tracking operations consist of both signal processing and database accessing, we as- 
sume that each instance of a periodic task executes signal processing codes and embedded 
transactions. We assume that the rate-monotonic algorithm is used to assign a priority to 
each task. This algorithm assigns higher priorities to tasks with shorter periods and is an 
optimal static-priority algorithm for periodic tasks [15]. If two tasks are ready to run on a 
processor, the higher priority task will run. Equal priority tasks are run in a FCFS (first come, 
first served) order. We also assume that a transaction does not attempt to lock an object 
that it has already locked and thus deadlock with itself. We also assume that either multiple 
read-locks or a single write-lock can be held on a data object. 

Notation: We denote the given tasks as an ordered set {x.,, • • •, xn} where the tasks are 
listed in descending order of priority, with x1 having the highest priority. 

Notation: We use Ts: to denote an embedded transaction of task x,. We will also use the 
simplified notation Tj when the identity of /is not important. 

Notation: We use the notation P{ to denote the priority of task Xj. 

Definition: The lock on a data object can either be a read-lock or a write-lock. A task x that 
holds a read-lock (write-lock) on a data object O is said to have read-locked (write-locked) 
object O. The write-priority ceiling of a data object is defined as the priority of the highest 
priority task that may write this object. The absolute priority ceiling is defined as the priority 
of the highest priority task that may either read or write this data object. When a data object 
O is write-locked, the read- or write-priority ceiling of O is defined to be equal to the absolute 
priority ceiling of O. When a data object O is read-locked, the read- or write-priority ceiling 
of O is defined to be equal to the write priority ceiling of O. 

Having stated our objectives and our assumptions, we now define the read- or write-priority 
ceiling protocol. 

1. Task x, having the highest priority among the tasks ready to run, is assigned 
the processor. Before task x starts to execute an embedded transaction T, 
task x must first obtain the locks on the data objects that it accesses. In addi- 
tion, each embedded transaction follows the two-phase lock protocol and all 
the locks will be released at the end of the transaction. 
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2. Let 0H be the data object with the highest read- or write-priority ceiling of all 
data objects currently locked by transactions other than those of x. When the 
transaction of task x attempts to lock a data object O, x will be blocked and the 
lock on an object O will be denied, if the priority of task x is not higher than the 
read- or write-priority ceiling of data object 0H. In this case, task x is said to be 
blocked by the task whose transaction holds the lock on 0H. If the priority of 
task x is higher than the read- or write-priority ceiling of 0H, then x is granted 

the lock on O3. 
3. A task x and its transaction T uses the priority assigned to x, unless T blocks 

higher priority transactions. If transaction T blocks higher priority tasks, T 
inherits PH, the highest priority of the tasks blocked by T. Priority inheritance is 
transitive. Finally, the operations of priority inheritance and of the resumption 
of original priority must be indivisible. 

4. When a task x does not attempt to execute an embedded transaction, it can 
preempt other tasks and their embedded transactions executing at a lower pri- 
ority level. 

Remark: Under this protocol, we need not explicitly check for the possibility of read-write 
conflicts. For instance, when an object O is write-locked by a task x, the read- or write- 
priority ceiling of O is equal to the priority of the highest priority task that can access O. 
Hence, the protocol will block a higher priority task that may want to write or read 0. On the 
other hand, suppose that the object O is read-locked by x. Then, the read- or write-priority 
ceiling of O is equal to the highest priority task that may write O. Hence, a task that attempts 
to write O will have a priority no higher than the read- or write-priority ceiling and will be 
blocked. Only the tasks that read O and have priority higher than the read- or write-priority 
ceiling will be allowed to read-lock O, and read-locks are compatible. 

Under the read- or write-priority ceiling protocol, mutual deadlock of transactions cannot oc- 
cur and each task can be blocked by at most one embedded transaction until it completes or 
suspends itself. We shall now prove both these properties of the read- or write-priority ceil- 
ing protocol. 

Lemma 1: Under the read- or write-priority ceiling protocol, each transaction will 
execute at a higher priority level than the level that the preempted transactions 
can inherit 
Proof: By the definition of the read- or write-priority ceiling protocol, when a task x 
locks a set of data objects, the highest priority level x can inherit is equal to the 
highest read- or write-priority ceiling of the data objects locked by x. Hence, when 
the priority of task xH is higher than the highest read- or write-priority ceiling of the 
data objects locked by a transaction T of task x, the transactions of xH will execute 
at a priority that is higher than the preempted transaction T can inherit. 

Theorem 2: There is no mutual deadlock under the read- or write-priority ceiling 
protocol. 

3Under this condition, there will be no read-write conflict on the object O, and we need not check if O has been 
locked. See the remark that follows the protocol definition. 
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Proof: Suppose that a mutual deadlock can occur. Let the highest priority of all 
the tasks involved in the deadlock be P. Due to the transitivity of priority in- 
heritance, all the tasks involved in the deadlock will eventually inherit the same 
highest priority P. This contradicts Lemma 1. 

Lemma 3: Under the read- or write-priority ceiling protocol, until task x either com- 
pletes its execution or suspends itself, task x can be blocked for at most a single 
embedded transaction of a lower priority task xL, even if tL has multiple embedded 
transactions. 

Proof: Suppose that task x is blocked by a lower priority task xL. By Theorem 2, 
there will be no deadlock and hence task xL will exit its current transaction at some 
instant fv Once task xL exits its transaction at time f1( task xL is preempted by x. 
Since xL is no longer within a transaction, it cannot inherit a higher priority than its 
own priority unless it executes another transaction. However, xL cannot resume 
execution until x completes or suspends itself. The Lemma follows. 

Theorem 4: Under the read- or write-priority ceiling protocol, a task x can be 
blocked by at most a single embedded transaction of one lower priority task until 
either x completes its execution or suspends itself. 

Proof: Suppose that x is blocked by n lower priority transactions. Given Lemma 
3, x must be blocked by the transactions of n different lower priority tasks, x1t .... 
xn, where the priority of x; is assumed to be higher than or equal to that of xj+1. 
Under the protocol, a task not in a transaction can always be preempted by a 
higher priority task. Hence, a lower priority task cannot block a higher priority task 
unless it is already in its transaction. Therefore, tasks x1 xn must be in their 
transactions when x arrives. By assumption, x is blocked by xn and xn inherits the 
priority of x. Since x can be blocked by xn, the priority of task x cannot be higher 
than the highest priority P that can be inherited by xn. On the other hand, by 
Lemma 1, the priority of task xn_.| is higher than P. It follows that the priority of task 
xnA is higher than that of task x. This contradicts the assumption that the priority 
of x is higher than that of tasks x., xn. 

Corollary 5: If a task t, suspends itself at most k times, then the above theorem 
holds with the duration of blocking equal to k+1 embedded transactions. 

Remark: The read- or write-priority ceiling protocol is selectively restrictive on the sharing of 
read-locks. The reason is that a direct application of the read and write semantic can lead 
to prolonged durations of blocking. For example, suppose that we have a single write trans- 
action at the highest priority level and ten lower priority read transactions. If we let ten trans- 
actions concurrently hold read-locks on data object O, then when a higher priority task ar- 
rives later and attempts to write O, it has to wait for all ten of these transactions to complete. 
That is, some forms of concurrency can lengthen the worst-case duration of blocking, result- 
ing in poorer schedulability. 

We now develop a set of sufficient conditions under which a set of periodic tasks with hard 
deadlines at the end of the periods can be scheduled by the rate-monotonic algorithm [15] 
when the read- or write-priority ceiling protocol is used. 

Liu and Layland propose the following theorem, which was proved under the assumption of 
independent tasks; i.e., there is no blocking due to data sharing and synchronization. 
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Theorem 6: A set of n periodic tasks scheduled by the rate-monotonic algorithm 
can always meet their deadlines if 

^1+ ... +_2<«(21/n-l) 

where Cj and Tj are the execution time and period of task x( respectively. 

Theorem 6 offers a sufficient (worst-case) condition that characterizes the rate-monotonic 
schedulability of a given periodic task set. An exact characterization of rate-monotonic 
schedulability can be found in [12]. 

When tasks are independent of one another and do not access shared data, Theorem 6 
provides us with the condition under which a set of n periodic tasks can be scheduled by the 
rate-monotonic algorithm.4 Although this theorem takes into account the effect of a task 
being preempted by higher priority tasks, it does not consider the effect of blocking caused 
by lower priority tasks upon schedulability analysis. We now consider the effect of blocking. 

Theorem 7: A lower priority write transaction Tw can block a higher priority task x 
with priority P, if and only if Tw may write-lock a data object whose absolute prior- 
ity ceiling is higher than or equal to P.  A lower priority read transaction Tr can 
block a higher priority task x with priority P, if and only if Tr may read-lock a data 
object whose write-priority ceiling is higher than or equal to P. 

Proof: It directly follows from the definitions of the read- or write-priority ceiling 
protocol. 

Let Z be the set of embedded transactions that could block task x. By Theorem 4, task x 
can be blocked for at most the duration of a single element in Z if it does not suspend itself. 
Hence the worst-case blocking time for x is the duration of the longest embedded trans- 
action in Z when x does not suspend itself. If the task x suspends itself k times, then the 
worst-case blocking time is equal to the sum of the k+1 longest elements in Z. We denote 
this worst-case blocking time of task Xj as B,. Note that given a set of n periodic tasks, Bn = 
0, since there is no lower priority task to block xn. 

Theorem 6 can now be generalized in a straightforward fashion. In order to test the 
schedulability of Xj, we need to consider both the preemptions caused by higher priority 
tasks and blocking by lower priority tasks, along with the utilization of Xj. The blocking of any 
instance of xs is bounded by Bj. Thus, Theorem 6 becomes 

Theorem 8: Suppose that a task does not suspend itself from initiation to comple- 
tion. A set of n periodic tasks using the read- or write-priority ceiling protocol can 
be scheduled by the rate monotonic algorithm if the following conditions are satis- 
fied: 

4That is, the conditions under which all the instances of all the n tasks will meet their deadlines. 
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C,    C, C    B 

r,   T2 r,-   r{ 

Proof: Suppose that for each task x( the inequality is satisfied. It follows that the 
inequality of Theorem 6 will also be satisfied with n - / and C, replaced by Cj«• 
(C; + Bj). That is, in the absence of blocking, any instance of task xt will still meet 
its deadline even if it executes for (Cj + Bj) units of time. It follows that task xj, if it 
executes for only Cj units of time, can be delayed by S, units of time and still meet 
its deadline. Hence the theorem follows. 

Remark: The first / terms in the above inequality constitute the effect of preemptions from all 
higher priority tasks and the execution time of tj, while Bj of the last term represents the 
worst case blocking time due to all lower priority tasks for one instance of task Xj. 

Corollary 9: A set of n periodic tasks using the read- or write-priority ceiling 
protocol can be scheduled by the rate monotonic algorithm if the following con- 
dition is satisfied: 

2i+ ... +S + W<a(i, ... ,^±)^n(2^-l) 

Proof: Since n(2lfn-iyzi(2l,i-l) and mox&, ••• ,£i)£ J, if this inequality holds 

then all the inequalities in Theorem 8 also hold. 
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3. Performance Evaluation 
In the previous section, we have assumed that all the tasks are periodic and that all the 
database objects are in the main memory. In this section, we relax these two assumptions 
and examine the performance of read- or write-priority ceiling protocol versus the perfor- 
mance of the two-phase lock protocol with and without priority assignments to tasks. This 
experiment investigates the performance of the performance characteristics in a single-site 
database system, using the University of Virginia's database prototyping tool [25]. In this 
experiment, we assume that the transaction system is a soft real-time system, in the sense 
that we do not guarantee the transaction deadlines. However, each transaction has a dead- 
line and we assume that there will be no value in completing a transaction once it has 
missed its deadline. Transactions that miss the deadline are aborted, and disappear from 
the system immediately with some abort cost. In this experiment, each task consists of a 
single transaction with an execution profile that alternates database access requests with 
equal computation requests, and some processing requirement for termination (either com- 
mit or abort). Thus the total processing time of a transaction is directly related to the num- 
ber of data objects accessed. 

In the experiments, transactions are generated with exponentially distributed interarrival 
times, and the data objects updated by a transaction are chosen uniformly from the data- 
base. Due to space considerations, we cannot present all our results but have selected the 
graphs which best illustrate the difference and performance of the algorithms. For example, 
we have omitted the results of an experiment that varied the size of the database, and thus 
the number of conflicts. This is because they only confirm and do not increase the knowl- 
edge yielded by other experiments. The measure of merit is the throughput and the per- 
centage of transactions that miss their deadlines. The measure of throughput is records 
accessed per second for successful transactions, not in transactions per second. This is to 
account for the fact that bigger transactions need more database processing. 

For each experiment and for each algorithm tested, we collected performance statistics and 
averaged over 10 runs. We have used the transaction size (the number of data objects a 
transaction needs to access) as one of the key variables in the experiments. It varies from a 
small fraction up to a relatively large portion (10%) of the database so that conflict would 
occur frequently. The high conflict rate allows synchronization protocols to play a significant 
role in the system performance. We chose the arrival rate so that protocols are tested in a 
heavily loaded system, because when designing real-time systems, one must consider high- 
load situations. Even though high-load situations may not arise frequently, one would like to 
have a system that misses as few deadlines as possible when the system is under 
stress [1]. 

In Figures 3-1 and 3-2, the throughput of the priority-ceiling protocol (C), the two-phase lock- 
ing protocol with priority mode (P), and the two-phase locking protocol without priority mode 
(L), is shown for transactions of different sizes with balanced workload and I/O bound work- 
load. The two important factors affecting the performance of locking protocols are their abili- 
ties to resolve the locking conflicts and to perform the I/O and transactions in parallel. When 

CMU/SEI-89-TR-18 13 



the transaction size is small, there is little locking conflict and the problem such as deadlock 
and priority inversion has little effect upon the overall performance of a locking protocol. On 
the other hand, when transaction size becomes large, the probability of locking conflict rises 
rapidly. In fact, the probability of deadlocks goes up with the fourth power of the transaction 
size [8]. Hence, we would expect that the performance of protocols will be dominated by 
their abilities to handle locking conflicts when transaction size is large. 

20.0 

Throughput 
(records/second) 

20        24 
Transaction size 

Figure 3-1:   Balanced Workload 

As illustrated in Figures 3-1 and 3-2, the performance of the two-phase lock algorithm, with 
or without priority assignments to transactions, degrades very fast when transaction size in- 
creases. This can be attributed to the inability of this protocol to prevent deadlock and prior- 
ity inversions. On the other hand, the read- or write-priority ceiling protocol handles locking 
conflicts very well. The protocol is free from deadlocks and exhibits the block-at-most-once 
property. Hence, this protocol performs much better than the two-phase lock protocol when 
the transaction size is large. The main weakness of the read- or write-priority ceiling 
protocol is its inability to perform I/O and transactions in parallel. For example, suppose that 
transaction T has locked O^ and it now wants to lock data object 02. Unfortunately, 02 is 
not in the main memory. As a result, T is suspended. However, neither are transactions 
with priorities lower than the read- or write-priority ceiling of 01 allowed to execute. This 
could lead to the idling of the processor until either 02 is transferred to the main memory or 
a transaction whose priority is higher than the read- or write-priority ceiling arrives. We call 
this I/O blocking. When transaction size is small, the locking conflict rate is small. Hence, 
the two-phase lock performs well.  However, due to I/O blocking the throughput of read- or 
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Figure 3-2:   I/O Bounded Workload 

write-priority ceiling protocol is not as good as that of two-phase lock protocol, especially 
when the workload is I/O bounded. 

Since I/O cost is one of the key parameters in determining performance, we have investi- 
gated an approach to improve system performance by performing the I/O operation before 
locking. This is called the intention I/O. In the intention mode of I/O operation, the system 
"pre-fetches" data objects that are in the access lists of transactions submitted, without lock- 
ing them. This approach will reduce the locking time of data objects, resulting in higher 
throughput. As shown in Figure 3-3, intention I/O improves throughput of both the two- 
phase locking and the ceiling protocol. However, improvement in the ceiling protocol is 
much more significant. This is because intention I/O effectively solves the I/O blocking prob- 
lem of the read- or write-priority ceiling protocol. 

Another important performance statistic is the percentage of transactions missing deadlines, 
since the synchronization protocol in real-time database systems should satisfy the timing 
constraints of individual transactions. In our experiments, each transaction's deadline is set 
proportional to its size and system workload (number of transactions), and the transaction 
with the shorter deadline is assigned a higher priority. As shown in Figure 3-4, the percent- 
age of transactions missing deadlines increases sharply for the two-phase locking protocol 
as the transaction size increases due to the protocol's inability to deal with deadlock and to 
give preference to transactions with shorter deadlines. Two-phase lock with priority assign- 
ment performs somewhat better, because the timing constraints of transactions are consid- 
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Figure 3-3:   With Intention I/O 

ered, although the deadlock and priority-inversion problems still handicap performance. The 
read- or write-priority ceiling protocol has the best relative performance because it ad- 
dresses both the deadlock and priority-inversion problem. 
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Figure 3-4:   Percentage of Missing Deadline 
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4. Conclusions 
Real-time database is an important area of research, with applications ranging from surveil- 
lance to reliable manufacturing and production control. In this paper, we have investigated 
the read- or write-priority ceiling protocol, which integrates the two-phase lock protocol with 
priority-driven real-time scheduling. We have shown that this protocol is free from mutual 
deadlock and that a task x can be blocked for at most the duration of a single embedded 
transaction of a lower priority task until x suspends itself or completes. We have also devel- 
oped schedulability bounds for periodic tasks in a centralized in-core database. Finally, we 
experimentally evaluated the performance of this protocol when the tasks are invoked 
aperiodically and the database is no longer in-core. 
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