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Abstract

The testing of engineering materials is traditionally done using contact ultra-

sonic techniques or potentially destructive mechanical tests. For many materials,

elastic properties are a function of both position and direction, owing to material

anisotropy and inhomogeneities arising from process variation and defects. In order

to determine these elastic properties as a function of position or direction using con-

ventional techniques, it is necessary to scan the testing apparatus over the surface of

the material.

In contrast, holographic methods offer a means of full field determination of

the elastic properties. Toward this end, the spatial propagation of antisymmetric

Lamb waves in nearly homogeneous isotropic plates has been investigated. Using

high speed pulsed holographic techniques coupled with excitation of ultrasonic

waves, surface displacements arising from Lamb wave propagation in thin plates

result in interference patterns superimposed on the holographic reconstruction of

the specimen image. The determination of Lamb wave group velocities utilizing a

technique which uses only features of the spatial waveform has been demonstrated

to yield results in good agreement with elastic plate theory.

In addition, preliminary results show that the same holographic technique may

prove a useful tool in the characterization and evaluation of laminated composite

plates.
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1 Introduction

Nondestructive testing of engineering materials has traditionally been done

using contact ultrasonic techniques. These techniques typically utilize piezoelectric

transducers which are mechanically coupled to the material surface. The transduc-

ers are used to generate acoustic waves within the material and to provide a means

of detecting and recording the subsequent surface displacements resulting from the

acoustic wave propagation. Such records of acoustic wave propagation within a

material have been used to characterize material elastic properties1., 2 .

Historically, ultrasonic methods used to determine elastic properties have been

limited to recording surface displacements as a function of time for a single position

on a material. However, for many materials, elastic properties are a function of

both direction and position, owing to material anisotropy and inhomogeneities aris-

ing from process variation and defects. In order to determine the elastic properties

as a function of direction using conventional ultrasonic techniques, it is necessary to

scan the testing apparatus over the surface of the material. Unfortunately, this is

both time coii.naming and potentially detrimental, in that the fluids necessary to

couple the transducers to the material may contaminate the material or compromise

the properties of the material surface.

In contrast to contact ultrasonic techniques, holography affords a means to

provide a full field record of surface displacements as a function of position for a

single instant in time. When coupled with ultrasonic excitation, holographic meth-

ods offer the ability to map surface displacements arising from propagating acoustic

waves. As such, holographic/ultrasonic methods provide determination of material

elastic properties as a function of position and direction. In addition, holographic

detection of acoustic waves is a noncontact method, thus eliminating surface cou-

pling effects and surface contamination.
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Regardless of detection method, the determination of material elastic proper-

ties using acoustic wave propagation relies upon the ability to evaluate the velocities

of characteristic acoustic modes. For a bulk unbounded medium, only two such

modes are possible, namely the longitudinal and shear waves. Evaluation of elastic

moduli using experimentally determined longitudinal and shear wave velocities is

generally regarded as the most accurate method of material characterization. How-

ever, the geometry of many engineering materials and structures makes accurate

determination of their elastic properties difficult when relying on bulk wave

propagation techniques.

As the geometry of the medium becomes more complicated, i.e. free surfaces

or layers are introduced, the number of possible acoustic modes increases, as does

the complexity of particle motion associated with each mode. In particular, acoustic

waves which propagate in other than bulk solids usually propagate as guided waves.

Unlike bulk waves, the velocity of guided waves is generally dispersive in nature, i.e.

a function of extrinsic factors such as specimen thickness or acoustic frequency. As

such, the effect of these factors on guided wave propagation must be characterized

before guided waves can be used for the determination of material elastic proper-

ties.

In order to gain a firm understanding of wave propagation in homogeneous

isotropic solids, and how the measurement of such propagation may be applied to

the characterization of materials, it is necessary to develop the wave equations

which govern material particle motion. Toward this end, a derivation of the wave

equation for bulk unbounded media is given and the behavior of bulk acoustic

waves examined. Next, a single boundary condition is imposed which gives rise to

the possibility of propagating surface acoustic waves, or Rayleigh waves, and this
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type ot wave behavior is described. Finally, a second boundary condition is imposed

on the medium and the resulting modes of acoustic wave propagation, the Lamb

modes, are discussed.

1.1 Wave Propagation in Unbounded Media

Consider a small volume element in the interior of a homogeneous isotropic

medium. In general, stresses acting upon the element have components both nor-

mal and tangential to the element surfaces. Such stresses will be denoted o, where

i denotes the direction in which the stress is acting, and j denotes the direction

normal to the plane on which the stress is acting. It may be seen that for equilib-

rium,o y=0 y,, o ,,=0 ,,ando y =0 o,. Thus, only six independent components of

stress exist. This is shown in Figure 1.1.1.

Ozzz

xz

Figure 1.1.1. Volume element with associated stresses.

If a point P at location (x, y, z) within the body of the material is displaced, the

displacement can be resolved into components (u, v, w) along the y, and z axes.

Thus, the new location of point P is (x + u, y + v, z + w). In order to describe the strain

at P in the material, the displacement of points nearby P must he considered. If a

a. I7I I
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point Q at an initial location (x + 6 x, y + 6y, z + 6 z ) nearby to P is displaced such

that its displacement components are (u + 6 u, v + 6 v, ) + 6 w), and if 6 x, 6 y, 6 z are

small, the incremental displacements along x, y, and z are:
dui disy dUi (1.1.1a)

U- X+ U + 6z
3x 3y az

dv v d v dvr 1..b
bu= 6x+ -6y+ - z

3x 3y dz

6W= w 6x+ aw (1.1.1c)
d x 3 y a z

The nine quantities above can be regrouped as:

au c) dw (1.1.2a)
EXx - Ox Eyy Ez z

d w d v d u dw d) v d u (1.1.2b)
aY y az C 3z ax ax 3y

The quantities E x , E Y, and c above represent the fractional extensions of

the medium along the x, y, and z directions in the vicinity of P. These quantities are

termed the longitudinal strain components. Similarly, the quantities Eyz, E zx, and

C 'Y represent the angular motions of the originally orthogonal volume element, and

are termed the shear strain components3 .. In addition, three quantities which

describe the rigid body rotation of the volume element can be defined:
) dv - au dw - dv du (1.1.2c)

ay CzV C) z C) X dx ay

where T5, denotes rigid body rotation of the volume element about the i axis.
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Considering only first order effects, each of the six components of stress (0,,) is

a linear function of the six components of strain (E r), where i, j denote the indices X

y, and z. This relationship is termed Hooke's law, and is detailed below:

G..x C11E...+ C12Eyy Ca3E) 14Eyz 1I 16 ( *

0YY C 21 E + C22EYY + C23 E + C 2 4E E 2 + C 25 E z,, + c 2 6 EY,,. (.l.3b)

(Y = C31 E + C32Ey, + C33 E + C34E YZ + C 3 5 E z, + C 3 6 E (1.1.3c)

a " C+41 E + C 42 Ey 4+ C43 E + C 4 4 E YZ + C 4 5 E + C 4 6 E xy (1.1.3d)

(1,, - CSI E, + CS2EYC + C53 E + C54E YZ + C55 E z. + C5 6 E xy (1.1.3e)

U.y - C61 E + C62Ey 4- C63Ez . +C 6 4 EY Z + C 6 5 E zx + C66E y (1.1.30

The coefficients relating the stress to the strain are the elastic constants of the

material. The elastic constants describe the behavior of the material when the

material is placed under load. From above, there are 36 possible elastic constants,

however it may be shown 4 , that the elastic constant tensor must be symmetric,

leaving 21 unique elastic constants. For materials that exhibit no particular spatial

symmetry, all 21 constants are needed to completely describe the material's elastic

behavior. For crystal systems that do exhibit varying degrees of symmetry, however,

the number of elastic constants which must be specified to define the elastic

properties is greatly reduced. In the case of cubic crystals, the elastic moduli tensor

reduces to only three non-zero constants. In fact, for an isotropic material, only two

elastic constan . .maia. These constants, X and I, are termed Lame's constants,

and are given ,j.

C 1 = C ZL c 2 1 =c 2 3 = C= C32(1.1.4)

L= C 4 4 C 5 5 C 6 6

X + 2p =cI =Ic 22 =c33

where the other 24 coefficients become zero.
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For an isotropic material, k and ti completely describe the elastic behavior. It

is more common, however, to recognize four elastic constants for an isotropic solid.

These are:

E ( 3 k + 2 ) Young's modulus is defined as the ratio between an
+ applied stress and the corresponding strain in a direc-

tion parallel to the application of force. This is an

extremely practical quantity, as it represents the

stiffness of a material.

Poisson's ratio is defined as the ratio between the lat-
V-4

2 (? eral contraction and longitudinal extension of the mate-

rial subjected to a load.

+21- Bulk modulus is defined as the ratio between an
applied hydrostatic pressure and the fractional volume

change of the material due to the pressure. This may

also be termed the modulus of incompressibility.

-4 Rigidity modulus is defined as the ratio between an

applied shear stress and the resultant shear strain.

To obtain the equations of motion for such an isotropic solid, consider a

variation in stress across a small volume element of the material. As shown in

Figure 1.1.2, there are six separate components of force acting parallel to each axis.

By Newton's second law of motion, the sum of the forces in any given direction must

equal the mass of the volume element multiplied by the element's acceleration in

that direction. Taking the sum of the forces in the x direction and setting it equal to

mass times acceleration yields:



7

+ 1- Y+ C-x I6x6ybz -(pbxbyz)-
\dx by dbz ) at 2

where p is the density of the volume element and u is the displacement in the x

direction. This can be simplified to:

432 U dox + doy a doz (1.1.5a)
C)dt2 d x dy dz

In a similar fashion, the equations of motion for the v and w displacements are:

xP+tb d+dy dz

dL) d0 do do0'Yb (1.1.5c)

Pd2 dx yX dz

Figur 1.12 Strssesactin on diffrental voume lemt nxdrci.
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The above equations of motion are true for any solid. To obtain a solution, the

elastic relations between stress and strain must be applied. Defining the dilatation

of a volume element as A =-E , + E YY + E .. which is representative of the fractional

volume change of the element, and substituting from 1.1.3 and 1.1.4 for a , F.y,

and a. z in (I.1.5a) above yields:

a2 u a a

ayp -aA

Using the definitions of the strain components given in (1.1.2) yields:

a2 u aA 2 (1.1.6a)p - =- (K + 4) --# +
Pat2 '~ p)- x -- 2

where 7 2 is the Laplacian operator. The results are similar for the v and w

components of motion:

a2v aA (1.1.6b)
P at2 a4y

a2 w a A (1.1.6c)

bat 2 a z

Thus, for an isotropic elastic solid, these are the equations of motion. For an

unbounded medium, these equations correspond to two types of wave propagation.

Differentiating both sides of (1.1.6a), (1.1.6b), and (1.1.6c) with respect toxy, andz

respectively, and adding yields:

2A (1.1.7)p - - (X + 2p.)72

which is the wave equation for a dilatation propagated through the material with a

velocity VL= ( 2.

Eliminating the dilatation between (1.1.6b) and (1.1.6c) results in:
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b2 x (1.1.8)

Pt
2

which is the wave equation for a solid body rotation about the x axis propagating
2

with velocity Vs = ( ) . Similar results are obtained for D y, D .

Thus, waves involving no rotation are propagated through the interior of a

material with velocity VL. Such waves are termed longitudinal, dilatational or com-

pressional waves. Waves involving no volume change, i.e. no dilatation, are propa-

gated with a velocity VS through the interior of a medium, and are called shear,

transverse, or rotational waves. The particle motion in such waves is shown in

Figure 1.1.3. It can be shown5 . that any plane wave propagated through the interior

of an isotropic elastic medium must travel with one of the wave velocities detailed

above. It should be noted that in general, these wave velocities are constants for a

given material, independent of frequency or wavelength.

0 0 0 0 0 000000 0 0 0 0 0000000 0 0 0
0 0 0 0 0 00000 0 00 0 0 0000000 0 0 0
0 0 0 0 0 0 0000 0 0 0 0 0 0 00000 0 0 0 0
0 0 0 0 0 000000 0 0 0 0 0000000 0 0 0
0 0 0 0 0 000000 0 0 0 0 0000000 0 0 0
0 0 0 0 0 000000 0 0 0 0 0000000 0 0 0
0 0 0 0 0 000000 0 0 0 0 0000000 0 0 0
0 0 0 0 0000000 0 0 0 0 0000000 0 0 0

Longituclinal (dcltt tiont) Wove

0 00 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0

00 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0
0000 0 0 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 00000 00 0

Transverse (shear) a/ve

Figure 1.1.3 Particle motion in the Interior of an isotropic

solid due longitudinal and shear wave propagation
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As noted earlier, elastic moduli are quite important from an engineering stand-

point, as they describe the behavior of a given material under load. One method to

determine the elastic moduli for a given material is to manufacture a tensile

s pecimen of the material, load the sample to a known stress level, and measure the

resulting strain in the direction of the applied load. Such a test is time consuming

and potentially destructive, in that the sample may reach the realm of plastic strain

during the test. Owing to this potential outcome, it is quite difficult to determine

the elastic properties of a machined component using mechanical testing tech-

niques.

Alternatively, the shear and longitudinal wave velocities can be measured for

the material and from these measurements both X and [i can be determined. Use of

this technique to determine material elastic properties has a number of advantages

over conventional mechanical tests. Most notably, measurement of wave velocities

within a material is non-destructive. As such, completed components or structures

can be tested for mechanical properties without fear of damage.

A number of techniques utilizing piezoelectric transducers are commonly

employed to make such measurements. Although measurement of longitudinal and

shear wave velocities by such methods provides an excellent means of testing and/or

determining the elastic properties of materials, there are some situations where such

measurements are impractical or impossible to make. For instance, the testing of

structures with only a single accessible side requires the use of pulse-echo techni-

ques6 .. Many ultrasonic transducers, however, have a finite "dead time" between

generation and reception of acoustic waves. For thin structures, or very fast wave

velocities, the pulse-echo travel time may exceed the reset time of the transducer,
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resulting in poor or incorrect results. In addition, if a structure is very thick or the

material very attenuative, it may prove difficult to measure bulk acoustic wave velo-

cities owing to loss of signal.

1.2 Surface Acoustic Waves

Given an isotropic elastic solid, two types of bulk waves have been described,

namely longitudinal and shear. If a boundary exists in the medium, it is possible to

consider a plane wave propagating through the medium near the boundary and

solve the equations of motion for such a condition. Waves of this type were first

investigated by Lord Rayleigh in 1887, and subsequently termed Rayleigh waves. In

an effort to describe such a wave, consider an elastic isotropic medium with a plane

boundary located at z = 0 (x-y plane) and assume a plane wave exists which travels in

the x direction near this boundary and has components of motion only in the x-z

plane, i.e. independent of y. The solution of the equations of motion (1.1.6) for such

, wave must satisfy the condition that the boundary is free from stress. Since the

displacements are independent of y, it is advantageous to define two potential func-

tions 4 and ip such that:

7 € w € = (1.2.1)
ax 3z -)z C)X

These potential functions are defined such that 4 is associated with the dilatation

produced by the wave whereas iv is associated with the rotation. This can be seen by

solving for the dilatation and rotation:

A = 3U+ C~ =vdx dz

211 =U L W - =,2,
C) z dx
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If, in fact, the particle motion for a surface wave is independent of y, then by

substituting (1.2.1) into the equations of motion (1.1.6) using the potential functions

described above, (1.1.6a) and (1.1.6c) become:

P' _tjPz ("2)x(V2 )-_ -z_(V 2)

PbX 3t 2  P 4t 2 ax a z

a(a)+ (X2ta
aZ a2 -) .3t2 3z ax

These equations will be satisfied if:

a2 . X__ 2 7 (1.2.2a)3t 2 - = ~~ 7 VL

2 V 2=2)v 2 (1.2.2b)

To search for a solution, consider a plane wave of frequency upropagating in the x

direction with a velocity VR and wave number k = 2 t / A, where A is the wave-

length, and assume a solution of (1.2.2) given by:

* = F(z)e'"(w-kx) (1.2.3a)

ip = G (z)e ' (w i -kx) (1.2.3b)

Here, F(z) and G(z) are amplitude functions dependent on z, the depth into

the material surface, and detail how the wave amplitudes vary with z. If the above

expressions are substituted into (1.2.2) above, the result is:

a2  
(1.2.4a)

pF(z)- (k 2 -k)F(z) = 0ata

2  2  2 )G 0 (1.2.4b)

- (z)-(k -k

where
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kLI k s v (1.2.5a)

If the substitutions

q =k kL s 2 =k 2 -k (1.2.5b)

are made above, the general solutions to (1.2.4) are

F(z) = Ae -qz + A e~q  (1.2.6a)

G(z) = Be -sz + B'esz (1.2.6b)

The second term of each solution above is a function of e which corresponds to a

wave whose amplitude increases with increasing z. However, a solution is sought

which is confined to the boundary of the medium, one which decreases with

increasing z, thus A" and B "are set to zero. Inserting (1.2.6) into (1.2.3) yields:

= A w t-kx)  (1.2.7a)

= Besz" (w -k ) (1.2.7b)

Now that suitable solutions for and V have been found, it is necessary to satisfy the

condition that at the boundary (z = 0), all stresses must vanish. The boundary

condition is therefor a 2 = a Y = a , = 0. From (1.1.3c),

c3w
= \A+ 21W

and using (1.2.1), this becomes:

Ozz= ( +2p)2-+Ka-2j 2

Substituting in the expression for 0 and iV from (1.2.7), and solving at z =0 gives:

A((X+ 2)q 2- K k2) - 2B1isk - 0 (1.2.8)

Also from (1.1.3e), using (1.2.1):
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oZX 1~~~L2zd ~+z)

Again, substituting in for 0 and v at z= 0 yields:

2iqkA + (s 2 + k 2 )B - 0 (1.2.9)

Equations (1.2.8) and (1.2.9) can be simplified by eliminating A and B and substitut-

ing in for q and s to give:

161 2 (k 2 - k2)(k 2 - k2 k 4  (X+ 2ii)k2+ 2pik2} 2 (2k2- k2) 2  (1.2.10)

Finally, (1.2.10) can be expressed in terms of VL, VS and VR by substituting in for k,

kL and kS.Equation (1.2.10) then becomes:

(v2 3 (V2) v2) 1.) (f)(..!8(')V +24 V' 16( V-) + 16(V ,- 16 =0

This is the Rayleigh equation, and gives the velocity of propagation of a surface

wave (Rayleigh wave) as a function of the bulk longitudinal and shear wave veloci-

ties. It is clear that the velocity of propagation of the Rayleigh wave VR is

independent of frequency, and is indeed only a function of the elastic properties of

the material. As such, Rayleigh waves are useful in determining surface material

elastic properties or characterizing surface layers 7.. For real materials, VR must fall

between 87% and 96% of the bulk shear wave velocity8-. In addition, the amplitude

of the Rayleigh wave in the z direction (into the material) goes as9.:

2k2  2Fk 2 o , 2 ?-I S
2k 2- k 2
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This is a function which increase in the material and reaches a maximum at

approximately 10% of the Rayleigh wavelength, then decreases monotonically with

increasing depth. At a depth approximately equal to one wavelength, the Rayleigh

wave amplitude is only 20% of its surface value. In effect, the wave is confined to

the material surface.

By introd acing a plane boundary on an isotropic elastic solid, and solving the

equations of motion for the condition that all stresses at the boundary must go to

zero, the existence of a Rayleigh wave has been shown. The Rayleigh wave is con-

strained to the surface of the material, and travels with a velocity between 0.87VS

and 0.96Vs, dependent upon the material elastic constants.

1.3 Lamb Waves

In 1916 a theory on the propagation of acoustic waves in plates was presented

by Horace Lamb to the Royal Society of London1O.. The theory was developed

assuming a perfectly elastic, homogeneous and isotropic medium, in which particle

displacements occur only in the plane containing the wave propagation vector and

the normal to the plate surface. Following the approach by Lamb, using (1.1.2) and

(1.1.3), and referring to Figure 1.3.1, the relevant stress strain relations in the plate

are given by:

dud_ 'i ,(1.3.1a)
OZZ X 2

) W d U) (1.3.1b)

As for Rayleigh waves, the solution of the above equations takes the form identical

to (1.2.1):
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Figure 1.3.1 Coordinate system used for plate wave development.

'1 -IV +-3* o€ (1.3.2)
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where V. , are scalar potential functions. As per the Rayleigh wave derivation,

these potential functions must satisfy

S 70v(1.3.3a)

2 , 2j 7 p _ V V2 2 (1.3.3b)
at 2  P S .

It is apparent from Section 1.1 that the above relationships are the wave

equations associated with dilatational and rotational waves, respectively. In solving

for 0 and v a plane wave solution is assumed, such that there is no y dependence of

the particle motion. In addition, it is assumed that potential functions are periodic

with time and in the x direction. Such a periodic dependence introduces the factors
£iw" and e ' in the solutions for 4 and V. Recalling kL and kS as defined in (1.2.5a),

and using the time periodicity of the functions, the wave equations (Eq. (1.3.3)

become:

(7 2 +k 2)-0 (1.3.4a)

( 72 +k2)- 0 (1.3.4b)
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Next, using the periodicity of the potential functions with x, the wave equations (Eq.

1.3.4) become:

_ 2 (1.3.5a)

az
2 q 0

2 (1.3.5b)
3Z2

where q and s are as defined in (1.2.5b). Solutions of this equation set are:

0 - (A cosh qz)ekx (1.3.6a)

ip - (B sinh sz)e kx (1.3.6b)

and

* = (Csinh qz)eikx (1.3.7a)

- (Dcoshsz)ekx (1.3.7b)

Examination of the solution set above reveals that the potential function solutions

which follow (1.3.6) are symmetric with respect to the median plane (z = 0) of the

plate. Likewise, the potential functions which follow (1.3.7) are anti-symmetric with

respect to the median plane.

Using (1.3.2) and (1.3.5), and substituting these into the original stress-strain

relationships (1.3.1) results in:

2 s')o_ 2ik IV (1.3.8a)

p.z dz

x+ 2+ (1.3.8b)-=2k-¢+(k +s 2 )w~

The derivation from this point for both symmetric and anti-symmetric modes is

similar, however only the anti-symmetric solutions (1.3.7) will be explicitly derived.
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It is at this point in the development that the derivation diverges from that of a

bulk material or Rayleigh waves, in that a second boundary condition is applied

which takes into account the geometry of the plate. Solving for the stresses at the

plate boundaries, z = : a, by substituting (1.3.7) into (1.3.8) results in:
Cy [Z 2a2 da i (1.3.9a)

*[A(k 2 +s2 )sinhq -2iBkssinhs- ~ekx
I' L2 2j

.. IL2 1 ah + Bk 2 1k (1.3.9b)0Z= 2iAkqcoshq-+ B(k + 2)coshs - eIkx

Since the plate surfaces are free, all components of stress must go to zero at

the plate boundaries. Equating the stress states above (1.3.9) to zero, and eliminat-

ing the constants A,B yields the characteristic equation for anti-symmetric Lamb

modes:

tanh(s) (k2+s2) 2  (1.3.10)

tanh(q!) 4k 2 qs

Substituting the values for q, s and k into (1.3.10), yields the characteristic

equation for anti-symmetric Lamb wave velocity in terms of V L, V s as

nVS 2 (1.3.11)
tanh{rtfd VLV 4(i- )(v)

where i = is the Lamb wave frequency, d is the plate thickness, and V is the Lamb

wave velocity.

Upon examination of the Lamb equation (1.3.11), it is apparent if V > VS, the

hyperbolic tangent argument in the numerator becomes imaginary. Using the fact

that tanh(ix) = tan(x)A, this results in an infinite number of roots for the product fd,

owing to the periodicity of the tanO function. Physically, this means that at a given
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fixed frequency, a number of waves may propagate in the plate, each with a different

phase velocity. However, for V < VS and Id - Q there exists only a single root to

the characteristic Lamb wave equation. This root is termed the lowest order anti-

symmetric mode (Ao). It is also evident from the Lamb equation (1.3.11) that Lamb

wave phase velocity is a function of the frequency-plate thickness product. It is this

dependence that makes Lamb waves unique. Neither shear, longitudinal, nor sur-

face waves exhibit any type of frequency dispersion. In the limit where Id - the

tanh() functions go to a value of 1, and the wave equation becomes 11.:

v2 3 V2 V2)2 (1.3.12)
(v2)(v 2  24( V)- 16(~) 16(e)s- 16 = (1302

This is the Rayleigh wave equation, as previously derived, which yields solu-

tions for waves which propagate along the surface of a medium, and are exponen-

tially attenuated in a direction normal to the surface. Thus, for large fd products,

the lowest order anti-symmetric lamb mode, as well as the lowest order symmetric

mode, propagate with a phase velocity equal to the Rayleigh velocity, and are

indistinguishable from Rayleigh waves12 -.

Figure 1.3.2 plots the anti-symmetric Lamb equation (phase velocity normal-

ized by shear velocity as a function of the frequency-plate thickness product) for

brass. In addition, the group velocity of the Lamb wave (V0 =[ )is also

plotted. From this figure, it is clear that in the limit Id - , both the phase and

group velocity of the Lamb wave approach that of the Rayleigh surface wave.

To further describe Lamb waves, it is necessary to examine the plate motion

during the propagation of such a wave. As stated earlier, the solutions of (1.3.5)

take both a symmetric (1.3.6) and anti-symmetric (1.3.7) form. It has been shown 13 .

that the overall plate motion for these solutions is as illustrated in Figure 1.3.3.
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Figure 1.3.2 Anti-symmetrc Lamb wave phase and group
velocity dispersion relationships.

Wave propagation
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Wave propagation
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Figure 1.3.3 Plate motion for symmetric (s) and anti-symmetric (a)

modes of Lamb wave propagation.

In order to describe the motion of particles within the plate during Lamb wave

propagation, the solutions to the wave equation (1.3.6, 1.3.7) can be substituted back

into the displacement equations (1.3.2). For the symmetric solution, this yields:

u a (ik A cosh qz + sB cosh z)e ik , (1.3.13a)
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w - (q A sinh qz - ikBsinh sz)eikx (1.3.13b)

And for the anti-symmetric case:

u - (ikC sinh qz + sDsinh sz)ekx (1.3.14a)

w = (qCcosh qz - ik D cosh sz)e kx (1.3.14b)

If these equations are evaluated for particle motion in the median plane of the

plate (z=O), we find that there is no z component of motion for symmetric modes,

and the median plane particle motion obeys:

u - (ikA + sB)ek,

This represents a plane wave propagating along the x axis - a pure longitudinal

wave. For the anti-symmetric case, there is no u component of motion for median

plane particles, and we have:

w= (qCikD)e kx

This equation represents a wave propagating along the x axis, with particle displace-

ment only along the z axis - a purely transverse wave.

As shown, particles lying in the median plane of the plate exhibit pure mode

longitudinal wave behavior for symmetric Lamb modes, and pure mode shear wave

behavior for anti-symmetric Lamb modes. In general, however, particles which

reside away from the median plane experience motion due to the presence of both

shear and longitudinal waves, and thus have a more complicated behavior. For sym-

metric modes, particle motion is predominantly along the x axis, with the small

transverse displacements reaching a maximum at the plate surface and gradually

going to zero in the median plane. For anti-symmetric modes, particle motion is

predominantly in the transverse (z) direction, with the small longitudinal displace-

ments reaching a maximum at the plate surface and gradually going to zero in the
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median plane 14.. At the plate boundaries, particles follow an elliptical orbit, with

the major axis of the ellipse dependent on whether a symmetric or antisymmetric

mode is propagating15. . This is shown in Figure 1.3.4.

- -> 0-.. 0 <-. ... 4-0 0 - o-. o--- 0 *-.O <.. <.,O

Symmetric Lamb WQve

---

Ant,-symmetric Lamb WQve

Figure 1.3.4 Representation of particle motion during propagation

of symmetric and anti-symmetric Lamb waves.

It should be noted that in Lamb wave propagation particle motion exists

throughout the body of the plate, unlike surface Rayleigh waves which are exponen-

tially attenuated in a direction normal to the surface.

As noted earlier, holographic interferometry has proven quite useful in map-

ping the out-of-plane displacements of an object's surface. Consequently, anti-

symmetric Lamb waves, whose primary motion is in the out-of-plane (y axis)

direction, are far better suited for holographic interferometry than are the

symmetric modes.

1.4 Holographic Theory

Holography possesses the unique ability to record and subsequently recon-

struct an optical wavefront1 6 .. Unlike a photograph, which records only optical
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wavefront amplitude information, a hologram records both the optical wavefront

amplitude and phase information. In a typical setup for recording a hologram, as

shown in Figure 1.4.1, a single beam of coherent light is split into two separate

beams. One beam is used to illuminate the object of interest, the second beam

directly illuminates a black and white film plate. These beams are termed the

object and reference beams respectively.

Mirror
Laser

~Beam-
SPtter ]

Lens

ObjecObject Wave

E) \ IF,Lr Prate

Reference Wave

Mirror Lens Mirror

Figure 1.4.1 Schematic of a typical holography setup.

Mathematically, the reference and object wavefronts at the film plane z 0 can

be described as:

R = R(x, y)J(kxaine+y(x.y)) (1.4.1)

0= 0(x, y)e- (kxsinO.(x.y)) (1.4.2)

where R(xy) is the amplitude information in the reference wave, e is the angle that

the reference wave makes with the film normal, y (x, y ) is the phase information

contained in the reference wave, O(xiy) is the amplitude information contained in
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the object wave, (- ( ) is the angle that the object wave makes with the film normal,

and ( x, y ) is the phase information contained in the object wave. For a planar

reference wave, y ( x , y ) can be taken as zero, in that there is no phase variation for

a plane wavefront.

Since coherent light is used, light which is diffusely reflected from the object

interferes with light from the reference wave at the film plate. The interference pat-

tern which results is recorded on the film plate. Since film records wavefront inten-

sity, which is the square of the optical amplitude, it is the square of the sum of the

reference and object waves which are recorded:

I = IR+O 2 = (R + O)(R*+ O) (1.4.3a)

= R 2 (x,y)+0 2(x,y)+ R(x,y)O(x,y)e( 2 kxsin 0
-(xy)) (1.4.3b)

+ R (x, y )O(x, y ) e- j(2kx sin @- (x Y))

Here, I is the intensity recorded on the film, and (*) denotes the complex conjugate.

Once developed, the film becomes a diffraction grating, consisting of an

extremely fine series of black and clear lines, indicating regions where constructive

or destructive interference between object and reference waves occurred. The

amplitude transmittance T(xy) of the developed hologram is now proportional to

this fine diffraction grating. Upon reillumination of the hologram, the incident

wavefront is modified according to the transmittance of the hologram. In the case

where the reconstructing wave is identical to the original reference wave R, and

defining A as the reconstructed wavefront

A = T(x,y). R (1.4.4)

results in the following four terms:

A = R 3 (x, y)e i(k sin ) (1.4.5a)

+ R(x, y)0 2 (x, y)i(kx sin ) (1.4.5b)

+ R2 (X, y)O(x, y)e j ( 3 kxsinO (xy)) (1.4.5c)
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+ R2(X, Y)O(X, Y), - j (kxsi n e * (xy)) (1.4.5d)

The first two terms (1.4.5a, 1.4.5b) are transmitted waves which propagate in

the (+ x si n 0) direction and contain only amplitude information (see Figure 1.4.2).

The third term (1.4.5c) represents a diffracted wave which propagates in the

(+ 3 x sin 0) direction, contains both amplitude and phase information, but forms a

psuedoscopic image because of the phase reversal. The fourth term (1.4.5d),

however, represents a diffracted wave which propagates in the (- x si n 0) direction,

and contains both the original object wave amplitude (O(xy)) and phase (€ ( x, y ))

information. It is apparent that this term is identical to the original object wavefront

except for a proportionality constant, and it is this term which gives rise to the

reconstructed virtual image.

S/Psuedoscopic
N N oWave

Virtual N N

Object N
Inage E) Transmtted Waves

Reconstructed

Object Wa ve
Hologram

Mirror Lens RettuMrnatng Wave

Figure 1.4.2 Schematic of holographic reconstruction.

In many applications, the optical wavefront which is recorded is that from the

surface of an object. When such a hologram is reilluminated with the reference

beam, the original object wavefront is. reconstructed and a virtual image of the

object appears at the point in space the object originally occupied. In the case of

double exposure holographic interferometry, each film plate records two separate
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diffraction patterns. These patterns correspond to two separate exposures of a given

test object at different instants in time. When the double exposure hologram is reil-

luminated, both wavefronts are reconstructed. Since both wavefronts propagate in

the same direction and are coherent, they are capable of interfering with each other.

Any disturbance to the object surface between the two holographic exposures which

causes an optical phase delay between the wavefronts results in an interference pat-

tern superimposed on the object image17.. The first and second object wavefronts

take the form:

01= O(x, y)e -j(kxsin-e(x 
y ))

0 2 = O ( x,y)e- (kx sine*(xy)-(x.y))

and upon reillumination of the hologram there are two reconstructed wavefronts,

each due to a single holographic exposure:

R 2(x, y)O + R 2(x, y)0 2

= R 2 (x , y)[O (x , y)e- .(kXj"" (. " n + O (x , y)e - 
1(k 

"
sin 0-

4
l(x Y ). (X. Y))

]

- R 2 (x, y)O(x, y)e - j(kxsin-(x ' y )). [ 1 + e-jA,(X, Y)] (1.4.6)

The result is a wavefront identical to the original object wavefront which is

modified by the factor [ 1 + e- tA4o(X Y) I If the phase relationship between first and

second exposures is such that A 0 ( x, y) = (2 n + 1 ) t, where n is an integer, then

there is destructive interference between the wavefronts which results in a dark

fringe. If the phase relationship between exposures is such that A ( x, y ) = 2 n nt

then there is constructive interference between the wavefronts resulting in a bright

fringe. In many holographic interferometry applications, the optical phase shift

A O (x, y ) is a result of object motion. In such a case, any object motion between

holographic exposures which causes an optical path delay corresponding to a 180"

phase shift of the object wave results in complete destructive interference.
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For a laser emitting a wavelength of 500nm, the out-of-plane displacement

necessary to produce a dark-bright fringe pair approaches 250nm for a coaxial sys-

tem. If all else remains fixed between holographic exposures, the resulting fringe

pattern is an equi-displacement contour map of object surface displacements

between exposures.
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2 Experimental Design

This study was designed to use full field holographic techniques to gain insight

into the spatial propagation of Lamb waves, and characterize such propagation as a

function of both plate thickness and material elastic constants. To accomplish this,

three different materials were used: 7075 aluminum, 70/30 brass, and 1018 steel.

Four samples of brass and three samples of steel and aluminum were obtained. All

samples were fifteen centimeters square, and for each material, all samples were of

different thickness. The thickness for the test samples is shown in Table 2.1.

Material Thickness (mm)

Plate 1 Plate 2 Plate 3 Plate 4

Aluminum 1.60 2.29 3.36

Brass 0.21 0.54 1.63 3.21

Steel 1.60 2.31 3.10

Table 2.1 Sample plate thickness.

One face of each sample was sprayed with a flat white paint in order to provide

a uniform diffusely reflecting surface for holography. A 5cm length of black velvet

was affixed on the painted surface near an edge of each plate. The velvet served to

provide a reference length in the holographic interferogram, so that distances

between acoustic wave features could be measured accurately.

A length of 6mm diameter aluminum rod was attached to the center of the

unpainted face of each specimen with a cyanoacrylate glue, and this rod-plate

assembly was then supported in a fixture which held only the rod, leaving the plate
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free. The purpose of the aluminum rod was twofold. First, the rod provided an

acoustic delay so that the initial laser pulse could record a hologram of the plate sur-

face at rest, and second, the rod provided a localization of the acoustic excitation of

the plate.

In order to produce Lamb waves with amplitudes large enough to cause full

fringes to appear in the holographic interferogram, a small amount of chemical

explosive (approximately 0.2 mg silver acetelyde) was affixed to the free end of the

delay rod. Upon detonation of the explosive, a large amplitude acoustic wave was

launched down the length of the rod, causing a step excitation of the plate.

A Quantel pulsed Nd:YAG laser with output in both the visible and infra-red

(IR) spectrum was used for explosive detonation and as a coherent light source.

The laser was modified such that it was possible to obtain a double pulse output.

This was accomplished by taking the Q-switch signal output, passing it through a

BNC digital delay pulse generator which returned two temporally separated pulses,

and inputing the modified signal to the Q-switch. The BNC delay allowed for a tem-

poral separation between laser pulses ranging from 10V s to 100V s.

The initial laser pulse served two purposes. First, the infra-red beam was

focused onto the explosive attached to the end of the aluminum delay rod, detonat-

ing the explosive and launching an acoustic wave down the length of the rod which

served to excite the sample. At the same time, the visible beam recorded a

hologram of the plate surface at rest.

The second laser pulse recorded a second holographic exposure of the sample

surface on the film plate, however in the second exposure the sample surface was

distorted owing to the acoustic waves propagating through the plate. A schematic of

this system is shown in Figure 2.1.
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Figure 2.1 Experimental setup for high speed double pulsed

holographic interferometry.

For each plate, a series of four or five double exposure holograms was

recorded, corresponding to varying time delays between laser pulses. For example,

using the medium thickness aluminum plate, the four holograms corresponded to

time delays between laser pulses of 45, 52, 59 and 66ps. The acoustic time delay

resulting from the aluminum rod was determined to be 35ps, thus the series of

double exposure holograms for the medium aluminum plate actually shows the

interference pattern caused by the acoustic wave after it has propagated through the

plate for 10, 17, 24 and 31ps respectively. The timing between exposures was

adjusted separately for each sample in order to obtain the widest possible spread in

the propagation distance of the acoustic waves.
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Each double exposure hologram was then developed, and the resultant holo-

graphic interferograms were reconstructed and digitized using a VICOM digital

image processor and stored on disk. Information from the digitized images was then

obtained using the VICOM mouse to pinpoint waveform features. Photographs of

the holographic interference patterns for the time series mentioned above are

shown in Appendix B for aluminum (Figures B.1-B.4). Also shown in Appendix B

are representative holographic interferograms for brass (Figure B.5) and steel (Fig-

ure B.6).
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3 Results and Discussion

As stated previously, the evaluation of elastic properties based on acoustic

wave propagation relies upon the accurate determination of acoustic velocity for the

characteristic modes which can propagate in the material. For thin plates, the pri-

mary modes of acoustic propagation have been shown to be the Lamb modes. Since

Lamb wave velocity is a function of frequency and plate thickness, it is necessary to

characterize how these factors affect wave propagation, as well as determine the

acoustic frequency, plate thickness and acoustic velocity before evaluating the elas-

tic properties of the material.

Holographic records of surface displacements arising from pr( pagating Lamb

waves can yield information regarding the velocity of the wave. However, for a spa-

tial signal it is difficult to determine the acoustic frequency; rather, the acoustic

wavelength is measured. This is shown in Figure 3.1

It is important to note the method with which the velocity and wavelength were

determined for the holographic data. Given a step input to the center of a plate, the

response of the plate is initially a large non-propagating central displacement, which

gives rise to a propagating wave comprised of the frequency components contained

in the initial response. For a dispersive material, the velocity and attenuation of

high frequency components is much greater than that of lower frequency compo-

nents. As a result, the waveform which was recorded in each double exposure holo-

gram is essentially a summation of the large amplitude, low frequency waves which

were present in the initial pulse. As such, it was difficult to determine one absolute

wavelength and its corresponding phase velocity. Instead, an effective wavelength

was calculated for a group of waves, and for this wavelength an effective group

velocity was determined.
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Figure 3.1 Frequency determination for a temporal signal

versus wavelength determination for a spatial signal.

For the case of a temporal signal at a single point in space, it has been obser-

ved 18 . that a technique to determine effective wavelength, frequency, and velocity

which yields good correlation between theoretical and experimental results is one in

which the effective frequency is calculated based on the inverse time difference

between two successive maxima of the temporal signal, and associated with that fre-

quency an effective velocity is determined using the source to detector distance and

mean arrival time of the temporally separated peaks. Similarly, it was proposed that

for a spatial signal at a single instant in time, an effective wavelength could be deter-

mined using the spatial separation of two successive maxima, and that an effective

velocity could be determined using the distance from the source of the signal to the

spatial mean of the two successive maxima and the time of propagation for the

wave. A schematic illustrating this technique is shown in Figure 3.1.
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Measurements were made on each holographic interferogram to determine an

effective wavelength and a group velocity. Rather than measure an entire wave-

length, a half-wavelength, i.e. the distance between the first minima and first max-

ima, was measured. This was done owing to the fact that in a number of holograms,

one complete wavelength could not be determined; the surface displacements had

become too small to produce interferometric fringes far from the point of excitation.

The velocity was determined by measuring the distance from the point of excitation

to the first maxima, and dividing this distance by the time delay between the plate

excitation and the second holographic exposure. This is shown in Figure 3.2 Using

this technique, results for the aluminum, brass and steel are shown in Tables 3.1, 3.2,

and 3.3 respectively.
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Velocity=D/±
DI

Figure 3.2 Experimental measurement of effective wavelength and group

velocity. Wide lines correspond to maxima and minima of the spatial

signal. Thin lines represent interferometric fringes resulting from

surface displacements.
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Thickness Delay Wavelength Velocity d/k
(cm) (PS) (cm) (105 cm/s)

0.160 15 1.125 1.597 0.142

0.160 25 1.915 1.362 0.084

0.160 35 2.511 1.187 0.064

0.160 45 2.969 1.092 0.054

0.229 10 1.197 2.094 0.191

0.229 17 1.535 1.831 0.149

0.229 24 2.116 1.547 0.108

0.229 31 2.614 1.479 0.087

0.229 38 3.021 1.422 0.076

0.336 10 1.481 2.510 0.227

0.336 15 1.597 2.199 0.210

0.336 20 2.199 2.085 0.153

0.336 25 2.573 1.934 0.131

Table 3.1 Results for aluminum plates.
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Thickness Delay Wavelength Velocity d]K
(cm) (PS) (cm) (105 cm/s)

0.021 25 0.574 0.467 0.037

0.021 35 0.739 0.385 0.028

0.021 45 0.779 0.342 0.027

0.021 55 0.897 0.291 0.023

0.021 65 0.968 0.269 0.022

0.054 15 0.699 0.841 0.077

0.054 25 0.939 0.715 0.057

0.054 35 1.212 0.623 0.045

0.054 45 1.455 0.556 0.037

0.054 55 1.566 0.509 0.034

0.054 65 1.667 0.466 0.032

0.163 15 0.897 1.256 0.182

0.163 35 1.847 0.914 0.088

0.163 45 2.188 0.818 0.075

0.163 55 2.407 0.745 0.068

0.163 65 2.648 0.681 0.062

0.321 15 1.239 1.529 0.259

0.321 25 2.028 1.438 0.158

0.321 35 2.661 1.271 0.121

0.321 45 j 3.171 1.165 0.101

Table 3.2 Results for brass plates.

Theoretical Lamb wave dispersion curves were generated for aluminum, brass

and steel so that comparisons between the measured velocity/wavelength data and

theoretical Lamb wave data could be made. The curves were generated using the

FORTRAN program given in Appendix A. Values for the shear and longitudinal

wave speeds necessary for the generation of the dispersion curves were experimen-

tally determined using an ultrasonic pulse-echo technique on the thickest sample of

each material. The experimentally determined bulk wave velocities are given in
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Thickness Delay Wavelength Velocity d/h.
(cm) (PS) (cm) (105 cm/s)

0.160 15 1.164 1.595 0.137

0.160 25 1.872 1.174 0.085

0.160 45 2.833 1.016 0.056

0.160 55 3.017 0.905 0.053

0.231 15 1.369 1.812 0.169

0.231 22 2.203 1.714 0.105

0.231 29 2.489 1.499 0.093

0.231 36 2.941 1.371 0.079

0.310 10 1.339 2.301 0.231

0.310 15 1.423 1.994 0.218

0.310 20 2.190 1.942 0.141

0.310 25 2.610 1.799 0.119

0.310 30 2.967 1.728 0.104

Table 3.3 Results for steel plates.

Table 3.4. Figures 3.3, 3.4, and 3.5 plot the theoretical dispersion curves for the

lowest order anti-symmetric phase velocities of aluminum, brass and steel, as well as

the calculated group velocity curves. The group velocity curves were determined

using 19 .:

dv p (3.1)

Also plotted on the dispersion curve figures are the experimental holographic data

given in Tables 3.1, 3.2 and 3.3.
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Material Longitudinal Velocity Shear Velocity

(x10 5 cm/sec) (x10 5 cm/sec)

Aluminum 6.286 3.070

Brass 4.436 2.110

Steel 5.925 3.188

Table 3.4 Experimentally determined longitudinal and shear

wave velocities for material samples.
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Figure 3.3 Theoretical Lamb wave dispersion curves for phase

(dashed line) and group velocity (solid line) of aluminum.

Also plotted are the actual experimental data for aluminum.
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Figure 3.4 Theoretical Lamb wave dispersion curves for phase

(dashed line) and group velocity (solid line) of brass.

Also plotted are the actual experimental data for brass.
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Figure 3.5 Theoretical Lamb wave dispersion curves for phase

(dashed line) and group velocity (solid line) of steel.

Also plotted are the actual experimental data for steel.
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Upon examination of the given dispersion curves for aluminum, brass, and

steel, and the associated holographic data, it is evident that for each material, as the

ratio d / X decreases, agreement between theory and experiment increases. In fact,

for d / X < 0.12, the experimental data and the theoretical group velocity dispersion

curves for each material are in excellent agreement. However, as the ratio d / X

increases, experimental estimation of the group velocity deteriorates.

In order to explain the experimental deviation from theory which is apparent

at d / X ratios greater than 0.12, it is necessary to examine the underlying assump-

tions on which the derivation of Lamb's equation (1.3.11) is based.

The assumption most relevant to this problem, as well as other transient wave

phenomena problems, has its basis in the form of the solution chosen for the scalar

potential functions 4, v which must satisfy Equations 1.3.3. In particular, these

requirements were met by assuming a solution for the potential functions which

were periodic with both time and space. These assumptions yield the Helmholtz

conditions as given by Equations 1.3.4, upon which the derivation of the Lamb equa-

tion is based.

The assumption of time periodicity in the derivation of the characteristic Lamb

equation puts limits on the applicability of the derived dispersion relationship. In

effect, the relationship is valid only when the plate motion can be considered peri-

odic or nearly periodic with time. This condition is often termed the steady-state or

long time condition, and is satisfied only when the response of the material is no

longer affected by the transient non-periodic form of the input. For short times

after excitation, when the material response is primarily governed by the local char-

acteristics of the step input, Lamb's theory gives the poorest results. For long times,

after the initial effects of the form of the input have damped out, Lamb's theory



44

yields good results20 .. It has been proposed that on the basis of theory and exper-

iment21 ., the critical time interval after which the Lamb wave dispersion relation-

ship is valid is roughly 2 (r/vt), where r is the distance from the point of excitation to

the point of observation, and vt is the bulk shear wave velocity.

Similarly, the assumption of spatial periodicity also limits the applicability of

the characteristic Lamb equation. As for time periodicity, the derivation of the

Lamb dispersion relationship assumes plate motion which is periodic, or nearly peri-

odic, with distance. Local effects of plate loading or excitation are certainly not

periodic with distance, and thus the spatial periodicity constraint can be satisfied

only far away from the point of excitation, where the material response is essentially

unaffected by local loading variations. In actuality, the analysis of a plate's response

to step loading needs to be divided into two categories, a near-field solution which

must take into account the form of the step and any local non-propagating effects,

and a far-field solution where plate motion obeys the spatial periodicity assumption.

It has been proposed22. that the near-field response is confined to a region approxi-.

mately ten times the plate thickness away from the point of excitation, and that the

far-field response is valid further away.

Given the two constraints on the applicability of the characteristic Lamb rela-

tionship, namely that the plate response must be periodic with time and space, it is

evident that the Lamb dispersion relationship is most effective for determining the

far-field, long time response of a plate. Using the far-field, long time criterion, Tab-

les 3.5, 3.6, and 3.7 list the holographic results for aluminum, brass and steel, and

note which results fall within the limits of applicability for the dispersion

relationship.
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Plate Time delay r/d 2r/vt Far Long

thickness (i.t s) (Vs) Field Time

(mm)

1.60 15 10.21 15.6

1.60 25 14.04 22.2 X

1.60 35 16.88 27.1 X X

1.60. 45 20.17 32.0 X X

229 10 5.67 13.6

2.29 17 9.38 20.3

2.29 24 10.74 24.2 X

2.29 31 13.46 29.9 X X

2.29 38 16.16 35.2 X X

3.36 10 4.67 16.4

3.36 15 6.85 21.5

3.36 20 8.54 27.2

3.36 25 9.96 31.5

Table 3.5 Experimental results for aluminum detailing

which results are valid for far-field,

long time response.
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Plate Time delay r/d 2r/vt Far Long

thickness ( is) (GLts) Field Time

(mm)

0.21 25 32.44 11.1 X X

0.21 35 37.06 12.8 X X

0.21 45 45.10 14.6 X X

0.21 55 45.42 15.2 X X

0.21 65 50.82 16.6 X X

0.54 15 13.18 11.9 X X

0.54 25 20.71 16.9 X X

0.54 35 25.48 20.7 X X

0.54 45 29.12 23.7 X X

0.54 55 33.67 26.6 X X

0.54 65 36.98 28.7 X X

1.63 15 7.58 17.8

1.63 35 12.73 30.3 X X

1.63 45 14.66 34.9 X X

1.63 55 16.52 38.8 X X

1.63 65 17.82 42.0 X X

3.21 15 4.59 21.7

3.21 25 7.42 34.1

3.21 35 9.09 42.2

3.21 45 10.77 49.7 X X

Table 3.6 Experimental results for brass detailing

which results are valid for far-field,

long time response.
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Plate Time delay r/d 2r/vt Far Long

thickness (W s) (Ws) Field Time

(mm)

1.60 15 10.06 15.1

1.60 25 11.25 18.4 X X

1.60 45 18.46 28.7 X X

1.60 55 20.43 31.2 X X

2.31 15 7.93 17.1

2.31 22 10.68 23.7 X

2.31 29 12.55 27.3 X X

2.31 36 14.13 31.0 X X

3.10 10 4.62 14.4

3.10 15 6.71 18.8

3.10 20 8.36 24.4

3.10 25 9.66 28.2

3.10 30 11.29 32.5 X

Table 3.7 Experimental results for steel detailing

which results are valid for far-field,

long time response.

Figures 3.6, 3.7 and 3.8 plot the Lamb wave velocity dispersion curves for

phase and group velocities of aluminum, brass, and steel, along with the holographic

data which satisfy the far-field, long time criterion.
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Figure 3.6 Theoretical Lamb wave dispersion curves for phase

(dashed line) and group velocity (solid line) of aluminum.

Also plotted are the experimental data for aluminum which

satisfy the far-field, long time limits of applicability

for the Lamb dispersion relationship.
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Figure 3.8 Theoretical Lamb wave dispersion curves for phase

(dashed line) and group velocity (solid line) of steel.

Also plotted are the experimental data for steel which

satisfy the far-field, long time limits of applicability

for the Lamb dispersion relationship.
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Upon examination of Figures 3.6, 3.7 and 3.8 it is clear that the holographic

data which falls within the limits of applicability of the Lamb wave dispersion rela-

tionship are indeed in good agreement with theory.

Previously it was stated empirically that holographic results for d / X ratios less

that 0.12 were in good agreement with theory. In fact, this is a direct consequence

of the long time, far-field limits of applicability for the dispersion relationship.

Referring to Tables 3.1, 3.2 and 3.3, it is evident that the experimentally measured

Lamb wave wavelengths increase as the time delay between excitation and observa-

tion increases. This is a result of the dispersive behavior of the plates. In effect,

long times correspond to large measured wavelengths; as time increases, the ratio

d / X decreases.

Taken together, these results show that it is possible to derive a Lamb wave

group velocity of a transient propagating plate wave using holographic techniques

that is in good agreement with elastic theory, provided the results are obtained

within the limits of applicability of the characteristic Lamb wave dispersion equa-

tion. The technique described uses onl' features of the spatial waveforms to deter-

mine the group velocity, and has been shown to work for different materials and

various thickness, given the same measurement criterion for each sample. Owing to

the full field nature of holography, it is therefore possible to determine group veloci-

ties as a function of d/ X for any direction parallel to the plate surface, and thus to

back out material elastic properties for each of these directions.

3.1 Applications

If the elastic properties of a given material are already known, full field holo-

graphic techniques offer an excellent means to evaluate the integrity of the sample

or detect sub-surface defects. Figure B.5 in Appendix B shows a holographic
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interferogram of a propagating Lamb wave in a brass plate. Aside from the fact that

the interference pattern is circular, denoting a high degree of isotropy, upon exami-

nation of the pattern it is also clear that in the horizontal and vertical directions the

Lamb wave amplitude is greater than in the off-axis directions. This can be seen by

looking at the first minima of the waveform. Such a variation in amplitude reveals

that there is a texture associated with this brass plate: a result of rolling. Conse-

quently, full field mapping of Lamb wave propagation offers a means to qualitatively

characterize the stress state of a given material.

Considering that the phase and group velocities of Lamb waves are a function

of plate thickness, a local variation in plate thickness should affect the propagation

of the wave, and therefore locally alter the holographic interference pattern gener-

ated by the plate motion. Because the group velocity decreases with decreasing

plate thickness, any thinning of the plate will result in a local retardation of the

wave. Figure B.7 in Appendix B shows a holographic interferogram of a transient

Lamb wave propagating through a 2.29mm thick aluminum plate. Two holes, one

6mm in diameter and one 13mm in diameter have been milled in the back of the

plate to a depth of 1mm. The effect of the holes on the wave propagation are evi-

dent. The larger diameter hole affected the wave propagation to a much greater

extent than did the smaller hole. This was to be expected, in that the large hole is of

comparable size to the acoustic wavelength, whereas the second hole is significantly

smaller. Similar techniques could prove extremely useful in composite testing,

where a delamination in the interior of a composite plate would reduce the effective

plate thickness, and thus retard the wave propagation in the vicinity of the delami-

nation.
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In view of the unique ability of Lamb waves to probe the entire thickness of a

sample, holographic techniques to map Lamb wave propagation may also prove use-

ful in evaluating the ply orientation of laminar composites, as well as characterizing

grossly anisotropic composite structures. Figures C.2, C.3, C.4, C.5 and C.6 show

holographic interferograms of propagating Lamb waves in laminar composite plates.

Each interferogram corresponds to surface displacements 29 [ s after excitation.

The series represents five plates, identical in ply lay-up (shown in Figure C.1), but

varying in the total number of plies for a given sample. The propagating waves in

the composite plates appear to follow the Lamb relationship to some extent; it is

clear that as the plate thickness decreases (n=5 -+-n= 1), so too does the velocity of

the wave.

Although the composite plates are certainly not homogeneous or isotropic,

and therefore violate the assumptions on which the Lamb wave dispersion relation-

ships were derived, it is possible that in the long wavelength limit the plates may

appear homogeneous to the acoustic wave. An indication of the anisotropy

associated with the composite plates is, however, exhibited in the Lamb wave veloc-

ity. Propagation velocity parallel to the outer plies is clearly greater than the veloc-

ity associated with other directions, and is seen to be governed by the orientation of

the plies. Indeed, Figures C.6 and C.7 show interference patterns resulting from the

propagation of Lamb waves in composite plates of identical thickness, but different

ply lay-ups. The composite plate corresponding to Figure C.6 has the ply orienta-

tion shown in Figure C.1, whereas the plate corresponding to Figure C.7 has plies of

alternating orientation. Comparison of these two figures makes a compelling

argument for the possibility of composite materials characterization using holo-

graphic mapping of transient acoustic waves.
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4 Conclusions

Empirically determined group velocities of transient antisymmetric Lamb

modes using holographic mapping techniques have been shown to be in good agree-

ment with predicted results from the elastic theory dispersion relationships for thin

plates. The holographic technique uses only features of the propagating waveforms

for determination of group velocity, i.e no absolute amplitude information is neces-

sary, and has been applied successfully to materials of different elastic properties

and thickness, using the same measurement criterion for each sample.

The existence of limits on the applicability of the characteristic Lamb equation

for determination of group velocities given a transient excitation of the plate, as pre-

viously proposed, have been experimentally verified. Namely, the time of observa-

tion should be greater than twice the distance between the input to the plate and the

point of observation divided by the bulk shear wave velocity. Additionally, the

minimum observation distance required to be in the far-field of the plate response is

approximately ten times the plate thickness.

Finally, the spatial mapping of transient Lamb waves in plates using full field

holographic techniques promises to be an excellent tool in the characterization of

engineering materials, as well as providing a means of interrogating composite struc-

tures for sub-surface defects, delaminations, and gross anisotropy.
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APPENDIX A - FORTRAN Program for Generation of Lamb Disper-

sion Curves

c Program to evaluate lamb wave speed based on
c ct, cl, kt, d

real*4 c,ct,cl,cl,c2,c3,c4
real*4 fd
integer*4 ibigistp,istl,ictictl,ict0,ifd
character' 11 fname

C

write(*,*)' Enter longitudinal bulk wave speed (cm/s):'
read (*,*) ci
write(*,*)' Enter transverse bulk wave speed (cm/s):'
read (*,*) ct
write(*,*)' Enter filename to store data:'
read (*,*) fname
open(unit = 1,file = fname,access = 'sequential',status = 'new')

C

fcl= -1.0
pi =3.14159
ifd = 1
istp = u
isti =500
icti =jint(0.8*ct)
ictO =jint(0.01 'ct)
ibig =2e9

C

write( 1,)' d/l ',' v ''v/vt'

C

c run values of c from 0.Olct to 0.8ct in steps
c of 500 cm/s, then run from 0.8ct to 0.93ct in steps
c of 0.O0lct (3Ocm/s).
c At each c evaluate fd
C

12 do 100, jct= iCtO,ictl,istl
c = floatajct)

C

do 50, ict = ifd,ibig,istp
fd = float(ict)
c I = tanb(pi'*fd * ((et* * 2-c* '2)/(ct* *2 c* '2)) "0.5)
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c2 = tanh(pifd*((cl* *2-c* *2)/(cl* *2*c* *2))* *0.5)
63 = (2.0-c' *2/ct* *2) * *

fc =cl/c2-c3/c4

C

if (fclfc) 40,40,50
C

40 write(,) fd/cc,c/ct
write(,*) fd/cc
ifd = ict
goto 100

C

50 fcl =fc
continue

100 fcl=-1
continue
if (iflg.eq.1) goto 200
ifig = 1
icto = icti1
ict I =jint(0.933 *ct)
ist I = jint(.OOO 1ct)
goto 12

200 continue
close(1)
end
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APPENDIX B - Holographic Interferograms for Aluminum, Brass

and Steel

The following photographs show a time series of holographic interferograms

taken for an aluminum plate. Holographic interferograms for brass and steel are

similar, and one example of each is shown. The circular interference pattern on

each interferogram results from the near isotropy of aluminum, brass, and steel.

Av

it
Figure B.1 Holographic interferogram of propagating Lamb wave

on a 2.29 mm thick aluminum plate, taken 10 v s after

excitation of the plate. The photograph is shown to scale.



58

Figure B.2 Holographic interferogram of propagating Lamb wave

on a 2.29 mm thick aluminum plate, taken 17 I s after

excitation of the plate. The photograph is shown to scale.
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.

Figure B.3 Holographic interferogram of propagating Lamb wave

on a 2.29 mm thick aluminum plate, taken 24 V s after

excitation of the plate. The photograph is shown to scale.



60

Figure B.4 Holographic interferogram of propagating Lamb wave

on a 2.29 mm thick aluminum plate, taken 31 vs after

excitation of the plate. The photograph Is shown to scale.
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Figure B.5 Holographic interferogram of propagating Lamb wave

on a 0.54 mm thick brass plate, taken 45 p s after

excitation of the plate. The photograph is shown to scale.
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Figure B.6 Holographic interferogram of propagating Lamb wave

on a 2.3 mm thick steel plate, taken 22 ' s after

excitation of the plate. The photograph is shown to scale.
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Figure B.7 Holographic interferogram of propagating Lamb wave

on a 2.29 mm thick aluminum plate, taken 24 V s after

excitation of the plate. The retardation of wave propagation

is a result of two holes milled in the back of the plate. The

hole on the right half of the plate is 6 mm in diameter, 1 mm

deep, and centered 2.5 cm from the center of excitation. The

hole in the left half of the plate is 13 mm in diameter, 1 mm

deep, and centered 3.2 cm from the center of excitation.

The photograph is shown to scale.



64

APPENDIX C - Holographic Interferograms for Graphite Epoxy

Plates

This series of photographs (Figures C.2-C.7) show holographic interference

patterns resulting from Lamb wave propagation in laminated composite plates. All

plates were manufactured from unidirectional tape prepreg consisting of Toray

T-300 graphite fibers impregnated with Fiberite 350F curing 976 epoxy. The

plates corresponding to Figures C.2-C.6 were made with a ply orientation as shown

in Figure C. 1. All photographs correspond to Lamb wave propagation 29 p. s after

excitation of the plate.
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On 902n On

Figure C.1 Schematic illustrating the ply orientation of the

graphite epoxy composite plates. The Index n gives an

Ind;cation of the number of plies at a given orientation,

as shown In the schematic. For the plate shown, n = 2,

signifying 2 plies at 00 orientation, followed by

4 plies at 900, ending wfth 2 plies at 0°.
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Figure C.2 Holographic interferogram of propagating Lamb wave

on a graphite epoxy composite plate with ply orientation index

number n =5. The photograph is shown to scale.
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Figure C.3 Holographic interferogram of propagating Lamb wave

on a graphite epoxy composite plate with ply orientation index

number n=4. The photograph is shown to scale.
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Figure C.4 Holographic Interferogram of propagating Lamb wave

on a graphite epoxy composite plate with ply orientation index

number n=3. The photograph is shown to scale.
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Figure C.5 Holographic interferogram of propagating Lamb wave

on a graphite epoxy composite plate with ply orientation index

number n =2. The photograph is shown to scale.
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Figure C.6 Holographic interferogram of propagating Lamb wave

on a graphite epoxy composite plate with ply orientation index

number n = 1. The photograph is shown to scale.
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Figure C.7 Holographic interferogram of propagating Lamb wave

on a graphite epoxy composite plate with ply orientation given

by 0-90-0-90. The photograph is shown to scale.
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