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Real-Time Scheduling Theory and Ada 

Abstract: The Ada tasking model was intended to support the management of 
concurrency in a priority-driven scheduling environment. In this paper, we review 
some important results of a priority-based scheduling theory, illustrate its applica- 
tions with examples, discuss its implications for the Ada tasking model, and sug- 
gest workarounds that permit us to implement analytical scheduling algorithms 
within the existing framework of Ada. This paper is a revision of CMU/SEI-88- 
TR-33.1 A shortened version is also being presented at the 1989 Ada-Europe 
Conference. 

1. Introduction 

1.1. Background 
The Real-Time Scheduling in Ada Project at the Software Engineering Institute is a coopera- 
tive effort between the SEI, Carnegie Mellon University, system developers in industry, Ada 
vendors, and DoD agencies. It aims at applying the scheduling theory reviewed in this paper 
to the design and implementation of hard real-time systems in Ada. The scheduling algo- 
rithms and theories developed under this project and at Carnegie Mellon provide an analyt- 
ical basis for understanding the timing behavior of real-time systems. The project is im- 
plementing these scheduling algorithms in an Ada runtime system, and is coding examples 
of real-time systems to evaluate the suitability of the whole approach using a generic 
avionics application, a generic missile application, and a generic inertial navigation system. 
This paper summarizes some of the scheduling approaches being studied and shows how 
they can be applied in an Ada context. 

Traditionally, many real-time systems use cyclical executives to schedule concurrent 
threads of execution. Under this approach, a programmer lays out an execution timeline by 
hand to serialize the execution of critical sections and to meet task deadlines. While such an 
approach is adequate for simple systems, it quickly becomes unmanageable for large sys- 
tems. It is a painful process to develop application code so that the compiled segments fit 
into the time slots of a cyclical executive and to ensure that the critical sections of different 
tasks do not interleave. Forcing programmers to schedule tasks by fitting code segments on 
a timeline is no better than the outdated approach of managing memory by manual memory 
overlay. Such an approach often destroys program structure and results in real-time pro- 
grams that are difficult to understand and maintain. 

The Ada tasking model represents a fundamental departure from the cyclical executive 
model. Indeed, the dynamic preemption of tasks at runtime generates nondeterministic 

1The most important revisions affect our discussion of aperiodic tasks and our analysis of how to support the 
priority ceiling protocol. 
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timelines that are at odds with the very idea of a fixed execution timeline. This nondeter- 
minism seems to make it impossible to decide whether real-time deadlines will be met. 
However, Ada's tasking concepts are well-suited to the analytic scheduling theories being 
considered in our project. In essence, these theories ensure that as long as the CPU utili- 
zation of all tasks lies below a certain bound and appropriate scheduling algorithms are 
used for the CPU and I/O processing, all tasks will meet their deadlines without knowing 
exactly when any given task will be running. Even if there is a transient overload, a fixed 
subset of critical tasks will still meet their deadlines as long as their CPU utilizations lie 
within the appropriate bound. The theories also deal with aperiodic processing require- 
ments, mode changes, and jitter requirements. Applying these theories to Ada makes Ada 
tasking truly useful for real-time applications while also putting the development and mainte- 
nance of real-time systems on an analytic, engineering basis, making these systems easier 
to develop and maintain. 

1.2. Controlling Priority Inversion 

To put real-time scheduling on an analytical basis, systems must be built in a way that en- 
sures that high-priority tasks are minimally delayed by lower priority tasks when both are 
contending for the same resources. Priority inversion occurs when the use of a resource by 
a low priority task delays the execution of a high priority task. Priority inversion occurs either 
when task priorities are incorrectly assigned or when they are not used correctly when al- 
locating resources. One common mistake in priority scheduling is assigning priorities solely 
according to task importance. 

Example 1: Suppose that x, and x2 are periodic tasks with periods 100 and 10, re- 
spectively. Both of them are initiated at t = 0, and task x1 is more important than task 
x2. Assume that task x1 requires 10 units of execution time and its first deadline is at 
t = 100, while task x2 needs 1 unit of execution time with its first deadline at t = 10. If 
task x1 is assigned higher scheduling priority because of its importance, task x2 will 
miss its deadline unnecessarily even though the total processor utilization is only 0.2. 
Both tasks can meet their deadlines using the rate monotonic algorithm [Liu & 
Layland 73], which assigns higher priorities to tasks with shorter periods. In fact, 
many more new tasks can be added into the system by using the simple rate 
monotonic scheduling algorithm. 

Although priority inversion is undesirable, it cannot be completely eliminated. For example, 
when a low priority task is in a critical region, the higher priority task that needs the shared 
data must wait. Nonetheless, the duration of priority inversion must be tightly bounded in 
order to ensure a high degree of responsiveness and schedulability. Controlling priority in- 
version is a system level problem. The tasking model, runtime support, program design, 
and hardware architecture should all be part of the solution, not part of the problem. For 
example, there is a serious priority inversion problem in some existing IEEE 802.5 token ring 
implementations. While there are 8 priority levels in the token arbitration, the queueing of 
message packets is FIFO, i.e., message priorities are ignored. As a result, when a high 
priority packet is behind a low priority packet, the high priority packet has to wait not only for 
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the lower priority packet to be transmitted, but also for the transmission of all medium priority 
packets in the network. The result is "hurry-up at the processor but miss the deadline at the 
communication network." Using FIFO queueing in a real-time system is a classical case of 
priority inversion and can lead to extremely poor schedulability. Priority assignments must 
be observed at every level of a system for all forms of resource allocation. Minimizing the 
duration of priority inversion is the key to meeting deadlines and keeping systems respon- 
sive to aperiodic events. 

Chapter 2 reviews some of the important results in real-time scheduling theory. We begin 
with the problem of scheduling independent periodic tasks. Next, we address the issues of 
maintaining stability under transient overload and the problem of scheduling both periodic 
and aperiodic tasks. We conclude Chapter 2 by reviewing the problems of real-time 
synchronization. In Chapter 3, we review the Ada tasking scheduling model and suggest 
some workarounds that permit us to implement many of the scheduling algorithms within the 
framework of existing Ada rules. Finally, we conclude this paper in Chapter 4. 
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2. Scheduling Real-Time Tasks 

In this chapter, we provide an overview of some of the important issues of a real-time 
scheduling theory. We will begin with the problem of ensuring that independent periodic 
tasks meet their deadlines. Next, we show how to ensure that critical tasks meet their dead- 
lines even when a system is temporarily overloaded. We then address the problem of 
scheduling both periodic and aperiodic tasks. Finally, we conclude this chapter by reviewing 
the problems of real-time synchronization and communication. 

2.1. Periodic Tasks 

Tasks are independent if their executions need not be synchronized. Given a set of inde- 
pendent periodic tasks, the rate monotonic scheduling algorithm gives each task a fixed pri- 
ority and assigns higher priorities to tasks with shorter periods. A task set is said to be 
schedulable if all its deadlines are met, i.e., if every periodic task finishes its execution be- 
fore the end of its period. Any set of independent periodic tasks is schedulable by the rate 
monotonic algorithm if the condition of Theorem 1 is met [Liu & Layland 73]. 

Theorem 1: A set of n independent periodic tasks scheduled by the rate 
monotonic algorithm will always meet its deadlines, for all task phasings, if 

£i+... +^<n(2^-l) = i/(„) 
M ln 

where C, and Tt axe the execution time and period of task Tj respectively. 

Theorem 1 offers a sufficient (worst-case) condition that characterizes the schedulability of 
the rate monotonic algorithm. This bound converges to 69% (In 2) as the number of tasks 
approaches infinity. Table 2-1 shows values of the bound for one to nine tasks. 

U(1) = 1.0 U(4) = 0.756                             U(7) = 0.728 
U(2) = 0.828 U(5) = 0.743                               U(8) = 0.724 
U(3) = 0.779 U(6) = 0.734                               U(9) = 0.720 

Table 2-1: Scheduling Bounds for One to Nine Independent Tasks 

The bound of Theorem 1 is very pessimistic because the worst-case task set is contrived 
and unlikely to be encountered in practice. For a randomly chosen task set, the likely bound 
is 88% [Lehoczky et al. 87]. To know if a set of given tasks with utilization greater than the 
bound of Theorem 1 can meet its deadlines, the conditions of Theorem 2 must be 
checked [Lehoczky et al. 87]. 

Theorem 2: A set of n independent periodic tasks scheduled by the rate 
monotonic algorithm will always meet its deadlines, for all task phasings, if and 
only if 

CMU/SEI-89-TR-14 



V i, 1 £ i < n, min    YC,- — —   < 1 
ptJITk\Tj\ 

(*,/)£/?, 

where C. and 7- are the execution time and period of task x= respectively and 
4-{Cfc,0|l£*£i,/-l. •••XT/rkl}. 

This theorem provides the exact schedulability criterion for independent periodic task sets 
under the rate monotonic algorithm. In effect, the theorem checks if each task can complete 
its execution before its first deadline by checking all the scheduling points.2 The scheduling 
points for task x are x's first deadline and the ends of periods of higher priority tasks within 
x's first deadline. In the formula, i denotes the task to be checked and k denotes each of the 
tasks that affects the completion time of task i, i.e., task / and the higher priority tasks. For a 
given i and k, each value of / represents the scheduling points of task it. For example, sup- 
pose that we have tasks x, and x2 with periods 7^ = 5 and T2 = 14. For task x^ (i = 1) we 
have only one scheduling point, the end of task x^s first period, i.e., i = k=l and 
(/= 1, • ••,\-T/Tk\ = lTl/TlJ = 1). The scheduling point is, of course, x^s first deadline 
(lTk = 5,l=l,k=l). For task x2 (i = 2), there are two scheduling points from all higher 
priority tasks, x^ (k= 1), i.e., (/= 1, • • •, Ijyr^J = L^/TjJ = 2). The two scheduling points 
are, of course, the two end points of task x^s period within the first deadline of task x2 at 14, 
i.e., (/ Tk = 5,1 = 1, k = 1) and (/ Tk = 10, / = 2, k = 1). Finally, there is the scheduling point 
from x2's own first deadline, i.e., (/ Tk = 14, / = 1, k = 2). At each scheduling point, we check 
if the task in question can complete its execution at or before the scheduling point. This is 
illustrated in detail by Examples 3 and 8 below. 

Example 2: Consider the case of three periodic tasks, where Ut = C/T^ 

• Task t,: C, « 20; 7, -100; I/, - 0.2 
• Task x2: C2 = 40 ; T2 = 150 ; U2 = 0.267 
• Task x3: C3 = 100 ; T3 = 350 ; U3 = 0.286 

The total utilization of these three tasks is 0.753, which is below Theorem 1 's bound 
for three tasks: 3(21/3 - 1) = 0.779. Hence, we know these three tasks are schedul- 
able, i.e., they will meet their deadlines if z^ is given the highest priority, x2 the next 
highest, and x3 the lowest. 

The remaining 24.7% processor capacity can be used for low priority background 
processing. However, we can also use it for additional hard real-time computation. 

Example 3: Suppose we replace x^s algorithm with one that is more accurate and 
computationally intensive. Suppose the new algorithm doubles x^s computation 
time from 20 to 40, so the total processor utilization increases from 0.753 to 0.953. 
Since the utilization of the first two tasks is 0.667, which is below Theorem 1 's bound 

2tt was shown in [Liu & Layland 73] that when all the tasks are initiated at the same time (the worst-case 
phasing), if a task completes its execution before the end of its first period, it will never miss a deadline. 
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for two tasks, 2(21/2 - 1) = 0.828, the first two tasks cannot miss their deadlines. For 
task x3, we use Theorem 2 to check whether the task set is schedulable, i.e., we set i 
= n = 3, and check whether one of the following equations holds: 

VM, l<*,/<3,    fpZacy*/7t 

To check if task x3 can meet its deadline, it is only necessary to check the equation 
for values of / and k such that lTk£T3 = 350. If one of the equations is satisfied, the 
task set is schedulable. 

C^ + Cz + CsZT, 40 + 40 +100 > 100 /-1,*-1 

or     2C,+C2 + C3£T2 80 + 40 +100 > 150 /=1,* = 2 

or     2Ct+2C2 + C3<2T1 80+ 80 +100 > 200 / = 2,* = 1 

or     3^+202 + 03^272 120 + 80 + 100 = 300 / = 2, k = 2, or/ = 3, it = 13 

or     4q + 3C2 + C3 < T3 160 + 120 +100 > 350 /=1,* = 3 

The analysis shows that task x3 is also schedulable and in the worst-case phasing 
will meet its deadline exactly at time 300. Hence, we can double the utilization of the 
first task from 20% to 40% and still meet all the deadlines. The remaining 4.7% 
processor capacity can be used for either background processing or a fourth hard 
deadline task, which has a period longer than that of x3

4 and which satisfies the con- 
dition of Theorem 2. 

A major advantage of using the rate monotonic algorithm is that it allows us to separate 
logical correctness concerns from timing correctness concerns. Suppose that a cyclical ex- 
ecutive is used for this example. The major cycle must be the least common multiple of the 
task periods. In this example, the task periods are in the ratio 100:150:350 = 2:3:7. A minor 
cycle of 50 units would induce a major cycle of 42 minor cycles, which is an overly complex 
design. To reduce the number of minor cycles, we can try to modify the periods. For ex- 
ample, it might be possible to reduce the period of the longest task, from 350 to 300. The 
total utilization is then exactly 100%, and the period ratios are 2:3:6; the major cycle can 
then be 6 minor cycles of 50 units. To implement this approach and minimize the splitting of 
computations belonging to a single task, we could split task x1 into two parts of 20 units 
computation each. The computation of task x2 similarly could be split into at least two parts 
such that task x3 need only be split into four parts. A possible timeline indicating the amount 

3That is, after 300 units of time, t, will have run three times, i2 will have run twice, and tg will have run once. 
The required amount of computation just fits within the allowed time, so each task meets its deadline. [Liu & 
Layland 73] showed that since the tasks meet their deadlines at least once within the period 7"3, they will always 
meet their deadlines. 

"Task x3 just meets its deadline at 300 and hence we cannot add a task with a priority higher than that of task 

V 
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of computation for each task in each minor cycle is shown in the following table, where 20, 
on the first line indicates the first part of task T,'S computation, which takes 20 units of time. 

Cyclic Timeline for Example 3 

1 2 3 4 5 6 

X1 20, 202 20, 202 20, 202 

*2 30, 102 30, 102 

*3 20, 302 203 304 

Table 2-2:   Minor Cycle Timeline: Each Minor Cycle Is 50. 

When processor utilization level is high and there are many tasks, fitting code segments into 
time slots can be a time-consuming iterative process. In addition, a later modification of any 
task may overflow a particular minor cycle and require the entire timeline to be redone. But 
more important, the cyclic executive approach has required us to modify the period of one of 
the tasks, increasing the utilization to 100% without in fact doing more useful work. Under 
the rate monotonic approach for this example, all deadlines are met, but total machine utili- 
zation must be 95.3% or less instead of 100% or less. This doesn't mean the rate 
monotonic approach is less efficient. The capacity that isn't needed to service real-time 
tasks in the rate monotonic approach can be used by background tasks, e.g., for built-in-test 
purposes. With the cyclic executive approach, no such additional work can be done in this 
example. Of course, the scheduling overhead for task preemption needs to be taken into 
account. If S is the amount of time needed for a single scheduling action, then the total 
utilization devoted to scheduling is 2S/T, + 2S/T2 + 2S/T3 since there are two scheduling 
actions per task. In the cyclic case, the, scheduling overhead is partly in the (very small) 
time needed to dispatch each task's code segment in each minor cycle and partly in the 
utilization wasted by decreasing the period for task 3. For this example, the scheduling 
overhead for the cyclic approach is at least 4.7%: 

Actual_Utilization- Required_Utilization, i.e., 
100/300 - 100/350 = .333 - .286 = .047 

Thus, although the rate monotonic approach may seem to yield a lower maximum utilization 
than the cyclic approach, in practice, the cyclic approach may simply be consuming more 
machine time because the periods have been artificially shortened. In addition, cyclic ex- 
ecutives get complicated when they have to deal with aperiodic events. The rate monotonic 
approach, as will be discussed later, readily accommodates aperiodic processing. Finally, 
the rate monotonic utilization bound as computed by Theorem 2 is a function of the periods 
and computation times of the task set. The utilization bound can always be increased by 
transforming task periods, as described in the next section. 
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2.2. Stability Under Transient Overload 

In the previous section, the computation time of a task is assumed to be constant. However, 
in many applications, task execution times are stochastic, and the worst-case execution time 
can be significantly larger than the average execution time. To have a reasonably high 
average processor utilization, we must deal with the problem of transient overload. During 
transient overload, we want to guarantee the deadlines of the tasks that are critical to the 
mission, even at the cost of missing the deadlines of non-critical tasks. 

We consider a scheduling algorithm to be stable if there is a fixed set of tasks (the stable 
set) that always meet their deadlines even if the processor is overloaded. Tasks outside the 
stable set may miss their deadlines as the processor load increases or as task phasings 
change. To ensure that the critical tasks always meet their deadlines, it is sufficient for them 
to belong to the stable set of tasks. 

The rate monotonic algorithm is a stable scheduling algorithm. Suppose there are n tasks. 
The stable set consists of the first k highest priority tasks that satisfy Theorem 1 or 2. For 
example, if the utilization of the first k tasks is less than 69.3%, the tasks will always meet 
their deadlines no matter what the total processor load is. Of course, which tasks are in the 
stable task set depends on the worst-case utilizations of the particular tasks considered. 
The important point is that the rate monotonic algorithm guarantees that if such a set exists, 
it always consists of tasks with the highest priorities. This means that if a transient overload 
should develop, tasks with longer periods will miss their deadlines. 

Of course, a task with a longer period could be more critical to an application than a task 
with a shorter period. One might attempt to ensure that the critical task always meets its 
deadline by assigning priorities according to a task's importance. However, this approach 
can lead to poor schedulability. That is, with this approach, deadlines of critical tasks might 
be met only when the total utilization is low. 

The period transformation technique can be used to ensure high utilization while meeting 
the deadline of an important, long-period task. Period transformation means turning a long- 
period important task into a high priority task by splitting its work over several short periods. 
For example, suppose task t with a long period T is not in the critical task set and must 
never miss its deadline. We can make x simulate a short period task by giving it a period of 
772 and suspending it after it executes half its worst-case execution time, C/2. The task is 
then resumed and finishes its work in the next execution period. It still completes its total 
computation before the end of period T. From the viewpoint of the rate monotonic theory, 
the transformed task has the same utilization but a shorter period, 772, and its priority is 
raised accordingly. It is important to note that the most important task need not have the 
shortest period. We only need to make sure that it is among the first n high priority tasks 
whose worst-case utilization is within the scheduling bound. A systematic procedure for 
period transformation with minimal task partitioning can be found in [Sha et al. 86]. 

Period transformation allows important tasks to have higher priority while keeping priority 
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assignments consistent with rate monotonic rules. This kind of transformation should be 
familiar to users of cyclic executives. The difference here is that we don't need to adjust the 
code segment sizes so different code segments fit into shared time slots. Instead, t simply 
requests suspension after performing Cfl amount of work. Alternatively, the runtime 
scheduler can be instructed to suspend the task after a certain amount of computation has 
been done, without affecting the application code.5 

The period transformation approach has another benefit — it can raise the rate monotonic 
utilization bound. Suppose the rate monotonic utilization bound is Umax < 100%, i.e., total 
task utilization cannot be increased above Umax without missing a deadline. When a period 
transformation is applied to the task set, Umax will rise. For example: 

Example 4: Let 

• Task i,: Cx = 4 ; 7, = 10 ; J7, = .400 
• Task i2: C2 = 6 ; T2 = 14 ; U2 = 428 

The total utilization is .828, which just equals the bound of Theorem 2, so this set of 
two tasks is schedulable. If we apply Theorem 2, we find: 

Ci+C2<T, 4 + 6 = 10 1=1^=1 

or        2C1 + C2<72 8 + 6 = 14 /-1,*-2 

So Theorem 2 says the task set is just schedulable. Now suppose we perform a 
period transformation on task xv so C{ = 2 and T{ = 5. The total utilization is the 
same and the set is still schedulable, but when we apply Theorem 2 we find: 

C,+C2<Ti 2 + 6>5 / = 1, * = 1 

or        2C1 + C2<271 4 + 6 = 10 / = 2, fc=1 

or        3C1 + C2<T2 6 + 6<14 /=1,* = 2 

The third equation shows that the compute times for tasks x1 and/or x2 can be in- 
creased without violating the constraint. For example, the compute time of task x1 

can be increased by 2/3 units to 2.667, giving an overall schedulable utilization of 
2.667/5 + 6/14 = .961, or the compute time of Task x2 can be increased to 8, giving 
an overall schedulable utilization of 2/5 + 8/14 = .971. So the effect of the period 
transformation has been to raise the utilization bound from .828 to at least .961 and 
at most .971. 

If periods are uniformly harmonic, i.e., if each period is an integral multiple of each shorter 

5The scheduler must ensure that x is not suspended while in a critical region since such a suspension can 
cause other tasks to miss their deadlines. If the suspension time arrives but the task is in a critical region, then 
the suspension should be delayed until the task exits the critical region. To account for this effect on the 
schedulabilhy of the task set, the worst-case execution time must be increased by c, the extra time spent in the 
critical region, i.e., t's utilization becomes (0.5C+e)/0.5T. 
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period, the utilization bound of the rate monotonic algorithm is 100%.6 So the utilization 
bound produced by the rate monotonic approach is only an upper bound on what can be 
achieved if the periods are not transformed. Of course, as the periods get shorter, the 
scheduling overhead utilization increases, so the amount of useful work that can be done 
decreases. For example, before a period transformation, the utilization for a task, including 
scheduling overhead, is (C + 2S)/T. After splitting the period into two parts, the utilization is 
(.5C + 2S)/.5T, so scheduling overhead is a larger part of the total utilization. However, the 
utilization bound is also increased in general. If the increase in utilization caused by the 
scheduling overhead is less than the increase in the utilization bound, then the period trans- 
formation is a win — more useful work can be done while meeting all deadlines. 

2.3. Scheduling Both Aperiodic and Periodic Tasks 

It is important to meet the regular deadlines of periodic tasks and the response time require- 
ments of aperiodic events. ("Aperiodic tasks" are used to service such events.) Let us 
begin with a simple example. 

Example 5: Suppose that we have two tasks. Let x^ be a periodic task with period 
100 and execution time 99. Let x2 be an aperiodic task that appears once within a 
period of 100 but the arrival time is random. The execution time of task x2 is one 
unit. If we let the aperiodic task wait for the periodic task, then the average response 
time is about 50 units. The same can be said for a polling server, which provides 
one unit of service time in a period of 100. On the other hand, we can deposit one 
unit of service time in a "ticket box" every 100 units of time; when a new "ticket" is 
deposited, the unused old tickets, if any, are discarded. With this approach, no mat- 
ter when the aperiodic event arrives during a period of 100, it will find there is a ticket 
for one unit of execution time at the ticket-box. That is, x2 can use the ticket to 
preempt T1 and execute immediately when the event occurs. In this case, T2'S re- 
sponse time is precisely one unit and the deadlines of x^ are still guaranteed. This is 
the idea behind the deferrable server algorithm [Lehoczky 87], which reduces 
aperiodic response time by a factor of about 50 in this example. 

In reality, there can be many periodic tasks whose periods can be arbitrary. Furthermore, 
aperiodic arrivals can be very bursty, as for a Poisson process. However, the idea remains 
unchanged. We should allow the aperiodic tasks to preempt the periodic tasks subject to 
not causing their deadlines to be missed. It was shown in [Lehoczky 87] that the deadlines 
of periodic tasks can be guaranteed provided that during a period of Ta units of time, there 
are no more than Ca units of time in which aperiodic tasks preempt periodic tasks. In addi- 
tion, the total periodic and aperiodic utilization must be kept below 
(Ua + ln[(2 + Ua)/(2Ua + 1))], where Ua = CJTQ. And the server's period must observe the 
inequality Ta<.(T-Ca)", where T is the period of a periodic task whose priority is next to 
the server. 

6For example, by transforming the periods in Example 3 so x\ and x'2 both have periods of 50, the utilization 
bound is 100%, i.e., 4.7% more work can be done without missing a deadline. 
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Compared with background service, the deferrable server algorithm typically improves 
aperiodic response time by a factor between 2 and 10 [Lehoczky 87]. Under the deferrable 
server algorithm, both periodic and aperiodic task modules can be modified at will as long as 
the utilization bound is observed. 

A variation of the deferrable server algorithm is known as the sporadic server 
algorithm [Sprunt et al. 89]. As for the deferrable server algorithm, we allocate Ca units of 
computation time within a period of Ta units of time. However, the Ca of the server's budget 
is not refreshed until the budget is consumed.7 From a capacity planning point of view, a 
sporadic server is equivalent to a periodic task that performs polling. That is, we can place 
sporadic servers at various priority levels and use only Theorems 1 and 2 to perform a 
schedulability analysis. Sporadic and deferrable servers have similar performance gains 
over polling because any time an aperiodic task arrives, it can use the allocated budget 
immediately. When polling is used, however, an aperiodic arrival generally needs to wait for 
the next instant of polling. The sporadic server has the least runtime overhead. Both the 
polling and the deferrable servers have to be serviced periodically, even if there are no 
aperiodic arrivals.8 There is no overhead for the sporadic server until its execution budget 
has been consumed. In particular, there is no overhead if there are no aperiodic arrivals. 
Therefore, the sporadic server is especially suitable for handling emergency aperiodic 
events that occur rarely but must be responded to quickly. 

Response Time 
Relative to 

Background Service 

Periodic Load = 40% 

25 35 45 
Aperiodic Load (%) 

Figure 2-1:  Scheduling Both Aperiodic and Periodic Tasks 

55 

7Early refreshing is also possible under certain conditions. See [Sprunt et al. 89]. 

8The ticket box must be refreshed at the end of each deferrable server's period. 
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Simulation studies of the sporadic server algorithm [Sprunt et al. 89] show that in a lightly 
loaded system, aperiodic events are served 5-10 times faster than with background service, 
and 3-6 times faster than with polling. Figure 2-1, from [Sprunt et al. 89], shows one ex- 
ample of the relative performance between background execution, the deferrable server al- 
gorithm (DS), the sporadic server algorithm (SS), polling, and another algorithm, not ex- 
plained here, called the priority exchange algorithm (PE). The analysis underlying these 
results assumes a Poisson arrival process with exponentially distributed service time. In 
addition, each server (other than the background server) is given a period that allows it to 
execute as the highest priority task.9 Aperiodic requests can therefore preempt the execu- 
tion of periodic tasks as long as server execution time is available. 

The maximum amount of aperiodic service time allowed before periodic tasks will miss their 
deadline is called the maximum server size. In this example, aperiodic tasks can preempt 
periodic tasks for at most 56.3% of the sporadic or polling server's period without causing 
the deadlines of periodic tasks to be missed. For the deferrable server, only a smaller 
amount of service time is possible: 43.6%. In either case, the server is not allowed to ex- 
ecute at its assigned priority once its computation budget is exhausted, although ft can con- 
tinue to execute at background priority if time is available. A server's budget is refreshed at 
the end of its period, at which time execution can resume at the server's assigned priority. A 
server can resume its execution at its assigned priority, only when its budget is refreshed. 

Figure 2-1 shows the average response times of the different scheduling algorithms as a 
function of average aperiodic workload. When the average aperiodic workload is small com- 
pared with the sporadic server size, randomly arriving requests are likely to find the server 
available and can successfully preempt the periodic tasks. This results in good perfor- 
mance. For example, when the average aperiodic workload is 5%,10 the deferrable and 
sporadic server response time is about 10% of the average background response time, 
while the average polling response time is about 65% of background response time. (This 
means the sporadic server gives about 6 times faster response than polling and 10 times 
faster than background service.) When the aperiodic workload increases, the likelihood of 
server availability decreases and the resulting performance advantage also decreases. For 
example, when the aperiodic load is 55%, the different server algorithms do not give signif- 
icant performance improvement over background service. 

*This means each server's period must not be greater than the shortest period of all the periodic tasks. The 
sporadic server and polling server can have a period equal to that of the shortest period task. As mentioned 
earlier in this section, however, the deferrable server must have an even shorter period. 

10A 5% average aperiodic workload means that in the long run, the aperiodic requests consume about 5% of 
the CPU cycles, although the number of requests and their execution time vary from period to period and from 
request to request. 
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2.4. Task Synchronization 

In the previous sections we have discussed the scheduling of independent tasks. Tasks, 
however, do interact. In this section, we will discuss how the rate monotonic scheduling the- 
ory can be applied to real-time tasks that must interact. The discussion is limited in this 
paper to scheduling within a uniprocessor. Readers who are interested in the multiproces- 
sor synchronization problem should see [Rajkumar et al. 88]. 

Common synchronization primitives include semaphores, locks, monitors, and Ada rendez- 
vous. Although the use of these or equivalent methods is necessary to protect the consis- 
tency of shared data or to guarantee the proper use of nonpreemptable resources, their use 
may jeopardize the ability of the system to meet its timing requirements. In fact, a direct 
application of these synchronization mechanisms may lead to an indefinite period of priority 
inversion and low schedulability. 

Example 6: Suppose J^, J2, and J3 are three jobs arranged in descending order of 
priority with J1 having the highest priority. We assume that jobs J^ and J3 share a 
data structure guarded by a binary semaphore S. Suppose that at time tv job J3 

locks the semaphore S and executes its critical section. During the execution of the 
critical section of job J3, the high priority job J, is initiated, preempts J3 and later 
attempts to use the shared data. However, job J^ will be blocked on the semaphore 
S. We would hope that J,, being the highest priority job, is blocked no longer than 
the time for job J3 to complete its critical section. However, the duration of blocking 
is, in fact, unpredictable. This is because job J3 can be preempted by the interme- 
diate priority job J2. The blocking of J3, and hence that of J,, will continue until J2 

and any other pending intermediate jobs are completed. 

The blocking period in this example can be arbitrarily long. This situation can be partially 
remedied if a job in its critical section is not allowed to be preempted; however, this solution 
is only appropriate for very short critical sections because it creates unnecessary blocking. 
For instance, once a low priority job enters a long critical section, a high priority job that 
does not access the shared data structure may be needlessly blocked. 

The priority ceiling protocol is a real-time synchronization protocol with two important 
properties: 1) freedom from mutual deadlock, and 2) bounded blocking, which means that 
at most one lower priority task can block a higher priority task [Goodenough & Sha 88, Sha 
et al. 87]. There are two ideas in the design of this protocol. First is the concept of priority 
inheritance: when a task x blocks the execution of higher priority tasks, task x executes at 
the highest priority level of all the tasks blocked by x. Secondly, we must guarantee that a 
critical section is allowed to start execution only if the section will always execute at a priority 
level that is higher than the (inherited) priority levels of any preempted critical sections. It 
was shown in [Sha et al. 87] that such a prioritized total ordering in the execution of critical 
sections leads to the two desired properties. To achieve such prioritized total ordering, we 
define the priority ceiling of a binary semaphore S to be the highest priority of all tasks that 
may lock S. When a task x attempts to execute one of its critical sections, it will be 
suspended unless its priority is higher than the priority ceilings of all semaphores currently 
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locked by tasks other than x. If task x is unable to enter its critical section for this reason, 
the task that holds the lock on the semaphore with the highest priority ceiling is said to be 
blocking x and hence inherits the priority of x. As long as a task x is not attempting to enter 
one of its critical sections, it will preempt every task that has a lower priority. 

Example 7: Suppose that we have two jobs J-, and J2 in the system. In addition, 
there are two shared data structures protected by binary semaphores S^ and S2 re- 
spectively. Suppose the sequence of processing steps for each job is as follows. 

/!«{••-, PCS,), ••,P(S2), •••,V(S2), •••,V(S1), •••} 

/2 = {---,p(S2), ••,P(S1), •••,y/(sl), •••,v(S2), •••} 

Recall that the priority of job J^ is assumed to be higher than that of job J2. Thus, the 
priority ceilings of both semaphores S: and S2 are equal to the priority of job J1. 
Suppose that at time ^, J2 is initiated and it begins execution and then locks 
semaphore S^ At time tv job J: is initiated and preempts job J2 and at time t2, job 
Ji tries to enter its critical section by making an indivisible system call to execute 
P(S1). However, the runtime system will find that the priority of Jy is not higher than 
the priority ceiling of locked semaphore S2. Hence, the runtime system suspends 
job j| without locking Sv Job J2 now inherits the priority of job J, and resumes ex- 
ecution. Note that J^ is blocked outside its critical section. As JA is not given the lock 
on S1 but suspended instead, the potential deadlock involving J1 and J2 is 
prevented. Once J2 exits its critical section, it will return to its assigned priority and 
immediately be preempted by job •/,. From this point on, J, will execute to comple- 
tion, and then J2 will resume its execution until its completion. 

Let Bi be the longest duration of blocking that can be experienced by task Xj. The following 
two theorems indicate whether the deadlines of a set of periodic tasks can be met if the 
priority ceiling protocol is used. 

Theorem 3: A set of n periodic tasks using the priority ceiling protocol can be 
scheduled by the rate monotonic algorithm, for all task phasings, if the following 
condition is satisfied [Sha et al. 87]: 

C, 
_!+...+ 
h 

St + max (%., ••• ,?H)<n(2^-l) 

Theorem 4: A set of n periodic tasks using the priority ceiling protocol can be 
scheduled by the rate monotonic algorithm for all task phasings if the following 
condition is satisfied [Sha et al. 87]. 

V /', 1 <, i <. n, min 
.     /"      1   ITt     C,    B,\ 

where Ct, Tt, and Rt are defined in Theorem 2, and Bi is the worst-case blocking 
time for xf. 
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Remark: Theorems 3 and 4 generalize Theorems 1 and 2 by taking blocking into considera- 
tion. The B,'s in Theorems 3 and 4 can be used to account for any delay caused by 
resource sharing. Note that the upper limit of the summation in the theorem is (i- 1) in- 
stead of i, as in Theorem 2. 

In the application of Theorems 3 and 4, it is important to realize that under the priority ceiling 
protocol, a task x can be blocked by a lower priority task xL if xL may lock a semaphore S 
whose priority ceiling is higher than or equal to the priority of task x, even if x and xL do not 
share any semaphore. For example, suppose that xL locks S first. Next, x is initiated and 
preempts xL. Later, a high priority task xH is initiated and attempts to lock S. Task xH will be 
blocked. Task xL now inherits the priority of xH and executes. Note that x has to wait for the 
critical section of xL even though x and xL do not share any semaphore. We call such block- 
ing push-through blocking. Push-through blocking is the price for avoiding unbounded prior- 
ity inversion. If task xL does not inherit the priority of xH, task xH can be indirectly preempted 
by task x and all the tasks that have priority higher than that of xL. Finally, we want to point 
out that even if task xH does not attempt to lock S but attempts to lock another unlocked 
semaphore, xH will still be blocked by the priority ceiling protocol because the priority of xH is 
not higher than the priority ceiling of S. We term this form of blocking as ceiling blocking. 
Ceiling block is the price for ensuring the freedom of deadlock and the property of a task 
being blocked at most once. 

2.5. An Example Application of the Theory 

In this section, we give a simple example to illustrate the application of the scheduling the- 
ory. 

Example 8: Consider the following task set. 

1. Emergency handling task: execution time = 5 msec; worst case inter- 
arrival time = 50 msec; deadline is 6 msec after arrival. 

2. Aperiodic event handling tasks: average execution time = 2 msec; 
average inter-arrival time = 40 msec; fast response time is desirable 
but there are no hard deadlines. 

3. Periodic task ty execution time = 20 msec; period = 100 msec; dead- 
line is at the end of each period. 
In addition, x3 may block i^ for 10 msec by using a shared communi- 
cation server, and task x2 may block x1 for 20 msec by using a shared 
data object. 

4. Periodic task x2: execution time = 40 msec; period = 150 msec; dead- 
line is 20 msec before the end of each period. 

5. Periodic task x3: execution time = 100 msec; period = 350 msec; dead- 
line is at the end of each period. 

Solution:   First, we create a sporadic server for the emergency task, with a period of 50 
msec and a service time 5 msec. Since the server has the shortest period, the rate 
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monotonic algorithm will give this server the highest priority. It follows that the emergency 
task can meet its deadline. 

Since the aperiodic tasks have no deadlines, they can be assigned a low background prior- 
ity. However, since fast response time is desirable, we create a sporadic server executing at 
the second highest priority. The size of the server is a design issue. A larger server (i.e., a 
server with higher utilization) needs more processor cycles but will give better response 
time. In this example, we choose a large server with a period of 100 msec and a service 
time of 10 msec. We now have two tasks with a period of 100 msec, the aperiodic server 
and periodic task xv The rate monotonic algorithm allows us to break the tie arbitrarily, and 
we let the server have the higher priority. 

We now have to check if the three periodic tasks can meet their deadlines. Since under the 
priority ceiling protocol a task can be blocked by lower priority tasks at most once, the max- 
imal blocking time for task x, is BY = max(10, 20) msec = 20 msec. Since X3 may lock the 
semaphore Sc associated with the communication server and the priority ceiling of Sc is 
higher than that of task x2, task x2 can be blocked by task x3 for 10 msec.11 Finally, task x2 

has to finish 20 msec earlier than the nominal deadline for a periodic task. This is equivalent 
to saying that t2 will always be blocked for an additional 20 msec but its deadline is at the 
end of the period. Hence, B2 - (10 + 20) msec = 30 msec.12 At this point, we can directly 
apply Theorem 4. However, we can also reduce the number of steps in the analysis by 
noting that period 50 and 100 are harmonics and we can treat the emergency server as if it 
has a period of 100 msec and a service time of 10 msec, instead of a period of 50 msec and 
a service time of 5 msec. We now have three tasks with a period of 100 msec and an execu- 
tion time of 20 msec, 10 msec, and 10 msec respectively. For the purpose of analysis, these 
three tasks can be replaced by a single periodic task with a period of 100 msec and an 
execution time of 40 msec (20 + 10 + 10). We now have the following three equivalent 
periodic tasks for analysis: 

• Taskx^C, =40:7, = 100:6, =20; l^ =0.4 
• Task x2: C2 = 40 ; T2 = 150 ; B2 = 30 ; U2 = 0.267 

• Task x3: C3 = 100 ; T3 = 350 ; 63 = 0 ; U3 = 0.286 

Using Theorem 4: 

1. Task x,: Check C, + B, < T,. Since 40 + 20 < 100, task x, is schedulable. 

2. Task x2: Check whether either 

f^ + Cg + B^T., 40 + 40 + 30 > 100 
or        2C1 + C2 + B2<72 80+40 + 30 = 150 

11This may occur if ig blocks t, and inherits the priority of tv 

12Note that the blocked-at-most-once resuK does not apply here.   It only applies to blocking caused by task 
synchronization using the priority ceiling protocol. 

CMU7SEI-89-TR-14 17 



Task T2 is schedulable and in the worst-case phasing will meet its deadline 
exactly at time 150. 

3. Task x3: Check whether either 

C, + C2 + C3 < 7., 40 + 40 + 100 > 100 

or        2C1 + C2 + C3<72 80 + 40 +100 > 150 

or        2C1+2C2 + C3^271 80+ 80 +100 >200 

or        3C,+2C2 + C3£2T2 120 + 80 + 100 = 300 

or        4^ + 3C2 + C3 < T3 160 + 120 +100 > 350 

Task x3 is also schedulable and in the worst-case phasing will meet its deadline exactly at 
time 300. It follows that all three periodic tasks can meet their deadlines. 

We now determine the response time of the aperiodics. The server capacity is 10% and the 
average aperiodic workload is 5% (2/40). Because most of the aperiodic arrivals can find 
"tickets," we would expect a good response time. Indeed, using a M/M/1 [Kleinrock 75] ap- 
proximation for the lightly loaded server, the expected response time for the aperiodics is 
W = E[S]/(1 - p) = 2/(1 - (0.05/0.10)) = 4 msec where E[S] is the average execution time of 
aperiodic tasks and p is the average server utilization. Finally, we want to point out that 
although the worst-case total periodic and server workload is 95%, we can still do quite a bit 
of background processing since the soft deadline aperiodics and the emergency task are 
unlikely to fully utilize the servers. The results derived for this example show how the 
scheduling theory puts real-time programming on an analytic engineering basis. 
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3. Real-Time Scheduling in Ada 
Although Ada was intended for use in building real-time systems, its suitability for real-time 
programming has been widely questioned. Many of these questions concern practical is- 
sues, such as the cost of performing a rendezvous, minimizing the duration of interrupt 
masking in the runtime system, providing efficient support for interrupt handling, etc. These 
problems are being addressed by compiler vendors who are aiming at the real-time market. 
More important are concerns about the suitability of Ada's conceptual model for dealing with 
real-time programming. For example, tasks in Ada run nondeterministically, making it hard 
for traditional real-time programmers to decide whether any tasks will meet their deadlines. 
In addition, the scheduling rules of Ada don't seem to support prioritized scheduling well. 
Prioritized tasks are queued in FIFO order rather than by priority; high priority tasks can be 
delayed indefinitely when calling low priority tasks (due to priority inversion; see 
[Goodenough & Sha 88] for an example); and task priorities cannot be changed when appli- 

cation demands change at runtime. Fortunately, it appears that none of these problems 
presents insurmountable difficulties; solutions exist within the current language framework, 
although some language changes would be helpful to ensure uniform implementation sup- 
port. The Real-Time Scheduling in Ada Project at the SEI is specifying coding guidelines 
and runtime system support needed to use analytic scheduling theory in Ada programs. 
The guidelines are still evolving and being evaluated; but so far, it seems likely they will 
meet the needs of a useful range of systems. 

The rest of this section summarizes the approach being taken by the project, and then 
shows how Ada's scheduling rules can be interpreted to support the requirements of rate 
monotonic scheduling algorithms. 

3.1. Ada Real-Time Design Guidelines 

The coding and design guidelines being developed by the SEI Real-Time Scheduling in Ada 
Project reflect a basic principle of real-time programming — write systems in a way that 
minimizes priority inversion; that is minimize the time a high priority task has to wait for the 
execution of lower priority tasks. 

For example, consider a set of periodic tasks, called clients, that must exchange data 
among themselves. They do not call each other to exchange data. Instead, whenever they 
must read or write shared data or send a message, they call a server task. Each server task 
has a simple structure — an endless loop with a single select statement with no guards.13 

This structure models the notion of critical regions guarded by a semaphore; each entry is a 
critical region for the task calling the entry. 

13The prohibition against guards simplifies the schedulability analysis and the runtime system implementation, 
but otherwise is not essential. 
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Client tasks are assigned priorities according to rate monotonic principles; that is, tasks with 
the shortest periods are given the highest priorities. There are two options when assigning 
a priority to a server. If the Ada runtime system supports the priority ceiling protocol directly 
(the next section explains why the runtime system is allowed to support the protocol), then 
give the server a low or an undefined priority. In addition, tell the runtime system the priority 
ceiling of the server, i.e., the highest priority of all its clients. Then, when a server is execut- 
ing on behalf of a client task, no other client task will be allowed to call any server unless the 
client's priority is higher than the executing server's priority ceiling. If the client does not 
have a sufficiently high priority, its call will be blocked (i.e., the caller will be preempted just 
before the call would be placed on an entry's queue), and the server's priority will be raised 
to the priority of the blocked caller. This treatment of competing calls will ensure that a high 
priority task is blocked at most once by a server [Goodenough & Sha 88]. Moreover, be- 
cause calls are preempted before they are queued, when the executing server completes its 
rendezvous, the highest priority blocked task will be able to execute. In effect, calls will be 
processed in priority order, and mutual deadlock caused by nested server calls will be im- 
possible. 

If the priority ceiling protocol is not directly supported by an Ada runtime system, the effect 
of the protocol can often nonetheless be achieved. Suppose a server is used to synchro- 
nize access to data shared by several tasks. The ceiling protocol requires that while a ser- 
ver is in rendezvous with a client, no other server be called by any client unless the client 
has a priority higher than the server's priority ceiling. This effect can be easily achieved 
using existing Ada runtime systems by assigning the server task a ceiling priority, i.e., a 
priority that is one greater than the priority of its highest priority caller. In this case, the 
server will be either waiting for a client or be serving a client at a priority that prevents other 
clients from executing and calling any server with an equal or lower priority ceiling. This 
approach avoids the prioritized queueing problem because there will never be more than 
one queued client task. It is also not hard to see why mutual deadlock will be impossible. 

This simple approximation to the ceiling protocol will not work, however, if the server task 
suspends itself while in rendezvous. Such a suspension will allow client tasks with priorities 
lower than that of the suspended server to rendezvous with other servers; this violates the 
principle of the ceiling protocol. Such a suspension can be caused by either the server's 
need to synchronize with external I/O events in a uniprocessor or the server's need to ren- 
dezvous with another task in another processor in a multiprocessor. When a server task 
can suspend itself while in a rendezvous, care must be taken to ensure that no calls are 
accepted by other servers having the same or a lower ceiling priority. In addition, because 
queues can now develop, it is important that queued calls be serviced in priority order. 
Preventing inappropriate server calls and ensuring priority queueing can require quite com- 
plex code involving entry families, so this method of implementing the ceiling protocol is 
probably unsuitable when server tasks are allowed to suspend themselves. 

From a schedulability viewpoint, the execution time spent in each rendezvous with a server 
that does not suspend itself is counted as part of the computing time, Cj, for the client task 
Xj.   Because the use of servers is a synchronization problem, Theorems 3 and 4 must be 
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used to account for blocking time. Under the priority ceiling protocol, the maximum blocking 
time for a nonserver task at priority level i is the longest entry call by a lower level client task 
to a server whose priority ceiling is equal to or higher than the priority of i. (Note that this 
definition of blocking time means that even if a task, x, makes no server calls, the 
schedulability analysis for x must include blocking time for lower priority client tasks; see 
Example above.) If a server can suspend itself, it is sufficient to treat the suspension time 
as server execution time in the schedulability analysis; work is underway to see when less 
pessimistic treatment may be possible. 

The worst-case blocking time for a client task is the same whether the ceiling protocol is 
supported directly by the runtime system or is approximated by giving the server an appro- 
priately high priority. The essential difference between the direct implementation and the ap- 
proximation method is that the server priority will be raised only when necessary when the 
direct implementation is used. This tends to generate less blocking on average and hence 
better response time when aperiodic tasks have a priority below that of a server's ceiling. In 
addition, in transient overload situations, noncritical periodic tasks having a priority lower 
than a server's ceiling are less likely to miss their deadlines. In short, the direct implemen- 
tation gives better average case behavior, especially when the entry calls are relatively long. 
When the entry calls are short compared with client task execution times, the performance 
difference is insignificant. 

Despite the complications that arise when server tasks can suspend themselves, our point is 
that the schedulability theory can be readily applied to Ada programs, ensuring that dead- 
lines are met even when timelines are nondeterministic. In the next section we discuss how 
to interpret Ada's scheduling rules so that Ada runtime systems can support rate monotonic 
scheduling algorithms directly. 

3.2. On Ada Scheduling Rules 

First of all, the Ada tasking model is well-suited, in principle, to the use of the analytic 
scheduling theories presented in this paper. When using these theories, a programmer 
doesn't need to know when tasks are running to be sure that deadlines will be met. That is, 
both Ada and the theory abstract away the details of an execution timeline. Although Ada 
tasks fit well with the theory at the conceptual level, Ada and the theory differ on the rules for 
determining when a task is eligible to run and its execution priority. For example, if a high 
priority task calls a server task that is already in rendezvous with a low priority task, the 
rendezvous can continue at the priority of the task being served instead of being increased 
because a high priority task is waiting. Under these circumstances, the high priority task 
can be blocked as long as there are medium priority jobs able to run. But there are a variety 
of solutions to this problem. The most general solution within the constraints of the lan- 
guage is simply to not use pragma PRIORITY at all. If all tasks in a program have no as- 
signed priority, then the runtime system is free to use any convenient algorithm for deciding 
which eligible task to run. An implementation-dependent pragma could be used to give 
"scheduling priorities" to tasks, i.e., indications of scheduling importance that would be used 
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in accordance with rate monotonic scheduling algorithms. This approach would even allow 
"priorities" to be changed dynamically by the programmer because such changes only affect 
the scheduling of tasks that, in a legalistic sense, have no Ada priorities at all. The only 
problem with this approach is that entry calls are still queued in FIFO order rather than by 
priority. However, this problem can often be solved by using a coding style that prevents 
queues from having more than one task, making the FIFO issue irrelevant, or by suspending 
calling tasks just before they are queued. Of course, telling programmers to assign 
"scheduling priorities" to tasks but not to use pragma PRIORITY, surely says we are fighting 
the language rather than taking advantage of it But the important point is that no official 
revisions to the language are needed to take advantage of the scheduling theories and algo- 
rithms described in this paper and being developed by our project. Here are the relevant 
Ada rules and appropriate ways of interpreting them: 

• CPU allocation: priorities must be observed. Ada requires that the highest prior- 
ity task eligible to run be given the CPU when this is "sensible." "Sensible" for a 
uniprocessor is usually interpreted to mean that if an entry call by an executing 
task can be accepted, the call must be accepted and no lower priority task can 
be allowed to execute. Although this interpretation may seem to be obviously 
the best, it is in fact not correct for the priority ceiling protocol, which gives bet- 
ter service to high priority tasks and avoids deadlock by blocking calls from 
medium priority tasks when certain low priority entry calls are already in 
progress. For example (see Figure 3-1), suppose a resource is guarded by a 
server task S, and suppose a low priority task is in rendezvous with S. Also 
suppose the priority ceiling of S is H (i.e., the highest priority task that can call S 
has priority H). Now suppose execution of the rendezvous is preempted by a 
medium priority task M, whose priority is less than H. Suppose M tries to call T, 
a server other than S. The priority ceiling protocol says that the call from M 
must be blocked, but the normal interpretation of Ada's scheduling rules would 
imply that the call of M must be accepted because M is the highest priority task 
that is eligible to run and T is able to accept the call. 
Solution: There are several solutions to this problem. First of all, the priority 
ceiling protocol need not be applied to all called Ada tasks; it need only be ap- 
plied to those tasks that are servers in the sense defined in the previous sec- 
tion. The simplest approach (in terms of living within the current interpretations 
of Ada rules) is to give each server task a unique priority that is higher than the 
priority of any task calling the server. 
Another approach is to implement the priority ceiling protocol directly for server 
tasks. This approach is clearly allowed by Ada's scheduling rules as long as 
the server task is given no assigned priority. A server task with no assigned 
priority can preempt any other task at any time, because Ada's scheduling 
rules, in essence, do not specify how tasks with no priority are scheduled. For 
example, task S is allowed to preempt task M just at the point where M is about 
to call T. Moreover, when a server with no assigned priority is in a rendezvous 
with a client task, the Ada rules say the server is executed with "at least" the 
priority of the client task. Because the priority ceiling rules require that the ser- 
ver task be executed with the priority of the calling task or of any blocked task 
(whichever is higher), the Ada rule allows the server to be executed wfth the 
(higher) priority of the blocked task. In the example, this means S, in effect, 
continues its rendezvous with M's priority. When the rendezvous is complete, 
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M's call is allowed to succeed. Hence, the priority ceiling protocol can certainly 
be implemented directly when server tasks have no assigned priority. 
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© L cills S; S executes on behalf of L.       ©   M's call succeeds; L is preempted 

© M preempts S and hence, L. ©   M finishes. 

© M tries to call T, but is blocked; ©   L finishes. 
S resumes execution. 

Figure 3-1:   Blocking Due to the Priority Ceiling Protocol 

A more aggressive interpretation of Ada rules is to note that a high priority task 
must preempt a lower priority task only when it is "sensible" to do so. Surely it 
is not "sensible" for a medium priority task to start its rendezvous with T if the 
effect could be to delay the execution of a high priority task unnecessarily.14 In 
short, the priority ceiling protocol provides a set of rules saying when it is 
"sensible" to allow a higher priority task to run, and hence, these rules can be 
followed directly by the runtime system even when a server task has an as- 
signed priority. 
In short, there are several ways to argue that it is possible to support the priority 
ceiling protocol's view of priorities within the current Ada rules. 

• Hardware task priority: always higher than software task priorities. This Ada 
rule reflects current hardware designs, but hardware interrupts should not al- 
ways have the highest priority from the viewpoint of the rate monotonic theory. 
Solution: When handling an interrupt that, in terms of the rate monotonic theory, 
should have a lower priority than the priority of some application task, keep the 
interrupt handling actions short (which is already a common practice) and in- 
clude the interrupt handling duration as blocking time in the rate monotonic 
analysis. In other words, use the scheduling theory to take into account the 
effect of this source of priority inversion. 

"Suppose S can call T (such a call models a nested critical region). If M's rendezvous with T is allowed to 
start and H then calls S, H could be delayed until the completion of both S and T's rendezvous; that is, H would 
be blocked by more than one lower priority task. This is one of the reasons for preventing M's call. 
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• Priority rules for task rendezvous: 

• Selective wait: priority can be ignored. That is, the scheduler is allowed, 
but not required, to take priorities into account when tasks of different pri- 
orities are waiting at open select alternatives. 
Solution: Because Ada allows, but does not require taking these priorities 
into account, ensure that the runtime system does use these priorities to 
decide which call to accept. Alternatively, if the priority ceiling protocol is 
used, there is never more than one waiting task to select. 

• Called task priority: only increased during rendezvous. 
Solution: Use the solutions discussed under "CPU allocation" above; that 
is, increase the priority of a server when the ceiling protocol says this is 
"sensible," or give the called task no priority at all and use priority ceiling 
rules to say when the server is allowed to execute, or give servers a pri- 
ority higher than that of their callers. 

• FIFO entry queues: Ada requires that the priority of calling tasks be ignored; 
calls must be serviced in their order of arrival, not in order of priority. Using 
FIFO queues rather than prioritized queues usually has a serious negative ef- 
fect on real-time schedulability. FIFO queues must be avoided. 
Solution: As noted earlier, often it is possible to avoid FIFO queueing by 
preventing queues from being formed at all. If the runtime system does not 
prevent queues from forming, then entry families can, of course, be used to get 
the effect of prioritized queueing. 

• Task priorities: fixed. This rule is inappropriate when task priorities need to be 
changed at runtime. For example, when a new mode is initiated, the frequency 
of a task and/or its criticality may change, implying its priority must change. In 
addition, the scheduling rules for a certain class of aperiodic servers demand 
that the priority of such a server be lowered when it is about to exceed the max- 
imum execution time allowed for a certain interval of time, and be raised when 
its service capacity has been restored [Sprunt et al. 89]. 
Solution: When an application needs to adjust the priority of a task at runtime, 
this task should be declared as having no Ada priority. The runtime system can 
then be given a way of scheduling the task appropriately by, in effect, changing 
its priority. 

From what our project has learned so far, it seems to be possible in practice to support 
analytic scheduling algorithms in Ada by using an enlightened interpretation of Ada's 
scheduling rules together with a combination of runtime system modifications and appro- 
priate coding guidelines. Of course, it would be better if the language did not get in the way 
of priority scheduling principles. The future revision of Ada should probably reword some of 
these rules so that priority-based scheduling is more clearly and uniformly supported. 
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4. Conclusion 

Ada tasking was intended to be used for real-time programming. However, the Ada tasking 
model represents a fundamental departure from the traditional cyclical executive model. 
Indeed, the dynamic preemption of tasks at runtime generates nondeterministic timelines 
that are at odds with the very idea of a fixed execution timeline required by a cyclical execu- 
tive. 

In this paper, we have reviewed some important results of priority scheduling theory. To- 
gether with Ada tasking, they allow programmers to reason with confidence about timing 
correctness at the tasking level of abstraction. As long as analytic scheduling algorithms are 
supported by the runtime system and resource utilization bounds on CPU, I/O drivers, and 
communication media are observed, the timing constraints will be guaranteed. Even if there 
is a transient overload, the tasks missing deadlines will be in a predefined order. 

Although the treatment of priorities by the current Ada tasking model can and should be 
improved, it seems that the scheduling algorithms can be used today within the existing Ada 
rules if an appropriate coding and design approach is taken, and if schedulers are written to 
take full advantage of certain coding styles and the existing flexibility in the scheduling rules. 
Additional reports on how this can be done are in preparation at the Software Engineering 
Institute. 
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