Robbin L. Miller
Mechanical Engineer
AUTOVON 787-3362
Commercial (513) 257-3362

QUALIFICATION TESTING OF THE COMBAT TALON II SERVO POWER SUPPLY CONTAINER

HQ AFLC/DSTZ
AIR FORCE PACKAGING EVALUATION ACTIVITY
Wright-Patterson AFB OH 45433-5999

August 1989
NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation or conveying any rights or permission to manufacture use or sell any patented invention that may in any way be related thereto. This report is not to be used in whole or part for advertising or sales purposes.

ABSTRACT

Aeronautical Systems Division, ASD/VXAL, requested assistance from the Air Force Packaging Evaluation Activity (AFPEA) to choose an off the shelf container and qualify it for the Servo power supply (P/S) used on Combat Talon II aircraft.

The P/S prototype container was tested at the AFPEA, HQ AFLC/DSTZ, Wright-Patterson AFB, OH 45433-5999. The container is environmentally sealed and outfitted with a humidity indicator and pressure relief valve. The container is designed to protect one P/S during worldwide shipment, storage, and handling.

The container test plan was developed to test the fragility and environmental sealing qualification requirements. The tests were conducted in accordance with Federal Test Method Standard No. 101, and Military Standard 648.

Results of the tests conducted on the prototype container show that the container provides adequate mechanical protection, but only marginal environmental protection. Based on the projected operational environment, the system program office has elected to use the container.

Robbin Miller
Mechanical Engineer
AF Packaging Evaluation Activity

Publ. Date: Aug 1989

Ted Hinds
Ch, Design Branch
AFPEA

Charlie P. Edmonson
Chief, AF Packaging Evaluation Activity

Prepared By:

Reviewed By:
TABLE OF CONTENTS

ABSTRACT ... i
TABLE OF CONTENTS .. ii

INTRODUCTION

BACKGROUND ... 1
PURPOSE .. 1

DESCRIPTION OF TEST CONTAINER .. 1
TEST OUTLINE AND TEST EQUIPMENT 1

TEST PROCEDURES AND RESULTS .. 2

TEST NO. 1, WEIGHT TEST .. 2
TEST NO. 2, LEAK TEST .. 2
TEST NO. 3A, CORNERWISE-DROP (ROTATIONAL) (+140°F) TEST .. 2
TEST NO. 3B, EDGewise-DROP (ROTATIONAL) (+140°F) TEST .. 2
TEST NO. 3C, PENDULUM-IMPACT (+140°F) TEST 3
TEST NO. 4, LEAK TEST .. 3
TEST NO. 5A, CORNERWISE-DROP (ROTATIONAL) (-20°F) TEST .. 3
TEST NO. 5B, EDGewise-DROP (ROTATIONAL) (-20°F) TEST .. 3
TEST NO. 5C, PENDULUM-IMPACT (-20°F) TEST 4
TEST NO. 6, LEAK TEST .. 4
TEST NO. 7, AMBIENT SUPERIMPOSED LOAD TEST 4
TEST NO. 8, LEAK TEST .. 4
TEST NO. 9, VIBRATION FATIGUE TEST 5
TEST NO. 10, LEAK TEST ... 5
TEST NO. 11, HOISTING STRENGTH TEST 5

ii
TEST NO. 12, LEAK TEST 5
TEST NO. 13, HIGH TEMPERATURE, HIGH HUMIDITY
SUPERIMPOSED LOAD TEST 6
TEST NO. 14, LEAK TEST 6
CONCLUSION .. 6
RECOMMENDATION ... 6
TABLE 1, CONTAINER TEST PLAN 7
FIGURE 1, -300 CORNER, SIDE AND LATCH NUMBERING 14
FIGURE 2, -300 PROTOTYPE CONTAINER 15
FIGURE 3, -300 CONTAINER CUSHIONING 15
FIGURE 4, VIBRATION FATIGUE TEST 16
FIGURE 5, -300 CONTAINER DEFORMATION 16
DISTRIBUTION LIST .. 17

APPENDICES:

APPENDIX 1, DETAILED ACCELERATION RESULTS
INTRODUCTION

BACKGROUND: Aeronautical Systems Division (ASD/VXAL), Wright-Patterson AFB OH 45433-5000 requested assistance from the Air Force Packaging Evaluation Activity (AFPEA) to choose an off the shelf container for the servo power supply (P/S) and perform qualification testing. The container chosen was a plastic multipurpose container designed by Hardigg Industries, South Deerfield, MA 01373.

PURPOSE: The purpose of this project was to determine if the container design will protect the contents, one P/S for Combat Talon II aircraft, during worldwide shipment, storage, and handling.

DESCRIPTION OF TEST CONTAINER

Two identical containers were involved in the testing. The 11214-8678-300 prototype container, now referred to as -300A or -300B were subjected to extensive testing. The sides, latches and hinges of the container were numbered counterclockwise from the forward end as shown in figure 1.

Design: The -300 prototype is a controlled-breathing container with a pressure relief valve and humidity indicator (see figure 2). The container is designed to limit the transmission of shocks to the P/S to 40 Gs. The container cover is permanently hinged on one side and ten wing latches on the remaining sides allow quick access to the container contents without the use of tools.

Construction: The container is rotationally molded from a formulation of polyethylene. Two pound density polyethylene foam encapsulates the item (see figure 3). A silicone gasket provides a seal between the container base and the container cover.

TEST OUTLINE AND TEST EQUIPMENT

Test Plan: Tests were conducted in accordance with AFPEA Test Plan 88-P-102 (see table 1). The tests used were selected to meet the qualification requirements for fragility and environmental sealing. Test methods, procedures and pass/fail criteria used were as outlined in Federal Test Method Standard No. 101 (FED-STD-101) and Military Standard 648. Any modifications to the standard procedures are noted in the test plan or the results. Each test result will specify the container used for that test, -300A or -300B.
Test Load: All tests were conducted using the P/S test load fabricated at the AFPEA. The test load weighs 92 pounds and simulates the center of gravity and the mass moment of inertia of an actual P/S.

Test Site: All testing was conducted at the AFPEA, HQ AFLC/DSTZ, Building 70, Area C, Wright-Patterson AFB OH 45433-5999. The equipment required for each test is noted in the test plan.

TEST PROCEDURES AND RESULTS

Weight Test

Test No. 1: The containers were weighed to determine weight compliance.

Results: Total tare weight of each container was 73 pounds. The results of this test are acceptable.

Leak Test

Test No. 2: The pneumatic pressure test was conducted in accordance with FED-STD-101, Method 5009.2 at 0.50 psig. The vacuum retention test was conducted in accordance with FED-STD-101, Method 5009.2 at 0.50 psig. The failure criteria for the test was 0.025 psig loss during a 30 minute period, after temperature and pressure stabilization.

Results: At the end of the 30 minute test period the pressure loss for container -300A was 0.024 psig and 0.018 psig for container -300B. At the end of the 30 minute test period the vacuum loss for containers -300A and -300B was 0.024 psig. The results of this test are acceptable.

Rough Handling Tests (+140°F)

Test No. 3a: The high temperature cornerwise-drop (rotational) test was conducted in accordance with FED-STD-101, Method 5005.1. Due to the location of the center of gravity the maximum attainable height of the drop was 25 inches.

Results: Visual inspection revealed no external damage to the -300A container. A maximum of 10 Gs was obtained during the test.

Test No. 3b: The high temperature edgewise-drop (rotational) test was conducted in accordance with FED-STD-101, Method 5008.1. Due to the location of the center of gravity the maximum attainable height of the drop was 27 inches.
Results: Visual inspection revealed no external damage to the -300A container. A maximum of 12 Gs was obtained during the test.

Test No. 3c: The high temperature pendulum-impact test was conducted in accordance with FED-STD-101, Method 5012. The impact velocity was 7 ft/sec, the height of the drop was 5 inches.

Results: Visual inspection revealed no external damage to the -300A container. A maximum of 16 Gs was obtained during the test.

The container was opened after the pendulum-impact test. Visual inspection revealed no damage to the container or the test load. The results of these tests are acceptable. See appendix 1 for detailed acceleration results.

Leak Test

Test No. 4: The pneumatic pressure test was conducted in accordance with FED-STD-101, Method 5009.2. The test was performed at 0.50 psig. The failure criteria for the test was a 0.0125 psig loss during a 15 minute period after temperature and pressure stabilization.

Results: At the end of the 15 minute test period the pressure loss for container -300A was 0.0125 psig. The result of this test is acceptable.

Rough Handling Tests (-20°F)

Test No. 5a: The low temperature cornerwise-drop (rotational) test was conducted in accordance with FED-STD-101, Method 5005.1. Due to the location of the center of gravity the maximum attainable height of the drop was 31 inches.

Results: Visual inspection revealed no external damage to the -300A container. A maximum of 16 Gs was obtained during the test.

Test No. 5b: The low temperature edgewise-drop (rotational) test was conducted in accordance with FED-STD-101, Method 5008.1. Due to the location of the center of gravity the maximum attainable height of the drop was 33 inches.

Results: Visual inspection revealed no external damage to the -300A container. A maximum of 22 Gs was obtained during the test.
Test No. 5c: The low temperature pendulum-impact test was conducted in accordance with FED-STD-101, Method 5012. The impact velocity was 7 ft/sec, the height of the drop was 9 inches.

Results: Visual inspection revealed no external damage to the -300A container. A maximum of 30 Gs was obtained during the test.

The container was opened after the pendulum-impact test. Visual inspection revealed no damage to the container or the test load. However after cold conditioning the decals fell off the container. The results of this test are acceptable.

Leak Test

Test No. 6: The pneumatic pressure test was conducted in accordance with FED-STD-101, Method 5009.2. The test was performed at 0.50 psig. The failure criteria for the test was a 0.0125 psig loss during a 15 minute period after temperature and pressure stabilization.

Results: At the end of the 15 minute test period the pressure loss for container -300A was 0.012 psig. The result of this test is acceptable.

Superimposed Load Test

Test No. 7: The ambient superimposed load test was conducted in accordance with FED-STD-101, Method 5016.1. A load of 2900 pounds was placed on top of the container using load spreaders. This simulates the loading of a stack of nine containers with a safety factor of two on the bottom container.

Results: Visual inspection revealed no damage to the container. The result of this test is acceptable.

Leak Test

Test No. 8: The pneumatic pressure test was conducted in accordance with FED-STD-101, Method 5009.2. The test was performed at 0.50 psig. The failure criteria for the test was a 0.0125 psig loss during a 15 minute period after temperature and pressure stabilization.

Results: The container would not pressurize and a leakage rate could not be obtained. This occurred due to the permanent deformation of hinge number one. Although the container failed the leak test after the ambient superimposed load test, the hinge deformation was a result of overall use during testing.
Anomaly: At this time container -300A was removed from the testing procedures and replaced with container -300B to finish the test plan as requested by the program office. Production containers will be equipped with latches and not hinges (see recommendations). Based on the projected operational environment, sealing ability is not a necessity.

Vibration Fatigue Test

Test No. 9: The vibration fatigue test was conducted in accordance with MIL-STD-648, paragraph 5.3.2. The container was rigidly attached to the platform (see figure 4). A sinusoidal vibration excitation was applied in a vertical direction and cyclically swept for 7.5 minutes at 2 minutes per octave to locate the resonant frequency. Input from 5 to 12.5 Hz was at 0.125 inch double amplitude and input from 12.5 to 50.0 Hz was at 1.0 G. A 30 minute dwell test was conducted at the resonant frequency.

Results: Visual inspection revealed no damage to the -300B container or the test load. A maximum of 2.7 Gs was obtained at the resonant frequency of 12.0 Hz. The maximum transmissibility obtained was 1.1. The results of this test are acceptable.

Leak Test

Test No. 10: The pneumatic pressure test was conducted in accordance with FED-STD-101, Method 5009.2. The test was performed at 0.50 psig. The failure criteria for the test was a 0.0125 psig loss during a 15 minute period after temperature and pressure stabilization.

Results: At the end of the 15 minute test period the pressure loss for container -300B was 0.006 psig. The result of this test is acceptable.

Hoisting Strength Test

Test No. 11: The single ring hoisting test was conducted in accordance with MIL-STD-648, paragraph 5.8.5. The loaded container was lifted by a lift ring and suspended for five minutes.

Results: Visual inspection of the -300B container revealed no damage or deformation. The result of this test is acceptable.

Leak Test

Test No. 12: The pneumatic pressure test was conducted in accordance with FED-STD-101, Method 5009.2. The test was performed at 0.50 psig. The failure criteria for the test was a 0.0125 psig loss during a 15 minute period after temperature and
pressure stabilization.

Results: At the end of the 15 minute test period the pressure loss for container -300B was 0.006 psig. The result of this test is acceptable.

Superimposed Load Test

Test No. 13: The high temperature, high humidity superimposed load test was conducted in accordance with FED-STD-101, Method 5016.1. A load of 1455 pounds was placed on top of the container using load spreaders this simulates the loading of a stack of nine containers with a safety factor of one on the bottom container.

Results: Visual inspection revealed a permanent deformation of the container (see figure 5). This deformation did not cause any damage to the P/S or impair stackability.

Leak Test

Test No. 14: The pneumatic pressure test was conducted in accordance with FED-STD-101, Method 5009.2. The test was performed at 0.50 psig. The failure criteria for the test was a 0.0125 psig loss during a 15 minute period after temperature and pressure stabilization.

Results: The container would not pressurize and a leakage rate could not be obtained. This occurred due to the permanent deformation of the container from the high temperature, high humidity superimposed load test.

CONCLUSION

The -300 prototype container provided adequate mechanical protection for the contents when tested in accordance with the container test plan. However, the container provides marginal environmental protection, especially if the container will be shipped and/or stored in a stacked configuration under tropical conditions.

RECOMMENDATIONS

The container should have wing latches only, no hinges. Additional cushion cut outs around the pressure relief valve and humidity indicator. Decals on the containers need better adherence for cold temperature environments. Container walls need to be made stiffer for more stability. The container should not be used for long term storage.
<table>
<thead>
<tr>
<th>ITEM NAME</th>
<th>MANUFACTURER</th>
<th>CONTAINER COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRUs</td>
<td>Hardigg Industries</td>
<td></td>
</tr>
</tbody>
</table>

| CONTAINER NAME | Part numbers 11214-8678-300 |

| PACK DESCRIPTION | Composite Container |

| CONDITIONING | As noted below. |

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF Std/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>WEIGHT TEST</td>
<td>Total container weight should not be less than 73 lbs.</td>
<td>Fully assembled container including shock isolation system</td>
<td>Scale</td>
</tr>
<tr>
<td>2.</td>
<td>LEAK TEST</td>
<td>Pneumatic pressure at 0.50 PSIG and vacuum retention at 0.50 PSIG. Test duration to be a minimum of 30 minutes with 0.025 PSIG loss allowed after temperature stabilization</td>
<td>Test at ambient condition from compressed air supply/vacuum pump</td>
<td>Water manometer</td>
</tr>
<tr>
<td>3.</td>
<td>ROUGH HANDLING TESTS (HIGH TEMPERATURE +140°F)</td>
<td>Edgewise drop test (rotational) test.</td>
<td>Test performed in chamber.</td>
<td>Tri-axial accelerometers</td>
</tr>
</tbody>
</table>

| CONDITIONING | As noted below. |

| COMMENTS | * Remaining edge drops to be performed in Test No. 5a. |

PREPARED BY: Susan Hudney, Mechanical Engineer
APPROVED BY: Ted Hinds, Chief, Design Br., AFPEA
AIR FORCE PACKAGING EVALUATION ACTIVITY

CONTAINER SIZE (L x W x D) (INCHES) WEIGHT (LBS) CUBE (CU. FT.) QUANTITY DATE
INTERIOR: EXTERIOR: GRUES: ITEM:

ITEM NAME MANUFACTURER CONTAINER NAME CONTAINER COST
LrUs Hardigg Industries Part numbers 11214-8678-300

PACK DESCRIPTION
Composite Container

CONDITIONING
As noted below.

TEST NO. REF STD/SPEC AND TEST METHOD OR PROCEDURE NO.'S TEST TITLE AND PARAMETERS CONTAINER ORIENTATION INSTRUMENTATION
b. FED-STD-101 Method 5005.1 Cornerwise-drop (rotational) test. Condition at +140°F for not less than 24 hours. Drop height 36 inches or maximum height where container does not tilt over or side. Peak resultant acceleration shall not exceed 40Gs. Test performed in chamber. One drop on bottom corner or maximum height where container does not tilt over or side. Peak resultant acceleration shall not exceed 40Gs. Tri-axial accelerometers
c. FED-STD-101 Method 5012 Pendulum-impact test. Condition at +165°F. Temperature of shock mitigation system at time of test shall be +140 (-29.4°F). Impact velocity 7 ft/sec, drop height 9 inches. Peak resultant acceleration shall not exceed 40Gs. One impact on two adjacent sides, total of two Thermo-couples

4. LEAK TEST FED-STD-171 Method 5009.2 Pneumatic pressure with Ambient Water 0.50 PSIG. Test duration not less than 15 minutes with 0.0125 PSIG loss allowed after temperature stabilization.

COMMENTS:
Remaining corner drops to be performed in Test No. 5b.
** Remaining side impacts to be performed in Test No. 5c.

PREPARED BY:
Susan Hughey, Mechanical Engineer

APPROVED BY:
Ted Hinds, Chief, Design Br., AFPEA
Air Force Packaging Evaluation Activity

Container Test Plan

<table>
<thead>
<tr>
<th>Container Size (L x W x D) (Inches)</th>
<th>Weight (Lbs)</th>
<th>Cube (Cu. Ft.)</th>
<th>Quantity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Item:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Item Name: LRU

Manufacturer: Hardigg Industries

Container Name: Part numbers 11214-8678-300

Pack Description: Composite Container

Conditioning: As noted below.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>REF Std/SPEC and Test Method or Procedure No.'s</th>
<th>Test Title and Parameters</th>
<th>Container Orientation</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>ROUGH HANDLING TESTS (LOW TEMPERATURE -20°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>FED-STD-101 Method 5008.1 Edgewise-drop test</td>
<td>Tri-axial test performed in Tri-axial accelerometers</td>
<td>One drop on two adjacent bottom edges, total of two drops.**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(rotational) test. Condition at -20°F for not less than 24 hours. Drop height 36 inches or maximum height where container does not tilt over. Peak resultant acceleration shall not exceed 40Gs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b.</td>
<td>FED-STD-101 Method 5005.1 Cornerwise-drop test</td>
<td>Test performed in chamber. Tri-axial accelerometers</td>
<td>One drop on diagonal bottom corners, total of two drops.**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(rotational) test. Condition at -20°F for not less than 24 hours. Drop height 36 inches or maximum height where container does not tilt over. Peak resultant acceleration shall not exceed 40Gs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.</td>
<td>FED-STD-101 Method 5012 Pendulum-impact test</td>
<td>One impact on two adjacent sides, total of two Thermo-couples</td>
<td>Pendulum-impact test. Condition at -65°F. Temperature of shock mitigation system at time of test shall be -20 (+0,-10°F). Impact velocity 7 ft/sec, drop height 9 inches. Peak</td>
<td></td>
</tr>
</tbody>
</table>

Comments: * These edges are opposite those impacted in Test No. 3a.

** These corners are opposite those impacted in Test No. 3b.

*** These sides are opposite those impacted in Test No. 3c.

Prepared By: Susan Hughey, Mechanical Engineer

Approved By: Ted Hinds, Chief, Design Br., AFPEA
ITEM NAME: LRUs
CONTAINER NAME: Part numbers 11214-8678-300
PACK DESCRIPTION: Composite Container
CONDITIONING: As noted below.

TEST NO. REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S TEST TITLE AND PARAMETERS CONTAINER ORIENTATION INSTRUMENTATION
6. LEAK TEST FED-STD-101 Method 5009.2 Pneumatic pressure with Ambient Water manometer resultant acceleration shall not exceed 40Gs.

7. SUPERIMPOSED LOAD (Ambient temperature) FED-STD-101 Method 5016.1 At ambient temperature, Stack two Visual high, bottom inspection container is under test.

Additional load placed on top container such that the total load is carried by the stacking provisions. There shall be no permanent deformations.

COMMENTS:

PREPARED BY: Susan Hughey, Mechanical Engineer
APPROVED BY: Ted Hinds, Chief, Design Br., AFPEA
Container Test Plan

Item Name
- **LRUs**

Manufacturer
- Hardigg Industries

Container Name
- Part numbers 11214-8678-300

Pack Description
- Composite Container

Conditioning
- As noted below.

Test Title and Parameters

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Ref Std/Spec and Test Method or Procedure No's</th>
<th>Test Title and Parameters</th>
<th>Container Orientation</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.</td>
<td>LEAK TEST
FED-STD-101 Method 5009.2</td>
<td>Pneumatic pressure with 0.50 PSIG. Test duration not less than 15 minutes with 0.0125 PSIG loss allowed after temperature stabilization.</td>
<td>Ambient</td>
<td>Water manometer</td>
</tr>
<tr>
<td>9.</td>
<td>VIBRATION FATIGUE TEST
MIL-STD-648 Para 5.3.2</td>
<td>Input excitation of 0.125 inch double amplitude or 1G, whichever is less. Sweep approximately logarithmically from 5 to 50 Hz (about 1/2 octave/min) for 7-1/2 minutes. Then dwell 30 minutes at the resonant frequency. The test may be interrupted to prevent excessive temperature rise in materials. Transmissibility shall not exceed 5 at the resonant frequency.</td>
<td>Rigidly attach container to triaxial accelerometers. Use of straps is prohibited.</td>
<td>Triaxial couples</td>
</tr>
</tbody>
</table>

Comments:

PREPARED BY:
Susan Hughey, Mechanical Engineer

APPROVED BY:
Ted Hinds, Chief, Design Br., AFPEA
AIR FORCE PACKAGING EVALUATION ACTIVITY

(Container Test Plan)

<table>
<thead>
<tr>
<th>ITEM NAME</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRUs</td>
<td>Hardigg Industries</td>
</tr>
</tbody>
</table>

| CONTAINER NAME | Part numbers 11214-8678-300 |

| PACK DESCRIPTION | Composite Container |

| CONDITIONING | As noted below. |

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jul 89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NAME</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRUs</td>
<td>Hardigg Industries</td>
</tr>
</tbody>
</table>

| CONTAINER NAME | Part numbers 11214-8678-300 |

| PACK DESCRIPTION | Composite Container |

| CONDITIONING | As noted below. |

<table>
<thead>
<tr>
<th>TEST NO.</th>
<th>REF STD/SPEC AND TEST METHOD OR PROCEDURE NO'S</th>
<th>TEST TITLE AND PARAMETERS</th>
<th>CONTAINER ORIENTATION</th>
<th>INSTRUMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>LEAK TEST</td>
<td>Pneumatic pressure with Ambient Water manometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FED-STD-101 Method 5009.2</td>
<td>0.50 PSIG. Test duration not less than 15 minutes with 0.0125 PSIG loss allowed after temperature stabilization.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>HOISTING STRENGTH TEST</td>
<td>Single ring hoisting Ambient Visual inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIL-STD-648 Para. 5.8.5 test. Hoist container at one lift point and leave hanging for five minutes. There shall be no damage or permanent deformation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>LEAK TEST</td>
<td>Pneumatic pressure with Ambient Water manometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FED-STD-101 Method 5009.2</td>
<td>0.50 PSIG. Test duration not less than 15 minutes with 0.0125 PSIG loss allowed after temperature stabilization.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS:

PREPARED BY:
Susan Haghey, Mechanical Engineer

APPROVED BY:
Ted Hinds, Chief, Design Br., AFPEA

AFALD FORM NO: 4

AFALD Nov 81 4

PAGE 6 OF 7.
Container Test Plan

Item Name: LRU

Manufacturer: Hardigg Industries

Container Name: Part numbers 11214-8678-300

Pack Description: Composite Container

Conditioning: As noted below.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>Ref. Std./Spec. and Test Method or Procedure No's</th>
<th>Test Title and Parameters</th>
<th>Container</th>
<th>Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td>SUPERTIMPOSED LOAD (High temperature and humidity)</td>
<td>Condition at 120°F and 90% relative humidity for 168 hours a stack of two containers with additional load on top to simulate stacking 5 containers or 16 ft high, whichever is greater. Load equals load on bottom container times a factor of safety of 1. Additional load placed on top container such that the total load is carried by the stacking provisions. There shall be no permanent deformation.</td>
<td>Stack two Visual inspection high, bottom container is under test.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>LEAK TEST</td>
<td>Pneumatic pressure with ambient water manometer 0.50 PSIG. Test duration not less than 15 minutes with 0.0125 PSIG loss allowed after temperature stabilization.</td>
<td>Ambient Water Manometer</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Prepared By: Susan Hughey, Mechanical Engineer

Approved By: Ted Hinds, Chief, Design Br., AFPEA
FIGURE 1. -300 Side, Latch and Hinge Numbering.
Figure 2

-300
Prototype Container.

Figure 3

-300
Container Cushioning.
Figure 4
Vibration Fatigue Test.

Figure 5
-300 Container Deformation.
<table>
<thead>
<tr>
<th>DISTRIBUTION LIST</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DTIC/FDAC</td>
<td>2</td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, VA 22304-6145</td>
<td></td>
</tr>
<tr>
<td>HQ APLC/DSTZ Library</td>
<td>10</td>
</tr>
<tr>
<td>Wright-Patterson AFB OH 45433-5999</td>
<td></td>
</tr>
<tr>
<td>HQ USAF/LETT</td>
<td>1</td>
</tr>
<tr>
<td>Washington DC 20330</td>
<td></td>
</tr>
<tr>
<td>HQ AFSC/LGT</td>
<td>1</td>
</tr>
<tr>
<td>Andrews AFB DC 20334-5000</td>
<td></td>
</tr>
<tr>
<td>OC-ALC/DSTP</td>
<td>1</td>
</tr>
<tr>
<td>Tinker AFB OK 73145</td>
<td></td>
</tr>
<tr>
<td>OO-ALC/DSTP</td>
<td>1</td>
</tr>
<tr>
<td>Hill AFB UT 84406</td>
<td></td>
</tr>
<tr>
<td>SA-ALC/DSTP</td>
<td>1</td>
</tr>
<tr>
<td>Kelly AFB TX 78241</td>
<td></td>
</tr>
<tr>
<td>SM-ALC/DSTP</td>
<td>1</td>
</tr>
<tr>
<td>McClellan AFB CA 95652</td>
<td></td>
</tr>
<tr>
<td>WR-ALC/DSTP</td>
<td>1</td>
</tr>
<tr>
<td>Robins AFB GA 31098</td>
<td></td>
</tr>
<tr>
<td>ASD/ALXP/SDM</td>
<td>1</td>
</tr>
<tr>
<td>Wright-Patterson AFB OH 45433</td>
<td></td>
</tr>
<tr>
<td>AFLC LOC/TL/AMS/AMP</td>
<td>3</td>
</tr>
<tr>
<td>Wright-Patterson AFB OH 45433</td>
<td></td>
</tr>
<tr>
<td>AF ALC/OA</td>
<td>2</td>
</tr>
<tr>
<td>Wright-Patterson AFB OH 45433</td>
<td></td>
</tr>
<tr>
<td>HQ TAC/LGWL</td>
<td>2</td>
</tr>
<tr>
<td>Langley AFB VA 23665-5001</td>
<td></td>
</tr>
<tr>
<td>GSA, Office of Engineering Mgt</td>
<td>1</td>
</tr>
<tr>
<td>Packaging Division</td>
<td></td>
</tr>
<tr>
<td>Washington DC 20406</td>
<td></td>
</tr>
<tr>
<td>AFSC MSD/YBAC</td>
<td>1</td>
</tr>
<tr>
<td>Eglin AFB FL 32542</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST (Cont'd)

Commander
Naval Supply Systems Command
Attn: N. Karl (SUP 0611F)
Washington DC 20376-5000

Commander
Naval Air Systems Command
Attn: E. Panigot (AIR 41212A)
Washington DC 20361

Commander
Space and Naval Warfare Systems Command
Attn: T. Corbe (Code 8218)
Washington DC 20360

Commander
Naval Facilities Engineering Command
Hoffman Bldg. #2, Room 12S21
Attn: C. Manwarring (PAC 0644)
Alexandria, VA 22332

Commanding Officer
Naval Construction Battalion Center
Attn: K. Pollock (Code 15611K)
Port Hueneme, CA 93043

Commander
Naval Sea Systems Command
Attn: F. Basford (SEA 05M3)
Washington DC 20362

Commanding Officer
Naval Aviation Supply Office
700 Robbins Avenue
Attn: H. FURLONG
Philadelphia, PA 19111-5098

Commanding Officer
Navy Ships Parts Control Center
P.O. Box 2020
Attn: F. Sechrist (Code 0541)
Mechanicsburg, PA 17055-0788

Commanding Officer
Naval Air Engineering Center
Attn: F. Magnifico (SESD Code 9321)
Lakehurst, NJ 08733-5100
DISTRIBUTION LIST (Cont'd)

Commanding Officer
Naval Weapons Station, Earle
ATTN: NWHC 80A (Mel Gray)
NWHC/Code 8023
Colts Neck, NJ 07722-5000

Commander
USAMCPSCC
Attn: SDSTO-TM
Tobyhanna, PA 18466-5097

DLSIE/AMXMC-D
US Army Logistics Mgt Ctr
Ft Lee VA 23801-6034

Commander
US Army Armament Munitions & Chemical Command,
Attn: SMCAR-AEP
(Mike Ivanroe) Bldg 455
Picatinny, NJ 07801-5000

HQ DLA/OWP
Cameron Station
Alexandria, VA 22304-6100

ASD/VXAL
Wright-Patterson AFB OH 45433

ASD/VXA
Wright-Patterson AFB OH 45433
-300 CONTAINER - DETAILED ACCELERATION RESULTS

HIGH TEMPERATURE ROUGH HANDLING TESTS (+140°F)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Position</th>
<th>Accelerometer readings (Gs) Resultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>26" rotational drop</td>
<td>Corner 1-2</td>
<td>8</td>
</tr>
<tr>
<td>25" rotational drop</td>
<td>Corner 3-4</td>
<td>10</td>
</tr>
<tr>
<td>27" rotational drop</td>
<td>Side 1</td>
<td>12</td>
</tr>
<tr>
<td>32" rotational drop</td>
<td>Side 2</td>
<td>10</td>
</tr>
<tr>
<td>7 ft/sec pendulum-impact</td>
<td>Side 1</td>
<td>14</td>
</tr>
<tr>
<td>7 ft/sec pendulum-impact</td>
<td>Side 4</td>
<td>16</td>
</tr>
</tbody>
</table>

1. No damage to the container or the test load.

LOW TEMPERATURE ROUGH HANDLING TESTS (-20°F)

<table>
<thead>
<tr>
<th>Impact</th>
<th>Position</th>
<th>Accelerometer readings (Gs) Resultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>36" rotational drop</td>
<td>Corner 1-4</td>
<td>16</td>
</tr>
<tr>
<td>31" rotational drop</td>
<td>Corner 2-3</td>
<td>16</td>
</tr>
<tr>
<td>25" rotational drop</td>
<td>Side 3</td>
<td>20</td>
</tr>
<tr>
<td>33" rotational drop</td>
<td>Side 4</td>
<td>22</td>
</tr>
<tr>
<td>7 ft/sec pendulum-impact</td>
<td>Side 2</td>
<td>30</td>
</tr>
<tr>
<td>7 ft/sec pendulum-impact</td>
<td>Side 3</td>
<td>29</td>
</tr>
</tbody>
</table>

1. No damage to the container or the test load.

VIBRATION FATIGUE TEST

Natural frequency 12.0 Hz
(input: 1.04 G peak, 0.125 inch double amplitude)

<table>
<thead>
<tr>
<th>Resultant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Acceleration (Gs, peak to peak)</td>
</tr>
<tr>
<td>Maximum Transmissibility</td>
</tr>
</tbody>
</table>

1. No damage to the container or the test load.