REPORT DOCUMENTATION PAGE

AD-A211 097

16. REPORT SECURITY CLASSIFICATION:

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Abstract is attached.

21. ABSTRACT SECURITY CLASSIFICATION:

Unclassified
OFFICE OF NAVAL RESEARCH

Contract N00014-85-C-0871

R&T Code 413e018

Technical Report No. 7

"Formation of Aluminum Oxide Films from Tris(hexafluoroacetylacetonato)aluminum(III) and Tris(trifluoroacetylacetonato) aluminum(III) in the Substrate Temperature Interval 320°C - 480°C in an Argon Ambient Atmosphere"

by

Dorota Temple and Arnold Reisman

North Carolina State University
Department of Chemistry
Department of Electrical and Computer Engineering
Raleigh, North Carolina

July 31, 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Formation of Aluminum Oxide Films from Tris(hexafluoroacetylacetonato)aluminum(III) and Tris(trifluoroacetylacetonato) aluminum(III) in the Substrate Temperature Interval 320°C - 480°C in an Argon Ambient Atmosphere.

D. Temple¹ and A. Reisman¹,²)

¹Microelectronics Center of North Carolina
P.O.Box 12889,
Research Triangle Park, NC 27709

²North Carolina State University
Department of Electrical and Computer Engineering
Box 7911,
Raleigh, NC 27695-7911

Abstract

A study of the thermally activated decomposition of Al(hfa)₃ (tris(hexafluoroacetylacetonato)aluminum) and Al(tfa)₃ (tris(trifluoroacetylacetonato)aluminum) in the gas phase is reported. The decomposition process was carried out in an open tube atmospheric pressure reactor in an inert atmosphere of argon for the substrate temperature interval 320°C - 480°C. In the case of Al(hfa)₃, the chemical vapor deposition process resulted in the deposition of aluminum oxide films while the decomposition of Al(tfa)₃ led to the deposition of Al₂O₃ along with significant quantities of carbon. The breakdown strength of Al/Al₂O₃/Si capacitors with aluminum oxide films prepared from Al(hfa)₃ was found to be higher than 3 MV/cm in most cases. The flat band voltage was positive, indicative of apparent negative oxide charge of an area density of approximately 3 - 10 × 10¹¹ cm⁻².
Introduction

Studies of the chemical and physical properties of various metal β-diketonates, in progress in this laboratory,1-5 were extended to include an investigation of the vapor phase thermally activated decomposition of fluorinated β-diketonates of aluminum, namely, tris(hexafluoroacetylacetonato)aluminum(III) (Al(hfa)₃), and tris(trifluoroacetylacetonato)aluminum(III) (Al(tfa)₃). A previous paper discusses the deposition of copper by means of the thermal decomposition of Cu(hfa)₂.⁴ The choice of Al(hfa)₃ and Al(tfa)₃ was prompted by their potential for formation of insulators in a low temperature CVD process and by the limited attention they have received in the literature. These and other metal acetylacetonates offer a promise for use in mixed insulator film formation from both the vapor and solid state. There are several reports⁶-⁸ dealing with the pyrolysis in the vapor phase of the non-fluorinated analog of the above compounds i.e. tris(acetylacetonato)aluminum(III). Thermally activated decomposition of this compound in nitrogen and nitrogen + oxygen is reported to result in the deposition of aluminum oxide films which is not surprising due to a strong affinity of aluminum to oxygen. The fluorinated acetylacetonates of aluminum which, to the authors' knowledge, have not been previously used for the aluminum oxide deposition, have potential advantages over the aluminum acetylacetonate in metal-organic chemical vapor deposition processes. They possess significantly higher vapor pressure⁹ and thus, they do not need to be heated to high temperatures in order to obtain an adequate concentration of their vapor in the reaction medium. Also, the temperature of the onset of decomposition is significantly higher than the required evaporation temperature, but still relatively low, which makes the deposition process attractive for microelectronic applications.

The object of the present study was to investigate the thermally activated decompositions of the Al(hfa)₃ and Al(tfa)₃, varying the decomposition temperature, and examining the chemical composition and electrical properties of the obtained deposits.

Experimental Procedures

Study of the thermally activated decompositions of the selected metal-organic compounds was carried out in an experimental open tube atmospheric pressure reactor, described in ref.4. The process con-
sisted in the transport of the metal-organic compound vapor from an essentially equilibrium evaporation zone to the reaction chamber, where decomposition of the vapor to form films of Al$_2$O$_3$ on bare radiant heated Si substrates took place. Ultra-pure grade argon was used both as the carrier and diluent gas. P-type (100) silicon wafers were used as substrates. The substrates were cleaned before deposition by means of a standard technique10 and then dried by blowing filtered nitrogen across them. In the chemical vapor deposition process, the following parameters were controlled: temperature of the evaporation zone, flow rates of the carrier and diluent gases, and temperature of the substrates. In the experiments for a given compound, the evaporation zone temperature was maintained constant; it was typically 68°C for solid Al(hfa)$_3$ and 150°C for liquid Al(tfa)$_3$. These temperatures give vapor pressures of the compounds of 5 torr and 10 torr,9 respectively. The carrier and diluent gas flow rates were 20 sccm and 300 sccm, respectively. The temperature of the substrates was varied in the range 320°C - 480°C.

The metal-organic compounds: Al(hfa)$_3$ (chemical formula Al(CF$_3$COCHCOCF$_3$)$_3$) and Al(tfa)$_3$ (chemical formula Al(CF$_3$COCHCOCH$_3$)$_3$) were purchased from Strem Chemicals, Inc. They are solids at room temperature. The melting point of Al(hfa)$_3$ is 73 - 74°C, while Al(tfa)$_3$ melts at 122 -123°C.11

The chemical composition of thin film deposits obtained in the described process was analysed by means of X-ray Photoelectron Spectroscopy, XPS. Depth profiling was performed by means of argon ion sputtering. In the evaluation of the relative atomic concentrations of different elements in the deposits, sensitivity factors obtained for different elements for this particular spectrometer were used. This technique which has an atomic sensitivity of 1ppt - 1pph, depending on the element, appears to be accurate within 15-20%, the accuracy being limited by sample surface roughness effects. Thicknesses of the deposits were measured by a 3-wavelength ellipsometer. Presence of crystallographic structure was checked by X-ray diffraction techniques. Film surface morphology was examined using an optical microscope with a differential interference contrast capability and magnifications up to 440X. Electrical characteristics were determined by capacitance - voltage (C-V) and current - voltage (I-V) measurements on Si/Al$_2$O$_3$/Al structures. The MOS capacitors were fabricated by vacuum deposition of Al through a metal mask. The area of the metal electrode was typically 1.4×10^{-2} cm2.

3
Results

A. Decomposition of Aluminum Hexafluoroacetylacetonate.

General Properties of Deposits - The thermally activated decomposition of Al(hfa)₃ under the process conditions specified in the previous section resulted in the deposition of transparent, continuous, well adherent films in the whole range of substrate temperatures studied 320°C - 480°C. Examination of film surfaces by means of an optical microscope did not reveal any surface roughening under the magnification used, 440X. The growth rate of films, as determined on the basis of the ellipsometric measurements of film thicknesses was in the range of 1 - 5 nm/min depending on the substrate temperature, and the position of the sample on the susceptor. Results of the examination of selected films by means of X-ray diffraction techniques indicated that the deposits were amorphous.

Chemical composition - Fig.1 a and b show the XPS spectra for deposits obtained for the substrate temperatures, Tₘ₀, equal to 320°C and 480°C, respectively. These spectra were taken after sputter-cleaning of the samples, performed in order to remove atmospheric contamination. Depth-profiling analyses were performed for the samples, and did not show any significant variations of the elemental concentrations with film thickness. The approximate values of the atomic concentrations of the elements detected in the spectra presented in Fig.1, along with the values of other analyzed samples are given in Table I. The main component of the deposits seems to be aluminum oxide as indicated by the relative atomic concentrations of aluminum and oxygen.

Examination of the data presented in Table I indicates also that the substrate temperature in the range studied affects the chemical composition of the deposits. The carbon concentration increases as temperature increases, as was also found in the study of copper film formation from Cu(hfa)₂. The other impurity detected was fluorine and its concentration does not seem to depend on temperature. As indicated via sputter analysis, composition, including that of fluorine, was uniform throughout the oxide.

Refractive index - The refractive index at 6328 Å of the deposits was determined by means of ellipsometry and was found to vary with temperature within the range 1.75 - 1.95. Higher substrate temperature
favored films with higher index of refraction. The value for polycrystalline stoichiometric α-Al_2O_3 is 1.76.12 The values of refractive index of the films reported in this paper are comparable to the values for aluminum oxide films obtained from aluminum acetylacetonate6 but higher than the values for aluminum oxide films deposited from aluminum isopropoxide (1.62)13 and from trimethylaluminum (1.54-1.67).14

Electrical Properties. In order to evaluate electrical properties of the obtained aluminum oxide films metal-oxide-semiconductor (MOS) capacitors were prepared by depositing aluminum dots on the metal-oxide structure. The capacitance voltage measurements were done at 1 MHz, using a C-V plotter. The voltage was swept from negative 5 V to positive 5 V and back to the initial negative 5 V in order to detect hysteresis in the C-V trace. After post-metal annealing, pma, in forming gas (10% H_2 - 90%N_2) at 400°C for 30 min, the value of the flat band voltage, V_{FB}, was found to be in most cases positive, indicative of apparent negative charge in the dielectric film. V_{FB} ranged typically from 0.5 - 1.9 V for film thicknesses in the interval 90 nm - 130 nm. These values of V_{FB} correspond to the net negative charge density in the range $3 - 10\times10^{11}$ cm$^{-2}$, if the assumption is made that the oxide charge is located at the Si-oxide interface. If, in fact, the charge is uniformly distributed in the oxide, the values of the density need to be multiplied by the factor of 2. Hysteresis was not generally observed in the C-V curves of capacitors which received only a pma cycle.

For some samples annealing in dry oxygen at 450°C for 2 hrs. was carried out on specimens which were stripped of their capacitor Al dots. New Al dots were evaporated and the capacitors were pma, as before. The flat band voltage was found to be smaller than in the case of the non-treated samples. However, the samples annealed in oxygen exhibited hysteresis in their C-V traces.

The C-V measurements served also to determine the dielectric constant of the aluminum films. The dielectric constants were calculated using the values of capacitance in the accumulation region and were found to be in most cases in the interval 6.0 - 7.9 which is comparable with values obtained for aluminum oxide films deposited from other compounds.6,13,14
The breakdown field of the oxide films was determined by applying a voltage across the oxide and observing on an I-V curve tracer the voltage at which the current suddenly increased to the point of no return. The voltage scan direction was toward accumulation in the silicon substrate. The breakdown field was generally better than 3MV/cm.

B. Decomposition of Aluminum (III) Trifluoroacetylacetonate.

XPS analyses of the deposits obtained by the thermally activated decomposition of Al(tfa)₃ indicate a much higher concentration of carbon than the concentration in the deposits obtained in the same temperature range from the hexafluoroacetylacetonate compound. Fig.2 shows XPS spectra obtained for \(T_{\text{sub}} \) equal to 350°C and 450°C, respectively. Again, the depth profiling analysis showed uniform concentration of the different species throughout film thickness. While the concentration of the carbon is high, the results indicate that the films contain both aluminum and oxygen, aluminum being bonded to oxygen in Al₂O₃, as indicated by the position of Al 2p peak. The carbon content of the films increases with temperature of deposition. Due to the high concentration of carbon in the deposits obtained from Al(tfa)₃, no attempts were made to further characterize the films.

Summary and Conclusions

Thermally activated decomposition of aluminum hexafluoroacetylacetonate carried out at atmospheric pressure in an inert atmosphere of argon resulted in the deposition of aluminum oxide films. Films deposited in the substrate temperature range 320-400°C contained the smallest amount of carbon impurity. Flat band voltage of Si/Al₂O₃/Al capacitors was found to be positive indicative of negative charge concentration of \(3 \times 10^{11} \text{cm}^{-2} \) and post-deposition annealing of the films in dry oxygen at 450°C was found to lead to the reduction of the oxide charge density. In addition, following oxygen annealing the C-V curves exhibited hysteresis.

Decomposition of aluminum trifluoroacetylacetonate resulted also in the deposition of aluminum oxide, however the carbon content of the films was much higher than in the case of the deposits obtained
from aluminum hexafluoroacetylacetonate under similar process conditions.

Acknowledgements

The authors gratefully acknowledge the financial support of the Office of Naval Research and express their thanks to Ms. Susan MacKay and Mr. Chul Un Ro of the University of North Carolina in Chapel Hill for performing the XPS analyses and for valuable discussions.
References

Table 1

Chemical composition of deposits obtained by thermally activated decomposition of Al(hfa)$_3$, as determined by XPS analyses.

<table>
<thead>
<tr>
<th>Temp. of Substrates [°C]</th>
<th>Composition of Deposits rel. at. %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al</td>
</tr>
<tr>
<td>320</td>
<td>39</td>
</tr>
<tr>
<td>340</td>
<td>38</td>
</tr>
<tr>
<td>380</td>
<td>40</td>
</tr>
<tr>
<td>440</td>
<td>39</td>
</tr>
<tr>
<td>480</td>
<td>36</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1.
XPS spectrum of the film obtained by decomposition of Al(hfa)$_3$ for the substrate temperature

a) $T_{\text{sub}} = 320^\circ C$ and

b) $T_{\text{sub}} = 480^\circ C$

(after sputter-cleaning of the film).

Figure 2.
XPS spectrum of the film obtained by decomposition of Al(tfa)$_3$ for the substrate temperature

a) $T_{\text{sub}} = 350^\circ C$ and

b) $T_{\text{sub}} = 450^\circ C$

(after sputter-cleaning of the film).
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research
Chemistry Division, Code 1113
800 North Quincy Street
Arlington, VA 22217-5000</td>
<td>3</td>
</tr>
<tr>
<td>Commanding Officer
Naval Weapons Support Center
Attn: Dr. Bernard E. Douda
Crane, IN 47522-5050</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Richard W. Drisko
Naval Civil Engineering Laboratory
Code L52
Port Hueneme, California 93043</td>
<td>1</td>
</tr>
<tr>
<td>Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314</td>
<td>2</td>
</tr>
<tr>
<td>David Taylor Research Center
Dr. Eugene C. Fischer
Annapolis, MD 21402-5067</td>
<td>1</td>
</tr>
<tr>
<td>Dr. James S. Murday
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: The number of copies for each recipient is indicated.
ABSTRACTS DISTRIBUTION LIST, SOLID STATE & SURFACE CHEMISTRY

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106
R&T Code 413e016

Dr. David M. Walba
Department of Chemistry
University of Colorado
Boulder, CO 80309-0215
R&T Code 407001-7

Dr. R. Bruce King
Department of Chemistry
University of Georgia
Athens, Georgia 30602
R&T Code 407001-6

Dr. Richard J. Saykally
Department of Chemistry
University of California
Berkeley, California 94720
R&T Code 4134014

Dr. M. A. El-Sayed
Department of Chemistry
University of California
Los Angeles, California 90024
R&T Code 4131015

Dr. J. R. MacDonald
Chemistry Division
Naval Research Laboratory
Code 6110
Washington, D.C. 20375-5000

Dr. George H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853
R&T Code 413e012

Dr. John Eyler
Department of Chemistry
University of Florida
Gainesville, Florida 32611
R&T Code 4131007

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118
R&T Code 4134009

Dr. A. B. Ellis
Department of Chemistry
University of Wisconsin
Madison, Wisconsin 53706
R&T Code 413e010

Dr. Robert W. Shaw
U.S. Army Research Office
Box 12211
Research Triangle Park, NC 27709

Dr. A. Reisman
Microelectronics Center of
North Carolina
Research Triangle Park,
North Carolina, 27709
R&T Code 413e018

Dr. J. H. Weaver
Department of Chemical
and Material Sciences
University of Minnesota
Minneapolis, Minnesota 55455
R&T Code 4134012

Dr. W. Unertl
Laboratory for Surface Science
and Technology
University of Maine
Orono, Maine 04469
R&T Code 413e019

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington, DC 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181
R&T Code 413c014

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181
R&T Code 413c014
ABSTRACTS DISTRIBUTION LIST. SOLID STATE & SURFACE CHEMISTRY page 2

Dr. A. Hamers
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598
R&T Code 413f002

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598
R&T Code 413f002

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706
R&T Code 413e007

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720
R&T Code 413e014

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, DC 20375-5000

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Galen D. Stucky
Chemistry Department
University of California
Santa Barbara, CA 93106
R&T Code 4134015

Dr. Arold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555
R&T Code 413e024

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912
R&T Code 4134005

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403
R&T Code 413n002

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514
R&T Code 413q001

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217
R&T Code 413e013

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. G. Ruboff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598
R&T Code 413q002

Dr. J. Balteschiwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125
R&T Code 413f004
ABSTRACTS DISTRIBUTION LIST, SOLID STATE & SURFACE CHEMISTRY page 3

Dr. Robert L. Whetten
Department of Chemistry
University of California
Los Angeles, CA 90024
R&T Code 413n001

Dr. Daniel M. Neumark
Department of Chemistry
University of California
Berkeley, CA 94720
R&T Code 400x026

Dr. Richard Colton
Code 5170
Naval Research Laboratory
Washington, DC 20375-5000

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, DC 20052
R&T Code 413o022

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717
R&T Code 4134002

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260
R&T Code 413e001

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024
R&T Code 413e026

Dr. E. Yeager
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. N. Winograd
Department of Chemistry
Case Western Reserve University
University Park, Pennsylvania 16802
R&T Code 413e004

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, NY 14853
R&T Code 4134010

Professor Paul K. Hansma
Department of Physics
University of California
Santa Barbara, CA 93106
R&T Code 413f003

Dr. Duncan W. Brown
Advanced Technology Materials, Inc.
520-B Danbury Road
New Milford, CT 06776
R&T Code htsc001

Dr. Sylvia M. Johnson
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
R&T Code htsc015

Dr. Paul A. Christian
Advanced Chemical Technologies
Federal Systems Division
Eastman Kodak Company
Rochester, NY 14650-2156
R&T Code htsc006

Professor S. Bruckenstein
Department of Chemistry
State University of New York
Buffalo
Buffalo, NY 14214
R&T Code htsc020

Professor Paul F. Barbara
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455-0431
R&T Code 413r001

Professor Larry L. Miller
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455-0431
R&T Code 413e011

Professor B. R. Weiner
Department of Chemistry
University of Puerto Rico
Río Piedras Campus
Río Piedras, Puerto Rico 00931
R&T Code 4134042
Professor James F. Garvey
Department of Chemistry
State University of New York
Binghamton
Binghamton, NY 13902
R&T Code 412m008

Professor T. George
Departments of Chemistry & Physics
State University of New York
at Buffalo
Buffalo, New York 14260
R&T Code 413f001

Professor R. E. Smalley
Department of Chemistry
Rice University
P.O. Box 1892
Houston, TX 77251
R&T Code 412m007

Professor F. J. DiSalvo
Department of Chemistry
Baker Laboratory
Cornell University
Ithaca, NY 14853
R&T Code 413m035

Professor R. H. Smail
Department of Chemistry
Baker Laboratory
Cornell University
Ithaca, NY 14853
R&T Code 413m007

Dr. Z. H. Kafafi
Optical Sciences Division
Code 6551
Washington, DC 20375-5000
R&T Code 413f003

Dr. Stephen H. Lieberman
Marine Environment Branch
Code 522
Naval Ocean Systems Center
San Diego, CA 92152
R&T Code 413m022

Professor M. C. Lin
Department of Chemistry
Emory University
Atlanta, GA 30322
R&T Code 413h012

Professor G. B. Stringfellow
Department of Materials Science
and Engineering
University of Utah
Salt Lake City, UT 84112
R&T Code 413m035

Dr. D. E. Irish
Department of Chemistry
University of Waterloo
Waterloo, Ontario Canada N2L 3G1